

Large Deviations and the Distribution of Pre-images of Rational Maps

Mark Pollicott, Richard Sharp

Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Received: 1 February 1996 / Accepted: 8 May 1996

Abstract: In this article we prove a large deviation result for the pre-images of a point in the Julia set of a rational mapping of the Riemann sphere. As a corollary, we deduce a convergence result for certain weighted averages of orbital measures, generalizing a result of Lyubich.

0. Introduction

Let $\hat{\mathbb{C}}$ denote the Riemann sphere and let $T : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \ge 2$, say. Every point has d pre-images (counted according to their multiplicities). There is a well-known result of Lyubich which shows that for a point $x \in \mathbb{J}$ in the Julia set an evenly distributed weight on the set of d^n pre-images

$$S_n(x) = \{ y \in \widehat{\mathbb{C}} : T^n y = x \}$$

converges (in the weak^{*} topology) to a measure μ_0 as $n \to +\infty$ [4, 8]. The measure μ_0 is precisely the unique measure of maximal entropy for the map T [2, 5].

Since $T : \mathbb{J} \to \mathbb{J}$ is a continuous map on a compact metric space we can define the pressure of a continuous function $f : \mathbb{J} \to \mathbb{R}$ by

 $P(f) = \sup \left\{ h(v) + \int f dv: v \text{ is a } T \text{-invariant probability} \right\},\$

where h(v) denotes the entropy of T with respect to v. An equilibrium state for f is a T-invariant probability μ realising this supremum.

Let \mathcal{M} denote the set of all probability measures on J. We shall show the following stronger "large deviation" result on the pre-images of a point $x \in J$.

Theorem 1. Let $f : \mathbb{J} \to \mathbb{R}$ be a Hölder continuous function such that $P(f) > \sup f$ and let μ be the unique equilibrium state for f. Let $x \in \mathbb{J}$. Then for any weak^{*} open neighbourhood $\mathcal{U} \subset \mathcal{M}$ of μ we have that the weighted proportion of

The first author was supported by a Royal Society University Fellowship during part of this research.

M. Pollicott, R. Sharp

the measures

$$\mu_{y,n} = \frac{1}{n} (\delta_y + \delta_{Ty} + \dots + \delta_{T^{n-1}y}) \notin \mathscr{U}$$

tends to zero exponentially fast, in the sense that there exists C > 0 and $0 < \eta < 1$ such that

$$\frac{\sum_{\substack{T^n y=x \\ \mu_{y,n} \notin \mathscr{U}}} e^{f^n(y)}}{\sum_{T^n y=x} e^{f^n(y)}} \leq C \eta^n, \quad for \ n \geq 0,$$

where we denote $f^{n}(y) = f(y) + f(Ty) + \dots + f(T^{n-1}y)$.

Remark. The condition $P(f) > \sup f$ was first introduced by Urbanski in [9]. In the present article, as well as being required as a hypothesis for Lemmas 2 and 3, it is also used to give the lower bound required in establishing Lemma 6.

In the special case that f = 0 then μ becomes the measure of maximal entropy μ_0 for $T : \mathbb{J} \to \mathbb{J}$. The theorem then reduces to the following.

Corollary 1. Let $x \in J$. For any weak^{*} open neighborhood $\mathcal{U} \subset \mathcal{M}$ of μ_0 the proportion of the points $y \in S_n(x)$ such that

$$\mu_{y,n} = \frac{1}{n} (\delta_y + \delta_{Ty} + \dots + \delta_{T^{n-1}y}) \notin \mathscr{U}$$

tends to zero exponentially fast, i.e., there exists C > 0 and $0 < \eta < 1$ such that

$$\frac{1}{d^n}\#\{y\in S_n(x):\mu_{y,n}\notin\mathscr{U}\}\leq C\eta^n, \quad for \ n\geq 0.$$

A second corollary to the theorem is given by the following convergence result.

Corollary 2. Let $x \in J$. Let $f : J \to \mathbb{R}$ be a Hölder continuous function such that $P(f) > \sup f$ and let μ be the unique equilibrium state for f. Then the averages

$$\frac{\sum_{T^n y=x} e^{f^n(y)} \mu_{y,n}}{\sum_{T^n y=x} e^{f^n(y)}}$$

converges to μ in the weak^{*} topology as $n \to +\infty$.

These two corollaries provide two different generalizations of the following wellknown result of Lyubich.

Lyubich's Theorem ([4, 8, 2]). Let $x \in J$. Then the averages

$$\frac{1}{d^n}\sum_{T^n y=x}\mu_{y,n}$$

converge to μ_0 in the weak^{*} topology as $n \to +\infty$.

Remark. Strictly speaking, Lyubich established that the averages $\frac{1}{d^n} \sum_{T^n y=x} \mu_{y,n}$ converge to a non-atomic *T*-invariant probability measure supported on J. This measure was subsequently shown to maximise the entropy in [2] and it was shown that there is a unique measure of maximal entropy in [5]. Whereas Lyubich's

734

Theorem can be established using normality of sequences of functions and the Montel-Carathéodory theorem [8], these stronger results (Corollaries 1 and 2) seem to require a different argument.

Previous applications of large deviation ideas to rational maps include the result of Lopes dealing with almost everywhere convergence of Birkhoff averages [3]. (Lopes restricted himself to the case of hyperbolic Julia sets but, as Przytycki observed [7] this is unnecessary provided we assume $P(f) > \sup f$.)

1. Some Properties of Rational Maps

In this section we shall recall some of the basic properties of rational maps which we shall need later. Let $T : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \ge 2$, i.e.

$$T(z) = \frac{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}{b_n z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0},$$

where $a_n, \ldots, a_0, b_m, \ldots, b_0 \in \mathbb{C}$ (with $a_n, b_m \neq 0$) and $d = \max\{n, m\} \ge 2$.

Counted according to multiplicity, every point $x \in \hat{\mathbb{C}}$ will have *d*-pre-images. If we consider the n^{th} iterate $T^n : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ then the set of pre-images $S_n(x) = \{y : T^n y = x\}$ of a point $x \in \hat{\mathbb{C}}$ will have cardinality d^n .

Definition. The **Julia set** $\mathbb{J} \subset \mathbb{C}$ is defined to be the closure of the set of all periodic points $T^n x = x$ for which $|(T^n)'(x)| > 1$.

Clearly J is a closed T-invariant set and we shall be interested in the restriction $T: \mathbb{J} \to \mathbb{J}$ of the map T. We shall write $C^0(\mathbb{J})$ for the space of real valued continuous functions on J. We denote by \mathcal{M}_T the space of all T-invariant probability measures on J.

Definition. For any continuous function $f : \mathbb{J} \to \mathbb{R}$ we can define the pressure by

$$P(f) = \sup\{h(v) + \int f dv \colon v \in \mathcal{M}_T\},\$$

where h(v) denotes the entropy of T with respect to the measure v.

We let h(T) = P(0) denote the *topological entropy* of $T : \mathbb{J} \to \mathbb{J}$. The following results about entropy will be useful to us.

Lemma 1 [2, 4].

- (i) $h(T) = \log d$.
- (ii) The map $v \to h(v)$ is upper semi-continuous in the weak^{*} topology.
- (iii) There is a unique measure of maximal entropy μ_0 for $T: \mathbb{J} \to \mathbb{J}$.

Statement (iii) of Lemma 1 has the following generalization.

Lemma 2 (Denker and Urbanski [1]). If $f : \mathbb{J} \to \mathbb{R}$ is a Hölder continuous function such that $P(f) > \sup f$ then f has a unique equilibrium state μ .

The following lemma gives us some information about the relationship between pressure and the pre-images of a point.

Lemma 3 (*Przytycki* [6]). Let $x \in J$. Let f be a Hölder continuous function on the Julia set J such that $P(f) > \sup f$ and let g be a continuous function on J. Then (i)

(i)

$$\lim_{n \to +\infty} \frac{1}{n} \log \sum_{T^n y = x} e^{f^n(y)} = P(f);$$
(ii)

$$\limsup_{n \to +\infty} \frac{1}{n} \log \sum_{T^n y = x} e^{f^n(y) + g^n(y)} \leq P(f+g).$$

Finally, the following lemma gives us an alternative characterisation of the entropy.

Lemma 4.

(i) If
$$v \in \mathcal{M}_T$$
 then
$$h(v) = \inf \{ P(g) - \int g dv \colon g \in C^0(\mathbf{J}) \} .$$

(ii) If $v \in \mathcal{M} - \mathcal{M}_T$ then

 $0 \ge \inf \{ P(g) - \int g dv \colon g \in C^0(\mathbf{J}) \} .$

Proof. In fact, these two results hold for any continuous mapping T of a compact metric space for which $h(T) < +\infty$ and, in the case of (i), the map $v \to h(v)$ is upper semi-continuous (cf. [10, pp. 221–222]).

2. Proof of Theorem 1

In this section we will give the proof of Theorem 1, using the results from the previous section. As before $f : \mathbb{J} \to \mathbb{R}$ is a Hölder continuous function satisfying $P(f) > \sup f$. We can define a map $Q : C^0(\mathbb{J}) \to \mathbb{R}$ by Q(g) = P(f+g) - P(f). For $v \in \mathcal{M}$, we then denote the *Legendre transform* of Q(g) by

$$I(v) = \sup_{g \in C^0(\mathbb{J})} \left(\int g dv - Q(g) \right).$$

Given any weak^{*} closed (and hence compact) subset $\mathscr{K} \subset \mathscr{M}$ we define $\rho = \rho_{\mathscr{K}} := \inf_{v \in \mathscr{K}} I(v)$.

Our proof will be based upon the following estimate.

Lemma 5.

$$\limsup_{n \to +\infty} \frac{1}{n} \log \left(\frac{\sum_{\substack{T^n y = x \\ \mu_{y,n} \in \mathscr{K}}} e^{f^n(y)}}{\sum_{T^n y = x} e^{f^n(y)}} \right) \leq -\rho .$$
(1)

Proof. Fix a choice of $\varepsilon > 0$. From the definition of ρ , for every $v \in \mathscr{K}$, there exists $g \in C^0(\mathbb{J})$ such that

$$\int g dv - Q(g) > \rho - \varepsilon \; .$$

Large Deviations and Distribution of Pre-images of Rational Maps

Thus we have that

$$\mathscr{K} \subset \bigcup_{g \in C^{0}(\mathbb{J})} \left\{ v \in \mathscr{M} : \int g dv - Q(g) > \rho - \varepsilon \right\}$$

and by weak* compactness we can choose a finite subcover

$$\mathscr{K} \subset \bigcup_{i=1}^{k} \left\{ v \in \mathscr{M} : \int g_i dv - Q(g_i) > \rho - \varepsilon \right\}.$$

Therefore we have the inequality

$$\sum_{\substack{T^n y = x \\ \mu_{y,n} \in \mathscr{K}}} e^{f^n(y)} \leq \sum_{i=1}^k \left(\sum_{\substack{T^n y = x \\ \frac{1}{n} g_i^n(y) - Q(g_i) > \rho - \varepsilon}} e^{f^n(y)} \right)$$
$$\leq \sum_{i=1}^k e^{-n(Q(g_i) + (\rho - \varepsilon))} \left(\sum_{T^n y = x} e^{f^n(y) + g_i^n(y)} \right).$$

Taking limits we get that

$$\begin{split} \limsup_{n \to +\infty} \frac{1}{n} \log \left(\frac{\sum_{\substack{T^n \ y = x \\ \mu_{y,n} \in \mathscr{K}}} e^{f^n(y)}}{\sum_{T^n \ y = x} e^{f^n(y)}} \right) \\ & \leq \sup_{1 \le i \le k} \left\{ -Q(g_i) - \rho + \varepsilon + \limsup_{n \to +\infty} \frac{1}{n} \log \left(\sum_{\substack{T^n \ y = x \\ n \to +\infty}} e^{f^n(y) + g_i^n(y)} \right) \\ & - \liminf_{n \to +\infty} \frac{1}{n} \log \left(\sum_{\substack{T^n \ y = x \\ p \le x \le k}} e^{f^n(y)} \right) \right\} \\ & \leq \sup_{1 \le i \le k} \left\{ -Q(g_i) - \rho + \varepsilon + P(f + g_i) - P(f) \right\} = -\rho + \varepsilon \,, \end{split}$$

where the second inequality uses Lemma 3. Since $\varepsilon > 0$ can be chosen arbitrarily small this completes the proof of the lemma.

We next want to show that if \mathscr{K} does not contain μ then $\rho > 0$. This will follow from the next lemma.

Lemma 6.

- (i) If $v \neq \mu$ then I(v) > 0.
- (ii) The map $v \to I(v)$ is lower semi-continuous on \mathcal{M}_T and I is bounded away from 0 on $\mathcal{M} \mathcal{M}_T$.

M. Pollicott, R. Sharp

Proof. For part (i) we have that

$$I(v) = \sup_{g \in C^0(\mathbb{J})} \left(\int g dv - P(f+g) + P(f) \right)$$

=
$$\sup_{g \in C^0(\mathbb{J})} \left(\int (g-f) dv - P(g) + P(f) \right)$$

=
$$\sup_{g \in C^0(\mathbb{J})} \left(\int g dv - P(g) \right) + P(f) - \int f dv$$

=
$$-\inf_{g \in C^0(\mathbb{J})} \left(P(g) - \int g dv \right) + P(f) - \int f dv .$$

If $v \in \mathcal{M}_T$ then, by part (i) of Lemma 4, this is equal to $-h(v) + P(f) - \int f dv$, and, by the uniqueness of the equilibrium state μ , $-h(v) + P(f) - \int f dv > 0$. On the other hand, if $v \in \mathcal{M} - \mathcal{M}_T$, then

$$\inf_{g\in C^0(\mathbb{J})} \left(P(g) - \int g dv \right) < 0$$

by part (ii) of Lemma 4 and so

$$I(v) > 0 + P(f) - \int f dv \ge P(f) - \sup f > 0$$

For the proof of (ii) we first notice that $I(v) = -h(v) + P(f) - \int f dv$. We then complete the proof with the lower bound in the proof of (i) above. This completes the proof of the lemma.

Since \mathscr{K} is compact, we can conclude that if $\mu \notin \mathscr{K}$ then $\rho > 0$. Theorem 1 now follows by setting $\mathscr{K} = \mathscr{M} - \mathscr{U}$.

Proof of Corollary 2. We shall show that for any $g \in C^0(\mathbb{J})$ we have that

$$rac{1}{\Sigma(f,n)}\sum_{T^n y=x}e^{f^n(y)}rac{g^n(y)}{n}
ightarrow\int gd\mu, \quad ext{as } n
ightarrow+\infty \,,$$

where $\Sigma(f,n) = \sum_{T^n y=x} e^{f^n(y)}$.

Given $\varepsilon > 0$, define an open neighbourhood \mathscr{U} of μ by

$$\mathscr{U} = \left\{ v \in \mathscr{M} : \left| \int g dv - \int g d\mu \right| < \varepsilon \right\}.$$

Then we may write

$$\begin{split} &\frac{1}{\Sigma(f,n)}\sum_{T^n y=x}e^{f^n(y)}\frac{g^n(y)}{n}\\ &=\frac{1}{\Sigma(f,n)}\sum_{\substack{T^n y=x\\ \mu_{y,n}\in\mathscr{U}}}e^{f^n(y)}\frac{g^n(y)}{n}+\frac{1}{\Sigma(f,n)}\sum_{\substack{T^n y=x\\ \mu_{y,n}\notin\mathscr{U}}}e^{f^n(y)}\frac{g^n(y)}{n}\\ &=\frac{1}{\Sigma(f,n)}\sum_{\substack{T^n y=x\\ \mu_{y,n}\in\mathscr{U}}}e^{f^n(y)}\left\{\int gd\mu+E_n(y)\right\}+O(\eta^n)\,,\end{split}$$

where $|E_n(y)| < \varepsilon$ and $0 < \eta < 1$ is given by Theorem 1.

738

Large Deviations and Distribution of Pre-images of Rational Maps

Thus we conclude (by adding appropriate constants to g if necessary) that

$$\limsup_{n \to +\infty} \frac{1}{\Sigma(f,n)} \sum_{T^n y = x} e^{f^n(y)} \frac{g^n(y)}{n} \leq \int g d\mu + \varepsilon$$

and

$$\liminf_{n\to+\infty}\frac{1}{\Sigma(f,n)}\sum_{T^n y=x}e^{f^n(y)}\frac{g^n(y)}{n}\geq \int gd\mu-\varepsilon\,.$$

Since $\varepsilon > 0$ is arbitrary, the result is proved.

References

- 1. Denker, M., Urbanski, M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity **4**, 103–134 (1991)
- Freire, A., Lopes, A., Mañé, R.: An invariant measure for rational maps. Bol. Bras. Mat. Soc. 14, 45–62 (1983)
- 3. Lopes, A.: Entropy and Large Deviations. Nonlinearity 3, 527-546 (1990)
- 4. Lyubich, M.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. **3**, 351–385 (1983)
- 5. Mané, R.: On the uniqueness of the maximising measure for rational maps. Bol. Bras. Mat. Soc. 14, 27-43 (1983)
- 6. Przytycki, F.: On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Bras. Mat. Soc. **20**, 95–125 (1990)
- 7. Przytycki, F.: Review of "Entropy and Large Deviations" by A. Lopes. Math. Rev. 91m:58092
- 8. Steinmetz, N.: Rational Iteration. Berlin-New York: de Gruyter, 1993
- 9. Urbanski, M.: Invariant subsets of expanding mappings of the circle. Ergodic Theory Dyn. Sys. 7, 627-645 (1987)
- Walters, P.: An Introduction to Ergodic Theory. New York-Heidelberg-Berlin: Springer-Verlag, 1982

Communicated by Ya.G. Sinai