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Abstract: In this article we prove a large deviation result for the pre-images of a
point in the Julia set of a rational mapping of the Riemann sphere. As a corollary,
we deduce a convergence result for certain weighted averages of orbital measures,
generalizing a result of Lyubich.

0. Introduction

Let € denote the Riemann sphere and let T : € — € be a rational map of degree
d = 2, say. Every point has d pre-images (counted according to their multiplicities).
There is a well-known result of Lyubich which shows that for a point x € J in the
Julia set an evenly distributed weight on the set of d” pre-images

Su(x)={ye€:T"y=x}

converges (in the weak * topology) to a measure yy as n — +oo [4, 8]. The measure
Lo is precisely the unique measure of maximal entropy for the map 7 [2, 5].

Since 7 : J — J is a continuous map on a compact metric space we can define
the pressure of a continuous function f : J — R by

P(f)=sup {h(v)+ [ fdv: v is a T-invariant probability} ,

where A(v) denotes the entropy of 7' with respect to v. An equilibrium state for f
is a T-invariant probability p realising this supremum.

Let .# denote the set of all probability measures on J. We shall show the
following stronger “large deviation” result on the pre-images of a point x € J.

Theorem 1. Let f:J — R be a Holder continuous function such that P(f) >
sup f and let u be the unique equilibrium state for f. Let x € U. Then for any
weak* open neighbourhood U C M of u we have that the weighted proportion of
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the measures .

Hyn = ;(6}; -+ 5Ty —+ -+ 5Tn—ly) 6‘5%
tends to zero exponentially fast, in the sense that there exists C >0 and 0 <n <1
such that ]

Z T" y=x ef (62)

,“y,n¢% n
ZT"y=xef”(y) é C”’ s for n g 0,

where we denote f"(y) = f(y)+ f(Ty)+ -+ f(T""'y).

Remark. The condition P(f) > sup f was first introduced by Urbanski in [9]. In
the present article, as well as being required as a hypothesis for Lemmas 2 and 3,
it is also used to give the lower bound required in establishing Lemma 6.

In the special case that f = 0 then u becomes the measure of maximal entropy
tip for T : J — J. The theorem then reduces to the following.
Corollary 1. Let x € J. For any weak* open neighborhood U C M of wy the
proportion of the points y € S,(x) such that
1
Hy,n = ;(6y + 5Ty +---+ 5T”—‘y) ¢%
tends to zero exponentially fast, i.e., there exists C >0 and 0 <n <1 such that

1
5#{)} €Su(x):puyn ¢U} < Cy", forn=0.

A second corollary to the theorem is given by the following convergence result.

Corollary 2. Let x € J. Let f : J — R be a Holder continuous function such that
P(f)>sup f and let p be the unique equilibrium state for f. Then the averages

ZT"y:x efn(y)uy’n
ZT"y:x ef/"(y)

converges to p in the weak™ topology as n — +oc.

These two corollaries provide two different generalizations of the following well-
known result of Lyubich.

Lyubich’s Theorem ([4, 8, 2]). Let x € J. Then the averages
1
3’7 T'§:=x Hym
converge to gy in the weak™ topology as n — +oo.
Remark. Strictly speaking, Lyubich established that the averages dl,, ZT,,yzx Uy,
converge to a non-atomic 7-invariant probability measure supported on J. This

measure was subsequently shown to maximise the entropy in [2] and it was shown
that there is a unique measure of maximal entropy in [S]. Whereas Lyubich’s
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Theorem can be established using normality of sequences of functions and the
Montel-Carathéodory theorem [8], these stronger results (Corollaries 1 and 2) seem
to require a different argument.

Previous applications of large deviation ideas to rational maps include the result
of Lopes dealing with almost everywhere convergence of Birkhoff averages [3].
(Lopes restricted himself to the case of hyperbolic Julia sets but, as Przytycki ob-
served [7] this is unnecessary provided we assume P(f) > sup f.)

1. Some Properties of Rational Maps

In this section we shall recall some of the basic properties of rational maps which
we shall need later. Let 7 : € — € be a rational map of degree d = 2, i.e.

"+ ap 12"V + -+ aiz+ ag
bpz" 4+ by_1z" "V 4+ bz + by’

T(z) =

where dp,...,a0, by,...,bo € C (with a,, b,,%=0) and d = max{n,m} = 2.

Counted accordlng to mult1p11c1ty, every point x € € will have d-pre-images.
If we consider the n' iterate 7" : € — € then the set of pre-images S,(x) = {y:
T"y =x} of a point x € € will have cardinality d”.

Definition. The Julia set J C C is defined to be the closure of the set of all
periodic points T"x = x for which |(T") (x)| > 1.

Clearly J is a closed T-invariant set and we shall be interested in the restriction
T:J — J of the map T. We shall write C°(J) for the space of real valued con-
tinuous functions on J. We denote by .#r the space of all T-invariant probability
measures on J.

Definition. For any continuous function f :J — IR we can define the pressure by

P(f)=sup{h(v)+ [ fdv: v € Mz},
where h(v) denotes the entropy of T with respect to the measure v.

We let A(T) = P(0) denote the topological entropy of T : J — J.
The following results about entropy will be useful to us.

Lemma 1 [2, 4].

(i) W(T)=logd.
(i) The map v — h(v) is upper semi-continuous in the weak™* topology.
(iii) There is a unique measure of maximal entropy uo for T : J — .

Statement (iii) of Lemma 1 has the following generalization.

Lemma 2 (Denker and Urbanski [1]). If f :J — R is a Holder continuous func-
tion such that P(f) > sup f then f has a unique equilibrium state .

The following lemma gives us some information about the relationship between
pressure and the pre-images of a point.
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Lemma 3 (Przytycki [6]). Let x € U. Let f be a Hoélder continuous function on
the Julia set J such that P(f) > sup f and let g be a continuous function on J.
Then
(1)
lim —log Z "M = P(f);

n—+oo n y —x
(ii)
1 n n
limsup —log > /"0 < p(f +g).

n—+oo N T"y=x

Finally, the following lemma gives us an alternative characterisation of the
entropy.
Lemma 4.
(i) If v € Mr then
h(v) = inf{P(g) — [gdv: g € C°(D)} .
(i) If ve M — My then
0 = inf{P(g) — [ gdv: g € C°(T)} .

Proof. In fact, these two results hold for any continuous mapping 7 of a compact
metric space for which A(T) < 4oco and, in the case of (i), the map v — A(v) is
upper semi-continuous (cf. [10, pp. 221-222]).

2. Proof of Theorem 1

In this section we will give the proof of Theorem 1, using the results from the
previous section. As before f :J — IR is a Holder continuous function satisfying
P(f) > sup f. We can define a map Q : C°(J) — R by O(g) = P(f + g) — P(f).
For v € ., we then denote the Legendre transform of Q(g) by

I(v) = sup (fgdv—Q(g))
ge

Given any weak™ closed (and hence compact) subset 4 C .4 we define p =

px = infyen I(v).
Our proof will be based upon the following estimate.

Lemma 5. \
Z T"y:x ef )
A
lim sup — log L”— < -p. 1)
oo 1 Syl ® (

Proof. Fix a choice of ¢ > 0. From the definition of p, for every v € ", there
exists g € C%(¥) such that

Jgdv—0(g)>p—c.
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Thus we have that

Aac U {ved: [gdv—0(g9)>p—¢}
geCo(J)

and by weak* compactness we can choose a finite subcover
k
AU {ved: [gdv—0(g:)>p—¢}.
i=1

Therefore we have the inequality

k n
S o'W < ) > e/
T"y=x i=1 T" y=x
Hyn €A 19/ (1)—0(g.)>p—¢
k n n
< Ze—n(Q(giH(p—s)) > PUACOYACON I
= T"y=x

Taking limits we get that

> s e/

. 1 Uy n €A
limsup - log | =="———
n—too M ZT"y:x e/"(»)

1 n n
< sup {—Q(g,-)—p+£+limsup—log< > e (y)+g,(y))
1<igk n—+oo N Tny=x
—liminfllog DA
n—+oo N T"y=x
< 1it}gk{—Q(gi)—p+«S+P(f+gz~)—P(f)} =—pte,

where the second inequality uses Lemma 3. Since ¢ > 0 can be chosen arbitrarily
small this completes the proof of the lemma.

We next want to show that if 24~ does not contain u then p > 0. This will follow
from the next lemma.

Lemma 6.

(1) If v£u then 1(v) > 0.
(i) The map v — I(v) is lower semi-continuous on My and I is bounded away

from 0 on M — Mr.
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Proof. For part (i) we have that

I(v)= sup ([gdv—P(f+g)+P(f))
9eC°(D)

= sup ([(g— f)dv—P(g)+P()))

geCoJ)

= sup ([gdv—P(g))+P(f)— [ fav

geCo(T)

=— inf (P(g9)— [gdv) +P(f)— [ fav.

geCo ()

If v € My then, by part (i) of Lemma 4, this is equal to —h(v) +P(f)— [ fav,
and, by the uniqueness of the equilibrium state pu, —h(v) + P(f) — [ fdv>0. On
the other hand, if v € .# — .4y, then

inf (P(g)— [ gdv) <0
o m( (9) — [ gdv)

by part (ii) of Lemma 4 and so

IV)>0+P(f)— [ fdv = P(f)—supf>0.

For the proof of (ii) we first notice that /(v) = —h(v) + P(f) — [ fdv. We then
complete the proof with the lower bound in the proof of (i) above. This completes
the proof of the lemma.

Since A is compact, we can conclude that if yu ¢ 4 then p > 0. Theorem 1
now follows by setting A4 = A4 — %.
Proof of Corollary 2. We shall show that for any g € C%(J) we have that

1 ey g
Z(fn)TZ ef(y)g—%ﬁfgdu, as n — 400,
’ "y=x

where X(f,n) = Y, e/ .
Given ¢ > 0, define an open neighbourhood % of u by

U={ve:|[gdv— [gdu|<e}.

Then we may write

L v o)

2(fon) riyix n
1 9" (¥) 1 109" (¥)
_ S (») S ()
= e/ V2 e/ W =2
Z(f’n) T'?:x n Z(fan) T’§=x n
Py n €U Uy n U
1 n
=5 . ¢ S gt B} 400
) ”y:x
Wy n €U

where |E,(y)| <¢ and 0 <n <1 is given by Theorem 1.
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and

Thus we conclude (by adding appropriate constants to g if necessary) that

lim sup

f()g(y)
im0 57y 2, ¢ S St

lim inf

WEOLAC) _
n—>+ooZ(fn)TE W 2 Jedu—e.

Since ¢ > 0 is arbitrary, the result is proved.
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