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Abstract: This paper is a continuation of [5]. We consider the Euclidean massless
free field on a box Vy of volume N with O-boundary condition; that is the centered
Gaussian field with covariances given by the Green function of the simple random
walk on Z¢,d = 3, killed as it exits Vy. We show that the probability, that all the
spins are positive in the box Vy decays exponentially at a surface rate N4~!. This
is in contrast with the rate N“~2log N for the infinite field of [5].

1. Introduction

The object of this paper is to analyze the asymptotical behavior of a Gibbsian
Gaussian field, under the condition that the variables are positive in a large finite
box. These asymptotics play an important role in the construction of droplets on a
“hard surface”, cf. [1, 6, 10], and in related questions dealing with quasi-locality,
cf. [7], and entropic repulsion [7, 11].

More precisely, let 4 =[—1,1]? be the unit box in R¥ and set Vy = NA N Z¢.
Next consider the Gaussian field P on Qy = R"¥ with density with respect to the
Lebesgue measure Ay(dX) = HieVN dX (i) of the form

PY(dX) = %GXP (—l > Qu(@j)X () —X(j))2> An(dxy,  (1.1)

2 Gy +0

where Zy is a normalizing constant, Qq4(i,j) = '217111'— jl=1 1s the transition matrix of
the simple random walk on Z¢, and we set X(j) = O for j ¢ V. Thus the spins are
“tied down” at the boundary of Vy. P can be viewed as the finite Gibbs distribution
on Qy to the nearest neighbor quadratic interaction

I = {Ju X)) = Quli, HXG) — X)), {ij} €29}

with 0-boundary conditions on Vj,. We will be working in the transient dimensions
d = 3; then P]?, converges weakly to P°, the infinite Gibbs distribution, sometimes
called (discrete) Euclidean massless free field. P° is the centered Gaussian field on
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Q = RZ' with covariance matrix G, the Green function of the simple random walk
in Z4, cf. [8].
Let
QFr={XeQy:Xk) =0, k€Vy}.

In a previous paper with E. Bolthausen and O. Zeitouni, we have shown,

Jim W’zll_ log P°(Q3) = —2GC’, (1.2)
where G = limy_,, ES[X(0)?] = E°[X(0)?] and C' = capr.(A) is the Newtonian
capacity of A in IR?, cf. [5]. The presence of the log N factor in the exponent, is
best explained by the fact that, under the “hard wall” condition Qj;, the spins are
repelled to the height /4GlogN as N — oo, cf. Prop. 1.3 of [5] or (1.6) below.

In this paper we replace the infinite Gibbs measure P° by the finite Gibbs
measure PY in (1.2). In particular we describe the effect of the 0-boundary condition
on the entropic repulsion. We differentiate between two regimes, depending whether
one looks

inside the box, i.e. far from the boundary: Q;{N for some 6 € (0,1), (1.3)

of up to the boundary: Qj; . (1.4)

In the first regime (1.3), we have a convergence very similar to (1.2):

. 1

where C(J) = cap,(34) is the Newtonian capacity of 64 =[—6,8]® in A, cf.
Theorem 2.2 below, and the same entropic repulsion as in [5]:

11m sup PY(X(k) < \/alogN |QF)

N—oo kEVsy
= 11m sup PN(X(k) VblogN |QF)=0, (1.6)
—>OOk€V5N

for each a < 4G < b and 0 € (0,1).

Note that C(6) = O((1 —6)~!) as 6 T 1, so that we expect a faster decay for
o0 = 1. This is due to the 0-boundary condition, which makes it less likely for the
variable to be positive. In fact, in the second regime (1.4), we have a surface order
which can be interpreted as a purely boundary effect: let 0, Vy = Vy \ Vn— = {k €
Vi : dist(k, V) < L}, and set

Oy ={XeQy:X(li) 20, icdVy},

then we show in our main result, Theorem 4.1,

. 1 . .
Nlll-;r;o Im IOgPI(\)/(Q;}) = Lll)n;lo Nh—l;n logPN(aLQN) - _,_X_:d o(el (17)

where k%(e;) is a certain “surface tension” in the direction of the i unit vector ¢;
i RY
in R4,
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The major tool in the derivation of (1.7) is the following interpolation in the
“intermediate regime™: let {Ly,N € N} be a monotone increasing sequence with
2 £ Ly and limy_, LW” = 0, then

Ly
—0 < hnllo%fW_IOgPN(Q(N Iy ))
=< lms;p]v—dll—logPN(Q Vo)) <0, (1.8)

cf. Prop. 2.5 and 2.9. In fact, we can show that, under the condition Q};, we have at

distance Ly from the boundary of ¥y an entropic repulsion of the order O(+/log Ly ).

The rest of the paper is divided into 4 sections. Section 2 gives a proof of (1.5)
and (1.8). Our main tool is the random walk representation of the covariance of
PY and a conditioning argument. In Sect. 3 we prove the entropic repulsion (1.6),
here the argument is based on the FKG property of the conditional field Py ( - |Q5).
Section 4 deals with the convergence (1.7) in the boundary regime. Finally, the
Appendix contains some useful estimates for the random walk.

Before concluding, let us state two important remarks. First it should be noted
that the above results can be easily generalized to arbitrary finite range interactions
Q and fixed boundary conditions a € Q, cf. [5, 1]. That is, in the definition (1.1)
of PY, we can replace Q4 by the positive finite range matrix O of an irreducible
symmetric random walk on Z¢ and set X(k) = a(k), k ¢ Vy. In particular, using
monotonicity one can show that, for any log-tempered a € @, (1.5) and (1.6) hold
with the same constants' C(J) and G, cf. Remark 2.4. Also (1.7) is true for any
constant boundary condition a(k) =a € R, k € Z¢ with x%(e;) replaced by the
corresponding x%(e;).

Second, much of what we have discussed above holds with some modifica-
tions for the recurrent dimension d = 2. The main difference here is the logarithmic
divergence of the variance Gy(0,0) = O(logN) as N — oo. This of course implies
that the infinite measure P® does not exist. We will treat this case in a separate paper
with E. Bolthausen. In particular, we show that the boundary behavior (1.7) is the
same as for d = 3, however, in the interior of the box, we have a (log N)?-decay.
More precisely, we show in [4], for each 6 € (0,1),

1
_ <Tlimi - 0 +
2GC(0) = l}ﬂloréf (log N2 log Py (25 )
1
_lle_)solip oz V)2 logPN(Q ) = ——GC((S),

where C(0) = cap,(54) as above, and G = limy_, C’;ﬁ—g)}vg.
2. The Behavior Inside the Box

In this section we give a proof of (1.5) and (1.8). Our main tool is the random walk
representation of the covariance matrix of PY: Let {&, : n € Ny = N U {0}} be the
simple random walk in Z¢ generated by Q4. We denote by IP; and IE; the probability

1Of course, in case O+ Qq, the constant C(6) has to be adapted to the corresponding capacity, cf. [3]
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and expectation for the walk with start at i € Z%. Let ty = inf{n € Ng: &, & Vy}
be the first exit time of Vy, then the covariance of PY is given by

COVPg(X(i)sX(j)) = GN(Z9]) = IEi l: IENO 1](5”)] 5 la] € VN 5

cf. Appendix of [3]. Let G(i,j) = i[> oy 1;(E)], ij € Z°, be the Green function
of the discrete Laplacian, then, for each ¢ € (0, 1),

Jlim Gy(i,j) = G(i,j) uniformly on Vs . 2.1)

This implies the weak convergence limy_,o, PY = P°, where P, the infinite Gibbs
state, is the centered Gaussian field with covariance G.

Let us fix some notation: c¢,c,c¢3,... € RT are generic constants which do not
depend on N or Ly, but are not necessarily the same at different occurrences. Also
for A C Z¢ we write

Q"N ={Xe€eQ:Xk)=20, ke A}.
Our first result is the proof of

Theorem 2.2. Let 6 € (0,1), then

. 1 .

where
, 1
C(6) = cap ,(6A) = inf {gnwnﬁzm) cheHi(A), h = 15,1}

is the Newtonian capacity? of 64 in A.

Proof. The proof follows exactly the argument of [5], so that we don’t go into
details and rather concentrate on the identification of the new constant C(J) =
cap 4(6A), which is alternatively given by

C(6) = sup {2(d, 1s4) 4 — (D154, O4(1549)) o : b € C(A)} ,

where (-, ), is the scalar product in L*(A) and ®4¢(x) = [, g4(x, y)d(»)dy,
is the Green operator associated with the brownian motion, killed as it exits A,
cf. [1].

We start with the lower bound

. . 1 0

A glance at the proof of [S], shows that the only two new ingredients are, the
uniform convergence (2.1), and the convergence of the relative entropy:

a*C(d)

. 1
fim o Hy Y Py = C9)

NS00 N9=2]log N

(2.3)

2H(;(A) is the usual Sobolev space
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here Hy,, (P2") | P) is the relative entropy of P2

the box Vsy and PX,(N) is the Gaussian field on Qy with covariance Gy and constant

mean Ea(N)[X(k)] =a(N) = +/alogN, k € Vy, for some a € R*. In order to prove
(2.3), first note the identity

with respect to PY restricted to

2
(N) | p0 a(N) —1
HV&N(P]‘:/ |PN)= P <1V5N’G]V,51V§N>VN >
where Gy, is the covariance matrix Gy restricted to Vsy, G,;g the inverse of Gy,

and (-, -)y, is the scalar product in /%(Vy), cf. [3]. Next, <1V6N’G];151V6N>VN =
capy, (Vsn) is the capacity of Vsy in Vy with respect to the simple random walk,
and using the same argument as in the proof of Lemma 2.2 of [3], one shows the
convergence

. 1
]\}l_fgo ]V—d_'z'capVN(VBN) = cap,(04),

which yields (2.3). As far as the upper bound is concerned:

lim sup log Py (24,) < —2GC($),

Nooo N9 2logN

one again uses the convergence (2.1) and the fact that, for each f € Cp(A), with
Sn(k) = f(k/N), k € Vy,

Jim N2, G )i = (644
cf. [1]. Now the result follows from the equality

<15/1>h>31
(154, ® 4(R154)) 4

Remark 2.4. Note that we do not use explicitly the geometry of Vy or Vsy in
the above argument. Also, using monotonicity, we could consider any log-tempered

boundary condition a € Qi = {a € Q : lim_ la)f _ = 0}. Thus, let I', A be two
4 || log|

bounded open domains of IR? with piecewise smooth boundaries. Set

: h piecewise constant on a uniform grid}. |

C(0) = sup {

I'v=NINZ Ay=NANZ' and P4, =P°(-|X(k)=a(k), k ¢ Ay).

Then if I' C A with dist(I", A%) > 0,

. 1 a
im ST og v 108 Py (2" (Tw)) = ~2Geap (),

where cap ,(I') = inf{ilgHVhHiz(A) theHNA), h= lr} is the capacity of I' in A.
Our next step is the upper bound in the intermediate regime.

Proposition 2.5. Let LWN N\ O with Ly = 2, then

logPN(Q(N ) <0.

lim sy, —L———
N—»oop Nd 11
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Proof. Let Wy = Wy(Ly) = {k € Vi : Ly < dist(k,V}) < 2Ly}, denote by Wy
the odd points of Wy and by W} the even points in the interior of Wy. Let #3, =
o{X(k):k € W§} be the sigma algebra generated by the odd points. By the Markov
property of PY, conditioned upon #%, the {X(k),k € W5} are independent Gaussian
with variance 1 and mean X(k) = 5 ; Qa(k, j))X(j), cf. [3]. Thus

PY(y—1,,)) SPY(Q2 (W) = PR (WR) N Q5 (W)
SENIPYUQT (W) | 30, Q7 (WR)]

:Eg,[ 11 {1—¢(X(k))};9+(W13)},
kews

where

1 _ep 12 T —en 1 _ep

3¢ = px)=Q2n) " [e dt;Ze , x=2. (2.6)
P

For given m =m(Ly) = 2, let Iy = {k €: X(k) < m} and set Ay = {X : |Iy| =
1|W5|}. Then

[T {1 - XN} (W) mAN:|

kews

Ey| 11 {1—¢(X(k))};9+(W13>} =Ey

kews,
+E,%[ 11 {1—¢(X(k))};9+(W18)nA%J
kews

< (1 — ¢(m))" 4 Py (W) n4L).

For the first term, we have, in view of (2.6), the a priori estimate

e —m?/2
(1 — ¢(m)):"5! < exp (—clNd‘lLNe — ) . (2.7)
On QT (W) N 4}, we have

5 =

1 . mo o o m m?
> X(k) =z =, with PR, (SN > —) < exp <——_e> R
x| kewg 2 2 8var(Sy)

since Sy is centered Gaussian. Set S5 = IV;TZ/CG we X (k), then, since X(k) is the

conditional expectation of X (k), var(S';) < var(Sy) with

1 . L
> Gu(i)) S oz »

var(Sy) = ——
ON) = T &

cf. (A.3) below. This yields

(2.8)

Nd—l 2
PYUQ (W) N A) < exp (—u) .

Ly
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In view of (2.7) and (2.8) we may choose m(Ly) = +/alog(Ly) for some 0 <a <2
and conclude the proof. [

We now turn to the proof of the lower bound in the intermediate regime:

Proposition 2.9. Let L” N\ O with Ly = 2, then there exists a constant K < oo

such that In
l}vnl,lgoleOgPN(Q _1) 2 K

Proof. 1t will be enough to prove the existence of K’ < oo such that

L 0
1m1£fW10gP 0(QY(Wy(Ly))) = —K. (2.10)

Namely, once (2.10) is proved, we can cover Vy_r,) with {Wn(2'Ly),¢ =
0,...,7max}> Cmax < —log(Ly/N)/log2. Then by FKG property, for large N,

/max
PR(X(k) = 0,k € Viv—r,)) = || PR(X (k) = 0, k € Wy(2/5n))
=0

fos log(2’Ly)
> exp (—ZK’ 1208 2N)
/2) 2Ly

1
> exp (—KN“HM) ,

Ly

for some K < oo. In order to prove (2.10), we use a conditioning argument, which
is quite different from the proof of the lower bound of [5]: For given Ly and ¢ > 0
let

L L
An(e) = {k: 7” < dist(k, V%) < > 2”} NeLdMz?
WN = WN(LN) \ AN(S), and set
gl () =P(&, = jst: < ), j € Ay(e), k€ Wy,
where 1, = inf{n € Ny : &, € Ay(¢)}. Note that

Clj\fd_l
EdLN

[An(e)| = (2.11)

In the Appendix (Lemma A.9), we show that one can choose ¢ > 0 independently
of N, such that

(2.12)

N —

inf Py(t, < wv)= inf > ¢f(j) 2
kEWnN kEWN jeAn(e)

Let Z 4,(e) = 0{X(J), j € An(¢)}. Then, conditioned upon F 4, ), {X(k), k € Wy}
is a Gaussian field with positive covariance and conditional mean

X(k) = ENIX(K) | F )] = Py )q,iv(j)X(j), keWy.
JE€AN(E
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Thus for given m = m(Ly) = 2,

PYQ*(Ww)) = EN[PM(QY (Wx)| Fa(e))])
EY[P(Q*WN) | Faye)s X(J) Z m, j € An(e)] .

In view of (2.11) and (2.12), we have on {X(j) = m, j € Ay(¢)}, by the FKG
property and the fact that var(X(k) | Z4,(;)) < Gn(kk) < G, k € Wy,

P )| Fay) = T (1 — $(X(k)/VG))

kEWy
(1 — exp(—m*/8G))"! = exp(—c,N*~'Lye /),

1\

I\Y

Also, again by FKG, (2.11) and Gy(J,j) = 1,5 € An(e),
. . . csN'm?
PR(X(j)zmjeAyn(e) 2 T[] PR(X(j) = m) = exp (—id——> :
JEMN(®) &Ly
Thus

d—1.,2
PY(Q (W) = exp(—esN ' Lye /56 ) exp <_@’__’">

8dLN
and choosing m(Ly) = +/blogLy for some b > 16G yields (2.10). O
Remark 2.13. For m > 0 and a € Q, consider the measure P& on Qy given by
a, (m) 1 m 2| pa
Py"(dX) = —sexp| —— > X(k) v(dX),
ZN’ 2 k€EVy

where Z%™ is a normalizing constant. Then, for each tempered
N g p
acQ = {X eQ: |kllim |k|~*|a(k)| < oo, for some ¢ > 0} ,
—00

P%™ converges weakly as N — oo to the centered Gaussian measure P with
covariance G™ = (1+m)~' 3 72 (1 +m)™"Q4, called Euclidean free field with
positive mass m. In this case the fixed boundary condition plays no role, in particular,
one shows that, for each é € (0,1),

. 1 a,(m) + _ . 1 ( ) d
Nh_r)noo N7 log Py (24y) = Nll_r}loo N log P"™(Q4y) = —0°K(m)

for some K(m) > 0, cf. Sect. 3 of [5].

3. The Entropic Repulsion

The aim of this section is to prove the entropic repulsion (1.6). The crucial step in
the proof will be the following FKG property of P%( - | Q%):

Lemma 3.1. Let OV C W C Vy, then, for all k € V and a > 0,
Py(X(k) Z a| QT (V) £ PR(X(k) = a| QT (W)). (32)
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Moreover _

Py(X(k) = a| Q*(V)) £ PR(X(k) 2 a|Q* (7)), (3.3)
where V = {k € Z% : dist(k, V) < 1} and PY, = PY(-|X(k) =0, k € Vy \ W).
Proof. Note that QT(W) = QT(V)NQt(W \ V). Thus, since (3.2) is equivalent
with

PY({X(k) z a} nQ (W \ V)| Q*(V))

z Py(X(k) Z a| Q5 (V)P W\ 1) Q7 (1)),
it suffices to show that PY(-|QT(V)) is positively correlated. We use a simple
approximation argument: for f > 0, define
exp(—B 3 ey |X (k) A OFP)
Zn(B)

where Zy(f) is a normalizing constant. Then for each f > 0, by Theorem 1.3 of
[9], cf. also Sect. 10.6 of this paper, we know that P(,),’fi, is positively correlated.
Moreover, with respect to the weak convergence, we have

PYh (X)) = PY(dX),

Jim PR = PR(- |27
This implies (3.2). As for (3.3), let ¥ = 7 \ V and note that, by continuity and
the Markov property,
PY(X(k) Z a|Q*(V)) = Pp(X(k) 2 a|Q*(V), X(j) £0, j€dV)
= lim Py (X(k) 2 a| 2°(V), X(j) = & j€ V).
&

Thus in order to prove (3.3), it suffices to show, for all ¢ > 0,
PyX(k) 2 a|QY(V),X(j) S & j€ V) £ PRpX(k) Z a|2°(7)).
This is equivalent with
P‘;V(X(k) >a,X(j)ZejcdV|QNT))
PX(k) Z a| QX (V)P (X(j) Z & j €V |Q(V)),
and follows from the positive correlations of the measure P%(-| Q7 (V)). O

Remark 3.4. Note that the FKG property of the conditional field P%( - | 23), which
was implicitly used in Sect. 4 of [5], does not follow immediately from the positive
correlations of the original field PY, since Q7(V) is not a cylinder set.

We now turn to the entropic repulsion, first inside the box:

Proposition 3.5. Let 6 € (0,1) and a < 4G < b, then
hm sup PY(X(k) < v/alogN | Q)

P keVen

= hm sup PY(X (k) = \/blogN | 23)

N—oo k€Vsy
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Proof. Let b > 4G, then, in view of (3.3),

sup PY(X(k) = \/blogN |2}) < ksup PY(X(k) = VblogN | Q3. ),

kEVsn

where the RHS converges to 0 as N — oo by Prop. 1.3 of [5]. Next, let a < 4G
and k € Vsy, then, by (3.2), for each 6 < &' < 1,

PY(X(k) £ \/alogN | Q) < PY(X(k) < \/alogN |Q%y).

Now using Theorem 2.2 and precisely the same argument as in Sect. 4 of [5]
(noticing in particular, that the height of the entropic repulsion in [5] depends on
G only and not on the capacity C’), one shows that

Jim sup PY(X(k) < y/alogN |Q},)=0. O

N—oo kEVsy

Next for 0 € (0,1), let Wy s(Ly) = Ule W]i/, s(Ln) be the “interior” of Wy(Ly),
where
Wy o(Ln) = {k € Wy(Ly) : |kj| < ON, j=*i}. (3.6)

Proposition 3.7. Let LWN \\ 0 and limy_, o, Ly = oo, then there exist two constants
0 < b £ B < oo such that, for all 6 € (0,1),

lim  sup PN(X(k) VblogLy |2%)=0 (3.8)

N—=0 kewy 5(Ly)

and
0 +
limsup sup M <1

N—oo keWy(Ly) \/BIOgLN

Our first step in the proof of (3.8) is the following

(3.9)

Lemma 3.10. Let Ly, = 7= Y ey, Oxay be the empirical measure of Wy =
Wx(Ly), then there exist b’ > 0, such that, for all ¢ € (0,1),

Jim P (L, [0,1/b logLy] = ¢| Q) =0
Proof. First note that by (3.2),

PR (L, [0,/ log Ly] 2 ¢| Q) < PR(Ly, [0, /b logLy] 2 &| QF(Wy)) .
(3.11)

We follow the argument of the proof of Prop. 4.1 of [5]: let Wy be the even
elements of Wy, X(k) = Zj Qu(k, j)X(j) and

Il

Ly = Ox(k)s Ly
S
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be the corresponding empirical measures. Then, in view of the proof of Theorem 2.2
above, we can choose b’ > 0 such that

PY(Lyg[0,1/b' logLy] = & Q7 (Wy)) < exp(—cieN“7'L3}),
for some ¢; > 0. Thus, by Prop. 2.9,

Jim PR (Ly:[0,1/b logLy] = &| Q7 (Wy)) =0
—00

Next, we use the fact that, for each ¢’ > 0,

1 1 .
limsup ——log Py | == 3 |X(k) — X (k)| = &'/logLy | <0,
Wyl Wyl k

N—o0 EWy
in order to conclude
Jim PR(Ly[0, /b logLy] = &|QF(Wy)) =0, (3.12)
cf. Proof of (4.2) in [5]. Now the result follows from (3.11), (3.12) and

{Lw, [0,/ logLy] = e}g{LW;& [0,/b'logLy] = &/2}

U{LW}}[O, vV b’ lOgLN] g 8/2} . O
Proof of 3.8. 1t is enough to show, for each i = 1,...,d and 6 € (0, 1),
Jim  sup PY(X(k) = \/blogLNIQ;)—

N—oo kEW'

Define Ay, = {¢ € Z% : |£;| < ON/4,j*i,|ti] < Ln/4}, Vi = Meea,(Vn + ¢). Then,

for each k € W} J(Ly), Ai(k) =AY +k C Vy with dist(A}(k), 75) = Ly/4 for
large N. A simple modification of the above lemma shows that there is & > 0, such
that for each ¢ > 0,

.0 ~t
Jim Py(Lg [0, vblogLy] = e[Qy)=0, (3.13)
where 132, = P(1)7 and Q; = QT (Py). On the other hand, by (3.3) for each ¢ € A,
PY(X (k) < \/blogLy | Q)= Plyyr\ X (k + ) £ \/blogLy |2 (Vi + )
<By(X(k+¢) < \/blogLy | 2y)
_ ~0 Q-I-
*ENUX(kH’)g./blogLN' v ]

Thus, taking the average over A}, yields

PY(X (k) < /blogLy | ) < Ex[Ly Lo [0, VblogLyl| Q]
<8PN(LA’ @0, v/blogLy] = e|3y)

50 ~t
+Py (L 1)[0,v/blogLy] > &| Q2y),
for all ¢ € (0,1), and (3.8) follows from (3.13). O






