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Abstract: A lagrangian euclidean model of Drinfeld-Sokolov (DS) reduction lead-
ing to general J'f-algebras on a Riemann surface of any genus is presented. The
background geometry is given by the DS principal bundle K associated to a com-
plex Lie group G and an SL(2, <C) subgroup S. The basic fields are a hermitian fiber
metric H of K and a (0,1) Koszul gauge field A* of K valued in a certain negative
graded subalgebra ic of g related to s. The action governing the H and A* dynamics
is the effective action of a DS field theory in the geometric background specified
by H and A*. Quantization of// and A* implements on one hand the DS reduction
and on the other defines a novel model of 2d gravity, DS gravity. The gauge fixing
of the DS gauge symmetry yields an integration on a moduli space of DS gauge
equivalence classes of A* configurations, the DS moduli space. The model has a
residual gauge symmetry associated to the DS gauge transformations leaving a given
field A* invariant. This is the DS counterpart of conformal symmetry. Conformal
invariance and certain non-perturbative features of the model are discussed in detail.

1. Introduction

In recent years, a considerable amount of work has been devoted to the study of
^F-algebras [1]. The interest in ^F-algebras stems mainly from the fact that they
are non-linear extensions of the Virasoro algebra appearing as symmetry algebras
in certain critical two dimensional statistical systems as well as in W strings and
fF-gravity models. The latter in turn are of considerable interest in themselves as
generalizations of ordinary string and gravity models with non-standard values of
the critical dimension [2-5].

The construction of ^-algebras can be carried out both in a hamiltonian and in
a lagrangian framework. In the former approach [6-12], based on the methods of
hamiltonian reduction, the currents of a Wess-Zumino-Novikov-Witten phase space
with the standard Kac-Moody Poisson structure and Virasoro action are subject to a
set of conformally invariant first class constraints corresponding to a certain nilpotent
subalgebra of the relevant symmetry Lie algebra. Upon gauge fixing, the reduced
phase space exhibits a non-linear Poisson structure and a Virasoro action, realizing
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the JF-algebra. Quantization is carried out in a Becchi-Rouet-Stora framework. In
the latter approach [10, 13], based on lagrangian local field theory, a certain nilpo-
tent subgroup of the relevant symmetry group of a Wess-Zumino-Novikov-Witten
field theory is gauged yielding a conformally invariant gauge theory. Quantizing
and gauge fixing a la Fadeev-Popov, one gets a quantum field theory whose gauge
invariant operators generate the RΓ-algebra. Underlying both approaches is the ex-
istence of an δl(2) subalgebra of the symmetry Lie algebra defining a halfinteger
gradation of the latter [10-12].

It seems appropriate to test the basic assumptions of such formulations in new
ways and explore the consequences of the results so obtained. A possible approach
in this direction consists in seeing whether JF-algebras can be constructed on a
topological non-trivial world sheet. In the hamiltonian framework, this has been
done in refs. [14] for Drinfeld-Sokolov lowest weight reductions [15], where the
conformal properties are manifest. It has not been attempted yet in the lagrangian
framework. This is precisely the aim of this paper.

There are at least two reasons why this is an interesting problem. First, this is
an integral part of the programme of constructing the Polyakov measure [16-19] for
JF-strings and JF-gravity. Second, the gauge fixing of the Drinfeld-Sokolov gauge
symmetry leaves in principle a residual integration on the space of Drinfeld-Sokolov
gauge orbits. The existence of such Drinfeld-Sokolov moduli space is a non-trivial
feature of Drinfeld-Sokolov lowest weight reduction which is manifest only in the
lagrangian approach.

It is important to appreciate the salient features of the construction of the present
paper by comparing it with earlier lagrangian formulations. The basic elements of
the construction of ref. [10] are a split simple real Lie group G and an iSZ(2,lR)
subgroup S of G. To these data, one can associate canonically a halfinteger grading
of g and a certain negative graded subalgebra y of g. One considers then a modi-
fied minkowskian G Wess-Zumino-Novikov-Witten model and gauges the subgroup
X = exp ic of G. The classical action is

-A, MHA+\ , (1.1)

where tr is the Cartan-Killing form of g, the td are the standard generators of s
and K is the level. H is the minkowskian Wess-Zumino field and dx+A+ + dx~A-
is the minkowskian y gauge field. SWZNW(//) is the customary minkowskian Wess-
Zumino-Novikov-Witten action integrating the variational identity

^WZNW(^) = ^fd2xtr[δHIΓld-(d+HH-1)] . (1.2)

As recalled above, this field theory yields upon quantization the JF-algebra associ-
ated to the data (G,S).

On a Riemann surface, one needs a euclidean reformulation of the above. The
basic algebraic data are now a simple complex Lie group G and an SL(2, (C) sub-
group S of G. To these data, there is associated again a grading of g and a negative
graded subalgebra y of g. The euclidean version of the action (1.1) should read:

- - t+ι)A*

+(H~ldH-t-l)A-A*AdHA]. (1.3)
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H is the euclidean Wess-Zumino field and dzA + dzA* is the euclidean y gauge field.
^wzNwC^O is me "euclidean Wess-Zumino-Novikov-Witten action" integrating the
variational identity

<^WZNW(#) = -fd2ztr[δHH-ld(dHH-1)] . (1.4)

Resorting to complex groups is unavoidable when switching from minkowskian
light-cone to euclidean holomorphic geometry. However, in so doing, I have doubled
the number of real field theoretic degrees of freedom and generated a complex action.
To eliminate the spurious degrees of freedom and have a real positive definite action,
one has to impose on the fields certain reality conditions with respect to a suitable
conjugation. Such conditions are

// = / / f , (1.5)

A*=A*, (1.6)

and td = t-di where f is the compact conjugation of g. This leads to a reinterpre-
tation of the model with surprising features.

The reality conditions (1.5)-(1.6) suggest that H is the fiber metric for some
principal G bundle and that the (0,1) gauge field ^* is the Koszul field corre-
sponding to its holomorphic structure in the spirit of deformation theory [20]. The
euclidean Wess-Zumino-Novikov-Witten action SψZ^w(H) is then nothing but the
Donaldson action first employed by Donaldson in his studies of Hermitian-Einstein
bundles [21]. The principal bundle in question is the Drinfeld-Sokolov bundle DS
discovered in ref. [14]. DS prescribes the transformation rule of a g-valued field
Ψ(z,z) under a coordinate change z —> z', which reads

ΨW) = exp (-In J^ad ̂  exp (~^ad M) Ψ(z,z). (1.7)

This important relation encapsulates at once the algebraic data (G,S) defining the
W-algebra and the holomorphic geometry of the underlying Riemann surface. It also
provides a mathematically precise formulation of Polyakov's ideas of soldering [22].

This is reminiscent of ordinary gravity a la Polyakov [16-19], where the
basic fields are the surface metric h and the Beltrami field μ and the effective
action 7(A,μ,μ) exhibits a structure analogous to the one shown above, the coun-
terpart of the Wess-Zumino-Novikov-Witten action being the Liouville action. The
resemblance is even more striking when it is realized that there are field theo-
ries whose effective action is a functional of H and A* of the form (1.3) with
(1.4)-(1.6) satisfied. Therefore, I shall call this euclidean model Drinfeld-Sokolov
gravity. After gauge fixing, the model has a residual gauge symmetry associated
to the gauge transformations leaving the given Koszul field invariant. This is the
Drinfeld-Sokolov counterpart of conformal symmetry. It also involves an integration
on a non-trivial space of Drinfeld-Sokolov gauge orbits. It must be stressed that the
Drinfeld-Sokolov moduli space considered here is distinct from the FF-moduli space
of ref. [23] and from the moduli space studied by Hitchin in ref. [24] and later
related to quantum FF-gravity in ref. [25].

The plan of the paper is as follows. In Sect. 2, the basic notions concerning the
holomorphic and hermitian structures and the symmetries of the Drinfeld-Sokolov
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bundle necessary for the understanding of the following constructions are collected.
In Sect. 3, the main properties of Drinfeld-Sokolov field theory are expounded.
In Sect. 4, Drinfeld-Sokolov gravity is defined, the gauge fixing of the Drinfeld-
Sokolov symmetry is illustrated and the formal construction of the measure is carried
out. In Sect. 5, the Drinfeld-Sokolov ghost system is studied in detail. In Sect. 6,
conformal invariance and certain non-perturbative features of the resulting theory
are analyzed and the remaining unsolved problems are pointed out. Finally, the
appendices explain in great detail the definition of the functional measures and the
implementation of the gauge fixing for the interested reader.

2. The Drinfeld-Sokolov Bundle

In the first part this section, I review certain general results concerning the holomor-
phic and hermitian geometry of principal bundles on a surface [26-28]. In the second
part, I define the Drinfeld-Sokolov bundle and analyze its main properties [14, 29].

L Holomorphίc Structures. Let Σ be a compact Riemann surface of genus f with
local holomorphic coordinates zα, where a is a coordinate label. Σ is characterized
by the holomorphic 1-cocycle k defined by kab = dazb, where da — d/dza. In appli-
cations, it is necessary to choose a 1-cocycle square root of k, that is a holomorphic

1-cocycle k® 2 such that (Λ®2^)2 = kab. For any j G Z/2, one can then define the

holomorphic 1-cocycle k®j by setting k®j

 ab = (k 2

ab)
2j. As is well known, these

1-cocycles define holomorphic line bundles on Σ, k and k®J corresponding to the
canonical line bundle and its tensor powers.

Let w, w G Z/2. A conformal field ψ of weights w, w is given as a collection
of smooth complex valued maps ιj/a of domain dom za such that, whenever de-
fined, \l/a = k®w (8) k®w

abψb The conformal fields ψ of weights w,w span a infinite
dimensional complex linear space CFW'W.

The spaces CFW'^ and CFl~w>1-* are dual to each other. The dual pairing is
given by (φ,ψ) = λ- fΣd

2zφψ for ψ G CFW'" and φ G CF1-"'1-*.

The Cauchy-Riemann operator d : CFW'° -> CFW ί l is locally defined by (dψ)a =
daψa for ψ G CFW'°. The kernel of d is the subspace HCF™ of holomorphic ele-
ments of CFW'°. By the Riemann-Roch theorem, dim HCFW - dim HCF1^ =

A (1,0) affine connection 7 is a collection of smooth complex valued maps ya of
domain dom za such that ya = kab[yb + db \^kab\ whenever defined, y is characterized
by its curvature /y, given locally by fya — daya. fγ G CF1'1. Let Aff be the family
of all (1,0) affine connections 7.

To any 7 G Aff , one can associate the covariant derivative dy : CFW'W^ CFW+1?W

locally given by (dyψ)a = (da - wya)ψa for ψ G CF"'".
Let AT be a holomorphic G-valued 1-cocycle on Σ, where G is a simple complex

Lie group. To K, one can associate a smooth principal G-bundle P over Σ by means
of a well known construction.

A holomorphic structure s is specified by a collection of smooth G-valued maps
V$a of domain domzα such that there exists a holomorphic G-valued 1-cocycle Ks

such that, whenever defined, V$a — KabV^bK^b. Note that the 1-cocycle K$ charac-
terizes but does not determine the holomorphic structure s, since the map s — > K$
is many- to-one. Two holomorphic structures Si and 82 are said to be equivalent
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if ySιa = Vs2ava for some holomoφhic G-valued function υa for every a. This is
indeed an equivalence relation. Below, I shall not distinguish between equivalent
holomoφhic structures. The family of all holomoφhic structures of will be denoted
by Hoi.

Let s G Hoi and w, w G Z/2. An extended s-conformal field Ψ$ of weights w, w
is given as a collection of smooth g-valued maps Ψ§a of domain dom za such that,
whenever defined, Ψ$a — k®wabk®WabAdKsabΨsb The extended s-conformal fields
Ψ of weights w,VP span a infinite dimensional complex linear space ECΈ$'W.

The spaces ECFg'™ and ECFs"147'1"™ are dual to each other. The dual pairing

is given by (Φ, Ψ)s = l- JΣd
2ztrad(ΦΨ)s for Ψs G ECF£'" and Φs G ECF^W' l~*9

where tra(j denotes the Cartan-Killing form of g.

The Cauchy-Riemann operator δs : ECFg'0 -> ECFg'1 is locally defined by

(SΨ)sa = SaΨSa The kernel of <9S is the subspace HECFg of holomoφhic ele-

ments of ECFg'0. By the Riemann-Roch theorem, dim HECF£ - dim HECFs"w =
(2w- \)(f- l)dimg.

A (1,0) s-connection Γs is a collection of smooth g-valued maps ΓSa such that
Γ$a = kab[AdKsabΓsb + dbKsabKsab~l]> The connection Γs is characterized by its
curvature FΓs locally given by FΓsa = daΓ^a. FΓs G ECFg l. Let Conns be the family
of all (1,0) s-connections /s.

To any γ G Aff and Γs G Conns, one can associate the covariant derivative

<Vs : ECF£'*-» ECF^+1'^ locally given by (dγίΓΨ)sa = (da - wya - ad ΓSa)ΨSa.
In applications, the holomoφhic structure s is considered as variable. The de-

pendence on s is then to be studied.
Hoi contains a natural reference holomoφhic structure defined by Va = 1 for all

a. By convention, all geometric objects related to such structure, such as the holo-
moφhic 1-cocycle K, the extended conformal fields Ψ, the spaces of (holomoφhic)
extended conformal fields ECFW'W and HECFW, the (1,0) connections Γ and their
family Conn, etc. will carry no subscript s. In particular, the adjective "conformal"
is always understood as "reference-holomoφhic-structure-conformal."

Let w,w G Z/2. A minimal extended conformal field functional Ψ of weights

w,VP is a map that associates to any s G Hoi an element Ψs G ECFg'w in such
a way that the condition Ψa = Adfsα^sα is satisfied for any a. In this way, the
dependence of ŝ on s is determined entirely by V$. The space of all minimal
extended conformal field functionals Ψ of weights w, w may thus be identified with
ECFW'^ itself.

For any Ψ G ECFW'^ and Φ G ECF1-"'1^, (Φ, Ψ)s = (Φ, Ψ) for s G Hoi. In

this way, the dual pairing ( , )s of ECFg'w and ECΈ$~w'l~w induces a dual pairing
( , ) of the spaces of minimal extended conformal field functionals ECFW'W and

A minimal (1,0) connection functional Γ is a map that associates to any
s G Hoi an element Γs G Conns in such a way that the condition Γa = Ad VSaΓsa +
daVsaVsa~l is satisfied for any a. As for minimal extended conformal field function-
als, this condition means that the dependence of Γs on s is determined by Vs The
family of minimal (1,0) connection functionals Γ may be identified with Conn itself.

There exists a parametrization of Hoi, the Koszul parametrization defined next,
which is particularly useful in field theoretic applications.

A Koszul field ^4* is simply an element of ECF0'1. There is a one-to-one corre-
spondence between the family of holomoφhic structures s and the family of Koszul
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fields A* [20]. The correspondence, expressed notationally as s = A*, is given by the
relation A*a = daV^aV^a~

l. Thus, one may view equivalently Hoi as the manifold
formed by all Koszul fields and cast dependence on s as dependence on A*. Note
that A* = 0 for the reference holomorphic structure.

In general, field theoretic expressions are compact when written in terms of the
relevant holomorphic structure s. The dependence on s is however explicit only in
the Koszul parametrization provided one restricts to minimal extended conformal
field functionals and minimal (1,0) connection functionals. The rules for translating
from the first to the second description are the following:

Ψs"Ψ, (2.1)

ds^d-aάA\ (2.2)

FrΛ~FΓ-dΓA*9 (2.3)

dy,rs ~ dy,Γ , (2.4)

for Ψ G ECFWΛ y G Aff and Γ G Conn, where s ΞΞ A* G Hoi. If Ψ G ECFW'° is
such that Ψs G HECF£, then (d - adΛ*)<F = 0.

2. Hermitian Structures. A hermitian surface metric h on Σ is a collection of
smooth maps ha of domain dom za such that ha>0 and ha — kabkabhb. The hermi-
tian surface metrics h form a infinite dimensional real functional manifold Met.

Given any metric h G Met, one can define a Hubert structure on CFW'W by
setting (fa9fa)h = ±JΣd

2zh®l-w-*ψlfa for fa, fa G CFW *.
Each metric h is characterized by a (1,0) affine connection y^ locally given

by Jha — dalnha. The curvature fa of % is then given by faa — dada\nha. The
covariant derivative of y^ will be denoted by dh

Let s G Hoi be a holomoφhic structure. A s-hermitian fiber metric Hs is defined

as a collection of smooth G-valued maps H$a of domain dom za such that H$a = H$a

and Hsa = KBabHsbKSa^ , where f denotes the compact conjugation of G. The s-
hermitian fiber metrics Hs form an infinite dimensional real manifold Herms.

Given metrics h G Met and H$ G Herms, one can define a Hubert structure on
" by setting (Ψl9 Ψ2)h,HS = £ JΣd

2zh^-w-^traά(AάHΨ^Ψ2)s for Ψιs, Ψ2s e

Each fiber metric Hs is characterized by a (1,0) s-connection Γ//s of K$ lo-
cally given by ΓHsa = daHSaH^a~

l. The curvature 7 ŝ of Γ//s is given by FHSa =

da(daHsaHsa~l) The covariant derivative associated to a surface metric h G Met
and to Hs is dhtHs

A minimal hermitian fiber metric functional is a map that associates to each
holomorphic structure s G Hoi a hermitian fiber metric H$ G Herms in such a way
that Ha = VsaHsaVsa^ holds for any a. As for minimal extended conformal field
functionals, this condition means that the dependence of //s on s is determined
by V$. Hence, the space of minimal hermitian fiber metric functionals H may be
identified with Herm.

For any H G Herm and any two Ψl9 Ψ2 G ECFW'^, (Ψl9 Ψ2)h,Hs = (Ψ\, ^k//
for s G Hoi. Thus, for a given minimal hermitian fiber metric functional H, the

Hubert structure ( 9 )h,Hs on ECF^'™ induces a Hubert structure ( 9 )h,H °n the
space of minimal extended conformal field functionals ECFW'W.
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For the curvature FH and the covariant derivative d^π associated to metrics
h G Met and H G Herm, (2.3)-(2.4) do not apply. To express everything in the
Koszul parametrization, one has instead to perform the substitutions

FHS ^FH- dHA* - dAdHA* f -f [A*, AdHA* f] , (2.5)

Bh,H,s <-> dh,H + ad AdHA* f , (2.6)

with s =A* G Hoi.

3. The Gauge Group. A gauge transformation α is a collection of smooth G-valued
maps αfl of domain domz f l such that, whenever defined, u.a = KabV bKab~l The
gauge transformations form a group Gau under pointwise multiplication. Lie Gau =
ECF°'° with the obvious Lie brackets. To Gau, there are associated a few relevant
actions.

Gau does not act on Σ and on the spaces CFW'W of conformal fields.
Gau acts on the family Hoi of holomorphic structures as follows. If α G Gau

and s G Hoi, then α*s G Hoi is the holomorphic structure specified by V^sa —
%aVsa> Note that K^s = Ks The action of Gau on Hoi is not free. The stability
subgroup ^(s) of a holomorphic structure s G Hoi in Gau is formed by all gauge
transformations η such that η$a = Vsa~

lηaVsa is holomorphic. In fact, for η G ̂ (s),
?/*s is equivalent to s, and hence is not distinguished from the latter. Note that
Lie^(s) ̂  HECF°.

Associated to this action is also an action on extended conformal fields defined
as follows. For α G Gau and Ψs £ ECFs'w, α*!Pα*s is the extended conformal field

in ECF^ locally defined by α*<Fα*Sβ = Ψsa

The dual pairing ( , }s of ECF£'* and ECFs"1"'1"* is covariant under Gau. In

fact, (α*Φ,α*¥%*s - (Φ,Ψ)s for Ψs e ECF£'* and Φs 6 ECF^1"*.
There is a corresponding action of Gau on the space of minimal extended con-

formal field functionals ECFW^. For α G Gau and Ψ G ECFW>^, α**F is the ele-
ment of ECFW'^ locally given by a*ψa = AdocaΨa. The value α*?Pα*s of α*^ at
the holomorphic structure α*s is the result of the action of α on *FS defined above,
as suggested by the notation.

The dual pairing {-,-) of ECFW'^ and ECF1"^1"^ is invariant under Gau, i.e.
one has (u*Φ,(**Ψ) = (Φ, Ψ) for Ψ G ECFW'^ and Φ G ECF1-^1^.

In the Koszul parametrization, the action of Gau on Hoi translates into an
action on the Koszul field A*. For α G Gau and A* G Hoi, the action is locally
given by α*^% = ΰauatta~

λ + AdotaA*a. If η G ̂ (s) with s =A*, then the equation
(d — &dA*)ηη~l = 0 is satisfied.

Gau is inert on the space of surface metrics Met .
Gau acts on the hermitian fiber metrics as follows. For any α G Gau and Hs G

Hernis, α*//α*s is the element of Hermα*s locally given by α*//α*Sα = #sα
It is easy to verify that, for any h GMet and any Hs GHerms, the Hubert structure

( > )A,//S on ECF^?M; defined earlier is Gau covariant, i.e. (α*¥ /ι,α*ϊ /2)/z,α*//α*s =

There is a corresponding action of Gau on the space of minimal fiber metrics
functionals Herm. For α G Gau and H G Herm, α*// is the element of Herm
locally given by u.*Ha = aaffaaa^ . The value α*//α*s of α*/f at the holomorphic
structure α*s is the result of the action of α on Hs defined above.
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It is easy to verify that, for any h G Met and any H G Herm, the Hubert struc-
ture ( , )hH on ECFW'W defined earlier is Gau invariant, i.e. ((x,*Ψι9o^Ψ2)h α*// =
(Ψι,Ψ2)h,H, for yι,y2eECFw;*.

In the analysis of symmetries, it is much simpler to proceed at the infinitesi-
mal level. Let Ξ be the gauge ghost. Ξ is an element of ECF°'° ® /\1(LieGau)v

defining a basis of f\l (Lie Gau)v . The infinitesimal action of the gauge group Gau
on field functionals is given be the nilpotent Slavnov operator s, s2 — 0. From the
Maurer-Cartan equations of Gau, one has

sΞ=±[Ξ,Ξ]. (2.7)

Further,
sψ = 0 , (2.8)

sA* =(d- ad^*)Ξ, (2.9)

sΨ=aάΞΨ, (2.10)

where ψ G CFW'*, Λ* G Hoi and Ψ G
At the infinitesimal level, the action of Gau on Met and Herm is given by

09 (2.11)

SHH~1 = Ξ + AάHΞΪ , (2.12)

with h G Met and H G Herm.

4. The Drinfeld-Sokolov Bundle. The basic data entering in the definition of the
Drinfeld-Sokolov bundle are the following: i) a simple complex Lie group G;
ii) an 5Z,(2,<C) subgroup S of G invariant under the compact conjugation f of G;
iii) a Riemann surface Σ of genus t with a spinor structure A:® 2 . Let t-\, ft, *+ι
be a set of standard generators of s, so that

±f±ι , (2.13)

*/ = *_,/, rf = -l,0,+l . (2.14)

Then,
Kab = Qxp(-\nkabtQ)Qxp(dakab~

lt^) (2.15)

defines a holomorphic G-valued 1-cocycle K [14]. This in turn defines a smooth
principal G-bundle, the Drinfeld-Sokolov bundle DS, whose relevance has been
explained in the introduction.

The Drinfeld-Sokolov bundle has extra structures derived from a special nilpo-
tent subalgebra y of 9 associated to s. Such structures will be called Drinfeld-
Sokolov and will play an important role in the following. The reason for this,
related to the form of anomalies, will be explained in detail in the next section.

To the Cartan element t$ of s, there is associated a halfinteger grading of g:
the subspace gm of cj of degree m G Z/2 is the eigenspace of ad tQ with eigen-
value m. One can further define a bilinear form χ on 9 by χ ( x 9 y ) — trad(t+\[x, y\\
χ> y £ 9 [10]. The restriction of χ to g_ι is non-singular. By the Darboux theorem,
there is a direct sum decomposition 9_ i = p_ι Θ q_ι of g_ι into subspaces p_\
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and q_ι of the same dimension, which are maximally isotropic and dual to each

other with respect to χ. Set

Ϊ = P_I θ 0 Qm. (2.16)
m^-\

£ is a negative graded nilpotent subalgebra of 9.
Let Holos be the family of all holomorphic structures s such that V$α is exp £-

valued for every α. Such structures will be called Drinfeld-Sokolov. For s G HolDs,
Ksαb — KαbLsαb, where LSαb is a holomorphic exp jr-valued function.

Let s G HolDs and w,w G Z/2. A Drinfeld-Sokolov extended s-conformal field
Ψs of weights w, w is an element of ECFg'14' such that ΨSα is valued in $ for any
α. This definition is consistent because of the form of the 1-cocycle K$ and the fact
that [ίo, ?] <Ξ £ and [y, y] C y. The Drinfeld-Sokolov fields Ψs of weights w,w span
an infinite dimensional complex linear space ECF^g'™. Similarly, a dual Drinfeld-

Sokolov extended s-conformal field Ψs of weights w, w is an element of ECFg'w

such that Ψsα is defined modulo a y-1 -valued local function for any α, where y-1 is
the orthogonal complement of £ with respect to the Cartan-Killing form trad. This
definition is also consistent because of the form of the 1-cocycle K$ and the fact
that [for1] C y -1 and [y, ^1 C r1. The dual Drinfeld-Sokolov fields Ψs of weights
w, w span an infinite dimensional complex space ECF^g'14".

For SG HO!DS> the Cauchy-Riemann operator d$ maps ECFDSg'° into ECFj^g'1.

Therefore, d$ defines by restriction a Cauchy-Riemann operator <3Dss : ECFDSg'° — >

ECFQgg'1, the Drinfeld-Sokolov Cauchy-Riemann operator. In this way, one can
consistently define a notion of holomorphy for Drinfeld-Sokolov extended s-

conformal fields. The subspace of holomorphic elements Ψs of ECFDSg'° will

be denoted by HECFDS£. Similarly, ds maps ECF^S^° into ECF^'1. So,

ds induces a Cauchy-Riemann operator <9pSS : ECF^g'0 — > ECF^gg'1, the dual
Drinfeld-Sokolov Cauchy-Riemann operator. So, one can consistently define a no-
tion of holomorphy also for dual Drinfeld-Sokolov extended s-conformal fields.

The subspace of holomorphic elements Φs of ECF^Sg'0 will be denoted by
HECFpSg. There exists an interesting Drinfeld-Sokolov version of the Riemann-
Roch theorem:

dim HECFDs;r - dim H E C F ~ W = tr[((2w - 1)1 - 2ad f0)A](^ ~ 0 » (2 17)

where p^ is any projector of g onto £ [29].

The spaces ECFDS£'* and ECF^g"147'1"1^ are dual to each other. The dual

pairing is given by (Φ, ϊF)Dss = l~ JΣd
2ztτaά(ΦΨ)s for ^s e ECFDS£'* and Φs e

^^^Dss"^'1"^- ^ote ̂ at tne result °f tne integration does not depend on the rep-
resentative of Φs used.

A Drinfeld-Sokolov (1,0) s-connection Γs is an element of Conns such that
Γsα — \t+\ is y1" -valued for every α. This definition is consistent because of the

form of the 1-cocycle Ks and the fact that [^,y] C ̂  for d = 0, — 1, £ C y1- and

t?,?-1] Cp-1-. If Γs is Drinfeld-Sokolov, then FΓs = 0 in BCF^g'1. Let ConnDSS

be the family of all Drinfeld-Sokolov (1,0) s-connections Γs.
The reference holomoφhic structure is obviously Drinfeld-Sokolov, since Vα — \

is exp j -valued.
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Let w,w G Z/2. A Drinfeld-Sokolov minimal extended conformal field func-
tional Ψ of weights w, VP is a minimal extended conformal field functional defined

on Holos and such that, for any s G Holos, ^s £ ECFDSg'w. This definition is cer-
tainly consistent, as the reference holomorphic structure is Drinfeld-Sokolov, Vs is
exp y-valued and [ y, y] C y. The space of Drinfeld-Sokolov minimal extended confor-

mal field functionals of weights w, w may clearly be identified with ECFDS

W'W. Sim-
ilarly, a dual Drinfeld-Sokolov minimal extended conformal field functional Ψ of
weights w,w is a minimal extended conformal field functional defined on HolDs and

such that, for any s G HolDS, ŝ € ECFβSg'w. This definition also is consistent, for
the reference holomorphic structure is Drinfeld-Sokolov, Vs is expy-valued and
[ϊ*?"1] £ Γ1"- The space of dual Drinfeld-Sokolov minimal extended conformal
field functionals of weights w,w may clearly be identified with ECFpS

w'w.

For any Ψ G ECFDS

W'" and Φ G ECF^S

 1~w'1-*, (Φ, Ψ)ΌSS = (Φ, ^}DS for any

s G HolDS. Therefore, the dual pairing ( , }Dss of ECF^'* and ECF^^1"^
induces a dual pairing ( , }DS of the spaces of (dual) Drinfeld-Sokolov minimal

extended conformal field functionals ECFDS

W'" and ECF^1-"'1"*.
A minimal Drinfeld-Sokolov (1,0) connection functional Γ is a minimal (1,0)

connection functional defined on Holos such that, for any s G Holos? Γ$ G
ComiDss This definition is consistent again because the reference holomorphic
structure is Drinfeld-Sokolov, V$ is expy-valued and the fact that [f+ι,y]C £-*-,£
Cy-1- and [r, r1] ί y1". The space of dual Drinfeld-Sokolov minimal connection
functionals Γ may clearly be identified with ConnDs

In the Koszul parametrization, the Drinfeld-Sokolov holomorphic structures
are represented by jc-valued Koszul fields A*. Such Koszul fields are also called
Drinfeld-Sokolov.

5. Hermitian Structures of the Drinfeld-Sokolov Bundle. Let h G Met and H$ G

Herais be metrics. The Hubert structure ( , )Λ,//S on ECFg'™ defines by re-

striction a Hubert structure ( , }DSA,//S °n ECFDSg'w. The Hubert structure al-

lows one to identify ECF^Ss'^ with ECF^s"1"'1"*. By definition, the element

Φh,πs £ ECFj^gg"™'1"147 corresponding to Φs G ECF^Sg'w is the unique element of

ECFos^"'1-" such that {Φ|<F)Dss = (ΦH,H, ^)DSA,//S for all <FS G ECF^^"'1-".

One may now define a Hubert structure on ECF^gg'™ by setting (Φι,Φ2)Ds/*,//s =

For any H G Herm and any Ψl9 Ψ2 G ECFDS

W'", (Ψl9 Ψ2)DSh,Hs = (Ψι, ^W,//

for s G Holos- Similarly, for H G Herm and Φι,Φ2 G ECF^'^, (Φι,Φ2>DSΛ,^s =

{^1,^2)05 h H- Thus, for a given minimal hermitian fiber metric functional H, the

Hubert structures ( , )DSΛ,#S on ECFDSg'w and ( , )DS/?,//S on ECFpSg'w induce
Hubert structures ( , }DS/Z,// and ( , )DSΛ H on the spaces of (dual) Drinfeld-Sokolov

minimal extended conformal field functionals ECFDS

W'W and ECFpS

w'w, respec-
tively.

6. The Drinfeld-Sokolov Gauge Group. The gauge group Gau does not respect
Holos There is however a subgroup of Gauos of Gau, the Drinfeld-Sokolov gauge
group, which does. GauDs is formed by those elements α G Gau such that αfl is

exp ic- valued for every a. Clearly, Lie Gau Ds — ECFDS°'°.
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For any s e HolDs, the stability subgroup ^DS(S) of s in GauDs is simply the
intersection ^(s) Π GauDs Clearly, Lie^DS(s)= HECFDS^. Lie^DS(s) is nilpo-
tent, since expy is.

From the definition, it is immediate to see that the action α* : ECFg'^ —»

ECF^ig associated to α G Gauos niaps ECFDSg'w and ECF^Sg'w respectively into

FΓF w'^ and EΓFV w'^n^ΓDSα*S dΠU n^ΓDSα*S

It can also be seen that the dual pairing ( | )DSS of ECFDSs'w and

ECF^ss"^1"^ is GauDs covariant.

Using the fact that $ is a subalgebra of g such that [y, r*~] Q Γ1? it is easy to
check that the action of GauDs on ECFW'^ preserves both ECFDS

W'^ and ECF^Λ

The dual pairing {• }DS of ECFDS

W'^ and ECF^1"1"'1"* is GauDS invariant.

The Hubert structures on ECFDSs'w and ECF^Ss'w defined above are both
Gauos covariant.

One can similarly show that the Hubert structures on ECFDS

W'W and ECF^S

W'W

are both GauDS invariant.
To GauDs? °nG can consistently associate a Slavnov operator SDS and a y-valued

ghost field ΞDS e ECFDS°'° ® Λ^LieGauos )v obeying (2.7). Equations (2.8)-
(2.10) also holds with A* a Drinfeld-Sokolov Koszul field and Ψ a (dual) Drinfeld-
Sokolov extended conformal field with s and Ξ replaced by SDS and SDS- Of course,
(2.11)-(2.12) continue to hold with s and Ξ replaced by sDs and ΞDs.

Before completing this section, I shall state the following conventions. In what
follows, when in the same equation there appear a holomorphίc structure s and a
Koszul field A*, it is implicitly assumed, unless otherwise stated, that s=A*. Fur-
ther, all field functionals on Hoi or HO!DS are implicitly assumed, unless otherwise
stated, to be minimal field functionals.

3. Drinfeld-Sokolov Field Theory

A Drinfeld-Sokolov field theory is a local field theory whose basic fields are (ex-
tended) conformal fields of the Drinfeld-Sokolov bundle.

The standard classical example to have in mind is the Drinfeld-Sokolov B-C
system. The basic fields B and C belong to F ® ECF1"^0 and F ® ECFW'°, re-
spectively, where F is the fermionic Grassmann algebra. The action, for a given
holomorphic structure A*, is1

S(B,C,A*) = - /^2z2Retrad(£<3C)s . (3.1)

In general, the quantization of a Drinfeld-Sokolov field theory requires the intro-
duction of a hermitian structure (h,H) G Met x Herm for the proper definition of
the adjoint of the relevant differential operators. The regularization of the ultraviolet
divergencies of the corresponding functional determinants involves further the use
of an ultraviolet cut-off ε. The regularization method which will be applied below
is the so-called proper time method [18]. I shall restrict to Drinfeld-Sokolov field

!In the notation of this paper, a functional f ( X ) of a complex field X is not necessarily holomorphic.
Holomorphy, when it occurs, will be explicitly stated.
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theories for which the bare Gau invariant effective action I(h,H, A* ε) is of the
form

ϊ(h,H,A*;ε) = --fd2zh + \^- f d2zfh - ds] \nε+I0(h,H,A*) + O(ε) . (3.2)
TΓε y Ό7Γ y

Z, L Zί J

Here r, n and ds are real coefficients. fΣd
2zfh is the Gauss-Bonnet topological

invariant whose well known value is 2π(/ — 1). Io(h,H,A*) is a non-local functional
of h, H and ^4* such that

δI0(h,H,A*} = —£Lfd2zδlnhfh + - f d2z\xaA(δHH-lFH)s , (3.3)
1Z7Γ £ 71 Σ

where δ denotes variation with respect to h and H at fixed A* [30]. /CQ and K > 0 are
generalized central charges. The Drinfeld-Sokolov #-C system introduced earlier is
precisely of this type with r — dimg, n = (3w — l)dimg, ds = dim HECFg, KQ =
-2(6w2 - 6w H- l)dimg and K = 1.

To renormalize the bare effective action, one has to add to it a counterterm of
the form

AΪ(h,H,A*;ε)=—Jd2zh- \^- / d2zfh - ds] lnε + ΔI(h,H,A*} + O(ε) . (3.4)
πε Σ L6π Σ J

Here, ΔI(h,H,A*) is a local but otherwise arbitrary functional of h, H and ^4*, whose
choice defines a renormalization prescription. The renormalized effective action is
thus

I(h,H,A*) = 70(/ι,//,^*) + ΔI(h,H,A*) . (3.5)

is the renormalized effective action in the minimal subtraction renormali-
zation scheme.

In what follows, AI(h,H,A*) is assumed to be independent from A*:

AI(h,H,A*) = AI(h,H) . (3.6)

Under this hypothesis, it can be shown that I(h,H,A*) has the following structure:

A). (3.7)

Here, A G Conn is a background (1,0) connection. I(h,H) is the functional I(h,H,A*)
evaluated at the reference holomorphic structure A* = 0,

L(H,A*',A) = -fd2z[2Retrad((ΓH-A)A*) - trad(Λ* AάHA^)] . (3.8)
π Σ

4oiG4*;^) is a non-local functional of A* only depending on A. Next, I shall analyze
the properties of the three terms in the right-hand side of (3.7).

In order for the counterterm ZJ/(/?,//,v4*;ε) to be Gau invariant, ΔI(h,H) must
satisfy

) = 0. (3.9)
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In this way, the renormalized effective action I(h,H,A*) is Gau invariant as well.
When (3.9) is fulfilled, one has

(3.10)

sL(H,A*',A) = -ir(H)-s/(A*;A), (3.11)

sIhol(A*;A) = ^(A*',A), (3.12)

where

ifT(H) = -fd2z2Retraά(ΞFH) , (3.13)

>;A) = --fd2z2Retrad(Ξ(FA - 3^*)) (3.14)
71 Σ

are the gauge anomalies.
/(A,//) is a non-local functional of A and H. Its dependence on A and H can be

analyzed as follows. The Drinfeld-Sokolov bundle possesses a remarkable property,
the possibility of lifting any surface metric A G Met to a fiber metric H(h) e Herm.
Explicitly, H(h) is given by

//(A) = exp(-dlnAί_ι)exp(-lnAί0)exp(-<91nAί+ι) . (3.15)

This allows one to write /(A,//) as follows:

/(A,//) = /Conf(A) + S(h,H) + AI(h,H) - AI(h,H(h)) , (3.16)

where
/conf(A)=/(A,//(A)), (3.17)

S(h,H) = Ω(H9H(h)). (3.18)

Here, for any two //,//b £ Herm, Ω(//,/fo) is the Donaldson action defined by the
functional path integral

K H

Ω(H,HQ) = - / fd2ztrad(δH'Hf-lFH,). (3.19)

The right-hand side is independent from the choice of the functional integration
path joining HQ to H, since the functional 1-form on Herm integrated is closed
and Herm is clearly contractible. Ω(//,//o) can be computed explicitly. The metric
H e Herm can be written as H = exp Φ//o, where the Donaldson field Φ is an
element of ECF°'° such that AάHoΦΪ — Φ. By direct calculation, one then finds

Ω(H,H0} = - /^trad a Φ a f l ί Φ - ΦF (3.20)
π £ L V a α ^J J

[31].
Now, /conf(A) is a non-local functional of A. Using (3.3), (3.5), (3.15) and (3.17),

one can show that

d2zδlnhfh + δ \-fd2zh-lfh

2 + ΔI(h,H(h))} , (3.21)
\_π Σ jizπ Σ
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where

ιc = -12/αrad(ί0

2), (3.22)

λ = -2Ktτaά(tQ

2). (3.23)

If

AI(h,H)=^fd2zh-lfh

2

9 (3.24)
π Σ

where λo is some constant, then (3.21) simplifies into

fd^δlnhfh + ̂ ^δ fd2zh-lfh

2. (3.25)
Σ π Σ

A counterterm zJ/(/z,//,^*) for which (3.24) holds is given by the right-hand side
of (3.24) itself and clearly satisfies both (3.6) and (3.9). Setting AQ = —A, /confW
becomes the renormalized effective action of a conformal field theory of conformal
central charge /cconf = KQ + K. Note that the shift K given by (3.22) is precisely the
classical central charge of the classical W-algebras associated to the pair (G,S), if
K is interpreted as the Wess-Zumino-Novikov-Wίtten level. For a generic value
of λo, one obtains a more general renormalized effective action with a / VhRh2

term yielding a model of induced 2d gravity of the same type as that considered in
refs. [32-33].

The functional S(h,H) is local. In fact, the Donaldson field Φ(h,H) relevant
here, given by

exp Φ(h,H) = HH(hΓl , (3.26)

is clearly a local functional of h and H and f2(//,//o), given by (3.20), is a local
functional of Φ and HQ.

From the above discussion, it follows that the suitably renormalized effective
action I(h,H) differs from the conformal effective action /confW by a local func-
tional of h and H. In particular, the H dependence is local.

From (3.8), it is apparent that L(H,A*\A\ the interaction term of// and ,4*, is
local.

Iho\(A*',A) is the real part of a holomorphic functional of A* and A [30]. Holo-
morphic factorization is an important feature of the model which however will not
be discussed in this paper. Its independence from H is crucial.

One has thus reached the following important conclusion. The full suitably
renormalized Gau invariant effective action I(h,H9A*) is a local functional of H.

An important observation, related to the analysis of ref. [10], is the follow-
ing. If one restricts to Drinfeld-Sokolov holomorphic structures A* G Holos and
to Drinfeld-Sokolov background connections A G ConnDS, then the functional
L(H,A*;A) and /h0ιG4*;^4) are independent from A. Further, under the action of
the Drinfeld-Sokolov gauge group GauDS, one has relations analogous to (3.10)-
(3.12), with s, if(H) and £/(A*;A) replaced by sDs, ^DS(//) and J3/DS(^(*;^),
respectively, where i^bsC^O and &0v$(A*\A) are given by (3.13)-(3.14) with Ξ
substituted by ΞDs In this case, however, one has

<%?ΌS(A*;A) = 0, A G ConnDS, ^* G HolDs (3.27)

identically by (2.16). Henceforth, it is assumed that A G Connos
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4. Drinfeld-Sokolov Gravity

In Polyakov's approach to two dimensional gravity, the functional integration over
all smooth metrics on the string world sheet is reduced into an integration over the
conformal factor of the metric h and on the Beltrami field μ. The action governing
the quantum dynamics of such fields is the diffeomorphism invariant effective action
of a conformal field theory.

In many respects, the quantization of Drinfeld-Sokolov gravity parallels that of
ordinary two dimensional gravity. One integrates over all fiber metrics H of Herm
and on all Drinfeld-Sokolov Koszul fields A* of HolDS. The action of such fields
is the Gauos invariant bare effective action I(h,H,A*) of a Drinfeld-Sokolov field
theory of the type described in Sect. 3. The partition function is thus of the form

^) , (4.1)
Vθ

where Θ(h,H,A*) is some bare Gauos -invariant insertion. This is of course a rather
formal expression whose precise meaning is to be defined. The relation of this
quantization prescription with earlier approaches, in particular with that of ref. [10],
has been discussed in the introduction.

The basic configuration space is the cartesian product Herm x Holos carrying
the action of GauDS described in Sect. 2. To gauge fix, one has to transform the
functional integral on Herm x Holos into one on a configuration space containing,
roughly speaking, a factor Gauos by computing the jacobian of the corresponding
functional change of variables.

To properly carry out the gauge fixing, it is necessary to define a good mod-
uli space of Drinfeld-Sokolov holomorphic structures modulo the action of the
Drinfeld-Sokolov gauge group and characterize the stability group of Drinfeld-
Sokolov holomorphic structures. This requires a notion of stability. A thorough
geometric investigation of this issue is beyond the scope of this paper. Neverthe-
less, it is still possible to make an educated guess about these geometric structures
by the following argument.

As is well known, every stable holomorphic structure is simple and the family
SHol of stable holomorphic structures is dense in Hoi and invariant under the action
of the gauge group Gau [27-28]. Here, the relevant holomorphic structures are those
of Holos and the relevant symmetry group is the Drinfeld-Sokolov gauge group
GauDs No holomorphic structure s e HolDs is stable in the customary sense. It
is however reasonable to assume by analogy that, for any reasonable definition of
Drinfeld-Sokolov stability, a Drinfeld-Sokolov stable holomorphic structure should
be Drinfeld-Sokolov simple and that the family SHol os of Drinfeld-Sokolov stable
holomorphic structures should be dense in Holos and invariant under the action
of the Drinfeld-Sokolov gauge group Gauos Recall that a holomorphic structure
s e Hoi is simple if the subgroup ^(s) of s-holomorphic gauge transformations of
Gau is trivial [27-28], a condition equivalent to the vanishing of the space HECFg,
since Lie^(s) = HECFg. Similarly, a holomorphic structure s e HolDs is said to
be Drinfeld-Sokolov simple if ^Ds (s) has minimal dimension, or, equivalently, if
the space HECFDSg has minimal dimension, since Lie^os(s) = HECFDSs

In analogy to the ordinary moduli space, the Drinfeld-Sokolov moduli space
^DS will be defined as the quotient SHol DS/ Gau DS ^bs is a finite dimensional
complex manifold.
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For s varying in SHolos? the groups ^DS(S) are all isomorphic to the same
complex Lie group ^Ds In fact they all are of the form exp HECFDSg, where the
spaces HECFDSg are all valued in the same nilpotent subalgebra of y of g and can
be continuously deformed into one another by continuously varying s in SHolDs
^DS is nilpotent, since exp jc is.

In this paper, it will be assumed that dim HCF2'0 = 0. This holds for an even
spinor structure and for a generic holomorphic structure of Σ. It is merely a tech-
nically simplifying hypothesis with a very nice consequence. If the assumption is
fulfilled, all holomorphic structures are Drinfeld-Sokolov simple. This is no longer
true in the generic situation, where even the reference holomorphic structure char-
acterized by the 1-cocycle (2.15) may fail to be Drinfeld-Sokolov simple [29].

A method for computing the dimensions of ^Ds and «^bs exploiting the
Drinfeld-Sokolov simplicity has been presented in [29]. They are given by

0, if { = 0 ,

dimyjrt, i f / = l , (4.2)

^-l), if ̂  2 ,

i f / = l , (4.3)

i, if ^2,

where p^ is any projector of g onto y and yint — Φmez™<-ι 9m

The relevant configuration space is properly Herm x SHolos A natural para-
metrization of Herm x SHolos is provided by

H(H9 α) = ot*H = α7?α , (4.4)

A*(t, α) = <x*A*(t) = dαα"1 + AduA*(t) , (4.5)

where t G J(Ds, H G Herm, α G GauDS, and t G ̂ Ds — » A*(t) G SHolDs is a fidu-
cial gauge slice. The parametrization possesses a ^Ds-symmetry as follows from the

following argument. Any two elements (t,H,oί) and (t',H ,α') of ^DS χ Herm x

Gauos have the same image under (4.4)-(4.5) if and only if t' = t and H = ηfirf
and α7 = uη~l for some η G ̂ DS (s/) with s, = A*(t), since ^Ds (s/) is the subgroup
of Gauos leaving A*(t) invariant. Now, for fixed t G ̂ bs? the maps

η*H = ηίlηϊ , (4.6)

% = aη~l , (4.7)

with η G <^Ds(sί)> define an action of ^DS(S?) °n Herm x SHolos The action
(4.6)-(4.7) is free and is a symmetry of (4.4)-(4.5). Since ^DS =^DS(S/) for
any t, it is a ^DS symmetry. One can then construct the space J^bs x (Herm x
GauDs)/^Ds(s.) = Π / G^D SWx((Heπn x GauDs)/^Ds(Sί)). This provides the
realization of the configuration space relevant for the implementation of the gauge
fixing.

The second realization is rather unwieldy, because the meaning of the func-
tional integration on a functional manifold of the form (Herm x Gauos )/^DS(S;)
for fixed t G ̂ DS is not quite clear. One way of solving this problem consists in
transforming the integration on such a functional manifold into an integration on



Drinfeld-Sokolov Gravity 545

Herm x Gauos with a residual unfixed gauge symmetry corresponding to ^DS(S/)
To do this, one employs the obvious isomorphism Herm x GauDS = ((Herm x
Gauos )/^Ds(sί)) x ^DS> where the action of ^DS(S?) on Herm x Gauos is given
by (4.6)-(4.7). Upon choosing a group isomorphism of C( ;0 : ^DS —> ^DS(S/) of

onto ^Ds(Sf)» the isomorphism is explicitly given by

H(H, g) = ζ(g t)*H = ζ(g; t)Hζ(g rf , (4.8)

ω(α, f lf)=^ ; ί>α = αCte;0"1, (4.9)

where (//,α) varies in a slice of Herm x Gauos representing the quotient (Herm x
Gauos )/^Ds(Sf) and g G ^Ds

The definition of the functional measures on the relevant field spaces and the
computation of the jacobians relating such measures is carried out by means of
certain formal prescriptions outlined below. It is important to realize that such pre-
scriptions only serve the purpose of producing and justifying heuristicly a definition
of the measure of the gauge fixed partition «3@(A) and should not in any way be
interpreted as a means of proving theorems about an otherwise well defined field
theoretic model.

To any complex Hubert space 3tf with inner product ( , ), there is associated
a real Hubert space Jfr with inner product ( , )r. ^r is just 2tf seen as a real
vector space by restricting the numerical field from C to R. (x\9X2)T = 2Re(jtι,jt2)
for xι,x2 G ̂  = $e. In particular, ||;t||r2 = 2||*||2.

To any real Hubert space Jf , there is associated a translation invariant functional
measure (Dx) normalized so that f^(Dx)exp(— ^||*||2) = 1.

If 3F is a real Hubert manifold, then, for any / G J ,̂ the tangent space Tf3F of
2F at / is a Hubert space with norm ||<5/|||/ and measure (Dδf)\f. This defines a
measure (A/)|/ on ̂  by identifying (A/)|/ with (Dδf)\f at /. In general, (D/)|/
is not translation invariant, depending explicitly on /.

If 2F and $ are Hubert manifolds and φ : 2F — > $ is an invertible map, then
3F is a parameter space for $ and it is possible to transform functional integration
on $ with measure (De)\e into functional integration on 3F with measure (Df)\f.

To this end, one needs the jacobian relation (Dφ(f))\φ^ = [det(5φ(/))
where, for any / G J ,̂ δφ(f) : Tf2F — > Tφ(f)S is the tangent map of φ at /.

Applying the above formal recipes, one can define real Hubert structures on
Herm, SHolos> GauDs> ^DS and ^DS and obtain in this way the correspond-
ing functional measures (DH)h\H, (DA*)H\A*9 (Doι)hίH\Λ9 (Dt)\t and (Dg)\g. The
measures depend on a background surface metric h £ Met and on a fiber metric
H G Herm through the underlying Hubert structures, h is fixed whereas H is cho-
sen to be the varying metric integrated over in the functional integral. Using these
basic Hubert structures and functional measures, one can define real Hubert struc-
tures on the derived field spaces defined above, obtain the corresponding functional
measures, implement the gauge fixing in the partition function and computing the
resulting functional jacobians. The details of this analysis are rather technical and
have been lumped in App. A for the interested reader. Here, I shall limit myself to
illustrating the result.

By varying (4.5) with respect to α and taking (2.2) into account, it appears that
the Drinfeld-Sokolov ghost kinetic operator is ^DSS, acting on ECFj^0^0. Hence,

the Drinfeld-Sokolov Fadeev-Popov determinant is something like det(<9DSS*<5Dss)
for a Drinfeld-Sokolov holomorphic structure s G Holos This notation is a little bit
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too formal. First, the adjoint <3DSS* of 5Dss is defined with respect to the Hubert

structures ( , }DSΛ,#S of ECFDSg° and ECF^g1 corresponding to the fixed back-
ground surface metric h and the varying fiber metric H. Secondly, the ghost kinetic
operator $DSS has zero eigenvalues which have to be removed from the determi-
nant. Hence, the Drinfeld-Sokolov Fadeev-Popov determinant should properly be

deti//(^DSs*^DSs), where the dependence on the metrics h and H and the removal
of the zero eigenvalues are explicitly stated. The resulting functional of h, H and s is
essentially the bare ghost effective action once the zero modes and comodes of <9DS s
are properly taken care of. Let {e/(s)s|/ = 1,...,dinars} be a basis of kerdoss-
Since doss is defined independently from any choice of hermitian structure, the
e/(s)s can be chosen independent from h and H. Let {/ /'(s)s[/ = l,...,dim^Ds}
be a basis of cokerδoss This is defined here as the annihilator of ran doss in

ECFpSg° under the dual pairing ( | }DSS ^DSS being defined independently of any
choice of hermitian structure, the /7(s)s can also be chosen independent from h
and H. The bare effective action /gh(/*,//,Λ*) is

(4.10)
(ΛCllVlh^ff${&{&}} WdlVlfa ff${J {*>))

where

Mh9HS(e(s))ij = {e/(s),ey(s)}DS/,,//s, ίj = l,..-,dim^D S , (4.11)

" (4.12)

are the Gramian matrices of the bases {e/(s)s} and {/ /(s)s}.
Below, I shall make some reasonable assumptions on the gauge slice function

A*(t) and the group isomorphism ζ(g',t). Though they are not strictly necessary for
the formal manipulations of functional integrals required by the gauge fixing, as such
they guarantee the holomorphic factorization on ^//DS of all finite dimensional factors
entering in the measure of the gauge fixed partition function &&(h), a property
known to hold in ordinary string theory which one would like to keep also in the
present context.

As a first assumption, the gauge slice function t — » A*(t) is assumed to be
analytic:

dtA*(t) = Q. (4.13)

It is not known to me whether it is possible to find a gauge slice function A*(t)
globally holomorphic on «^bs In general, A*(t) may develop singularities on a
submanifold of ^bs of non-zero codimension, where A*(t) fails to be transverse to
the action of the gauge group GauDs on SHolDs The singularities may eventually
entail divergencies in the modular integration.

Equation (4.13) implies that the family of elliptic operators t — > <3oss, is complex
analytic. So, setting ez (f) = ei(st) and fj'(t) = fj'(st)9 one also has dtet(t) ~ 0 and

For fixed t £ ^DS? define

σ*(t) = dtJA\t), j=\,...,dimJΐΌS . (4.14)
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Since SHolDS £ ECFDS

0>1, σ/(0 G ECF^0'1. The σ/(ί) are analytic, since A*(t)
is. They are also linearly independent, since A*(t} defines a gauge slice, except
perhaps on the submanifold of «^bs> where A*(t) is singular. Using the σ*(t\ one
can build the matrix

f (0)os, «,y = l,...,dim^DS . (4.15)

nalytic on «^DS
cond assumption, the

arguments:

F(t,f) is analytic on «^DS
As a second assumption, the map ζ ( g , t ) is assumed to be analytic in both

aruments:

(4.16)

(4.17)

As a function of ί, C(0ί 0 maY develop singularities on some submanifold of «/
of non-zero codimension, where ζ(0; ί) fails to be a group isomorphism.

For fixed t £ ^bs> define

(4.18)

τ/(0 G ECFDS°'°, since Lie^Ds(s?) C ECFDS°'°. The τ, (0 are analytic, since ζ(g t)
is. They are also linearly independent, since ζ(g; t) is a group isomorphism, ex-
cept perhaps on the submanifold of ^DS where ζ(g; t) is singular. Away from that
submanifold, they span Lie^Ds(Sί) = ker<3DSs, One then picks vectors {τvί(t)\i —

1, . . . , dim ̂ DS } in ECF^1' l defining a basis dual to {τ/(f )|* = 1 ? , dim ^DS } with
respect to the dual pairing ( | )DS and depending analytically on t. Using the τv/(ί)»
one can build the matrix

E(t9e)} = (τv/(OkXO>DS, W - l,...,dim#DS - (4.19)

E(t,e) does not depend on the choice of the τv/(ί) E(t,e) is clearly analytic on

Let v(g) be a left invariant positive (dim ̂ DS , dim ̂ DS ) form on ^DS. Hence,

^/*v(0) = K^)^ f°r anY / ^ ^DS Using v(#), one can define the volume υv =

§y^(Dg)\gv(g) of ^Ds This is actually divergent, as ^Ds is non-compact. The
gauge fixed partition function 2£&(h) reads

Herm

/8h(^//,^*(0)) (4.20)

The denominator u v (f) reflects the residual unfixed ^Ds gauge symmetry, as men-
tioned earlier. In fact, Θ(h9H9A*)9 ϊ(h,H9A*) and I&(h9H9A*) are ^Ds(s) invariant
as functionals of//, the former two by Gauos invariance, the latter as a consequence
of (4.10)-(4.12) and the nilpotence of ^DS(S). By (4.14)-(4.15), the measure is a
(dim e/^bs ? dim ̂ bs ) form on ^bs so that the t integration is well defined. From
(4.10)-(4.12), (4.15) and (4.19), it is immediate to see that the measure is inde-
pendent from the choice of the bases {e/(0} and {/y(0} Gauge invariance ensures
the measure is independent from the choice of the gauge slice A*(t). It may also
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be shown that it is independent from the choice of the group isomorphism ζ(g\t).
The measure is also independent from the choice of v, since left invariance entails
that v is determined up to a positive constant. Finally, the measure is independent
from the choice of the coordinates of ^DS at 1, provided of course one uses the
same coordinates for the τ(ί)/ and v(l).

The contribution of the Drinfeld-Sokolov ghosts has a functional integral rep-
resentation. Let G be the ghost Grassmann algebra. The ghost fields are β G
G <8) (Lie Gauϋs )v and γ G G 0 Lie Gauos The isomorphisms (Lie Gauos )v —
ECFpS

1?0 and LieGauDs — ECFDS°'
0 allow one to construct the appropriate ghost

functional measures (Dβ)H\β and (Dy)h^H\y. The Drinfeld-Sokolov ghost action is

1 2

π Σ

Then, by standard functional techniques, one can show that

|detFO,/)det^,β)|2exp/gh(//,//,^*(0)

= / (Dβ}π\β 0 (Dy\H\y exp(-S(β, y,A*(t)))
G®(Lie Gauos )v xG(g)Lie GauDs

2

(4.22)

The formal similarities with the construction of the Polyakov measure for ordi-
nary strings are evident [16-19]. A detailed study of the Drinfeld-Sokolov ghost
system is now in order.

5. The Drinfeld-Sokolov Ghost System

The study of the Drinfeld-Sokolov ghost effective action is problematic. For any
Drinfeld-Sokolov holomorphic structure s G SHolos? the Cauchy-Riemann operator
<3oss acts on the Drinfeld-Sokolov space ECFDSs°. However, the hermitian structure
is defined in terms of a metric Hs G Herms, which does not respect the y-valuedness
of the Drinfeld-Sokolov fields, since, for Ψs G ECFDS°s°, (AdHΨ*)s is not y-valued
in general. This renders the application of standard field theoretic techniques to the
study of the Drinfeld-Sokolov ghost system impossible. This problem has been
solved in a general context in ref. [29] by using the method of local projectors
which now I shall briefly recall.

Given a metric Hs G Herms, one can introduce the orthogonal projector w(H)$
of ECFg'w onto ECFDSs'w with Hubert structures corresponding to Hs defined in
Sect. 2. w(H)s is given as a collection of local maps w(H)Sa valued in the endomor-
phisms of g with range y such that w(H)Sa = AάAάKSabw(H)Sb whenever defined
and that w(H)s

2 = w(H)s and (AdHw(H)iAdH~l)s = w(H)s, where w(H)i is
the pointwise adjoint of w(H) with respect to the hermitian inner product on 9
defined by ( x 9 y ) = trad(*1>) for x,y G g.
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Recall that the Cauchy Riemann operator <3S maps ECFDS^, into ECFj^'. It
can be shown that this implies that w(H)s obeys the relation

(dw(H)w(H))s = 0 . (5.1)

Projectors m(fΓ)s satisfying (5.1) were introduced earlier in the mathematical liter-
ature in the analysis of Hermitian-Einstein and Higgs bundles [34, 35].

The dependence of tπ(//)s on S is minimal in the sense explained in Sect. 2,
i.e. w(H)a = AάVsabw(H)bsAάVSab-

1.
The independence of the range of w(H) from H implies that

δw(H)w(H) = 0 . (5.2)

By combining the Ad// hermiticity of w(H) and (5.2), one obtains

δw(H) = -w(H)aά(δHH~l)(l - w(H)) . (5.3)

This identity is a functional differential equation constraining the dependence of
w(H) on H and shows that w(H) is a local functional of H.

Let HO be a reference fiber metric in Herm. As explained in Sect. 3, any other
fiber metric H G Herm can be written as H = exp Φ//0, where the Donaldson field
Φ is an element of ECF°'° such that Ad//oΦΪ = Φ. Using (5.3), it is straightforward
to show that w(H) has a local Taylor expansion in Φ of the form

(5.4)
r=0 r-

where, for each r g: 0, m^(Φ,//o) transforms as w(H) under coordinate changes
and is a homogeneous degree r polynomial in Φ:

U7(0)(Φ,//0) - U7(//0),

ϋ7(1)(Φ,//0) - -τπ(//0)adΦ(l-m(//o)),

tσ(2)(Φ,//o) = m(//0)adΦ(l -2m(//o))adΦ(l-ϋ7(//0)),

07(3)(Φ,//0) = G7(#o)[adΦ(3G7(#0)- l)adΦ(l -π(H0))adΦ

+ adΦ(2 - 3m(//o))adΦm(//0)adΦ](l - w(H0)) ,

: . (5.5)
It is not difficult to show that the projector w(H(h)) corresponding to the metric

H(h) given in (3.15) is given by

w(H(K)) = exp(-δln/zadί_ι)/? rexp(51nΛadί_ι), (5.6)

where p^ is the orthogonal projector of g onto £ with respect to the hermitian inner
product ( , •) of g defined above.

Next, consider the GauDs invariant unrenormalized Drinfeld-Sokolov ghost ef-

fective action /g (h,H,A*) with ^*GSHolos a Drinfeld-Sokolov holomorphic struc-
ture. Because of the unboundedness of the ghost kinetic operator <9DSs,
/g (h,H,A*) suffers ultraviolet divergencies which have to be regularized by means
of an ultraviolet cut-off ε. As in Sect. 3, I shall adopt here proper time regularization
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[18]. Next, I shall analyze the main properties of this effective action. It turns out
that the Drinfeld-Sokolov ghost system is not a Drinfeld-Sokolov field theory of the
type discussed in Sect. 3. In spite of this, it shares many of the qualitative features
of a Drinfeld-Sokolov field theory, as is shown below.

Using the methods of [29], it can be seen that 7gh(/z,//,^*;ε) has the following
expansion as ε —>• 0:

rgh Γ _rgh

,H,A* ε) = -—fd2zh + -f- fd2zfh
7L£ y I O7Γ y

+ -1- fd2ztr((adFH + ddHw(H))w(H))s - q Inε
2π Γ J

+/gh(/*,//,Λ*) + 0(ε). (5.7)

Here, rgh = dim? and q = dim^DS. dHw(H) = dw(H) - [adΓH,w(H)]. The first
two terms of the coefficient of In ε are topological invariants. In fact, fΣ d2zfh =

2π(/ — 1) is the Guass-Bonnet invariant, already encountered in Sect. 3, and JΣ d2ztr

((adFH + ddffϋj(H))τu(H))s = -2πtr[adtQpr](S - 1) is the Chern-Weil invariant

of DS, where pτ is defined below (5.6). ij (h,H,A*) is a non local functional of
/z, H and A* such that

-— fd2z[δ Inλtr ((adF//
2π Σ

+ -fd2ztr(ad(δHH-l)(adFH + ddHw(H))w(H))s , (5.8)
π r

where δ denotes variation with respect to h and H at fixed A*.

To renormalize the bare effective action /gh(/z,//,^4*;ε), one has to add to it a
counterterm of the form

,H,A*;B) = —fd2zh -
7l£

+ ^-fd2ztr((adFH -h ddHw(H))w(H))s - q] Inε
2π Σ J

(5.9)

Here, AIgh(h,H,A*) is a local but otherwise arbitrary functional of h, H and ^4*,
whose choice defines a renormalization prescription, as in Drinfeld-Sokolov field
theory. The renormalized effective action is thus

9A*) . (5.10)

Below, AI^(h,H9A*) is assumed to be independent from A*:

(5.11)
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It can be shown that, if this condition is fulfilled, 7gh(/z,//,^4*) has the following
structure

I*(h,H,A*) = I*(h,H) + L*(H,A*;A,p) + l£i(A*;A,p). (5.12)

Here, A £ Cornios is a background Drinfeld-Sokolov (1,0) connection, p is a back-
ground local projector on ?. In analogy to w(H), p is given as a collection of maps
pa valued in the endomorphisms of g with range y such that pa = Ad AάKabpb
whenever defined and that p2 = p. /gh(/z,//) is the functional Igh(h,H,A*) evalu-
ated at the reference holomorphic structure A* = 0,

-tr(3dA*w(H)ad AdHA*^)] . (5.13)

Using (2.15) and the fact that y is a nilpotent subalgebra of g such that [
for d = 0, — 1, it is straightforward to verify that the integrand belongs to CF1'1 so

that the integration can be carried out. I^(A*\A,p) is a non-local functional of A*
depending on A and p. Next, I shall study the properties of the three contributions
in the right-hand side of (5.12).

In order for the counterterm zJ/8 (/z,//,^4*;ε) to be Gauos invariant, AIgh(h,H)
must satisfy

SDsAI&(h,H) = 0. (5.14)

This ensures that the renormalized effective action Igh(h,H,A*) is also Gauos in-
variant. Under this assumption, one has

(5.15)

(A*;A,p), (5.16)

p) , (5.17)

where

= - /J2z2Retr(adΞDSa(π7(ίΓ)adΓ//)), (5.18)

(5.19)

are the ghost gauge anomalies. Using (2.15) and the properties of y recalled below
(5.13), it is straightforward to verify that the integrand belongs to CF1'1 so that
the integration can be carried out. As a check, I have verified that the restriction of

^DS(^*'^»P) to Lie^Ds(s) vanishes as it should.
7gh(/z,//) is a non local functional of h and H. Its dependence on h and H can

be analyzed as follows. Using the fiber metric H(h) defined in (3.15), one has

(5.20)
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where

/^(*) = /*(*,#(*)), (5.21)

Sgh(h,H) = βgh(/*,//(/0) . (5.22)

Here, for any two metrics //,//o G Herm, Ώgh(//,//o) is the Drinfeld-Sokolov gen-
eralization of the Donaldson action defined by functional path integral

H

2ztr(ad(δH'H'-l)(adFH> + ddH>w(H'))w(H')) . (5.23)
UH0Σ

F(h,H9HQ) is the functional

F(h,H,HQ) = ̂  ffd2zH(*d(δH'H'-l)w(H'))fh . (5.24)
Z π//o Σ

The right-hand sides of (5.23) and (5.24) are both independent from the choice
of the functional integration path joining //0 to H, since the functional 1 -forms on
Herm integrated are closed and Herm is contractible. This can easily be verified
using (5.1) and (5.3). Ωgh(//,//o) can be computed in terms of the Donaldson field
Φ of H relative to HQ by using the local Taylor expansion (5.4)-(5.5) of w(H).
The result is

Ωgh(//,//o) = -- / d2ztτ \K*(Φ9dΦ9Ho)*ddHoΦ - Z)(Φ,//0)adF//0 + Γ(
71 Y \-

(5.25)
where

00 1 m fni\
D(Φ,H0)= Σ , , 1 Λ , Σ ( W(m-")(Φ,//0)adΦϋ7(n)(Φ,//o), (5.26)

m=0(m+ l)!n=0 \n/

T(Φ,HQ) = Σ Σ δ / / 0 - w ( Φ , / / 0 ) a d Φ 5 m ( Φ , / / o ) , (5.27)

m _ι 1

K*(Φ9dΦ,HQ) = Σ — Σ (-adadΦ)

xΣ (^(W^)(φ'//o)adΦ)^)(Φ,//0). (5.28)
k=Q \^/

By a similar and simpler calculation, one finds

0)fh , (5.29)
Σ

where
oo 1

J(Φ,H<>) = Σ — — ττadΦm^(Φ,//o). (5.30)
r=0 V + U!

Now, /C

8

0

h

nf(/z) is a non-local functional of h. By using (3.15), (5.6) and (5.8),

one can obtain the variational relation obeyed by ^onf(A). This can be written in a
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rather explicit form, because of the simple dependence of H(h) and w(H(h)) on h.
By a somewhat lengthy but straightforward calculation, one finds

2 gh

+ δ —
π

Ί

+ Δlz\h,H(h))\ , (5.31)
J

where
κgh = -2tr[(6(adfo)2 + 6ad/0 + l)ft] , (5.32)

Λgh - -tr(adf+ιadf_ι/? r ). (5.33)

If
Tgh

zl/gh(/*,//) = A'l&(h,H) + -2-fd2zh-lfh

2 , (5.34)
π r

where AQ is some constant and A'Igh(h,H) is a local functional of /* and // such
that

zl7gh(/j,//(/0) = 0, (5.35)

(5.31) becomes simply

fc-gh ;βh I gh
O) = -£- /</2^lnA/A + ?<L±Λ_δ!d2zh-ιfh2 . (536)

J..Z7Γ y1 7Γ y

A counterterm AIgh(h,H,A*) for which (5.34) holds is given by the right-hand
side of (5.34) with A'Igh(h,H) satisfying (5.14) and (5.35) and clearly satisfies

both (5.11) and (5.14). Choosing Λ|h = — /lgh yields a renormalized effective ac-

tion lfonf(h) describing a conformal field theory of central charge κg

onf = κ;gh. This
is precisely the central charge of the Drinfeld-Sokolov ghost system of the W-
algebra associated to the pair (G,S) as computed with the methods of hamiltonian
reduction and conformal field theory [10] 2. For a generic value of ΛQ, one obtains
a renormalized effective action with a / VhRh2 term yielding a model of induced
2d gravity of the same type as that considered in refs. [32, 33], as in Sect. 3.

The functional S^(h,H) and F(h,H,H(h)) are local. In fact, the Donaldson
field relevant here is Φ(h,H), defined in (3.26). From (5.6), the locality of Φ(h,H)
as a functional of h and H and Eqs. (5.25)-(5.30) showing that Ωgh(//,#0) and
F(/z,//,//o) are local functionals of Φ and 7/0, the statement is evident.

From the above discussion, it follows that the suitably renormalized Drinfeld-
Sokolov ghost effective action Igh(h,H) differs from the conformal effective action
7g

onf(/z) by a local functional of h and H. In particular, the H dependence is local.
From (5.13), it appears that Lgh(//,^4*;y4,p), the interaction term of// and ^*,

is local.
It is also likely, though no proof is available at present, that I^(A*'9A9p) is the

real part of a holomorphic functional of A* and A and p, entailing holomorphic
factorization. Its crucial property, however, is its independence from //.

One has thus reached the following important conclusion. The full suitably
renormalized Gauos invariant Drinfeld-Sokolov ghost effective action /gh(
is a local functional of H.

2The odd looking sign of the mid term in the right-hand side of (5.32) is due to the fact that
negative graded.
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One could choose A'Igh(h,H) = 0 above. There is however a different more
interesting choice, namely

) = -F(h,H,H(h)) . (5.37)

Using (5.3) and (3.15), one can show that

— fd
2,71 y

-Z7Γ

(5.38)

Hence, the counterterm zJ'/gh (/?,//) has the nice property of cancelling the mid term
of (5.8) separating the δlnh and δHH~l terms in δI&(h9H,A*).

6. Conformal Invarίance

Let us go back to Eq. (4.20) providing the expression of the gauge fixed partition
function J%>(/z). Here, I shall assume that the insertion Θ(h,H,A*) contains only the
counterterms necessary to absorb the ultraviolet divergencies of the bare effective
actions ϊ(h,H,A*) and I&(h9H,A*). Thus, Θ(h,H,A*) has the structure

where AI(h,H,A*) and AIg\h,H,A*) are given by (3.4) and (5.9) in the proper

time regularization scheme and θ(h,A*) is a GauDs invariant functional of h and
A*. Then, after cancellation of matter and ghost ultraviolet divergencies, (4.20) may
be written as

^(h) = f (Dt)\t detF(ί,/)det£(ί,e)\2 θ(h,A*(t))&'herm(h,A*(t)), (6.2)

where

^rherm(M*)= / (DH)h{HexpItoi(h,H,A*), (6.3)
Herm

Iiot(h,H,A*) = I(h,H,A*) + /gh(/*,7/,Λ*). (6.4)

The problem to tackle next is the study of the partition function ^herm(/z,v4*). By
the discussion of Sects. 3 and 5, the underlying H field theory is local.

Before proceeding, an important remark is in order. Using the results of Sect. 3 of
ref. [29], it is easy to show that, for fixed s = A* G SHolDS, the action /tot(//,//,^*)
is invariant under the subgroup ^s(s) of exp n?-valued elements of ^(s), where
ny is the normalizer ic. ^DS(S) is larger than ^DS(S). For varying s G SHolDS, the
groups ^s(s) are all isomorphic to the same complex Lie group ^f

ΌS containing
Therefore, even after formally dividing by the volume vv of ^Ds, the partition
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function ££hQrm(h,A*) is still divergent. This problem can be solved either by inser-
tions that break the extra gauge symmetry or by further gauge fixing. The following
analysis of conformal invariance is not affected by this.

In the method used here, the H functional integration is viewed as the integration
on a suitable manifold of classical H configurations times the functional integration
on the quantum H fluctuations around each of the corresponding H vacua.

The classical action for the H field is Iiot(h,H,A*). The classical H equation
obtained from Itot(h,H,A*) is

\FH + K~ln(H)(aaFH + ddHw(H))w(H)]s = 0 . (6.5)

Here, Π(H)S is defined as follows. Consider the real vector space of local fields
Xs valued in the endomorphisms of g such that XSa = Ad AάKsabXsb and that

(Ad AdHX^)s — ̂ s? equipped with the pointwise Hubert norm X$ —> tr(X )$• Let
Π(H)S be the orthogonal projector of such a space onto its subspace of elements
Xs of the form Xs = ad ŝ for some local field Xs such that XSa = AdKSabXsb and
that (AdHX^)s =X$. Π(H)§ is a field valued in the endomoφhisms of the space
of endomoφhisms of 9 such that Π(H)Sa — AdAdAdKSabΠ(H)sb and depending
locally on H$ since the Hs hermiticity condition is local. Since g is simple, the
adjoint representation ad is faithful so that ad"1 is defined. By definition, 77(//)s =
aά~lΠ(H)S Equation (6.5) is easily obtained by using the variational identities
(3.3), (5.8) and (5.38). I do not have any proof that Eq. (6.5) admits solutions. I
shall assume anyway that solutions exist.

Equation (6.5) does not contain the surface metric Λ. It is therefore conformally
invariant. This is a consequence of the renormalization prescription of the Drinfeld-
Sokolov ghost sector used corresponding to the choice (5.37) of the finite part of
the ghost counterterm.

The general solution of Eq. (6.5) is a function Hc\(n\ s) depending on s of a set
of parameters n varying in some finite dimensional real manifold J f . The n label
the different solutions. For fixed s, the metrics Hc\(n\ s) span a finite dimensional
submanifold Hermcι(s) of Herm.

Since Itot(h,H,A*) is ^DS(S) invariant, if η G ̂ DS(S) and H G Hermcl(s), then
also η*H G Hermcι(s). So, the space of solutions of Eq. (6.5) for fixed s is ^DS(S)
invariant. There exists therefore a free action n —> 9n, g G ̂ s, of ̂ s on N such
that Hc\(βn\ s) = ζ'(g; s)*Hc\(n; s) for some isomorphism ('(•; s) : &'ΌS —> &'ΌS(s).

To carry out the functional integration of the H quantum fluctuations around the
classical vacua, one needs a fibration φ( ; s) : Herm —> Λf depending parametrically
on a holomoφhic structure s. The fibration yields a parametrization of Herm of the
form

#(Φ,Λ;s) = expΦ#cι(Λ;s), (6.6)

where n G JV* and Φ G ECF°'° with Ad//ci(«; s)φϊ = Φ subject to the constraint
that exp ΦHc\(n; s) G φ~^(n;s). Such Donaldson fields Φ form a real manifold ob-
viously isomoφhic to φ~l(nis)Hc\(n'9s)~l.

The fibration φ(n\ s) must have the following properties. For any n G ̂ Γ
and any H £ φ~l(n\s\ 7>/Herm = THφ~l(n',s) Θ Jf//(«;s), where «##(w;s) is
some subspace of Γ//Herm of dimension equal to that of Jf and the direct
sum is orthogonal with respect to the Hubert structure in Herm (cf. App. A).
Further, TH(Φίn;S)φ~l(n'9s) = exp(adΦ/2)THcl(n^φ~l(n',s) and «#//(φ,π;s)(«;s) =
exρ(adΦ/2)Jftfcl(lι;s)(«;s). Finally, one has «^cl(Λ;s)(n; s) = Γ//cl(77;S)Hermcι(s).
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The fibration φ(w s) must also be ^s covariant, i.e. φ~l(gn;s) =
ζ'(g;sYφ~l(n;s) for any g e ̂ s. This implies the ^όs covariance of the
parametrization (6.6), being H(ζf(g;syΦy

gns} = ζ'(g;syH(Φ,ns). One must
also have that Γ^ s^φ-^^ s) = Γte srΓ^φ-H/i s) and ̂ (^γH(°n\ s) =

One clearly has the isomorphism Herm = Jf x φ l( ',s), where Jf x φ l( ;s)
= Y[ne^r{n} x φ~l(n;s). One can use the isomorphism to transform the functional
integration on Herm into one on Jf x φ~J( ;s). To this end, one has to provide
Λf and each φ~l(n;s) with the appropriate real Hubert structure and construct the
corresponding functional measures (Dri)\n and φΦχ//ci(«;s)|Φ Details may be found
in App. B.

Using the fibration φ( s), the partition function Jfherm(/z,^*) can be written as

^herm(/U*) = f (Dn)\n exp/toU#ci(«; *\A*)£^(h,A* 9n) , (6.7)
jf

where

x exp/^(exp Φ7/cl(«; s),^*; «) , (6.8)

J(h,A*;n)rs = (δn,#cι(«; s)#d(«; s)^ ,

r,j= l,...,dim^Γ, (6.9)

/^(#,Λ*;rc) = /tot(^^^ (6.10)

I™(H,A*;n) is the quantum fluctuation action. The independence of I^
from λ follows straightforwardly from (6.4), (3.5), (5.10), (3.3), (3.24), (5.8), (5.34)
and (5.38). Details about the derivation of this formula are provided in App. B.
Equation (6.7) may be cast in more suggestive form as follows.

Define

V™(h9H9A*;A9p) = Iio\h,H,A*)-Ihol(A*;A)

* ,A,p) (6.11)

(cf. Eqs. (6.4), (3.7) and (5.12)). Now, for a fixed ^4*, one can impose the constraint
δVioi(h,H,A*;A,p)/δA* = 0 on the solutions of Eq. (6.5). This can be written in
the form

[ΓH -A+K-lΠc(H)(w(H)adΓH - paάA)]s = 0 in ECF^' . (6.12)

Here, ΠC(H) is defined similarly to Π(H) below (6.5), by considering instead
the complex vector space of local fields Zs valued in the endomorphisms of 9
such that Z$a = AdAdKsabZsb equipped with the pointwise Hubert norm Zs — >
tr(Ad Ad//Z'Z)s. The above equation depends on the background fields A and p
at order O(K~{), except when the grading of g induced by s is integer. Below,
I assume that, for any s G SHolos? there are common solutions of the dynamical
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equation (6.5) and the constraint (6.12) at least for some choice AQ and po of the
backgrounds. I further assume that such solutions are of the form Hc\(n\ s) for n
varying in some submanifold J/DS of N .

Vtot(h,H,A*ιA,p) is %s(s) invariant, as /tot (/*,//, ,4 *), I^\(A*\A) and

I^(A*',A,ρ) are. Hence, if η e %s(
s) and H satisfies (6.12), then also η*H does.

So, ΛDS is invariant under the action of ^>s on Jf defined earlier.
Consider the classical action Itoi(h,Hc\(n;s\A*). If n G Λ/bs? Hc\(n\ s) satisfies

both (6.5) and (6.12). Then, by (6.4), (3.7), (5.12), (6.5) and (6.12), the functional
Ftot(//,//cι(w;s),^*) is independent from A"". Thus, one can evaluate it by setting
Λ* -0. From here, using (6.11), (3.8), (5.13), (3.16), (3.24), (5.20), (5.34) and
(5.37), one finds

/tot(A,//ci(«; s),Λ*) = Cf(h) + 4Cf(A;/ι) + Cι(^*^o,Po) , (6.13)

where

Cf (A) = WΛ) + /ctfW , (6-14)

) 9 (6.15)

M,p), (6.16)

S(h,Hc\(n)) and S%h(h,Hcl(n)) being given (3.18) and (5.22) and //cl(n) being
//ci(w s) evaluated at the reference holomorphic structure. By (3.25) and (5.36),
^conf(^) ^ ^^ effective action of a conformal field theory of central charge

^confo = ^o + ̂  + ̂ gh, where K and κgh αre gf/t ew respectively by (3.22) and (5.32).
AI^f(h\n) is a local functional of h, since the two terms in the right-hand side of
(6.15) are, as is explained in Sects. 3 and 5.

By the classical H equation (6.5), /tot(/z,//cι(/ι;s),^4*) is constant as a function
of n on each connected component J^ of Jf . Thus, it may be evaluated at any
point HI G Jfi Π >DS? which I assume to be non-empty. Then, on account of (6.13),
(6.7) may be written as

^hem(M*) = Σ
/

xf(Dn)\n<3*Γ(h,A*;n). (6.17)
Λ"

Next, one has to study the partition function J^erm(/z,^*;«), but before doing that
a few important remarks are in order.

Equations (6.5) and (6.12) are rather complicated because of the Drinfeld-
Sokolov ghost contributions proportional to K~l . In the limit K —> oo, however,
the ghosts decouple and they simplify considerably. Calling H^ the corresponding
H configuration, the equations become

(/froo)s = 0, (6.18)

(ΓHoo-A)s = 0 in ECF^'°. (6.19)

So, //oo is a flat fiber metric such that ΓHoo is Drinfeld-Sokolov, since A is. Equa-
tions of this form were found in [10] on a minkowskian cylindrical world sheet
and shown to be equivalent to the non-abelian Toda equations associated to the
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pair (G,S). On a euclidean topologically non-trivial world sheet, however, one has
to take into account further constraints coming from global definedness and non-
singularity. One then finds that the above equations admit solutions HQQ of Toda
type at genus f — 0. For instance, H(hcc), where hcc is the constant curvature sur-
face metric with -2h~lfhcc = 1 and H(h) is given by (3.15), satisfies (6.18)-(6.19)
for the reference holomorphic structure. In higher genus there still are solutions of
Toda type but ones which are hermitian with respect to a non-compact conjugation
of the Lie algebra g [36, 37]. The use of the compact conjugation f however cannot
be avoided since positivity of the various Hubert structures in the construction of
the measures is indispensable. If the Toda solutions are the only solutions available,
then it will be necessary to introduce some type of insertion in the H functional in-
tegral providing extra terms in the classical equations compensating for the problem.
Unfortunately, very little is known at present about these equations on a Riemann
surface.

The partition function JΓq^
erm(A,^4*;«) can be computed to leading order in

a semiclassical expansion with expansion parameter h=K~l. To this end, one
rescales the Donaldson field Φ into K~ϊΦ° and expands in powers of K~ 2 . in so
doing, one must take into account that the classical solution Hc\(n; s), the fibration
φ(n,s) and the functional measure φΦ)^,//cl(«;s)|Φ? also, depend on K.

Below, it is assumed that the metric Hc\(n; s) has a well defined limit //cioo(X s)
in Herm as K — > -hoc for every n G Jf satisfying (6.18) and that such K — » +oc
solutions span a submanifold Hermcioo(s) of Herm.

It can be seen that, in the limit K — > -hoc, one has (DΦ\Hc^n.^\Φ = zκ(h)[\ +

0(^-1)](DΦ^X//cloo(rt;s). Here, Φ^ varies in Don(//doo(«;s)), where Don(#cloo)
is the space of Donaldson fields Φ^eECF0'0 satisfying AάHcι00Φ^ = Φ°OG and
orthogonal in ECF°'0r with Hubert structure { j )ϋ#cloo to the kernel of the operator

Affcloos = — (<3d//cioo)s This follows from the properties of the fibration and the fact
that the tangent vectors δH^H^ to Hermcι00(s) at H^ satisfy (zl//cloo((5//00//(^

1))s
= 0. (DΦ^hMdoo is the translation invariant measure on Don(//cioo) obtained from

the obvious real Hubert structure. zκ(h) — [det/^#cloo(w;s) (K~ll)]ϊ is a constant
arising because the different normalization of the fields Φ and Φ° related by Φ =

K~ϊΦQ. It depends on h because of the h dependence of the measure.
Proceeding in this way, one finds

Don(flcioo(n;S))

x expί-SjjUΦ^Λ /Wii; s)))[l + O(K~λ )] , (6.20)

where /oo(/!,^*;«) is given by (6.9) with Hc\(n;s) replaced by H^^n s) and

S£oo(Φ2o.Λ*;#cioo) = ~ /</2ztrad(<zltfdoo<Os (6.21)
zπ ^

is the Gaussian fluctuation action. The effective action /^""(Λ,^*;^) =

(/z,^*;«) is therefore

(6.22)



Drinfeld-Sokolov Gravity 559

where A^ndoos — n~l ^HC}OOS Here, I shall use again the proper time regularization
scheme. Then, the effective action becomes dependent on the proper time cut off ε.
Taking into account that the vectors 5^//cloo(«;s)//cι00(«;s)~1 span kerzl/j?//cloo(w;S),
one finds, using standard heat kernel techniques,

+ »conf(A) + Λ(A*;n) + In A*' + O(ε) + OCA^1),

<V = 7 dim gO? - 1) + i dim yΓ . (6.23)
6 2

Here, PFconf (Λ) is a non-local functional of h such that

dim 9 Γ 2
oWconf(h) — J ί/ zδhfh . (6.24)

12π Σ

A(A*;n) is a non-local functional of A* depending on n. The ultraviolet divergencies
can be cancelled by adding to the bare effective action the counterterm

dim Λ In ε + 0(ε) + 0(K~l). (6.25)2 L 6π Σ
This must be independent from n, since the divergent terms of In^herm(/*,y4*) de-
pend only on h and A*. The renormalized effective action is thus

*; «; ε) + Λ/JΠM*; e)

Λ(A*;n) + lnKCf + O(K~l). (6.26)

From (6.24), the variation of I^m(h,A*;n) with respect to A at fixed ^4* and n is^qu

..herm

,
1Z7T

where
1 ) . (6.28)

It appears from here that, to order O(KQ), the renormalized effective action
^^(h.A^ n) is that of a conformal field theory of central charge K^^ given
by (6.28). This is in agreement with the exact result obtained by conformal field
theory techniques for the Wess-Zumino-Novikov-Witten model

herm K dim 9 (, ?Q,
conf = K + cv ' ^ '

where cv is the dual Coxeter number. It remains to be seen if the agreement contin-
ues to hold at higher orders in AT"1, though physical intuition would seem to suggest
so since the short distance structure of Drinfeld-Sokolov gravity is essentially the
same as that of the Wess-Zumino-Novikov-Witten model.
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From (6.2), (6.17) and (6.26), choosing

θ(h,A*) = exp J/^(M*)[1 + 0(K~1)] , (6.30)

where Δf^(h,A*) is given by (6.25) in the proper time regularization scheme,
one has

^*(0;^o,Po)—

^V

(6.31)
ΛΛ

This is the final form of the partition function. To order O(KQ), conformal invariance
is manifest.

Several issues remain to be investigated. The analysis expounded is to some
extent formal due to the lack of detailed geometric information about the Drinfeld-
Sokolov moduli space ^DS> the Drinfeld-Sokolov stability group ^Ds and the pa-
rameter space Λf. A thorough investigation of these spaces is desirable. Also, the
holomorphic structure on the Riemann surface Σ has been kept fixed throughout.
One may try to deform the complex structure and study the resulting effects in the
framework of deformation theory using the Beltrami parametrization. Such defor-
mations should be a special subset of more general deformations parametrized by
generalized Beltrami differentials [38, 39]. The study of this matter requires a bet-
ter understanding of W geometry, which at present is lacking. This issue is also
related to that of the analysis of the Gauos invariant content of the model. In fact,
the generalized Beltrami differentials should be the sources of a suitable basis of
Gauos invariant operators including the energy momentum tensor. At this level, W
symmetries are expected to emerge.

Acknowledgements. I wish to voice my gratitude to E. Aldrovandi, F. Bastianelli, M. Bauer,
G. Falqui, S. Lazzarini and R. Stora for helpful discussions.

Appendix A

In this appendix, I shall provide the basic details about the derivation of the measure
(4.20). The notation used here is the same as that defined in Sect. 4. I also set
q — dim ^DS and m = dim ̂ DS

Let us construct the basic Hubert manifolds. All such Hubert manifolds are real,
though as ordinary manifolds, they may be complex. Below, h G Met is a generic
surface metric on Σ, which will be kept fixed throughout.

Consider first Herm. For any H G Herm, the tangent space 7//Herm is the
subspace of ECF°'0r spanned by the elements δHH~l such that AdH(δHH~1^ =
OHH~l and equipped with the Hubert structure | (•>•)£#• The factor ^ is con-

ventional. Hence, one has \\δHH~l\\h\H

2 = \\δHH~l\\htH
2, where the norm in the

right-hand side is that of ECF0>1. In this way, Herm becomes a real Hubert
manifold.
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Next, consider SHolos For any A* G SHolos, the tangent space TA* SHolDs
is just ECFpg0'1 with the Hubert structure { , )DSA// depending on a fiber metric
H G Herm. This is actually independent from h. Denoting by δA* a generic element
of TA* SHolDs, one has ||ά4*||//μ*2 = 2\\δA*\\Όsh,H

2, the norm in the right-hand side

being that of ECF^0'1. In this way, SHolos becomes a real Hubert manifold.
Next, consider GauDs For any α G GauDs, the tangent space ΓαGauDs is

just ECFDS°'°
Γ with the Hubert structure { , )DSΛ// depending on a fiber met-

ric H G Herm. A generic element of ΓαGauDs is of the form oc~lδa. One thus
has \\a~l δall^H^2 = 2||α~1<5α||Ds/z,//2> the norm in the right-hand side being that of

ECFDS

0>1. In this way, Gauos too becomes a real Hubert manifold. Because of the
form of the tangent vectors, the Hubert manifold structure defined is left invariant.

Consider now ^DS For any t G ̂ DS? TtJ#v§ is just (<Cm)r with the standard
euclidean inner product ( , }r. So, | | < 5 f | | | f 2 = 2\δt\2 for δt G TtJίv$ -̂ DS becomes
thus a real Hubert manifold of dimension 2m.

Finally, consider ^DS. For any g G ̂ DS> 7^DS is just (<C^)r with the standard
euclidean inner product ( , )r. So, ||<5#|||02 — 2\δg\ 2 for δg G 7^DS. In this way,
^DS becomes a real 2q dimensional Hubert manifold.

The first problem to tackle is the definition of the Hubert manifold structures of
the two realizations Herm x SHolDS and ^DS x (Herm x GauDs)/^Ds(s ) of the
configuration space.

Herm x SHolDS can be given naturally the structure of real Hubert manifold
as follows. For (H,A*) G Herm x SHolDS, Γ(//^*)Herm x SHolDs = 7# Herm Θ
TA* SHolos with the Hubert norm

\\δHH~l 0 <5Λ*||A,tf|(/u.)
2 = \\δHH-l\\hlH

2 + \\δA*\\H\A*
2 . (A.I)

Providing ^DSx(Herm x GauDs)/^os(S ) with a Hubert manifold structure
is slightly trickier because of the quotient by the action of ^DS(S ) For any

x GauDS)/^Ds(s.)> one has T(t^ α)^Dsx(HermxGauDS)/

— > Herm x Gauos is the orbit map associated to the ^os(Sί) action
(4.6)-(4.7). Its tangent map Γbit^α^(l;ί) maps Lie^Ds(s/) into the subspace of

7^ Herm θ ΓαGauDs spanned by the vectors of the form (δη + AάHδη^) 0 (—δη)
with δη G Lie^Ds(Sί)- This follows from the linearization of (4.6)-(4.7). The
tangent space can be given a Hubert structure as follows. One equips TtJίΌs θ
Tβ Herm 0 ΓαGauos with the Hubert norm

(A.2)

Then, one has the identification T^β^Jίvs x (Herm x GauDs)/^Ds(s. ) —
T ^DS θ ((7^ Herm 0 ΓαGauDS) θ Γbit^ίl OLie^DsCSί))- Tne right-hand side
carries the Hubert structure induced by that of TtJtv§ 0 Tβ Herm 0 ΓαGauDs In

this way, ̂ Ds x (Herm x GauDs)/^Ds(s. ) becomes a real Hubert manifold. The
above construction is independent from the choice of the representative (H, α) of
the corresponding equivalence class modulo the ^os(Sf) action (4.6)-(4.7). Indeed,
different choices lead to unitarily equivalent realizations of the Hubert tangent space,
as is straightforward to check.
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One has to compute now the jacobian J(t,h,H) of the map (4.4)-(4.5) relating
the functional measures of Herm x SHolDs and ^Ds χ (Herm x Gauos)/^Ds(s. ):

(DδH(H, *yH(H9 a)'1 )A|/^β) ® (DδA*(t, «»H(H^A*M

= J(t,h,H)[(Dδt)\t ® (DδHH'\a

®(DvΓlδa)hAΔ\ . (A3)^,//|αj | ( r b i t ( 1 ; O L ι e^ s ( s / ) )_L

By explicit calculation, one finds

J(t,h,H) = 2qA(t,h,H)detP(t,H), (A.4)

where

Δ(t,h,H) = detj, ^((5- aάA*(t))*(d - ad^*(0)) (A.5)

is the functional determinant of the Laplacian associated to the operator (d —
adA*(t)) T^Gauos —> ^*(f)SHolDs with the given Hubert structures with the zero
eigenvalues removed and

P(t,H)ί,j = (deA*(t),p(t,H)dt,A*(t))hta, i,j=l,...,m, (A.6)

where p(t,H) is the orthogonal projector on coker(3— &άA*(t)) in J^^SHolos-
All determinants are taken on the complex field.

Proof. The calculation of the jacobian requires to begin with the computation of
the tangent map of the map (4.4)-(4.5). This is given by

δH(H,u)H(H,ayl = Adu(δHH~l +α~ 1<5α+ Ad/5 r(α~1<5α) t), (A.7)

δA*(t, α) = Adα((^ — adA*(t))(a~lδoί) + δtA*(t)), (A.8)

as follows from a simple variational calculation. The Hubert structure of the tangent
bundle of ^Ds x (Herm x GauDs)/^Ds(s ) may be disentangled by means of the
following orthogonal decomposition:

TtJtΌS Θ ((7^Herm Θ ΓαGauDS) θ Γbit(^α)(l;OLie^Ds(Sί))

= TtJ(Όs 0(7>Herm θ Γbit#(l;OLie^Ds(Sf))

0(ΓαGauDs θ Γbitα(l;OLΐe^Ds(Sί))θ^ί (A 9)

Here, bit^( ί) : ^os(sί) ~^ Herm is the orbit map associated to the ^DS(S/) action
(4.6) on Herm. Its tangent map Γbit^(l ί) maps Lie^Ds(s/) into the subspace of
Γ^Herm spanned by the vectors of the form δη + AάHδη^ with δη £ Lie^Ds(sί)
Similarly, bitα( ;ί) : ^os(sf) —* Gauos is the orbit map associated to the ^os(sί)
action (4.7) on Gauos Its tangent map Γbit α (l ; f) maps Lie^Ds(Sί) into the sub-
space of ΓαGauos spanned by the vectors δη £ Lie^os(s/). Et is the subspace
of 7^ Herm θ ΓαGauos spanned by the vectors of the form (δη + AάHδη^) 0 δη
with δη £ Lie^Ds(sί)> where a sign difference in the second component with
respect to the vectors spanning Γbit^α)(l;ί)Lie^Ds(Sί) is to be noticed. Hence, for
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any δHH £ 7^ Herm and α-1(5α £ ΓαGauDs, one has the decompositions

δHH~l = δHH~\ + δη + AάHδη^ , (A.10)

α~1<5α = α~^α_L + <fy , (A.ll)
~

where ̂  £ Lie^Ds(s/), δHH~\ £ 7^ Herm θ Γbit^(l;OLie^Ds(s/) and α"1^
G ΓαGauDs θΓbitα(l;OLie^Ds(Sf) By substituting (A.lO)-(A.ll) into (A.7)-
(A.8) and the result into (A.I), one finds

)-1 0 ^*(ί,α)||Λ

ω

2 + 2\\(δη

Here, a,~lδ(x,_\_(t,H) is some element of ΓαGauDs θ Γbitα(l;f)Lie^Ds(Sf) depend-
ing on t and H whose explicit expression will not matter. In deducing (A. 12),
one exploits the fact that the Cartan Killing form trad vanishes on y because of
the nilpotence of y. One also uses the fact that Lie ̂ 05(8,) C HECF^^ so that,

for δη £ Lie^Ds(Sί)? (d — adA*(t))δη = 0. Using the jacobian relation (A.3), the
normalization condition for the measures and (A. 12), it is straightforward to obtain

D

The jacobian J(t,h,H) is a positive (m,m) form on ^DS It does not depend
on α, a consequence of GauDs gauge invariance. It can be shown that, for any
η £ ^Ds(sO> J(t,h,ηH) = J(t9h,H), i.e. J(t,h,H) is invariant under the action (4.6)
of ^Ds(Sί) on Herm. This is expected on general grounds as a consequence of the
^DS symmetry of the parametrization (4.4)-(4.5).

Next, one has to define the Hubert manifold structure of the isomorphic spaces
Herm x GauDs and ((Herm x GauDS)/^Ds(s/)) x ^DS

Herm x Gauos has an obvious structure of real Hubert manifold. For (//, ω) £
Herm x Gauos, ^(//,ω)Herm x GauDs — Γ//Herm θΓωGauos equipped with the
Hubert norm

\\δHH~l 0 ω~lδω\\hMmω}

2 = \\δHH~l \\h{H

((Herm x GauDs)/^Ds(Sί))x^DS can also be given a structure of Hubert mani-
fold. For any (//, α, 0)G((Herm x GauDs)/^Ds(sί))x^DS? ^(//α^)((^erm χGauDs)/

^Ds(Sί))x^DS — ((7)/Herm07'αGauDs)/^bit^α)(l;OLie^Ds(Sί))Φ^<^DS One
equips 7^ Herm 0 ΓαGauDS 0 7^DS with the Hubert norm

\\δHH~l Θα-1c5α0^||^|(^^)

2 = \\δHH~l\\h\#2 + \\^lδQL\\ht^Λ

2 + ||̂ |||,2 .

(A. 14)

Then, one has the identification Γ(/^α^((Herm x GauDs)/^Ds(s/)) x ^DS —

((7^Herm 0 ΓαGauDs) θ Γbit(^α)(l; ί)Lie^Ds(Sί)) θ ^^DS This above construc-
tion is independent up to unitary equivalence from the choice of the represen-
tative (//, α) of the corresponding equivalence class modulo the ^os(Sί) action
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One has now to compute the jacobian K(t,g,h,H} of the map (4.8)-(4.9) relat-
ing the functional measures on Herm x Gauos and ((Herm x Gauos)/^Ds(sί)) x

S. One has

(l OLie%s(S,)μ ' (A'15)

The expression obtained is

K(t,g,h,H) = 2"detQ(t,g,h,H), (A.16)

where

),ζ(0;0 d g j ζ ( g ; t ) ) h ί f } 9 ij = !,...,#

and the determinant is taken on the complex field.

Proof. The tangent map of the parametrization (4.8)-(4.9) is given by

' = Aάζ(g;t)(δHH~l + ζ(g tΓlδgζ(g;t)

By substituting (A.18)-(A.19) into (A.13), one obtains

\\δH(H,g)H(H,gΓl θ

= \\δHH~l\\h\02 + l l

Using the jacobian relation (A. 15), the normalization condition of the measures and
(A.20), it is straightforward to obtain (A.16)-(A.17). D

The jacobian K(t,g,h,H) is a (q,q) form on ^DS. Its independence from α is
a consequence of the left invariance of the measure on ΓαGauos From (A. 17),
it is apparent that Lf*K(t,g,h,H) = K(t9g,h,H) for any / G ̂ Ds, i.e. K(t,g,h,H)

is left invariant. Under the right action of ^DS> one has instead R^K(t,g,h,H) =

K(t9g9h9ζ(fιtγH).
Now, all elements required for the implementation of the gauge fixing procedure

are available. Consider a Gauos-invariant functional Θ(h,H,A*). Hence, for any
α G Gauos5 ®(Λ,α*//,α*^4*) = Θ(h,H,A*). The functional integral

/Θ(A)= / φ^)»|ff®(Z)^*)1/μι.θ(A,fί,^*) (A.21)
Herm x SHol DS

is thus divergent because of the GauDs invariance of the integrand. The problem to
solve next is the factorization of the divergent gauge volume.

On account of the isomorphism (4.4)-(4.5) of Herm x SHolDs and ^DS><
(Herm x Gauϋs)/^Ds(s X the jacobian relation (A.3) and the Gauos invariance
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of Θ(h,H,A*), one has

/ (Dt)\t / (£#)A|7/®φα)A,rf|«
^DS ( Herm x Gau Ds )/^DS (S, )

xJ(t9h9H)Θ(h9H9A*(t)). (A.22)

Because of the quotient by ^Ds(Sί)> it is not possible to factor out the gauge volume
yet. This requires a few extra steps.

Define
v(t9h,H) = f (Dg)lgK(t9g9h9H) . (A.23)

v(t,h,H) is actually divergent since ^DS is a non-compact group. However, formally,
by the form of the right ^Ds action on K(t9g9h9H)9 v(t,h,ηH) = v(t9h9H) for any
n £ ^Ds(Sί), i.e. v(t,h,H) is ^Ds(Sί) invariant. The infinite volume of the gauge
group is

V(h,H) = j (Dω)hJI\ω. (A.24)

Now, from the isomorphism (4.8)-(4.9) of Herm x GauDs and ((Herm x GauDs)/
^Ds(sr)) x ^DS? using the jacobian relation (A. 15) and the ^os(sί) invariance
o f J ( t 9 h 9 H ) 9 the Gauos invariance of Θ(h9H9A*)9 (A.23) and the ^Ds(sr) invari-
ance of v(t,h,H), one has

Herm , ,

f (DH)h\H®(Dω\H\ω—±—J(t,h,H)Θ(h,H,A*(t))
Herm X Gau DS V(t,H,ti )

f (0#)/Hrf®(β«)*,rf|«
(HermxGauDS)/*Ds(S,) »DS

xK(t,g,h,H)—ϊ-s-J(t,h,H)θ(h,H,A*(t))
υ(t,h,H)

(A.25)
(Herm x GauDs)/#Ds(S,)

Combining (A.22) and (A.25), one has

/Θ(h)= / (Dt)v f (DH)h\H

 V(*;H^J(t,h,H)Θ(h,H,A*(t)) . (A.26)
^DS Herm V(t,n,U)

Gauge fixing is now easy. One simply deletes the infinite gauge volume V(h,H) in
the above expression. The gauge fixed functional integral is then

/Jf(/*)= / (Dt)\t ί (DH)h\H I J(t9h9H)θ(h9H9A*(t)). (A.27)
^DS JHerm V(t9n9H)

v(t,h,H) depends on H and this is inconvenient. One can separate the H depen-
dence from the group volume by the following method. Let v(g) be a left invariant
positive (q,q) form on ^Ds So L f v ( g ) = v(g), for any / 6 ^DS Using v(g), one
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can define the group volume vv = J^ (Dg}\gv(g) of ^DS From the left ^DS invari-

ance of K(t, 0, /?,//), (A.23) and the left ^DS invariance of v, it is easy to show the
formal relation

υ(t,h,H) = vvv(lΓlK(t, l,h,H) . (A.28)

Using (A.28), (A.27) can be cast

(A.29)
Herm A <Λ L > n-> M )

This is the final form of the expression of /|f(/z). Now, (4.20) follows from (A.29)
by a straightforward calculation.

Using the isomorphisms (LieGauDs)v = ECF^1'0 and LieGauDs = ECFDS°'°,
one can define real Hubert structures on (LieGauDs)v and LieGauϋs One simply
views (LieGauDs)v and LieGauos as the real Hubert manifolds ECFpS

1>0r and

ECFDS°'
0r with the Hubert structure ( , )i)SΛ,# and (*> ')DS/Z,//> respectively. This

yields the ghost functional measures appearing in (4.22).

Appendix B

In this appendix, I shall provide some detail about the derivation of (6.7)-(6.8). To
lighten the notation, I shall not indicate the s dependence of the various objects. I
also identify φ~l(n) and φ~l(n)Hc\(n)~l.

Let n G Jf . For any Φ G φ~l(n), the tangent space Tφφ~l(n) is the subspace
of ECF°'0r spanned by the #cι(w)-hermitian elements exp(-Φ/2)(5expΦexp(-Φ/2)
and is equipped with the Hubert structure ^{ , )τ

h Hcn Hence, one has

where in the right-hand side the norm is that of ECF°'° In this way, φ~λ(n) becomes
a real Hubert manifold.

Consider now Jf . For any n G Ji , TnΛf is just IR/ ', where r = dim Jf , with the
standard euclidean inner product ( , ). So, for δn G TnjV*, ^\δn\\\n

2 = \δn\2.

JV* x φ-1( ) can be given the structure of Hubert manifold as follows. For any
(«,Φ) G Jf x φ~l( ), T(ntφ)^V x <p~l( ) = TnΛf ^ Tφφ~λ(n). The tangent vectors
are of the form δn Θ exp(— Φ/2)^wexpΦexp(— Φ/2), where the notation δn means
variation at fixed n. The norm is given by

\\δn Θ exp(-Φ/2)<5Λ

^^2. (B.I)

The jacobian M(h n) of the map (6.6) relating the measures on Herm and
Jf x φ~l( ) is defined by

(DδH(Φ n)H(Φ n)-l)hW(Φ,n)

- M(h; n) (Dδn)ln ® (D exp(-Φ/2)^ exp Φ exp(-Φ/2)χffcl(n)|Φ . (B.2)
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By explicit calculations one finds

M(h\n) = [dety(A;w)]2 , (B.3)

where J(h n) is given by (6.9).

Proof. The tangent map of the parametrization (6.6) is given by

δH(Φ;n)H(Φ;nΓl = exp(adΦ/2)[exp(-Φ/2)^ exp Φexp(-Φ/2)

+δ'Hcl(n)Hcl(nr1]. (B.4)

The two terms in the right-hand side are the components of δH(Φ\n)H(Φ\n)~l

on TH(φ n)φ~l(n) and «#//(Φ;«)(«), respectively. The notation δf is used instead of
δ since the decomposition does not follow by a straightforward variation of the
relation (6.6). Then, by the orthogonality in Γ//(φ;w)Herm of the two terms in the
right-hand side of (B.4), one has

(B.5)

Using the jacobian relation (B.2), the normalization condition of the measures and
(B.5), it is straightforward to obtain (B.3). D

From (B.2)-(B.3), (6.7)-(6.8) follows readily.
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