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Abstract: Let pf , denote the grand canonical Gibbs measure of a lattice gas in
a cube of size L with the chemical potential 4 and a fixed boundary condition.
Let ug , be the corresponding canonical measure defined by conditioning “%, a
on Y .7 =n. Consider the lattice gas dynamics for which each particle per-
forms random walk with rates depending on near-by particles. The rates are chosen
such that, for every n and L fixed, uf , is a reversible measure. Suppose that the
Dobrushin—Shlosman mixing conditions holds for ,ul“f’cl for all chemical potentials
4 € R. We prove that [ flog fd Ky, < const. L2D( \/? ) for any probability den-
sity f with respect to ug ,; here the constant is independent of n or L and D
denotes the Dirichlet form of the dynamics. The dependence on L is optimal.

1. Introduction

Suppose that £ is the generator of a dynamics and that p is an invariant measure.
The Dirichlet form of a function g is defined by

D(g)=—[g%gdu.

As only the symmetric part of the generator enters in this definition, we may as
well assume that the dynamics is reversible, i.e., £ is symmetric with respect to
1. A logarithmic Sobolev inequality for this system states that the entropy of a
probability density f with respect to x4 can be bounded by a constant multiple of
the Dirichlet form, namely,

[ flog fdu < kD(/f).

It is well-known that the logarithmic Sobolev inequality is equivalent to the
hypercontractivity of the semigroup and thus it provides certain information on the
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relaxation to equilibrium for the dynamics [G, DGS, DS, D] In particular, it implies
that the spectral gap of the generator, and hence the relaxation rate in the L? norm,
is bounded by a constant multiple of k! See [DS, DGS] for references and histori-
cal remarks Indeed, from the logarithmic Sobolev inequality one can obtain that the
relaxation rate in a certain semi-norm much stronger than the L? norm is bounded
by a constant multiple of k! provided some mild conditions on the systems are
given [HS, S,SZ]. See [S] for a recent review.

In this article, we will estimate the constant x for lattice gases. The lattice gases
can be described as follows Let 4 be a cube of width L in Z¢. At each lattice site
of A, we associate an occupation number of particle #, € {0,1}. The equilibrium
states of lattice gases are described by the Gibbs measures on A, characterized by
a Hamiltonian and a boundary condition. There are two “ensembles” of interest the
grand canonical ensemble with the chemical potential specified and the canonical
ensemble with the total number of particles specified The first measure is denoted by
/JZ(/, where / is the chemical potential; the second measure is denoted by i ,, where
n is the total number of particles The Hamiltonian and the boundary conditions are
fixed and will not be specified in the notations

The dynamics of lattice gases is determined as follows. Each particle performs a
random walk with jump rates determined by nearby particles according to some fixed
local rules such that the Gibbs measures are reversible measures. To maintain the
requirement of at most one particle per site, jumps to occupied sites are suppressed.
Because no creation or annihilation of particles is allowed, the total number of
particles is conserved by the dynamics. Therefore, the natural ensemble for this
dynamics is the canonical ensemble The models we have just described are often
referred to as symmetric simple exclusion processes with speed change, Kawasaki
dynamics or simply lattice gas dynamics They are systems of interacting random
walks, and have a natural interpretation as discretizations of interacting Brownian
motions The simplest example of lattice gases is the well known symmetric simple
exclusion process. The dynamics is given by the usual symmetric random walk
and the invariant measures are simply a product of Bernoulli measures. Except for
this special case, the jump rates of particles depend on the environments of the

particles.
The main result of this paper states that
J flog fdui, < kD). Dg)=—[gLgdu;, (LD
with
ki, < const. L%, (1.2)

for some constant independent of n or L It is easy to check that x; , = CL? by
using test functions Hence (1.2) identifies the dependence of x;, on L. We do not
know as yet the dependence of x; , on the number of particles .

It is well-known [DGS, G] that the LSl implies a bound on the spectral gap.
Hence the result of [LY] on the spectral gap of lattice gases is a direct consequence
of this paper. In the special case when there is only one particle, the dynamics is
just the usual random walk on A, the spectral gap and the LSI can be computed
explicitly. They become the familiar spectral gap and logarithmic Sobolev inequality
of the discrete Laplacian The other special case is the symmetric simple exclusion
process This model is no longer exactly computable, but can be solved almost ex-
actly using duality. It is proved that the gap behaves like const L—2 by, among
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others, [Q]. The LSI is harder and is proved in [Y] with the correct order x; ,
< CI. 1t is previously proved that k7, < L?logL in [DSh]. The result in [Y] is
valid provided the number of particles per site is finite.

Recently, large numbers of articles on the logarithmic Sobolev inequality have
appeared. Apart from those mentioned above, systematic studies of Glauber dynam-
ics of lattice gases were done by, e.g., [HS,Z,SZ,MO,LY]. The Glauber dynamics
is a dynamics without conservation law. It prescribes local rules to create or an-
nihilate particles and thus the total number of particles is not conserved. For this
dynamics it was proved that there is a uniform LSI independent of the volume of
the cube [HS,Z, SZ, MO, LY]; this implies [HS, SZ] the exponential convergence to
equilibrium in a certain semi-norm for the infinite volume dynamics. For this dy-
namics, a local disturbance is expected to stay local and relaxes to equilibrium ex-
ponentially fast. For the lattice gases, because i , ~ L?, no uniform exponential re-
laxation is allowed. Indeed, one expects a power law decay in infinite volume. Even
the equilibrium (truncated) correlation function, (rx;7,) = (na11y) — (1x) (1), X+,
displays different properties. Restricted to the high temperature reglon, we have,
(Mx3My) 0~ exp[—const. |x — y|]. For the canonical ensemble, even in the infinite
temperanfre case (i.e., product of Bernoulli measures with total number of particles
ﬁxed), we have (nx,ny) ~ —L~% The last estimate on the correlation function
is due in part to the conservation of the total number of particles. If the number of
particles at a site x, say, increases by one, a particle needs to be removed some-
where on the lattice A; because of the conservation law. Assuming the probability
to remove such a particle is uniform on A;, we obtain the order of magnitude L~—¢
This negative correlation, albeit small, is in a sense the underlying reason that (1.2)
holds.

In field theory terminology, the conservative dynamics is the massless case and
the nonconservative case is the massive case. To deal with massless dynamics, cer-
tain multiscale analysis or the so called renormalization group approach is usually
needed. Our approach is based on a combination of the martingale method and some
ideas from the renormalization group method and the multiscale analysis. Related
ideas were used in [LY, Y] but in a more primitive form. The multiscale analysis
will be carried out in a manner very different from [LY] or [Y]. The present ap-
proach provides a much stronger result. Though our proof is not as simple as we
wish due to the use of the multiscale analysis, we believe it is still much simpler
than setting up the full renormalization group, should such an approach be mathe-
matically feasible.

Though our approach is quite general, strong mixing conditions on the underlying
measures are needed. In [LY], the mixing conditions are summarized as assump-
tions A.1-A.3. We emphasize that these mixing conditions are w.r.t. canonical Gibbs
states rather than w.r.t. grand canonical Gibbs states. One expects that the mixing
conditions w.r.t. canonical Gibbs states should follow from certain mixing properties
of the corresponding grand canonical Gibbs states. However, no results have been
proved. In this paper, we simplify these assumptions to a single assumption w.r.t.
grand canonical Gibbs states, namely, Assumption A.1 in Sect. 2. Assumption A.1
holds in particular for ferromagnetic Ising models up to the critical point [MOS, N]
in dimension d = 2. Certainly, because the total number of particles is conserved by
the lattice gases dynamics, some mixing properties w.r.t. canonical Gibbs states are
needed. These properties will be proved as consequences of Assumption (A.1). Our
methods can be used to give a rigorous derivation of the mixing conditions in [LY]
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from the Assumption A.1. We shall not carry this out here because the result of
[LY] is a direct corollary of the present paper.

The organization of this paper is as follows. In Sect. 2 we state the main results.
Section 3 contains an outline of the martingale approach. Sections 4—8 contain
proofs of results assumed in Sect. 3. The large deviation estimates needed in this
paper will be presented in Sect 5; the multiscale analysis will be presented in Sect. 6.
Finally, we prove a version of the local limit theorem for the Gibbs states with
mixing conditions in Sect. 9.

I1. Statement of Main Results

Let A be a domain in Z? and let 64 denote its boundary
oA ={yeZ\ A|dist(y,4) =1}, (2.1)
where the distance function is defined by

dist(y,4) = inf |x — y|,
x€eA
|x —y| = max |x* — y*|. (2.2)
o=1, .d

Let w be a configuration on 04 with w, belonging to some state space X for all
x € 0. For simplicity, we shall restrict the state space to be Z; = {0, 1}. All results
in this paper hold if one replaces Z, by

Z,={0,1,2,....p—1}, 2<peN. 23)

The Hamiltonians are finite ranged and translationally invariant. For simplicity
of notation, we restrict ourselves to nearest neighbor interactions. All our results
hold for the Hamiltonian with finite range interactions. Thus the Hamiltonian is
characterized by an interaction J(#y,#,) such that

H/l,w(”l) = Z J(”Ix>”/y)+ Z J("Imwy) . (24)
x, yEA, |x—y|=1 yEAAxEA, |x—y|=1

The grand canonical Gibbs state with the chemical potential A and the boundary
condition w is characterized by the density

xcA

Here the partition function Zf ; is the normalization factor to make uf  ; into

a probability density. We shall denote by E¥ios or () s the expectation with
respect to du’’ .. When 4 = 0, we shall drop the subscript .

A,w, 4"
We need the concept of canonical Gibbs states. Let # be a fixed positive integer.
A canonical Gibbs state with total number of particles n and boundary condition @

is characterized by the density

AW o0 = AW o, | 470 - (2.6)
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Here 7j=|A|"'Y 7% is the density. Note that the right side of (2.6) is
independent of 1. Define also the canonical partition function

Gom = 2 eXp[—H ()] . 2.7)

fi=n

We shall drop the subscript @ if the boundary condition plays no active role.
Also, in this section A denotes a cube of width L, i.e., 4 = A;. We also denote

Aps, wn OY AU o n-
For any function g on the configuration space, define two operators g,g(1) =
g(oxn) and Ty,g(n) = g(Txyn). Here o,n = n* and Ty,n = n*’(x + y) are defined by

(O'x"l)y = ("Ix)y = xy(l - ’1y) +(1 - 5xy)’7y . (2.8)

0, ifz=xn=1andn,=0
(T ym)z = (™), = 1, ifz=ymn=1andn,=0. 2.9)
1,  otherwise

From the definition, Ty, denotes the configuration obtained by moving a particle
from x to y. Define also the symmetrization of T, by

Ty = Ty + Ty - (2.10)

Then the Dirichlet form of the bond b = (x, y) is defined by

~ 2
Dyy(h) = [ (Txyh—h) dps o, - (2.11)

To state our main result, we need the following assumptions. Define, for two
boundary conditions w; and w,, the set

Aww, = {x €04 | 01(x)Fwr(x)} .

Though our goal is to prove a LSI for standard cubes, in the proof we shall en-
counter, for example, in the case of dimension d = 2, rectangles of sizes L; X L,
with L; < 2L and 1 < Li/L, < 2. Similarly for dimension d = 3. We shall not
distinguish such rectangles from standard cubes and we will refer them as “cubes.”
Furthermore, all proofs will be carried out only for standard cubes but will be used
freely for rectangles as well. It should be noted that in some cases our results can
fail if the rectangles degenerate, for example, if they become very “thin,” i.e., the
length of one side becomes very small [MO].

Assumption Al. Let g be a function depending only on the configuration of a
subset U in a cube A of size L. Then

ge gc
|E 4eri[g] — E*teri[g]] £ C(g)|Awy,0,| expl—const. dist(de,,w,, U] . (2.12)

Here the constant C(g) is independent of A and w;, i = 1,2.
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Theorem 2.1. Suppose that the Gibbs measures satisfy the mixing condition (A1)
for all 2 Let A be a cube of width L Then there is a constant C independent of
L,n such that for any probability density function [ (ie, [ fduS,,=1)

Efvon] f log f1 < CLDA(V/ 1), (2.13)

where

Da(g) =Y. Dy(g) = 3 [[(Terg — 91K 0 b=(xp), [x—y|=1.
beA beA

From the Dirichlet form, we can recover the generator of the dynamics. The
generator plays no role in this paper and we shall concentrate on the Dirichlet form
D, The mixing assumption (A1) can be weakened somehow. Furthermore, (A1) is a
consequence of the Dobrushin—Shlosman mixing conditions. It should be emphasized
that the mixing condition (A.1) is with respect to grand canonical Gibbs states for
all 7 rather than with respect to the canonical Gibbs state u , ,, which is the
underlying measure in (2.13). Assumption (A1) can also be checked, in general, by
the high temperature expansion. If lattice gases are described by the ferromagnetic
Ising model, the mixing condition holds up to the critical temperature in dimension
d =2 [MS,N].

Since we need mixing conditions for all chemical potentials 4, our result is also
uniform w.rt the particle numbers. Hence it excludes an interesting case when the
pair (p,T) for the density and temperature is in the one phase region but (p’,T)
is in the phase transition region for some choice of p’. We do not know whether
the L.S1 has a very different prefactor in this case. Unlike the case of the grand
canonical ensemble, it is relatively easy for the canonical ensemble to have some
region with density very different from the global density p and this may change
the prefactor for the L.S 1. Unfortunately, we do not have a rigorous result along
this direction

Because Theorem 21 concerns canonical ensembles, some mixing properties
with respect to canonical Gibbs states will be needed in order to prove Theorem 2.1
For the convenience of later references we list them as (A2-A4). We shall prove
Theorem 2.1 assuming (A1—A4) This will be done in Sects. [II-VII. A derivation
of (A2—-A4) from (A1), stated as Theorem 2 2, will be proved in Sect. VIII and IX

In the following (A2-A4), A is a cube of size L:

(A2) For any local function g let

gr(y) = E*res[g],

where 2 is chosen so that the density is y Then 0g,/0y < const. and ¢*§,/0y* <
const with a constant independent of 2, w or L
(A3) Suppose x and z are two nearest neighbor points in A with |x — 04| = oL
for some small constant ¢ Then for some small constant e,
|E¥von e = n]floo < const. L~ @271
uniformly with respect to the boundary condition and n
(A4) Suppose that uj’fw/ and 1 , , are grand canonical and canonical Gibbs

states with the same boundary conditions on A and E”fw[ﬁ] =n/|A| Then there
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is an ¢ > 0 such that for any local function g,

| E#‘f,w,z[g] — E#ﬁ‘m,n[g” < const. L™

uniformly with respect to the boundary condition, A and n. Here the constant may
depend on g.

Theorem 2.2. Suppose the Gibbs measures satisfy the mixing condition (Al) for
all 2. Then (A2-A4) hold.

Finally we remark on a convention of notations. We shall drop all superscripts
gc and c. To distinguish them, for grand canonical ensembles we have a chemical
potential subscript 4; for canonical ensembles we have a total number of particles
subscript 7.

III. Outline of Martingale Approach

In this section we outline the martingale approach of [LY]. This section is almost
identical to the same section in [Y], where the LSI for the independent random
variables (with the total number of particles fixed) is proved. All difficulties related
to interactions will appear in the proof of Theorem 3.1. For simplicity of notation,
we shall assume d = 2 unless otherwise noted. Assume that Theorem 2.1 holds for
A of size L x L. Our goal is to prove that Theorem 2.1 holds for A of size L x 2L
and then for A of size 2L x 2L. As the proofs from L x L to L X 2L and from
L x 2L to 2L x 2L are identical, we will only prove Theorem 2.1 for A of size
L x 2L assuming it holds for A of size L x L. Let us order the sites in the lower
half of Ay x2r lexicographically by i = 1,2,...,L x 2L and denote the upper half of
A by Ay. Define u(2L) to be the smallest constant such that for any cube A of size
Ly x L with L; £ 2L and 1 < Ly/L, < 2 and any probability density f,

E*4n[ flog f1 £ uLY2LYDA(\/ ) - 3.1

Proof of Theorem 2.1. Step 1. Denote by %, the o-algebra generated by 7;,741,....
Define the marginal density f; by

Jippnper ) = B[ f1F7), j 2 1 fo=f.

Here E#:x2Lr is the expectation with respect to the Gibbs state on Ay xzz. Then one
has the identity

L*—1
E.ULXZL,n[flogf] e > E#LXZL'”EHLXZL’”[L:10g(ﬁ/ﬁ+1)|%+1] A (32)

J

Note that the summation terminates at j = L? — 1. By the inductive hypothesis,

Erocnn{Elxaie] flog(f/ )| F11} < u(L)L? bzi Dy(\/f)
cAo
= u(L)L*D 4, (\/f) (3.3)

where b denotes a typical bond in Ay.

Step 2. We now bound the right side of (3.2) for j > 0. Our main result can be
stated as the following Theorem 3.1 which will be proved in Sects. IV-VIL
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Theorem 3.1. Let A be a cube of size Ly x Ly with 1 < LJL <2 for i =1,2.
Assume the mixing condition (A1-A4) hold For any probability density f with
respect to i, let f(n.) denote the marginal density of v, for some z € A For
any path y,, from z to y, label the path by y,,i =0,...,|y| and define

17l -
D‘f'z*(ﬁ):;D,,»_l,,,w?), Dyi(9)= [Ty 10— 9P dpan. (34)

Define also the function
p2d ifd =3,
P)={ {logiL/ly  if d=2, (35)
L{log[L/v]}? if d=1.
Here d is the dimension of the lattice A (d =2 in our setting). The path 7.,
will be chosen in a canonical way, e ¢., from z = (z1,z2) to (z1,y,) and then to

(¥1,y2) =y Then there is a constant Cy such that for any 6 > 0 and integer /
fixed there is a constant Cy such that

Efar[ flogf] < CILY™ S D (V) 4+ CLLP DA f) + uRL)L> D 4(\/ 1)

vea

+Cu(L) Y W(z = bDDu(V/ 1), (3.6)

[z—bl=L/t
where u(2L) is defined in (3.1)

The form of the last term in (3.6) will be explained in Sects. 4 and 5. Applying
Theorem 3.1 to bound (3.2) for j > 0, we have

L*—1

E!thZL.,nENLxZL,n[th log(ﬁ/ﬁﬂ )|%+1]
=1

J

éClLlﬁd Z Z DT“(\/?)-’_CILzDALXZL(\/_f—)

XEALx2L VEALX2L

+0uRL)L* D g, (V) + Cru(L) S Pz — bDy(\/f) -

z€ALxaL |b—z|SLJ/

One can check that by choosing / large (independent of L),
Cau(l) > X Wz = bDDN ) = uLPD o (V) -

z€ALx |b—z|SL//

Hence

12

—1
Zl Ereann ploctel flog(fi/ f11)|Fin] £ 212D, 0 (V)
=

F20u2LYL*D g, o (V) - (BT)
Step 3 Combining (3 2), (3.3) and (3.7), one has

Eroa flog fISCLPDya, o, (V) + 20uL)L* D g, (V)
+u(L)L*D Ay (VT) - (38)
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Switching the role of Ay and Ay 2.\ Ay, and taking the average, we have

Efoe] flog f1 £ [Co +u(L)/8 + 6uRL)(2LY' Da(\/f) - (3.9)

We can repeat Steps 1-3 once more and obtain for A of size 2L x 2L,

E*axar[ flog ] < [2C; + w(L)/2 4 40uL)2LY D py 0, (V/F) - (3.10)

Since d can be chosen as small as we wish, we have proved, from the definition
of u(2L),
u(2L) < const. +2u(L)/3 .

From Gronwall’s inequality or induction we have proved Theorem 2.1 assuming
Theorem 3.1

1V. Proof of Theorem 3.1

We now prove Theorem 3.1 Throughout this section, A denotes a cube specified in
Theorem 3.1 We divide the proofs into 4 steps.

Step 1. Let p = n/|A| be the total density and p, = E#4[5,] be the density at z.

By definition _
fn: =1) = E*[fln. = 1] = B[ fn:]p™" (4.1)

where the expectation is taken with respect to u,,,. Note that f;(nz) is just a function
on a single site. One can check easily that the LSI holds trivially for Bernoulli
measures on one site. Thus one has

SUEIED,) = p:£(D)og £(1) + (1 — p2)£(0) log £(0)
< const. min[p;|log p.[,(1 — p)|log(1 — p.)]

« it [(\/E_ M) 2} , (42)

Here /Z(j,)n is the marginal of u,, at z. We remark that there is a logarithmic
correction appearing in (4.2). This should not be dismissed as merely a technical
factor appearing in the very low or very high density region. In many applications
the LSI is used precisely to control the probability in this region. Because of the
particle-hole duality, we can assume the density p, is bounded by 1/2. We shall
assume p, < 1/2 for the rest of this paper. Note that if p, < 1/2 and

£ 10, £(0) £ 10, (4.3)

then the logarithmic factor can be dropped in (4.2). This can be easily checked or
see [Y] for a proof.

Step 2. The starting point to bound the right side of (4.2) is the following,
Lemma 4.1 originated from Lemma 3.4 in [LY]. Roughly speaking, it states that the
commutator of the conditional expectation and differentiation (spin flip at one site)
can be bounded by a variance term and an exchange term involving long jumps.
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The exchange term will be bounded using Lemma 3.1 from [SY], while the variance
term will be bounded using a multiscale analysis Let us first fix some notation.

Recall that u, , is a canonical Gibbs state on A with some fixed boundary condi-
tion and total number of particles n. Let z be a point in A and denote configurations
in A by n=(#,,¢) Define

H (&) = H(n. = 0,6) .
Denote by v(/f,)” the canonical Gibbs state with Hamiltonian Hy and number of par-

ticles n. Let H @ be the difference

A90.,8) = H(n., &) — HO(&) .

Here H is the Hamiltonian defined in (2.4). For each x € A define

Fo= (1 —ny)yexp{—A" (@) + A ()} .

Also define
F=AvenpFe=(4 -1 ¥ F,. (4.4)
x€A\{z}

Let g, be defined by

()
o

9. = expl—H (0, EVE [expl—H " (0., 1 | 0.1 = ditg /S,

- (45)
We shall use the symbol E"(sz)"[ f;g|n: = 0] to denote the covariance

N ) NG NGO
En fig|n. =0]=E"[fg|n.=0]—E"[f|n,=0]E"[g]|n.=0].

This convention will be used for the rest of this paper. The following Lemma 4.1
extends Lemma 4.2 of [Y] to the interacting case.

Lemma 4.1. Recall the definitions of T, (2.9) Then with the above notations,

< const. (1 — p)p~ AvE"n[{Tour/ S} | 1. = 0] + const. @, (46)
where
o = [f(1)+/0]"

W) _ el @
x {2E [ foF | = 1P +4E" [ fi9. | n. = 0P +4E [ fig. | n. = 1]2} :
(4.7)

Note that the left side of (4.6) is independent of 1,



Logarithmic Sobolev Inequality for Lattice Gases with Mixing Conditions 377

Lemma 4.1 will be proved later on. We now continue the proof of Theorem 3.1.
By definition

B [{Ton/FY2 | 1 = 0] £ E"n[{ T/ FYA(1 = m)JE" 20 [1 — 1] 7" .

Since dv(Az’)n/duA,,, is uniformly bounded,

P T /T | 12 = 0] S EPt{ T /T = n)JE*[1 — ]

We need the following elementary fact.
For any canonical Gibbs measure (with finite range Hamiltonian) u, , and any
z € A we have
const. < p,/p+ (1 —p.)/(1 —p) < const. (4.8)

with the constant independent of p. To prove this, it suffices to prove that for any
two sites z, y € A,

EF4n[n,] < const. EF4n[p,], E#4"[1 —n,] < const. E*+"[1 —n,] .

Assuming these bounds, we obtain the upper bound of E#1.[n,]/p by averaging over
vy € A. Exchanging the role of z and y and repeating the same procedure, we obtain
the lower bound. We now prove the last bounds. Note that they holds if the parts of
the Hamiltonian involving 7, or #, are removed. On the other hand, these parts are
bounded by a constant. This concludes the last bounds and thus establishes (4.8).

Recall the assumption p < 1/2. Hence E*4"[1 —5,]~! < const. Combining (4.3)
and (4.6) we have

S(F/ES,) < const. {|log plAviE " [{Tor/f 1?1+ pllog p|®} . (4.9)
The rest of this step is devoted to a proof of Lemma 4.1.

Proof of Lemma 4.1. By definition of g,, v¢ A , and covariance,

Filnz) = E*o [ f | 0] = EYnl fy, | n.] = B[ £z | ]+ EXn f | ma]

where we have used E i [g: | ] = 1. From the elementary inequality

[\/f% - mr < () — A OP/AD +£0],
and the Schwarz inequality one has
-]
< 2{E L f30: | n = 1P + B L f0. | ne = OF LD + /001!
2 {ERLf [ n =17 = B5Lf [ n = OP L) + 001"

To conclude Lemma 4.1, it suffices to bound the last term. We need the following
lemma.
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Lemma 4.2. Suppose f is a function on UU{0} and 0 &U. Define f(m)=
E®un[ f1, where oy is a canonical Gibbs measure with boundary condition in-
dependent of 1o Suppose the density m/|U| is bounded away from 1 Denote the
configuration on U U {0} by n and set ng =0 Then

{fm+1)—fm)P/[f(1)+f(2)] £ 41 + 45,

Ay = const. (1 —m/|U|) " 'G(m + 1) Av E?“[{\/ f(Teon) — /f£()}],

Ay = const. (1 —m/|U)) 2E [ f,FP{f(m+ 1) +f(m)}~",
where G(m) = |U|/m, F is defined in (4.4) with A\ {z} replaced by U and Ten
is defined in (29) Here the constant is independent of m/|U|
Applying Lemma 4.2 with U — A\ {z}, 0y, = v(j’),1|nzz,,,,,,+1 and f(m) =

E"(i)"[f|172 =n—m+1]=f,(n. =n—m+ 1), we have proved Lemma 4.1. Finally,
we prove Lemma 4.2.

Proof of Lemma 42 Step 1. Recall F(n,) is defined in (4.4). From the definition
of covariance,

f(m) = E”n[ f1=E®r[F] " {—E""[ f,F]+E*[ fF]}.

For each x € A fixed, change the variable to y = Ty&, where Ty is defined in (2.9)
Hence

E ] f(OF(O] = GmAvee aE” [ [ (T &)Er]

where G is some function of m independent of /. Combining these two identities
one has

Fm) = —E0[F) B[ F) 4 Gl DAveaB [ f (T )]

for some constant G(m + 1). The constant G(m + 1) can be determined by putting
f =1, namely G(m+1)=L¢/m + 1. Define E/»+[¢] for a family of functions
t = (t;)res depending on x by

B0 = Glm -+ DAvee B2 [1,07)ns]

In particular, if ¢ is independent of x, then EZ»+'[f]=E“v»1[t]. Hence EZ"'[ f(n)]
= f(m+ 1) Using these identities,

Jlm ot 1) = fm) = —Eue[F)EVR £ )~ B ((Ton) = )] (4.10)

Step 2 Let f(Twon) — f(n) denote the family of functions (f(Twn) — f(1))iecn
From the elementary inequality

2
Nﬂm +1)- %f(m)] < [Fm+ 1) = F P/ n+ D)+ ()],

one has from (4.10),

[\/f(m +1)- \/f_(m)r < Ayt Ai)
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where

A3 =2{E" [ fGon) = SIY /L (m+ 1) +f(m)],

Aq = 2B £ FPE~[F) [ f(m + 1) + 7 (m)) ™" .
From the Schwarz inequality

{E™ [ f(Tuon) — (]}
2
{\/f(T*oﬂ) - \/f(m)} } o [{\/ﬁnen) + \/f(n)}z]

{\/f_(T*on) - \/ﬂm)}2

By definition, EX=+[ f(n)] =f(m + 1). Also, from (4.10), one has
EX [ f(Tuon)] = EUn[F)'E®n[ f3F] +f(m) .
By definition, F is bounded above and E““~[F]~! is bounded above by
E®n[F17! < const. E“Um[Avy(1 —n,)]”" < const. (1 —m/LY)~".

< EXm+I

I\

2Em Ef [ f(Twon) + f(m)] .

Together with the assumption that m/|U]| is bounded away from 1,
E*"[ f(Tuom)] £ const. f(m)(1 —m/|U]).
Hence
EX [ f(Tuo) + SIS (m + 1) +7(m)] ™" < const. (1 —m/|U[)™" .

Hence we have proved 43 < 4; with 4; defined in Lemma 4.2. Using again the
bound on E“vn[F]~!, we have 44 < 4,. This proves Lemma 4.2.

We now return to the proof of Theorem 3.1.

Step 3. The exchange term in (4.6) can be bounded by the Dirichlet form using the
following lemma from [SY]. We shall reproduce its proof in the Appendix.

Lemma 4.3. For every function u on {0,1}1 we have
E#A‘"[(szu)z] = CO|Z - y|szy(u) 5
where cq is a constant depending on the Hamiltonian and D, is defined in (3.4).

Using Lemma 4.3, we can bound the exchange term in (4.6). Hence from (4.9)
the entropy is bounded by

s(f—z/ﬁsf’)n) < const. {Cll logp|L'™ 3 D"’y(\/j_‘) + p(logpI(D} . (4.11)
yea

The first term on the right of (4.11) up to a factor |log p|, is of the form we need.
Let us focus on the case where p is bounded away from zero first.

Our next task is to bound the variance term @. The following result, to be
proved in the next section, is the key estimate of this paper.
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Theorem 4.4. Suppose there is an u(L) such that for any probability density f

E*r] flog £ < u(L)L*Avpe 1, Do(/ ) (4.12)

forall K < L Then for any local function h at z € A (with A a cube of size L x 2L
described before (3 1)), 6 > 0 and a large integer £ < L, there is a constant C,
such that

(fih):, < comst. u(L) 3 ¥Y(|z — BDDy(\/f)

|z—b| =L/
+0uRL)L* ™ Dy(\/[) + CLL*Dy(\/]) . (4.13)
Here V¥ is defined in (3.5)

We now apply Theorem 4.4 to the measure v(j)nl,, —o The Dirichlet form on the

right side of (4.13) are w.r.t this measure W A ”},, —o0. Repeating the argument before
(49), we have from the assumption p < 1 /2

@ - A n _
E" o [(Tyh/f) | . = o] < const. p™ X [(Ty/ /)], 2=0,1.
We can now bound the middle term of @ in (4.7) by

&) 2
E [ f,g. | n. = 0]

=01 |p7'u2L) Y ¥(z - b)Du(\/f)

|z—b| =L/

< const. E e

+0p " uL)L> I DA(\/ ) + Crp LDy )

The factor E"lj)n [f|n.=0] j_‘ (0) appears because f is not necessarily a proba-

bility density with respect to v/1 n],, —0. Clearly,f 0)/[ f(l) +f (0)] = 1. This gives
a bound on the middle term of @, namely

A1)+ FAO E L fige | 5 = O

< const [p~'u(2L) 3> W(]z — b)Dy(\/ 1)

lz—b| <L/t
+0p uL)L*“Dy(/ 1) + Crp 'L D/ f)

The last term in @ can be bounded in the same way. For the first term in @,
from the Schwarz inequality, E'“ [f3F [ n: =11 £ Avee\ (1 E A"[f Fyoln =17
We can now apply (4 13) to bound each term E‘ij[f, F, | n, = 11> Repeating the
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previous argument and averaging over x € A\ {z}, we have

[F(D) +F O B[ 1 F |, = 1P

< const. p~'u@@L)vies Y. P(|z— b))Du(v/F)
[x—b|ZL/

+3p~ " wRL)L* ™ Ds(\/f) + Cip~ L Da(/ ) -
The summation over x and b can be estimated as in Step 2 of the proof of Theo-
rem 2.1 in Sect 3. By choosing 7 large enough, the first term on the right side is
bounded by dp~'u(2L)L?>~?Dy(/f). Summarizing, we have proved
@ < const. p_lQL,

where

01 = CiLAvye sD™ (\/f) + 8u(L)L*~Ds(\/ ) + CLL*~“Da(\/f)
+const. w(2L) Y. ¥(|]z — b)Ds(\/T) . (4.15)
lz—b| <L)t

Together with (4.11) we have thus proved Theorem 3.1 unless p — 0. More pre-
cisely, we have

2
s(f/iS),) = E*n[ £, log f,] < p:|log p| {\/fzw) - \/f;a)}
< |logp.|0r . (4.16)

Step 4. Finally, we have to consider the low density region. For any integer K < L,
let #x be the o-algebra generated by {n, : y ¢ Ux} where Uk is the cube in A,
containing z as a boundary point such that dist(z, A, \ Ux) = K + 1 and z is a site
in A as defined in Theorem 3.1. Define the marginal density

Foxzny iy §Ag) = EF4 [ f | 0y, Fi] .

Let Qx(Zx ) be the corresponding Q in a cube of size K with the boundary condition
on A\Ug given by Fk.

From (4.16) (with L replaced by K) and the elementary bound @? < 2b% +
2(a - by,

[k (1) = E* [ fn. | Fx)/E*[n. | K]
S 2E* (1 = m) f | FxI/E* (1 —n2) | Fx]
+20k(Fx )/E*" ;| Fk] . (4.17)
Let px be the density in the cube Uy and denote K¢px = ng. By definition,
Eft Iy, | Fx] = E¥en ;).
Applying (4.8) to our setting, we have

const. < E*4n[n, | Fxl/px < const. .
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Hence
Eftr fn, | Fx] £ const.[px /(1 — p)IE* " [(1 = n) f | Fk]+20xk(Fx) . (4.20)

Suppose
LYK < pr')2. (4.21)

Since px < p.LY/K9, we have (1 — px)~! < 2. By definition, EFt"[Qx(Fy)] <
const.(K/L)Q,. Hence by taking the expectation of (4.20),

E*o] f.] < const. p,(LY/K)EF [ £(1 — )] + 2(K/L)Oy -
In other words, from the definition of f_z(l),
f:(1) £ 2LYKD0) + pr (K/L)OL

7 O
=2/.(0) [(L/K)d + (K/L) ( = , (422)
/2(0)p:
provided (4.21) holds. Optimizing over K, we obtain that the optimizer is deter-
mined by
o 1/(d+1)
LIK = (__> .
/2(0)p:
Therefore,
) ) oL d/(d+1) e (O d/(d+1)
1) < const 0 = = const. 0 = , (423
7ty = comst 00 (2 ) oy ()T @)
provided one chooses
0 1/(d+1)
1 <LK = (f(Oi > < p7Vn. (4.24)
AV)P:z

Case 1 £.(0)p. £ 01 gﬁ(O)_p;I/d/zd“. Then (4.23) holds. Since p, < 1/2 and
£0)(1 —p.) £ 1, one has f,(0) < (1 —p,)"! <2 Together with the bound
xlogx < const. x4 if x = 1 and ¢ > 1, one has from (4.23)

p-f.()log £,(1) < const. p.f.(1)“TD4 < const. O ,

provided fz(l_) = 1. Since the left side is negative if fz(l) < 1, we do not need the
assumption f,(1) = 1. Using the bound f,(0)(1 —p,) £ 1,

(1= p:)£.(0)1og f(0) £ —(1 = p.) £,(0)log(1 — p.) < 2£.(0)p: <20, .
Therefore, the entropy is bounded by

(LS, = pofu(1)log £.(1) +£(0)(1 = p.)log £,(0) < const. Or  (4.25)
Case 2 Q; < f.(0)p.. One has from (4.17) (with K =L ), f.(1) < 41,(0) < 8.

From (4.3), the logarithmic factor in (4.16) can be omitted. This proves (4 25) and
hence Theorem 3 1 in this case.
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Case 3. Qp = f,(0)p;/4/24+1, Hence £,(0) < 2%*'p}4Q; and we can replace
(4.22) by

£ S 2@ KD + o7 (KILIQL -
Again, from (4.3) we can assume that fz(l) =4 fz(O), for otherwise (4.25) follows
immediately. Hence from (4.16) the entropy is bounded by s < 2p,|log p.| f,(1).
Let L/K = p;/4/2 so that (4.21) holds. Then f,(1) < 16 x 29p;“~4 0, Recall
s £ 2p,|log p,| fz(l). This proves (4.25) and concludes Theorem 3.1.

V. Large Deviation Estimates

We shall prove some large deviation estimates in this section. They are estimates
based on the local limit theorem, which will be stated in Sect. VIII and proved
in Sect. IX. These estimates will be useful in Sects. VI and VII. Because of the
technical nature of this section, we suggest that the reader skip this section until its
results are needed in Sects. VI and VII. The key result is the Theorem 5.6 stated at
the end of this section.

Suppose 4 = A; is a cube of width L and u; , is the canonical Gibbs state
with the number of particle » and a fixed boundary condition. For applications in
the next two sections, 4 may be a rectangle as described in the paragraph before
(3.1). All our results hold in that case with only notational changes. For notational
simplicity we shall assume A is cube of width L for the rest of this section. A/l
results in Sects. V-VII depend on Assumptions (A1-A4) unless otherwise stated.

Let U be a subcube of A with width L/y for some constant y independent of L.
We require that

Az \ U = a union of cubes of size L/y’ 5.1

for some constant y’ independent of L. In other words, we require that A; \ U has
no “thin” region. This is because the mixing assumption can be violated if such
pathological regions are allowed [MO]. Denote the density in U by 7, and the
expected density by

oy = ERliigl ol = EAy). (5:2)

If U = A, we shall drop the subscript U and choose A such that p¢ = p% = p =
n/Le.

Theorem 5.1. Suppose g is a smooth function on (0,1) with

g’ =e, g =Zc gp)=0. (5.3)
Let
() =9(») — 4Ly — py) — 9(py) -
Then
B'L™¢ log E* {exp[BL* {{(ii)}]} < OB (54)
provided that
BB <1, (5.5)
Here ¢ is a small constant and Py is a fixed constant. Furthermore, for some
constant C
(£39(1y))? < Cs(f) (5.6)

for any probability density f with respect to ur p.
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Almost all constants for the rest of this paper depend on y Sometimes we obtain
explicitly dependence on y. All our results hold with little changes regardless of the
value of y provided y is independent of L, which is the assumption for the rest of
this paper.

We need the following lemmas to prove Theorem 5.1. The following Lemma 5.2
is useful when cutoffs are needed. For the rest of this section we shall use ¢ or o
to denote small positive numbers and use f to denote arbitrary positive number

Lemma 5.2. Let v be a probability measure Suppose g is a function satisfying
lg—v o= 7@, (5.7)
where v denotes the expectation of g Then for any [ positive
B L og E'{exp[ BLY(g — v)]} < O, (5.8)
and 6 — 0 as L — oo If g only satisfies (5.7) with ¢ = 0 then (5 8) still holds for
some ¢ independent of L
Proof of Lemma 52. Case 1 f = L~@*92 From the assumption on g,
B og " {exp[ L (g — )]} =l g — v oo = L7@D 70 < 08
Case 2 p < L 92 Hence BLY || g — v |lo < L™%%. We can expand the expo-
nential up to the second order to have
p=IL™ log E* {exp[ L (g — 0)]} < BLYE"[(g — v)’] < BL™°.
The higher order terms are even smaller. This concludes Lemma 5.2. [J

Recall the entropy bound
[ rXdu < 'L log [ exp[ BL/Xdu + B~ 's(f) (59)

for any probability density f. This bound is a simple consequence of Jensen’s
inequality From Lemma 5 2 and (5.9), a function X with small L>° norm satisfying
(5.7) can be bounded by

(f:X) 6B+ B "s(f) (5.10)
Optimizing f, we have
(f;X)* < os(f).

This will be sufficient to bound (f,X)? for all purposes in this paper. Hence any
term satisfying (5.7) is negligible and will be dropped for the rest of this paper

Proof of Theorem 5 1, Part I We first prove (5.4). Suppose p < L~9?*% Then

o < 9'p < LR

From (5 3) one has
{(») = const. |y — pyl* = 1(y) (511)
It follows that |{(i7,;)| < L=9% and (57) is satisfied Hence (54) follows from

Lemma 52 For the rest of the proof in Part 1, we shall assume that p = L=9?%¢
The following lemma is the key input
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Lemma 5.3. Suppose uy , is the canonical Gibbs state with density p=n/L® satis-
fying p = L~ Recall p,=E"-"[ij,;]. Then there is a large constant C >0 such
that

Preliiy — pyl 2 |y = 4l £ exp[—const. (L4/y)|y — pyl]

provided that |y — p$| = Cy¥2L=@/2),

Assuming this lemma, we now continue the proof of Theorem 5.1.

Suppose first f < L71% We can expand the exponential in (5.4) and prove
Theorem 5.1 directly. This is straightforward and we omit the detail.

Suppose L~!% < B < P,. First, we consider the region |fj;, — p§,| = L@+,
From Lemma 5.3 and (5.11),

Eren {exp[ BLYC(H )N (|Tiy — | = L™@PTE))

= 2 exp[ BL1(y)IP* (i = ¥)
y=j/Ld, JEL(y—p§,) Z L=+
+ > explBLAUWIPR Gy = ) - (5.12)

yi(y—pf) S —L—@2)+e

We can overestimate P*- (1], = y) by P*-"(if,; Z y). From Lemma 5.3 and (5.11),

we have
exp BLYt(y)IP(fjy = y) < exp[—const. L]

for (y — p§) = L~“2+ Hence
E*en{expl BLY L)y — pyy| 2 L™P%9)} < exp[—const. L]

This proves that the contribution of this region to (5.4) is negligible.

Finally we have to estimate the contribution of the region |fj,, — p§,| < L=@/2+¢,
From (5.11), we have that |{(77,)| £ L=97% for some small positive constant e.
Hence ( satisfies (5.7) and (5.4) follows from Lemma 5.2. [

We now prove Lemma 5.3. First we introduce some notations. Define the
pressure

#(0,p)=(y*/L*)log E*-" [exp (9 > n)] = (y//L?)log M (6, p),

xeU
M(0,p)=E"-r [exp (9 ) n)] : (5.13)
xeU

where p = i = n/L¢ denotes the total density in A;. From the Chebyshev inequality,
we have

(L fy)log PHeriy 2 y] £ —h(3,p) = —Slgp{(?y = ¢(0,p)} . (5.14)
Similarly, define
R0, = Gy toge lexp (A 40 ) .

xeA xeU
p(8,p) = — sgp[ivdp —R(6,1)] . (5.15)

The following lemma gives a relation between ¢ and p.
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Lemma 5.4. If p > L™ then
| $(0,p) — (p(0,p) — p(0 = 0,p)) | < const. (/L) .

Lemma 5.4 will be proved in Sect. 8. We need some more notations. Recall
that u; ; is the Gibbs state on a cube A; with chemical potential 4 and some fixed
boundary condition Recall U is a subcube of size L/y with the property that A, \ U
is “fat” (51). Let uzp, be the probability measure with density relative to p; ;o
given by

exp (9 Yot A m) Z0,2)7", (5.16)
xeU XEAL

where Z(0, 1) is the normalization. Clearly, when 0 = 0 the measure ;. p—o ; reduces

to UL, ;-

We claim that pi; g, satisfies the mixing condition (A1) for all 0 and / and for
all cubes if u satisfies the mixing condition (A1) for all A and for all cubes. The
issue is standard, therefore, we only sketch the idea. Roughly speaking, our goal is
to prove the correlation function of two local functions f; and g, at x and y resp.
decay exponentially with [x — y|. Suppose x € U and y € A, \ U. Then

EF0 [ gp] = B0 gy BP0 filex € A\UD)

The conditional expectation, E#.07[ fi|n.,x € A, \ U] depends on the configurations
on A, \ U only through the boundary condition From (A.l) the dependence of
Eto[ folne,x € AL\ U] on the configuration at a fixed site z in the boundary is of
order exp[—const |z —x|] This proves

|[EFLoe] o gy]] < exp[—Clx — y|].

The other cases, x,y € U or x,y € A, \ U, can be proved in a similar way.
The following lemma provides a bound on a special correlation needed in the
proof of Lemma 5.3

Lemma 5.5. If p = L= then

LDy T, = C
Lemma 5 5 will also be proved in Sect. 8. We return to the proof of Lemma 5 3.

Proof of Lemma 53 We first bound the probability of the event in Lemma 5.3
by (5.14). From Lemma 5.4, up to an error (y¢/L%), we can replace % in (5.14) by
f — p(0,p), where f is the Legendre transform of p, namely

f(yp)=— s%p{é’y — p(0,p)} .

To prove Lemma 5.3, from (5.14) it suffices to prove that

f.p)— p(0,p) = C(y — p§)

for |y — p§| = Cy¥2L=2) The error y/L~¢

YL < (L9 y")|y — p{|?. We claim that

, 1s negligible in this region since

ot — Pl = L7 (5.17)
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Assuming this bound, to prove Lemma 5.3 we only have to prove that
F(.p) = p(0,p) Z C(y — pg)* . (5.18)
We now prove (5.17). From Lemma 5.4,
| ¢(6,p) — (p(6,p) — p(0 = 0,p)) |< const. (/L)
if p < L7972, Note that from the convexity of ¢,
—07'[¢(=0,p) = $(0, )] = (Ayw., < 07'[(0,p) — $(0, )] -

A similar bound holds if (7y),,, = p{ is replaced by (fiy),, , =pf and ¢ is
replaced by p. Choosing 6 = L~%2y%2, we obtain (5.17) provided p = L~%2.
Clearly, (5.17) holds trivially if p < L9/

We now prove the (5.18). From the Taylor Theorem, it suffices to prove

f(of,p) = p(0,p),
af(y5p)/ay|y=pgj = 0 9
’f(y,p))oy* 2z C.

The first two identities follow from the definition of pj;. We now prove the last
bound. By definition,

&£ (y,p)/0y* = (3 p(6,p)/06%) .

From simple calculation,

op(6,p)/06 = <ﬁU>ﬂL.0.A >
62])(99/7)/602 = (Ld/}’d)[<’7u;ﬁu>m,e,z - <ﬁa ﬁU>l24L,8‘A<ﬁ; ﬁ>;1.19»]

S @Yy iv)u,, < C, (5.19)

where the last bound follows from Lemma 5.5. This proves & f(y, p)/0y* = C and
concludes Lemma 5.3. [

Proof of Theorem 5.1, Part II. We now prove (5.6) assuming (5.4) holds. From
the Schwarz inequality

B1L=4 log E*-" {exp[ BL* {g(7iy) — 9(p$)}1} < Q1 + Os, (5.20)

where
01 = B7'L™ log E*" {exp[ 2BL* {{(71,)}1}"/2,

0, = B'L™?log E*{exp[2BL*{g'(p$ )Ty — p§) 1}/

and { is defined in Theorem 5.1. We can use (5.4) to bound Q; provided f < fo.
By definition of ¢,

0, =B P(0,p) — 0p5,  0=2By9(p).
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We shall prove
0, = CB. (5.21)

Suppose that f = CL™9. Then > = CL™¢ Hence

B0, p) — [ p(0.p) — p(0 =0,p)]| < p~'L7¢ < const .

IIA

Therefore, it suffices to prove

BP0, p) — p(0,p)] — 0pf)| < const B

From (5.17) and assumption on f, the error
10p(0,p)/30)0=0 — p5| = |pf5 — py| < CL™?

is bounded by Cf. We now expand p in 0. Since the second derivative of p is
bounded by Lemma 5.5, we have

We have thus proved (5.21) provided f = CL~9?
Suppose f < CL™%?. We can apply Lemma 52 in this case More precisely,

let f = fL=9? and replace ¢ by § = L~92g. Hence we can apply Lemma 5 2 with
p and g. This proves (5 21) in this case Putting the bounds on Q; and O, together,
we have proved

B'L log E# {expl BL{g(iT,)) — 9(p{) N} < CP (5.22)

provided f§ < fy. But (5.22) holds trivially if § = . Hence the condition f < f
can be dropped.
Let X = g(17,) — g(p{,). From (5.10) and (5.22) one has

(f,X) £ CB+B"s(f).
Let f = Cy+/s(f). We have
(f,X)? < const. s(f)

This concludes (5.6) and finishes the proof of Theorem 5.1. [

We now provide a class of functions satisfying the assumption (5 3). Suppose g
is a local function at z € A; which may be near the boundary of A;. Define gy by

gu = E.uL,n[g | 97U] ,

where 7, is the o-algebra generated by {n,;y ¢ U} Since the total number of
particles in u; , is fixed, #j; = Avscy 7y is measurable with respect to F;. By
definition gy depends on the boundary condition on ¢U. Let w = (@), w,) denote
the boundary condition of U with w; (w, resp.) denoting the boundary condition
on dA4;, N AU (AU \ dA4,, resp.). We require that

dist(z, 0U \ 64;) = L(4y)™! (5.23)
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This assumption will hold for all applications in this paper. Let §,;(») be the ex-
pectation of g with respect to the grand canonical Gibbs state with the boundary
condition w and density y, i.e.,

gu(y) = E*[g], (5.24)
where 1 is chosen so that the density is y, i.e., E*4[f], = y]. From (A.4)
lgu — Gu(iiy)|l £ O™ (5.25)

From (5.23) and the mixing condition (A1) the dependence on the boundary con-
dition @, is bounded by O(L~¢). Let

Ju(y) = E*ri[g], (5.26)

where g .2 is the measure on U with boundary condition w, = 0 and A chosen
such that E#-«r2[f],] = y. Then

lgu — du(iiy)| < O(L™9**). (5.27)

From (A2), g, satisfies (5.3). Furthermore, from the remark after (5.10) the differ-
ence between gy and §;; is negligible. We have thus proved the following theorem.

Theorem 5.6. With previous notations and assumptions, for any probability density
f with respect to piy, n,

(f39u(T));,, < Cs(f) (5.28)

for some constant C. Furthermore,

B L™ log E¥ir {exp[BL {Gy(7iy) — Ju (i )iy — P3) — Gulpi)}]} < 5B (5.29)
provided (5.5) holds.

VI. Two-Block Estimates and Multiscale Analysis

We now prove Theorem 4.4. The basic ingredients for proving Theorem 4.4 are a
multi-scale estimate, a large deviation bound (Theorem 5.6) and a precise statement
of the two-block estimate. In this section, we shall use the two-block estimate and
multiscale analysis to prove part of Theorem 4.4. We then use a large deviation
estimate from Sect. 5 to conclude Theorem 4.4 in Sect. 7. Let us first define some
notations.

Recall that A is a cube of size L; X L, with L; about the size of L as defined
before (3.1). Suppose ¢ is a local function at z € A which may be near the boundary
or corners of A. Fix an integer /. Let ¢/) be defined by

gV =E'lg | 7], (6.1)

where % is the g-algebra generated by {1,;y €A4; with A; ={yecA:|y—z| >
¢7}}. Since the total number of particles in y; , is fixed, 7 ;= Avxeafx is measurable
with respect to %. Suppose ¢"+2+2 = 2] for some integer m. The choice of the
strange exponent m + 2d + 2 is for convenience and will become clear later.
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To avoid pathological cases, we have to redefine the cubes A, slightly. Since the
site z may be in the corner, the set 4,1 \ 4; may not be a “fat” region according
to (5.1) (with A replaced by A; and L/y replaced by ¢/). In this case, we shall
enlarge A; to A,,; to eliminate the pathological case. Certainly, there are only a
finite number of pathological cases and the changes will not affect our estimates.
We shall not comment on this further in this article.

For convenience of notation, we use

U=A", iy =i, gu=9¢", y=0"7 (6.2)
Also by (5.23), we can replace gy by §,, whenever needed. We remind the reader
that §,,(y) is nothing but the expectation of g with respect to the grand canonical

Gibbs state on U with E"zf/i[ﬁu] = y and some fixed boundary condition described
in the paragraph before Theorem 5.6

Lemma 6.1. Recall the definition of u(L) in (3.1). Assume that the mixing con-
dition (A1-A4) hold Then

(f,9)5,, < const. u(L) 0 W(z = bDDy(V /) +2(f90)7,, »

|b—z| <L/¢2+2
where gy is defined in (6.2) and /"2 = 2L

Proof. Recall the following martingale decomposition for any function g,

m—1

<f; g>#L,n = Z <f’ g(j) - g(']+1)>ﬂl_,n + <f> gU)HL,n s (63)

Jj=0
and for each ; fixed,
<f; g(j) _ g(j+1)>m'” _ E/lL,n[EllL.n[f(g(j) _ Q(IH))IJ@;’H] ) (64)

Since the total number of particles in A is fixed, the total number of particles in
Ajqy is also fixed once &, is given. From Corollary 5.7 and the definition of u
3 1),

(fi9 —gUt)2 < const. Au(L) DDy (V) (6.5)

Using this bound and the Schwarz inequality that a < f~'(m+2 — j)2a* +
(m+2 — j)~? for any positive f3, one can bound the variance by

m—1

. . m—1
SIS gy — g(’“)),,“ S const. § > (m+2 — /)2 4const f1/2u(L)

j=0 =0
—1

m
XSS (m+2— P ID () (6.6)

=0 beA,
Exchanging the order of summation in the last term, the summation over j can be

bounded by
S m+2=))0% D < W(z-b), (6.7)

Jitr Z |b—z|
where ¥ is defined in (3.5). Optimizing over f§ one has

j=0 bi|b—z| SLj{2+2

2
{mfv,gm—g“'“)m,,,}éconst. Ay Y Wz - bDDy(\/ ).

This concludes the proof of Lemma 6.1. [
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From Lemma 6.1, it suffices to bound the last term (f;gy)Z,  in order to con-
clude Theorem 4.4. We state it as the following lemma. '

Lemma 6.2. With the same notations and assumptions as in the previous lemma,
(f39v)2%,, < const. [C(8) + ou(2L)IL*“Ds(\/f) (6.8)

where & is a small constant and gy is defined in (6.2) with /™+24+2 = 2,

In this section, we shall only prove parts of Lemma 6.2, stated as the following
Lemma 6.3. The rest will be presented in the next section.

Lemma 6.3. Suppose that for some constant §, > 0,

uL)*~Da(\/f) Z 61 . (6.9)
Then
(fs9u(iiy))i,, < const. LDs(\/f) . (6.10)

Here the constant depends on ¢ and §,.

We now prove Lemma 6.3. The following Lemma 6.4 will be needed. For those
familiar with hydrodynamic limits, it can be understood as a statement of the two-
block estimate.

Lemma 6.4. Suppose & = (4,{) are configurations on Ay U Ag. Let v be a canon-
ical Gibbs measure on Ay U Ay with a fixed boundary condition. Define for all
x € A &8 = (n,(®) by
@ _ J My ify $x
Ny = o
Cxa lf y =X

and _
C(X)ly = {Cy’ ;f‘y :*:x
Mxs lfy =X
In other words, )| denotes the configuration obtained by exchanging n, and (.
Define the Dirichlet form D, by

Dyy(f)=D" + DO+ 3 DX 1), (6.11)
XE€ Ak

where DM (D© resp.) is the usual Dirichlet form on the configuration n ({ resp.)
alone and

DN = 5 [UE) = fOF®). 6.12)
Then there are constants Ci(k) and Cy(k) such that

[ = DPdv(E) — Co(k) £ Ci(k)Dye(V 1) (6.13)
and limy_,, C(k) = 0.
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Proof of Lemma 6 4 First, the constant C;(k) can be chosen as large as possible
(depending on k). Let Cy(k) = [(77 — {)*dv be the expectation of (i — {)? with
respect to the v measure. Hence limy_.o, Co(k) = 0. Note that the right side of
(6.13) vanishes only if the left side vanishes Since the configuration space is finite,
there exists a constant C1(k) so that (6.13) holds. More precise dependence of Ci(k)
and Cy(k) can be obtained But we will not need these bounds here. [

Proof of Lemma 6 3. For any two cubes o,f of size £ in A one has from
Lemma 6.4,

[ 1, = g, < CrOD.(\/ 1) + Calk) .

Here D, is defined in (6.11) with the cubes o, taking the roles of A; x A; in
the lemma. By definition D, involves exchanging particles in the cubes o and f
From Lemma 4.3, we can bound these exchanges by the usual Dirichlet form with
only nearest neighbor exchanges. Averaging over « in 4,, = U and f§ in A and then
using the Schwarz’s inequality, we have

[ — pPdurn < CIUOLDa(V/ 1) + Calk) . (6.14)

From (5.27), we can replace gy by g, in proving Lemma 6.3. From (A2), § is
uniformly Lipschitz continuous. Therefore, one has from (6.14),

(f.duGioy,, <E'Gyiy) — du(p)) < const. E/[(i7, — p)°]
<const. [C1(K)L>™D4(\/f) + Co(k)] .

Choosing k large enough and using the assumption (6 9) we conclude Lemma 6.3

VII. Proof of Lemma 6.2

Let us summarize what we have proved so far. From Lemma 6.3 we can assume
that f satisfies

{u(ZL)Lz"dDA(\/?)} <5 . (7.1)

Recall the definition of §,; in (5.26). As remarked at the end of Sect. 5, we can
replace gy by g, Hence we have to prove

(f39u)., = const. [C(0) + 0u2L)L>“Da(\/1) (7.2)

under the assumption (7.1).

Step 1 We can decompose

(f gU(ﬁU))m_,, =(/f; {(7(’7[/) - WﬁU}>m," +w(f; ﬁu)m," =01+, (73)

where w = (g~')(p§/) and p{, = E#-"[1],,] is the density. The second term £, in (7.3)
can be bounded with the following Lemma 7.1.
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Lemma 7.1. Suppose the mixing conditions (A1) and (A3) are satisfied. Then for
any probability density f and any two nearest neighbor sites x,y with |x — A°| 2
Ll—s’

{E/[n: — n)]}* <comst. u(2L) ¥ |b—x|"*"*Dy(\/f)

lb-x2 ¢

+C() Y b—x[""Dy(\/f) - (7.4)

lb-x<¢

Here ¢ is any integer, C(£) is a constant depending on ¢ and u(L) is defined in

(3.1).

Proof. Let h =1, —n,. Recall the definition (6.1) and the o-algebra %;. Rewrite
the left side of (7.4) as

Ern[h; f] = ffOE“L'"[(hj RS
Jj=

For each j fixed, from the definition of conditional expectation,
(f; KD h(j+1)>HL,n — EuL,n[E#L,n[f(h(j) _ h(j+1))|9;,+1]] .
Consider the eigenvalue problem (with k = £/*1)

Ef) = Bk (kKD j1 (V)] = [ (D — B9 DY dp,

Here pji1 = prnlz,, and Djyy is the Dirichlet form with respect to u;;. By

definition of u(k), we can replace [u(k)ksz+1(\/7 )] by the entropy k%s(f /1i+1) to
have a lower bound. From the entropy bound (5.9) one can bound

E(f) by
E(f) < B~k log [ exp[Bk' (A — AN dpj .
From (A3), one has
|| E%*'[ne — 1] ||loo < const. k=@/2=1=¢ (7.5)
Hence
KR — R < KEES [ — ]l o S comst. k@D

Since [ f(h\Y) — hU+D)dp; 1 = 0, together with Lemma 5.2 one can bound &(f)
by Bk~!~%. To summarize, we have proved

JFHD =Ry < B (R D (VO + BT
for all § > 0. Optimizing over 5, we have

{J D —HI* D0} < k4 (D (V)] -

Summing over j and dividing the summation into j = 1 and j > 1, we have proved
Lemma 7.1. O
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We now return to the proof of Lemma 6.2. For any constant ¢ < 7 rewrite €,
as Q, = Q3 + Q4, where

Q3 = C<f;AUx€U,|x~Af|;aL”lx);tL,,, = C<f;AUx€U.|x~A‘|gaLAUyeA(’1x - 77y)>/¢L,,, 5
Qs = Co(f, Avecvfp—sc|<oL Ny)us, - (7.6)

We can decompose 25 = Qs + Q¢ with

Qs = C<faAUx€U,{x—/1”|gJLAUyeA,Iy—A‘|gUL (nx — ’7y)>m‘,,,
Qo = Co(f;Avyen|y—ac|<oL Ny)ur,- (7.7)

From Schwarz’s inequality, Q, (7.3) can be bounded by @3 < QF + Q2 + Q2.

Since Q4 and Qg are similar, we can absorb 4 into Q. Note that there is a
factor ¢ appearing in the definition of Qg

We shall bound €4 in the last step. We now bound Q5. Connect the site x to y
by a path ., with |y| < const. L. There are many choices of yy,. For example, in
dimension 2 one can fix a canonical choice by first connecting x = (x1,x3) to (x1, y2)
via a straight line parallel to the y-axis. Then connecting (x1, ;) to y = (y1,12)
via a straight line parallel to the x-axis. Rewrite

7]
Hx — Ny = 2771 — Nit1
i=

where |y| is the length of y and we assume that y; = x,7},/.1 = y. By Schwarz’s
inequality
il
(fsne=ny)y,, = const. LI ([ =)y, »

i=1

where we have bounded |y| by const. L. We can now apply Lemma 7.1 to bound
the last term Summing over x, y, we can bound Qs by

Q2 < [const + ouQL)IL*“Ds(\/f) . (7.8)
Step 3 We now bound Q; (7.3). From the entropy bound (5 9), it is bounded by

Q) £ p'L ™ log EM-r {ﬁLd (gu(ﬁu) —w(ijy — P?J))]

+B7 > DA\ ]) (7.9)

where p§, = E*[#],] is a constant. From Theorem 5.6 the expectation in (7.9) can
be bounded by

B logE“'”{ exp [ﬁL"{éu(ﬁu) —w(iy — pCU)}:l } < op

provided that § < By <« 1 (5.13). Here 0 is a small constant. Optimizing over f in
(79) one has

Q1 = (f3duGiy) — w(iy — p5))% < uQLL*Da(\/f) (710)
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provided that
B = 6" PuQL)L* DA/ < Bo.

The last bound holds by choosing J; in the assumption (7.1) sufficiently small.
Hence combining (7.3), (7.8), (7.10) we have thus proved

(f3Gu(iy))3,, < [eonst. + Su(L)IL* “Da(v/f) + 9% (7.11)

with Q¢ defined in (7.7), provided that (7.1) holds. Combining with Lemma 6.1,
we have proved

(f;9)2,, <comst. /Xu2L) Y ¥(z—b)Ds(+/f)

|b—z| S L/£2d+2
+2[const. 4+ ou(2L)IL*Ds(\/f) + 222 (7.12)

for any local function g.

Step 4. Finally we bound €. Replacing g in (7.12) by 5, and averaging over
z € A, |z — A°| £ oL, one has

072QF =comst. 2U2L) Avsepp— s Y. Pz = BDDs(\/f)

|b—z| SL/t2+2

+[const. + du(L)IL>~*Do(\/f) + 222 ,

here we have dropped unimportant numerical factors. The first term on the right
side is bounded by const. u(2L)L>~?D4(~/f). We have thus proved

Q2 < [const. + du(L)IL* D A(\/f) .

Using this bound in (7.11) we have proved Lemma 6.2 assuming (7.1). To-
gether with Lemma 6.3 we have proved Lemma 6.2. This concludes our proof
of Theorem 2.1 except the proof of (A2—4) and Lemmas 5.4 and 5.5.

VIIIL. Proof of Theorem 2.2 and Lemmas 5.4, 5.5

In this section we prove Lemma 5.4, 5.5 and Theorem 2.2. For the rest of this
section we assume assumption (Al) holds for all A unless otherwise stated. We
start with (A2) and Lemma 5.5 concerning only the grand canonical ensembles.

Proof of (A.2). First of all, notice that as p — 0 one has 4 — —oo. Hence the
Gibbs state can be understood as a perturbation of the independent measure by the
Hamiltonian H. If H = 0, one has a independent measure and (A2) can be checked
directly. If p < e or p = 1 —¢, (A2) follows from the standard cluster expansion
[R] and we omit the details. We now consider the case p is bounded away from
0 or 1.
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- N
0y9(y) = &.g(y)a—v = <g;2nx> /<Z nx;Avxm> ,
” x M., X ML ).
AN 2 2 AN\ 3
25 () 2 N5 AN
Bavn =8 (5) -0 (52) (5)

-3
= <Zm;Avxm> [<g,2m,2nx> <Z nx,Avmx>
X X X M, x Mo,

He, s

—<g,2nx> <Avmx;2m;2m> }
X 153 X X M,

./

The derivatives of § can be computed as.

Here the expectation is with respect to the grand canonical Gibbs state puy; with 2
chosen to give the correct density p From (A.1) for ¢ < p < | — ¢ the covariances
can be bounded by

<Avmx; DMy m> < const.,
x M.,

X

<g;Zm> < const , <g;Zﬂx;Zm> < const
¥ M, M,

X X

Furthermore, we claim the following bound on the compressibility holds

<Z UX,AUV’?x> =z C,
¥ ML,
for some constant C, depending on p. Hence g, satisfies (A2) in this region as-
suming this bound on the compressibility.

Finally we have to prove the last bound on the compressibility. Recall the defi-
nition of ¢, from (2.8). For any local functions f and #,

<[f(0r’7) — S(n] [A(oxn) — h(i’l)]>

= —<f('1) [exp {—H (1) + H(n)} + 1] [A(oxn) — h(n)]>

Let

g = —lexp{=H(aon) + H(m)} + 1 [h(aon) — h(m),  h(n) = no
Denote by ¢, the translation of g to x Recall the range of interactions in the
Hamiltonian is one. Let A° denote the interior of A defined by A° = {x € A4 : |x —
A¢| > 2}. From the Schwarz inequality,

2
<{Ld/2AvxeA(m - p)}2> 2 KAerAO Gos 22 (1 — P)> }
X e,

e,

x [L" ({Avee gx}2>w‘/} -
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By the definition of g,
<Aux€/1°gx, Z (71x - ,0)> = AvxeA0 <(1 - 277x)2>#1_ . =1.
x ML, '

Here we have used (1 —2#,)? =1 since #, € {0,1}. From the mixing condition,
there is a constant C, such that

1 ({dvepgl) =G
KL, i
We have thus proved that

({1 veatne - m}') 2t

ML,

This proves the lower bound on the compressibility and concludes (A2). O

Proof of Lemma 5.5. Recall the identity
(XX|A\U) = (X*|A\U) - (X|A\ U)?

and (X|A\ U) denotes the conditional expectation of X with respect to the o-algebra
generated by the configuration in A\ U. Hence the correlation functions appearing
in Lemma 5.5 can be decomposed as

(ﬁU;ﬁU>I‘L,0,/1 = <7—IU;’7U l A\ U>HL,9,/1 + <E#L'M[ﬁU ' A \ U];E#L'B’l[ﬁU | A \ U]>#L,o,; .

From the mixing assumption (Al), the first term on the right side is bounded by
L~ For the second term, again from the mixing condition, the spectral gap of the
Glauber dynamics [MO, LY, SZ] is bounded by a universal constant. Hence one has

(B0 [y | A\ ULE [y | A\ U,

EFL0[(g, EF-04 1, | A\ U,
x€MN\Ux-U| sl

IIA

where o, is defined in (2.8). From the mixing assumption,
o E* 04, | A\ U] < const. L™ .

Hence
EFeei[(g EF0 iy, | A\ U])z] < const. L™,
x€A\U|x=U|£1

This concludes Lemma 5.5. O
We now prove (A3—4) and Lemma 5.4. Recall that y; ; is the Gibbs state on a
cube A; with chemical potential 4 and some fixed boundary condition. Let N = L¢.

Recall U is a subcube of size L/y with the property that Ay \ U is “fat” (5.1). Let
Ur,0,, be the probability measure with density relative to g ;-0 given by

exp (92nx +23 nx) z0,2)7", (8.1

x€eU xEAL
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where Z(0, 1) is the normalization. Clearly, when 0 = 0 the measure y; g—¢,; reduces
to u ;. We have proved that u; g, satisfies the mixing condition (Al) for all
6 and 4 and for all cubes if p satisfies the mixing condition (A1) for all /4 and for
all cubes

We now state our main result Theorem 8.1, a local limit theorem to be proved
in Sect. IX.

Theorem 8.1 (Local Limit Theorem). Suppose the mixing condition (Al) holds.
Let L=E*.00%" . = py be the density Let X = L™Y2S" (n, — py), and let 63 be
the variance defined by o = E'.0:X%. Let Y , be the density of Xy Suppose the
density satisfies

L—d/Z—E é ,00 é l _L—d/2—£ .

Then there is a universal constant of order one such that \y ¢ satisfies
Yr,0(0) = @n)~ "2 Croy ! exp[—2* /oI + N T2 pi(x) + 0L~ p™h] (8.2)
for some ¢ > 0 Here
pi(x) = iHs/6, 5 = 0y EMe Xy
and Hs is the Hermite polynomial of degree 3:
Hi(x) = x* — 3x.

We now represent ;¢ using the Fourier inversion formula. Recall the following
elementary identity for Fourier series (N = L%),

L Nz_:leianf/N _ U ifx =.0 ; 83)
=0 0 otherwise ,

where
xe{-N+1,...,0,1,...,N =1} .

Hence the canonical measure y , can be represented as

N-1 | _
dupn =LY &Ny, 57)
k=0

where

N—-1
Zpn = EMr |:L—d > ezan(ﬁ—(n/N)):|
k=0

and the chemical potential /4 is chosen such that F*./[ij] = p = n/N Hence
—a"& w —a"E —d |\~
Vo) =Lyl () = L0 Y Efes | exp d i2mkL ™ Yo — | ¢ | . (84)
k=0 k=0 X

with f chosen such that
EMOE[] = p . (8.5)
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Proof of Lemma 5.4. By definition of ¢ in Lemma 5.4,

expl(L4 /) b(0, p)] = Ever {exp [9 > rzH

xeU

B [oxp{BY e s + O ey 111 = p)]
Err= [exp{BY e 4 x + 03 ey M}
EHLi=0 [exp{/lzxeA nx}l(ﬁ = ,0)]
X
EHL 4=0 [CXP{AZXGA nx}]
with § satisfying (8.5) and E#:<[q] = p. Hence

#(0,p) = p(0,p) — p(0, p) + (¥*/L)[log Y1, 9(0) — log gr,0-0(0)] - (8.6)

From Theorem 8.1, logyy, ¢(0) is bounded by some constant independent of L if
p = L™%?. This concludes Lemma 5.4. [

Proof of (A4). We first state the following corollary of Theorem 8.1.

exp[(L?/y*) p(0, p)]

—1

exp[(L?/y") p(0 = 0,p)]}

Corollary 8.2. Suppose py , is the measure defined in (8.11). Suppose u is a local
function. Then

E*er[u] = E*4u] + O(L™9%p™1) . (8.7)
Here the expectation is with respect to the measure yy ; with A chosen to give the

correct density, i.e., EM-[f]] = p = n/N.

We shall prove this corollary at the end of this section. Assuming this corollary,
we immediately have (A4) if p = L~%/?*2% For any local function u we have

|E¥-r[u(n)] — u(n = 0)| < const. p,

and similarly if y; , is replaced by ;. Hence (A4) holds trivially for p < L~9%~¢,
We now prove (A4) assuming L~%%27¢ < p < [=9/2+2,

From the local limit Theorem 8.1 with 8 = 0, we obtain a large deviation esti-
mate via standard Cramer method. Note that the variance ¢ satisfies 6> < const. p.
Hence we have the following large deviation estimate

EFeif|if — p| = L% p1?] < exp[—CL?]. (8.8)

Since this estimate is standard and can be proved using arguments similar to the
proof of Lemma 5.3, we omit the detail.
Recall (4.10)
EﬂL,n[u] — EFHLn+1 [u]
= EWr[F]7 EFer[u; F1+ (LY n + 1) Avee aAB*=m [(w( ) — u(n)i] -

We have changed notations to our setting and F is defined in (4.4). The last term is
bounded by CL~¢ with the constant independent of p. Also, from the definition of
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F, we have E*[F]™! < C (cf: proof of Lemma 4 2). Suppose u is a local function
at z with range S. The variance can be decomposed as

EMruyFl=L"4 S EMuF)+L7¢ Y EMuF).

[x—z| £S+2 [x—z|>S5+2
Since the range of the interaction in the Hamiltonian is one and the density is small,
one can check that

Cp ifjx—z|=85+2
|EFu, Fy]| S
' Cp* if x—z|>S+2

Hence _
|E*o[uy Fl) £ Cp/LY + Cp? < CL™4+2%¢
We have thus proved that
|E,uL,n[u] — EHLnt [u]| é CL—d+Zs )
Together with (8 8), we have

Bt = Bl S sup [Efu] — E4rfu])

Im—n| < CL{"2 pii2
< CLd/2p1/2L7d+2€ < CL—d/Z—S

This proves (A4). [

Proof of (A3) From Corollary 8.2, we have proved (A.3) if the dimension d = 3
and L7% < p < 1 — L7% The case p < L™° can be checked by standard low density
expansion [R]. For d < 2, one can carry out the local limit theorem, Theorem 8.1, to
the next order and hence prove (A.3) . The proof will be somehow complicated and
will not be presented here. An alternative approach will be given in a forthcoming
paper [VY]

Proof of Corollary 82 Without loss of generality we can assume that
Efolu]l =0 = EMo[X] =y where X = N~'23" (7, — p). Our goal is to compute
Ete[ul(X = 0)]/E*/[1(X = 0)] Since # may not be positive, we can not apply
Theorem 81 to EF-/[ - u] Let us assume that 1 +u > 0 for simplicity. Hence
(u + 1)y, is a probability measure. Define

X, =N (e —z2),  z=E"[Xul = (X;u),, . (89)

Apply Theorem 8.1 to the new probability measure (u + 1)y,

E"o[(1+w)l(X = 0)] = E(1+u)ﬁtL,,[1(Xu =—z)] = ‘/]IflJru)(Z) ,

where '™ is the function obtained by replacing all expectations in Theorem 8 1

from with respect to p; g ; to (1 + u)u, ;. By definition,

EM Tl (X = 0)/E*[1(X = 0)] = Y ™~z (0) — 1
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The variance of X with respect to the measure (1 + u)yy, ; is given by
0l = (X = 2P+ W), = XA+ )y, =22 = 0" + (X7u)y,, 2.
From Theorem 8.1, we have
Yu(0) = 2m) "2 Co![1 + O™ **p™ )]

From (8.9) and the mixing condition (A.1), z = O(L~%?p). Applying Theorem 8.1
to the measure (1 + u)y, ; and using z = O(L~%?p), we have

Y T (—z) = @m) T Cror), exp[—22 /(207 )1 + OL™2p~1)] .

14u

Combining these two estimates, one has

2
(1+u) —1 o z —d+e —1
0 1= - 1+ 0 1.
1 (@We(0) Tien exp { 2‘7%+u } [ ( Pl

From the definition of u and z = O(L~%?p),
. [ z? ]
Ol4u P 20144

—1/2
_ [1 + <X2u>ﬂ1.,1 22] 1— 2
a? 2(a? + (X?u)y, , — 2%) + O(z%/a*)
=1 + O(L—d+8p—1) .
We have thus proved

L (0 -1 £ 0@ .
This concludes the proof of Corollary 8.2. [

IX. Local Limit Theorem for Gibbs Measures

We now prove the local limit Theorem 8.1. Our method is straightforward and
based on a martingale decomposition which helps organizing error terms. Martingale
methods have a long history; our proof is certainly not novel .

Recall the identity (8.4),

‘-1 -1
o) =L S ) = L0 5 Bt | expliznk L™ S (ne— )} O1)
=l = b
By periodicity, for L odd,
) 1 s
L—d Z ezan(n—y) — _L—d Z ezan(q—y) . (92)
k=0 2 w<ip
Hence we shall replace the summation in (9.1) with (9.2).

Step 1. Cutoff for k > p0—1/2 Ld12+e et

Q(s) — L—d Z ei2nk(ﬁ—y) .
Lélrte < k| <L4)2
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Recall the range of interaction in the Hamiltonian is one. Let Q = {x € A, . x/2 €
Z%} be a sublattice of A and let I' = A; \ Q. Denote the expectation of #, condi-
tioned on {1,y € I'} by pl = Et.04[n.|n,,» € I'] . Let p, be the expectation of
1y with respect to the independent measure

qo.; = exp {9 S+ A nx} /mrmalization )

el XEAL

Since the interaction between 7, and its neighbors is uniformly bounded for each x
fixed, there is a constant C such that

cl'<sp/pfscC.

Note that this bound is independent of the shape of I'. It is very easy to compute py
and thus bounds on p! independent of the configuration of I" can be obtained By
definition, p, takes only two values, say a and b, depending on whether x belongs
to U or not Let p, =a if x € U and p, = b otherwise Since the total density is
p, one has

alU|+b(L* — |U|) = L%y .

This implies that pg < a +b < const. pg since L¢/|U]| is bounded (depends on 7).
Hence we have
C'po < pe+pL < Cpy. (9.3)

Since 7, are independent random variables after conditioning on I', one has

B | T] e oy yp € I'| = T] B[4 |y, y € 1)
x &¢I x¢I

—d
— I;I [pi"ezanL + (1 . p)I(‘)] )
xg¢r

Recall the following elementary bound: For any 0 < a < 1 and —7n < f§ < 7 one
has

lae? +1 —a> =1 — 2a(1 — a)(1 — cos ff) < exp(—a(l — a)f?)
We have thus proved

|Eme [QW | T < L ) exp | =S plkPL—2
Ld2e < |k| <Ld)2 x€Q

<L 3 exp(—const. ppk?L=4),
Ld 24 < k| <L4)2

where we have used (9.3). From the range of k£ one has
[E#-0 QW | T]| < exp(—const L) .

Therefore, the contribution of this region is negligible.
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Step 2. Perturbation Expansion. From the cutoff of £ and the Fourier inversion
formula, our goal is to compute

lp(k)(y) — EHL04 l:exp {i27‘L’kL—d Z (nx — p)}:l

for k satisfying
Ikl < pe_l/zLdﬂ“ )

The following lemma is the key input.

Lemma 9.1. With the same assumption as in the local limit theorem, one has, for
k| < pp LA,

l//(k)(y) — FHeL6 [CXP {ianL_d Z (nx — y)}:|

L ir’ ~dtep-l
= exp (X7) —itL(y = po)| {1 = 513+ O™ ) - (94)
where
t=2mkL™4, X =LY (1. — py). (9.5)
X

Returning to the proof of Theorem 8.1. From the bound in step 1 we can estimate
Yr0(y) by

Uro(y) = 3274 z Y ()

k|<L%/2

= %L‘d > EbLoi [exp {ianL‘d S (nx — pg)}]

k| <p0—1/2Ld/2+e
+O(exp(—const. L)) .

From Lemma 9.1,

o) =37 T exn [FHEO) — iy — po)

|k <p —1/2Ld/2+e
{1 — By o —‘)} + O(exp(—const. L)) .

The summation in (9.4) can be approximated by integration. Instead of estimating
the difference between the summation and integration, we use an universal con-
stant C; to characterize their difference. Performing the “Gaussian summation,” we
conclude Theorem 8.1. [

Proof of Lemma 9.1. Step I. We shall prove Lemma 9.1 by induction and the
martingale decomposition. First let us introduce the martingale. For simplicity of
notation we assume d = 2. Let I' be the cube of size L? in the upper right corner
of A. We shall denote all configuration in this cube by 79. We now define an order
starting from the site in A \ I right next to the lower left corner of I' as x;. We
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then continue the order by wrapping around I". When this is done, we start the
same procedure again but with I' enlarged by the sites already ordered. Continue
this procedure, we have an order. For simplicity we denote #,, by #,. Let 7, be the
a-algebra generated by n;, i > j. Let W =) #,. Define

W= B | F] = B | F]
Clearly, W =3 _,W,. From the mixing condition (A.1),
|W;| < const (96)
To prove this, rewrite 1, as

W, = { Do My — Bl {Z ’7x|g€j+1:]}

X, xXey,

+ {E#L, 0,7

Clearly, the terms inside the first parenthesis satisfies the bound in (9.6) due
to the size of subcubes chosen previously. To bound the second term, denote
e DN jnx'.%] by Z. From the mixing assumption (A.1), the second term
satisfies the same bound This proves (9.6).

Rewrite ;DL({‘O)( y) as

Z ’/legtj+1:|} .

X€u, i<

Z ;7/\_'97]:] — EHwos

X€u,i<y

1(‘],(0)();) = E!’LUV/ l’exp {l'ZTCkLNd Z VV]}
J

— g {exp {i2nkL_d 3 W} EFeos [exp{i2mkL ™ Wy | %]} RN

1>0

Then the expectation with &, given can be easily computed since, for & in the
range we are interested in, the exponent

kLAdVV() < p()—1/2L~d/2+28 <1
is small (recall py = L~9?*¢). Thus one can simply expand the exponential to have

Bt fexp{i2nkL = Wp} | 1) = 1 + itEreo (W | 7] — LEm [0 | 7]

R () | 73] + OCpy ' L), 1= 2mkL

Note that the error term gains a factor of py from taking the expectation. The
first order term E#.0-[W, | #1] = 0 by definition of W, The variance and the third
moment are bounded by

EM0 (W) | #1] < const LEEM-0[ify | 1], i=2,3
Here 77, denotes the density in the cube oy From (9 3), we have

EF00 [, | #1] < const. py .
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Using this bound, we have that the variance and the third moment are bounded by

EFLoi[(W) | #1] < const. Lipg, i=2,3.

Hence
EFoi[exp{i2nkL = Wo} | 7]
=1- %VO - {,Eﬂw (1) | Z1] + O(py ' L=24+8e)
=exp {51} {1 - BRI | 71+ OG0 L5}
where

Vo = E*Le[ W] < const. Lipg . (9.8)
Together with (9.7),

t2
L(fCG)(y) = EH02 {eXp {i27CkL_d E I/Vl} exp I:_EI/(')]

i>0
i3
x [1 - ;L,EW-[W EQRS O(pg‘L‘”*gf)]} .09

We shall prove (9.4) inductively. Let us focus on the next term W, and condition
on %,. Denote

t2
B = ith — = {¥; — 15| A1} .

2
Hence exp[it] — ;Vo] = exp[B — %E”Lv&i[%w'"z]]. From (9.6), (9.8) and the cutoff
on k, |t| = 2|mk/L¢| < p,'L™%+?. Hence

llVV1| <iE < po—l/zL—d/2+2s ,

2

5 W — ERos[W| 72| < py 'L,

|83 |[EF=oi [ | F1] — B[ W) | F)| < py 2L

Expanding the exponential involving B,

2 i3
EHL02 [exp {itVVl — %%} {1 _ ;_'E#L,B,/‘.[VI/O3 | yl]} ‘g:z]

2
><[1 4 O(pg—lL—2d+8s)] =exp {_%EﬂL‘e,;[[/(']Lg,*z]} {1 +E#L,9,;[B!572]

PR [
+5;{E L,G,A[B Ig,'2]+EHL,9.A i

it3 1 —2dise
3 §WO3 | .%] + O(p, 'L™24+8 )} . (9.10)

By definition, E*204[B|#,] = 0. The expectation of B> can be estimated by

B? it
EHL6.2 |:¥ 972:| = _;_'EﬂL,G,A[VVl3 ] 9‘;2] + O(L—d+sp0—1L—d+8) .
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The quadratic term can be estimated by
Evn [BY 7] = — 2B (W ] — LB [ (W — B [15] 73] } | 7]
LB ({0 — B[] 7] + Oy ).
Collecting the terms of order ¢}, we have that these terms summing up to
LB [+ W 4 3 (s — BR[| ] } | )

_AzﬁEllutx[(W-}—W)?)if]
=3 P

From the mixing condition and the assumption on ¢,
a M0, K0, Z N2 7] < —17—2d+4e
B [{¥o — EM[15]721}°|#2] < const. p, L .

Let 1§ = EF-0/[W2|F,] + EF0[15] 73], We have thus proved

2
w(g)(y) = EHLo. {exp {i2nkL4d2 W’} exp {ﬂ%Vl}

1>1
-3
X (1 — %Em,n_/ [(W() + VV1)3 1 g;z] 4 O(L72d+28p0vl))} )

We can now repeat this procedure Since we have to repeat it L% times, the error
becomes
LdO(L—2d+21:p0—l) < O(L-d+2£p(71) .

This proves Lemma 9 1.

Appendix

We reproduce from [SY] the proof of Lemma 4 3 in this appendix. For simplicity,
we assume the Hamiltonian is given by

H(n) = —B<Z> n()n(y)

for some f§ > 0. The general case can be proved in a similar way

Proof For simplicity of notation, we assume z = (0,0),y = (2/,0) and the
Hamiltonian contains only nearest neighbor interactions Let 4 = {(0,0),(2,0), ,
(2£,0)} € A Let us label these lattice sites by j=0,...,/ We condition on
n° = {n(x)|x € A\ A}. Because H is nearest neighbor, the conditional measure is

of the form
4 /
(H p;(n(j)In“)) h ( n(j)s q‘) .
j=0 J==0
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Expectations with respect to this measure are denoted by ( - ),.. The function A
ensures the global constraint on the density and the Gibbs factor reads

() = (expln(/)E;(n°)] + expl(n(j) — DE;n )N,

where E; takes only a finite number of values. Accordingly we partition 4 into the
2d + 1 disjoint sets 4, = {j € A: E; = fr}, r=0,1,...,2d. The basic idea is to
perform exchanges first only within A, then within 4;, etc.

We start with 4y and label 4o = {y;:j=1,...,n}, y; < yj+1, |4o| =n. We
also set yo = 0 and y,41 = ¢, provided y, < 7. Let Tyu(n) = u(n*™). Then

Tor = Tyyy, - Tyyuii Tyuiyn -« Ty -

If either y; = 0 or y, =/, then the corresponding factors are omitted. We write the
telescoping sum

Toou—u=Tyy ...(Typtt =)+ Tyopy .. (Tt — ) + -+ + (Tyyp,u — u). (A.l)

Now (Ty,y,,, /) = Ty, /% and (T, /)y = (f)ye provided 1 < j < n— 1. For
the end points we use

<Tyoy1 lf])r/c < const. (’fl)n" <Tynyn+1|f|>nf = e”””(lfl)nf .

Then, using (A.1) and Schwarz inequality, we arrive at

¢ (Toru — u)?)e < const. ;)(yjﬂ — ) M(T e — ) (A2)
=

If either y; =0 or y, =/, then the corresponding summands in (A.2) have to be
omitted. Note that terms on the right-hand side of (A.2) are normalized by the
jump length just as on the right. Thus whenever y;.; — y; > 1 we may iterate our
procedure for each isolated interval separately, now employing the subset 4; instead
of Ay, etc. Then

-1
¢ (To,eu — u)?)ye < comst. S ((Tyjrt — u))ye - (A3)
Jj=0

Average over #° and use that

<(Tx,x+2e1u - u)2>A é const. [<(Tx,x+e1u - u)2>A + <(Tx+e],x+2e1u - u)2>A] . (A4)

Inserting this bound in Eq. (A.3) yields Lemma 4.3.
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