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Abstract: Let μg£ λ denote the grand canonical Gibbs measure of a lattice gas in
a cube of size L with the chemical potential λ and a fixed boundary condition.
Let μc

Λι n be the corresponding canonical measure defined by conditioning μ9^ λ

on ΣxeA y\x = n. Consider the lattice gas dynamics for which each particle per-
forms random walk with rates depending on near-by particles. The rates are chosen
such that, for every n and L fixed, μc

Λι n is a reversible measure. Suppose that the
Dobrushin-Shlosman mixing conditions holds for μg£λ for all chemical potentials

l e l R . We prove that Jflogfdμc

ΛLn ^ const. L2D(y/f) for any probability den-
sity / with respect to μc

Λι n\ here the constant is independent of n or L and D
denotes the Dirichlet form of the dynamics. The dependence on L is optimal.

I. Introduction

Suppose that i£ is the generator of a dynamics and that μ is an invariant measure.
The Dirichlet form of a function g is defined by

D(g)=-JgJ?gdμ.

As only the symmetric part of the generator enters in this definition, we may as
well assume that the dynamics is reversible, i.e., Jδf is symmetric with respect to
μ. A logarithmic Sobolev inequality for this system states that the entropy of a
probability density / with respect to μ can be bounded by a constant multiple of
the Dirichlet form, namely,

f f log fdμ£κD(y/f).

It is well-known that the logarithmic Sobolev inequality is equivalent to the
hypercontractivity of the semigroup and thus it provides certain information on the
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relaxation to equilibrium for the dynamics [G, DGS, DS, D] In particular, it implies
that the spectral gap of the generator, and hence the relaxation rate in the L2 norm,
is bounded by a constant multiple of κ~x See [DS,DGS] for references and histori-
cal remarks Indeed, from the logarithmic Sobolev inequality one can obtain that the
relaxation rate in a certain semi-norm much stronger than the L2 norm is bounded
by a constant multiple of κ~~λ provided some mild conditions on the systems are
given [HS,S,SZ]. See [S] for a recent review.

In this article, we will estimate the constant K for lattice gases. The lattice gases
can be described as follows Let A be a cube of width L in Έd. At each lattice site
of A, we associate an occupation number of particle ηx £ {0,1}. The equilibrium
states of lattice gases are described by the Gibbs measures on /t, characterized by
a Hamiltonian and a boundary condition. There are two "ensembles" of interest the
grand canonical ensemble with the chemical potential specified and the canonical
ensemble with the total number of particles specified The first measure is denoted by
μ^ ;, where λ is the chemical potential; the second measure is denoted by μc

L n, where
n is the total number of particles The Hamiltonian and the boundary conditions are
fixed and will not be specified in the notations

The dynamics of lattice gases is determined as follows. Each particle performs a
random walk with jump rates determined by nearby particles according to some fixed
local rules such that the Gibbs measures are reversible measures. To maintain the
requirement of at most one particle per site, jumps to occupied sites are suppressed.
Because no creation or annihilation of particles is allowed, the total number of
particles is conserved by the dynamics. Therefore, the natural ensemble for this
dynamics is the canonical ensemble The models we have just described are often
referred to as symmetric simple exclusion processes with speed change, Kawasaki
dynamics or simply lattice gas dynamics They are systems of interacting random
walks, and have a natural interpretation as discretizations of interacting Brownian
motions The simplest example of lattice gases is the well known symmetric simple
exclusion process. The dynamics is given by the usual symmetric random walk
and the invariant measures are simply a product of Bernoulli measures. Except for
this special case, the jump rates of particles depend on the environments of the
particles.

The main result of this paper states that

//log fdμln £ κ L,,D(V7), D(g) = -JgSegdμ^ (1.1)

with
κUn S const. L2 , (1.2)

for some constant independent of n or L It is easy to check that κ^n ^ CL2 by
using test functions Hence (1.2) identifies the dependence of κ^n on L. We do not
know as yet the dependence of κL^n on the number of particles n.

It is well-known [DGS, G] that the LSI implies a bound on the spectral gap.
Hence the result of [LY] on the spectral gap of lattice gases is a direct consequence
of this paper. In the special case when there is only one particle, the dynamics is
just the usual random walk on A, the spectral gap and the LSI can be computed
explicitly. They become the familiar spectral gap and logarithmic Sobolev inequality
of the discrete Laplacian The other special case is the symmetric simple exclusion
process This model is no longer exactly computable, but can be solved almost ex-
actly using duality. It is proved that the gap behaves like const L~2 by, among
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others, [Q]. The LSI is harder and is proved in [Y] with the correct order κL,n

^ CL2. It is previously proved that κ^n ^ L2logL in [DSh]. The result in [Y] is
valid provided the number of particles per site is finite.

Recently, large numbers of articles on the logarithmic Sobolev inequality have
appeared. Apart from those mentioned above, systematic studies of Glauber dynam-
ics of lattice gases were done by, e.g., [HS,Z, SZ,MO, LY]. The Glauber dynamics
is a dynamics without conservation law. It prescribes local rules to create or an-
nihilate particles and thus the total number of particles is not conserved. For this
dynamics it was proved that there is a uniform LSI independent of the volume of
the cube [HS,Z, SZ,MO,LY]; this implies [HS, SZ] the exponential convergence to
equilibrium in a certain semi-norm for the infinite volume dynamics. For this dy-
namics, a local disturbance is expected to stay local and relaxes to equilibrium ex-
ponentially fast. For the lattice gases, because KL,H ~ L2, no uniform exponential re-
laxation is allowed. Indeed, one expects a power law decay in infinite volume. Even
the equilibrium (truncated) correlation function, (ηx;ηy) = (ηxηy) — (rJx)(rίy), x + y,
displays different properties. Restricted to the high temperature region, we have,
(ηx; ηy)μ9c ~ exp[—const. \x — y\]. For the canonical ensemble, even in the infinite
temperaΐΐfre case (i.e., product of Bernoulli measures with total number of particles
fixed), we have (ηx;ηy)μιn ~ —L~d. The last estimate on the correlation function
is due in part to the conservation of the total number of particles. If the number of
particles at a site x, say, increases by one, a particle needs to be removed some-
where on the lattice ΛL because of the conservation law. Assuming the probability
to remove such a particle is uniform on ΛL, we obtain the order of magnitude L~d.
This negative correlation, albeit small, is in a sense the underlying reason that (1.2)
holds.

In field theory terminology, the conservative dynamics is the massless case and
the nonconservative case is the massive case. To deal with massless dynamics, cer-
tain multiscale analysis or the so called renormalizatίon group approach is usually
needed. Our approach is based on a combination of the martingale method and some
ideas from the renormalization group method and the multiscale analysis. Related
ideas were used in [LY,Y] but in a more primitive form. The multiscale analysis
will be carried out in a manner very different from [LY] or [Y]. The present ap-
proach provides a much stronger result. Though our proof is not as simple as we
wish due to the use of the multiscale analysis, we believe it is still much simpler
than setting up the full renormalization group, should such an approach be mathe-
matically feasible.

Though our approach is quite general, strong mixing conditions on the underlying
measures are needed. In [LY], the mixing conditions are summarized as assump-
tions A.1-A.3. We emphasize that these mixing conditions are w.r.t. canonical Gibbs
states rather than w.r.t. grand canonical Gibbs states. One expects that the mixing
conditions w.r.t. canonical Gibbs states should follow from certain mixing properties
of the corresponding grand canonical Gibbs states. However, no results have been
proved. In this paper, we simplify these assumptions to a single assumption w.r.t.
grand canonical Gibbs states, namely, Assumption A.I in Sect. 2. Assumption A.I
holds in particular for ferromagnetic Ising models up to the critical point [MOS,N]
in dimension d = 2. Certainly, because the total number of particles is conserved by
the lattice gases dynamics, some mixing properties w.r.t. canonical Gibbs states are
needed. These properties will be proved as consequences of Assumption (A.I). Our
methods can be used to give a rigorous derivation of the mixing conditions in [LY]
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from the Assumption A.I. We shall not carry this out here because the result of
[LY] is a direct corollary of the present paper.

The organization of this paper is as follows. In Sect. 2 we state the main results.
Section 3 contains an outline of the martingale approach. Sections 4-8 contain
proofs of results assumed in Sect. 3. The large deviation estimates needed in this
paper will be presented in Sect 5; the multiscale analysis will be presented in Sect. 6.
Finally, we prove a version of the local limit theorem for the Gibbs states with
mixing conditions in Sect. 9.

II. Statement of Main Results

Let A be a domain in Έd and let dΛ denote its boundary

dΛ = {yeZd\Λ\ άist(y,Λ) = 1}, (2.1)

where the distance function is defined by

dist(y,Λ) = inf \x - y\ ,
xEΛ

x-y\= max \x° - y*\ . (2.2)
α = l , ,d

Let ω be a configuration on dΛ with ωx belonging to some state space X for all
x G dΛ. For simplicity, we shall restrict the state space to be Z2 = {0,1}. All results
in this paper hold if one replaces Έ2 by

Z, = {0,1,2,...,/*-1}, 2 ^ peN . (2.3)

The Hamiltonians are finite ranged and translationally invariant. For simplicity
of notation, we restrict ourselves to nearest neighbor interactions. All our results
hold for the Hamiltonian with finite range interactions. Thus the Hamiltonian is
characterized by an interaction J(ηx,ηy) such that

HΛAV)= Σ ^ ? % ) + Σ J(rix,coy). (2 4)
x,y£Λ,\x-y\ = l y£dΛ,xeΛ,\x-y\ = \

The grand canonical Gibbs state with the chemical potential λ and the boundary
condition ω is characterized by the density

1 Σ »/,]-H(η) + 1 Σ »/,] / z £ ω , , (2 5)

Here the partition function Z^ω } is the normalization factor to make μg^ ω } into
gc

a probability density. We shall denote by EμΛ><°>; or () ^ the expectation with

respect to dμg^ ω ; . When λ = 0, we shall drop the subscript λ.
We need the concept of canonical Gibbs states. Let n be a fixed positive integer.

A canonical Gibbs state with total number of particles n and boundary condition ω
is characterized by the density

d^Λ9ωtn = dμ^ωJlΛlή=n. (2.6)
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Here ή = \Λ\~ι ΣxeΛηx is the density. Note that the right side of (2.6) is
independent of λ. Define also the canonical partition function

Z%ω,n = Σ e x p t - t f ^ f o ) ] . (2.7)
ή=n

We shall drop the subscript ω if the boundary condition plays no active role.
Also, in this section A denotes a cube of width L, i.e., A = AL. We also denote

yn)z :=(η
ί °'
u,

if z = x, ηx

if z = y,ηx

otherwise

= 1

= 1

and

and
Άy

ηy

= 0

For any function g on the configuration space, define two operators σxg(η) =
g(σxη) and Txyg(η) = g(Txyη). Here σxη = ηx and Txyη = ηχy(χ^y) are defined by

(σxη)y = (ηx)y = δxy(l - ηy) + (1 - δxy)ηy . (2.8)

(2.9)

From the definition, Txyη denotes the configuration obtained by moving a particle
from x to y. Define also the symmetrization of Txy by

fxy = Txy + Tyx. (2.10)

Then the Dirichlet form of the bond b — (x, y) is defined by

Dxy(h) = J (fxyh - hfdμc

Λ^n . (2.11)

To state our main result, we need the following assumptions. Define, for two
boundary conditions &>i and &>2, the set

Λωuω2 = {xedΛ\ ωι(x) + ω2(x)} .

Though our goal is to prove a LSI for standard cubes, in the proof we shall en-
counter, for example, in the case of dimension d = 2, rectangles of sizes L\ x L2

with Li g 2L and 1 ^ L1/L2 ^ 2. Similarly for dimension d ^ 3. We shall not
distinguish such rectangles from standard cubes and we will refer them as "cubes."
Furthermore, all proofs will be carried out only for standard cubes but will be used
freely for rectangles as well. It should be noted that in some cases our results can
fail if the rectangles degenerate, for example, if they become very "thin," i.e., the
length of one side becomes very small [MO].

Assumption Al. Let g be a function depending only on the configuration of a
subset U in a cube A of size L. Then

l ^ - Έflf] - Eμ^[g]\ ^ C(g)\Aωuωi\ exp[-const. dist(Λωi,ω2, £/)]. (2.12)

Here the constant C(g) is independent of A and ω, , i = 1,2.



372 H-T Yau

Theorem 2.1. Suppose that the Gίbbs measures satisfy the mixing condition (Al)
for all λ Let A be a cube of width L Then there is a constant C independent of
L,n such that for any probability density function f {i e , J fdμc

Λ ω n = 1)

E^»[f log/] ^ CL2DA(,/f), (2.13)

where

DΛ(g) := £ Db(g) .= £ / ί(fx,yg - 9)2}dμ%ϋ,n, b = (x, y), \x-y\ = l.
beλ beΛ

From the Dirichlet form, we can recover the generator of the dynamics. The
generator plays no role in this paper and we shall concentrate on the Dirichlet form
DA The mixing assumption (Al) can be weakened somehow. Furthermore, (Al) is a
consequence of the Dobrushin-Shlosman mixing conditions. It should be emphasized
that the mixing condition (A.I) is with respect to grand canonical Gibbs states for
all λ rather than with respect to the canonical Gibbs state μc

Λ ω n, which is the
underlying measure in (2.13). Assumption (Al) can also be checked, in general, by
the high temperature expansion. If lattice gases are described by the ferromagnetic
Ising model, the mixing condition holds up to the critical temperature in dimension
d = 2 [MS,N].

Since we need mixing conditions for all chemical potentials λ, our result is also
uniform w.r t the particle numbers. Hence it excludes an interesting case when the
pair (p, T) for the density and temperature is in the one phase region but (//, T)
is in the phase transition region for some choice of p'. We do not know whether
the L.S I has a very different prefactor in this case. Unlike the case of the grand
canonical ensemble, it is relatively easy for the canonical ensemble to have some
region with density very different from the global density p and this may change
the prefactor for the L.S I. Unfortunately, we do not have a rigorous result along
this direction

Because Theorem 2 1 concerns canonical ensembles, some mixing properties
with respect to canonical Gibbs states will be needed in order to prove Theorem 2.1
For the convenience of later references we list them as (A2-A4). We shall prove
Theorem 2.1 assuming (A1-A4) This will be done in Sects. Ill-VII. A derivation
of (A2-A4) from (Al), stated as Theorem 2 2, will be proved in Sect. VIII and IX

In the following (A2-A4), A is a cube of size L:

(A2) For any local function g let

where λ is chosen so that the density is y Then dgjdy ^ const, and d2gL/dy2 ^
const with a constant independent of λ, ω or L

(A3) Suppose x and z are two nearest neighbor points in A with \x — dΛ\ ^ σL
for some small constant σ Then for some small constant ε,

ύ const.

uniformly with respect to the boundary condition and n
(A4) Suppose that μg

Λ

c

ω } and μc

Λ ω n are grand canonical and canonical Gibbs

states with the same boundary conditions on A and EμΛ>ω>'[ή] = n/\Λ\ Then there
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is an ε > 0 such that for any local function g,

\EμΛ,^[g] -EμC^»[g]\ ^ const. L~d

uniformly with respect to the boundary condition, λ and n. Here the constant may
depend on g.

Theorem 2.2. Suppose the Gίbbs measures satisfy the mixing condition (Al) for
all λ Then (A2-A4) hold.

Finally we remark on a convention of notations. We shall drop all superscripts
gc and c. To distinguish them, for grand canonical ensembles we have a chemical
potential subscript λ; for canonical ensembles we have a total number of particles
subscript n.

III. Outline of Martingale Approach

In this section we outline the martingale approach of [LY]. This section is almost
identical to the same section in [Y], where the LSI for the independent random
variables (with the total number of particles fixed) is proved. All difficulties related
to interactions will appear in the proof of Theorem 3.1. For simplicity of notation,
we shall assume d = 2 unless otherwise noted. Assume that Theorem 2.1 holds for
A of size L x L. Our goal is to prove that Theorem 2.1 holds for A of size L x 2L
and then for A of size 2L x 2L. As the proofs from L x L to L x 2L and from
L x 2L to 2L x 2L are identical, we will only prove Theorem 2.1 for A of size
L x 2L assuming it holds for A of size L x L. Let us order the sites in the lower
half of AιX2L lexicographically by / = 1,2,... ,L x 2L and denote the upper half of
A by Ao. Define u(2L) to be the smallest constant such that for any cube A of size
L\ x L2 with Li ^ 2L and 1 ^ L\jLi ^ 2 and any probability density / ,

E^ [f log f] ύ u(2L)(2L)2DΛ(^f). (3.1)

Proof of Theorem 2.1. Step 1. Denote by J^ the σ-algebra generated by ?/y ,
Define the marginal density Jj by

Here EμLx2L'n is the expectation with respect to the Gibbs state on ΛLX2Z, Then one
has the identity

j j j j (3.2)

Note that the summation terminates at j = L2 - 1. By the inductive hypothesis,

= u{L)L2DΛo{yff), (3.3)

where b denotes a typical bond in AQ.

Step 2. We now bound the right side of (3.2) for j > 0. Our main result can be
stated as the following Theorem 3.1 which will be proved in Sects. IV-VII.
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Theorem 3.1. Let A be a cube of size L\ x L2 with 1 g LJL ̂  2 for i = 1,2.
Assume the mixing condition (A1-A4) hold For any probability density f with
respect to μA,n let f(ηz) denote the marginal density of ηz for some z G A For
any path yzv from z to y, label the path by γl9 i = 0,..., \y\ and define

: EZVi,7,(v7), ^,-UyXd) = J K V . ^ - 9)2]dμΛ,n (3 4)
7 = 1

Define also the function

ί v2~d ifd^3,

Ψ(v)=< {\og[L/v]γ if d = 2, (3.5)

[ L{\og[Llv\Y ifd=\.

Here d is the dimension of the lattice A (d — 2 in our setting). The path yzy

will be chosen in a canonical way, e g.9 from z = {z\,zi) to (z\9yi) and then to
(yi,yi) = y Then there is a constant Cι such that for any δ > 0 and integer I
fixed there is a constant C\ such that

y£Λ

+C2u(L) Σ Ψ(\z - b\)Db(y/f), (3.6)

where u(2L) is defined in (3.1)

The form of the last term in (3.6) will be explained in Sects. 4 and 5. Applying
Theorem 3.1 to bound (3.2) for j > 0, we have

7=1

ύCλU-d Σ Σ

CML) Σ Σ Ψ(\z -
z£ΛLx2L \b-z\<,Lj(

One can check that by choosmg ( large (independent of L),

C2u(L) Σ Σ n k - b\)Db(y/f) S Su(2L)L2DALX2L(^/f) .

Hence

L J ) \ ! F j + λ - \ S 2CxL
2DΛlx2L(^f)

+2δu(2L)L2DΛly2ι(^f). (3.7)

Step 3 Combining (3 2), (3.3) and (3.7), one has

E"' *-•» [/ log mC2L
2DΛι x 2 l ( v//) + 2δu(2L)L2DALx2l(y/f)

+u(L)L2DΛΰ(^f) . (3 8)
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Switching the role of AQ and ΛLX2Z,\ΛO> and taking the average, we have

E"-*" [flogf] ύ [C2 + u(L)/S + δu(2L)](2L)2DΛ(^f). (3.9)

We can repeat Steps 1-3 once more and obtain for A of size 2L x 2Z,

^ [ 2 c 2 + u(L)/2 + 4δu(2L)](2L)2DΛ2Lx2L(^/f) . (3.10)

Since δ can be chosen as small as we wish, we have proved, from the definition
of u(lL\

u(2L) S const. + 2u(L)/3 .

From Gronwall's inequality or induction we have proved Theorem 2.1 assuming
Theorem 3.1

IV. Proof of Theorem 3.1

We now prove Theorem 3.1 Throughout this section, A denotes a cube specified in
Theorem 3.1 We divide the proofs into 4 steps.

Step 1. Let p = n/\A\ be the total density and pz = EμΛn[ηz] be the density at z.
By definition

fz(ηz = 1) = E^[f\ηz = 1] = E^[fηz]p~ι , (4.1)

where the expectation is taken with respect to μΛ,n. Note thatfz(ηz) is just a function
on a single site. One can check easily that the LSI holds trivially for Bernoulli
measures on one site. Thus one has

',) = pjz(l)\ogfz(l) + (1 - pz)fz(0)\ogfz(0)

^ const. min[pz| logp z | ,(l - p z ) | log(l - p z)|]

•EμΛ (4.2)

Here μ^n is the marginal of μA,n at z. We remark that there is a logarithmic
correction appearing in (4.2). This should not be dismissed as merely a technical
factor appearing in the very low or very high density region. In many applications
the LSI is used precisely to control the probability in this region. Because of the
particle-hole duality, we can assume the density pz is bounded by 1/2. We shall
assume pz ^ 1/2 for the rest of this paper. Note that if pz ^ 1/2 and

^ ( l ) g l θ , / ; ( 0 ) ^ 1 0 , (4.3)

then the logarithmic factor can be dropped in (4.2). This can be easily checked or
see [Y] for a proof.

Step 2. The starting point to bound the right side of (4.2) is the following,
Lemma 4.1 originated from Lemma 3.4 in [LY]. Roughly speaking, it states that the
commutator of the conditional expectation and differentiation (spin flip at one site)
can be bounded by a variance term and an exchange term involving long jumps.
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The exchange term will be bounded using Lemma 3.1 from [SY], while the variance
term will be bounded using a multiscale analysis Let us first fix some notation.

Recall that μ^n is a canonical Gibbs state on A with some fixed boundary condi-
tion and total number of particles n. Let z be a point in A and denote configurations
in A by η = (ηZi ξ) Define

Denote by v^\ the canonical Gibbs state with Hamiltonian Ho and number of par-
~ (z)

tides n. Let H be the difference

Here H is the Hamiltonian defined in (2.4). For each x G A define

Also define

F = AvxeΛ{z}Fx = (\A\ - I ) " 1 Σ Fx. (4.4)
xEΛ\{z}

Let gz be defined by

gz = exp[-H(z\ηz, ξ)]/E ^ [exp[-^(z)(»/z, 01 I 1z] = dμA

We shall use the symbol Ev^"[f;g\ηz = 0] to denote the covariance

E< [f;g \ηz = 0] = £<-[/fli \ ηz = 0] - £<'»[/ | ^z = 0]£^[fli h z = 0] .

(4.5)

This convention will be used for the rest of this paper. The following Lemma 4.1
extends Lemma 4.2 of [Y] to the interacting case.

Lemma 4.1. Recall the definitions of Txy (2.9) Then with the above notations,

g const. (1 - p ^ p - ' ^ ϋ ^ ^ t j Γ a v / / } 2 I Άz = 0] + const. Φ , (4 6)

where

I] 2 + 4Er(Λ, [f;gz \ ηz = 0]2 + 4Ev^"[f;gz \ ηz = I] 2 } .

(4.7)

the left side of (4.6) is independent of ηz
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Lemma 4.1 will be proved later on. We now continue the proof of Theorem 3.1.
By definition

V7} 2 I i/z = 0] g E%-[{Ta,/f}2(l _ ηz)

Since dvA n/dμΛ,n is uniformly bounded,

η, = 0] ύ E^[{

v

We need the following elementary fact.
For any canonical Gibbs measure (with finite range Hamiltonian) μ^n and any

z e Λ WQ have
const, g pz/p + (1 - pz)/(l - p) g const. (4.8)

with the constant independent of p. To prove this, it suffices to prove that for any
two sites z, y G Λ,

EμΛn[ηz] g const. EμΛn[ηy] , EμΛn[\ - ηz] ^ const. EμAn[l - ^ ] .

Assuming these bounds, we obtain the upper bound of EμΛn[ηz]/p by averaging over
y G A. Exchanging the role of z and y and repeating the same procedure, we obtain
the lower bound. We now prove the last bounds. Note that they holds if the parts of
the Hamiltonian involving ηz or ηx are removed. On the other hand, these parts are
bounded by a constant. This concludes the last bounds and thus establishes (4.8).

Recall the assumption p rg 1/2. Hence EμΛn[l — ηz]~ι ^ const. Combining (4.3)
and (4.6) we have

s{fjβ%) ύ const. {| logp\AvxE
μ^[{TzxJf}2} + p\ logp|Φ} . (4.9)

The rest of this step is devoted to a proof of Lemma 4.1.

Proof of Lemma 4.1. By definition of #z, vγn and covariance,γ

fz(ηz) = ηz] = ηz] = ηz] ηz]

where we have used EVΛn[gz | ηz] = 1. From the elementary inequality

and the Schwarz inequality one has

ηz = lf

z = I ] 2 -

^ 2

+2

ηz = 0]2}

- 0]2}

To conclude Lemma 4.1, it suffices to bound the last term. We need the following
lemma.
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Lemma 4.2. Suppose f is a function on U U {0} and 0 φ U. Define f(m) =
Eωum[f], where ω^m is a canonical Gibbs measure with boundary condition in-
dependent of ηo Suppose the density m/\U\ is bounded away from 1 Denote the
configuration on U U {0} by η and set ηo = 0 Then

{/(m+ l)-/(m)}2/[/(l)+/(*)] ύ Λλ + Λ2 ,

^ = const. (1 -m/\U\yιG(m+ \)AvxE
0J^[Wf(T^)- Λ/JOΓ)}2] ,

^ 2 = const. (1 - m/\U\y2Eωu'm[f,F]2{f(rn+ l)+f(m)}-1 ,

where G(m) = \U\/m, F is defined in (4.4) wzϊ/z /I \ {z} replaced by U and Txyη
is defined in (2 9) Here the constant is independent of m/\U\

Applying Lemma 4.2 with U -> Λ\ {z},ωUim = v{^n\ηz=n-m^\ and f{m) =

EVi>n[f\ηz = n — m + 1] —fz{r\z = « — m + 1), we have proved Lemma 4.1. Finally,
we prove Lemma 4.2.

Proof of Lemma 4 2 Step 1. Recall F(ηy) is defined in (4.4). From the definition
of covariance,

f(m) = Eωu'm[f] = Eωu>m[FΓι{-Eωu>m[f,F] + Eωu>»[fF]} .

For each x e Λ fixed, change the variable to η = TxOξ, where Γx0 is defined in (2.9)
Hence

Eωυ" [f(ξ)F(ξ)] = G(m)Avx€ΛE
ω^'[f(Txΰξ)ξx] ,

where G is some function of m independent of / . Combining these two identities
one has

f(m) = ~Eω»'"[F]-]Eω"°'[f;F] + G(m + l)AvxeΛE
ω^'[f(TxOξ)ξx] ,

for some constant G(m + 1). The constant G(m + 1 ) can be determined by putting
/ = 1, namely G(m + 1) = Ld/m + 1. Define EXm+ι[t] for a family of functions
t = (tx)χ(ΞΛ depending on x by

E^[t] = G(m+l)AυxeΛE
ωu'^[tτ(η)ηx] .

In particular, if t is independent of x, then Eχm+λ[t\=Eωυ>m+λ[t\. Hence Eχ»>+] [f(η)]
= f(m + 1) Using these identities,

f{m + 1) -f{m) = -Eω^[FΓlEω^[f9F] - E^[{f{T^η) - f(η))] . (4.10)

Step 2 Let f(T*oη)-f(η) denote the family of functions (f(TxOη) - f(η))xeΛ

From the elementary inequality

jfirn + 1) - ylfim) | ^ [/(/» + 1) -f(m)]2/[f(m + 1) +/(«)] ,

one has from (4.10),

lf(m+\)-Jf{m)\ ύ
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where

A3=2 {£*«" [fUη) - /fa)]}2 /[/fai + 1) +/fai)] ,

A4 = 2Eωum[f;F]2Eωu>m[FΓ2[f(m + 1

From the Schwarz inequality
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< 2EXm+

By definition, E*^ [f(η)] =f(m + 1). Also, from (4.10), one has

Eχ^[f(T*oη)] = Eω^[FΓιEω^[f;F] +f(m).

By definition, F is bounded above and Eωum[F]~ι is bounded above by

Eωu'm[F]'1 <, const. Eωum[Avx(l - ηx)]~ι ^ const. (1 -m/Ld)~ι .

Together with the assumption that m/\U\ is bounded away from 1,

Eχm+1[f(T*oη)] ύ const. /(m)(l - m/\U\) .

Hence

η) + f(η)][f(m + 1) +f(m)Γι S const. (1 - m/\U\Γι

Hence we have proved A3 ^ A\ with A\ defined in Lemma 4.2. Using again the
bound on Eωum[F]~ι, we have A4 ^ A2. This proves Lemma 4.2.

We now return to the proof of Theorem 3.1.

Step 3. The exchange term in (4.6) can be bounded by the Dirichlet form using the
following lemma from [SY]. We shall reproduce its proof in the Appendix.

Lemma 4.3. For every function u on {0,1}'71' we have

E»«-[(Tzyu)2] ί co\z - y\Dj2y{u),

where Co is a constant depending on the Hamiltonian and Dy is defined in (3.4).

Using Lemma 4.3, we can bound the exchange term in (4.6). Hence from (4.9)
the entropy is bounded by

p| logp|Φ 1 . (4.11)

J
The first term on the right of (4.11) up to a factor | logp|, is of the form we need.
Let us focus on the case where p is bounded away from zero first.

Our next task is to bound the variance term Φ. The following result, to be
proved in the next section, is the key estimate of this paper.
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Theorem 4.4. Suppose there is an u(L) such that for any probability density f

£""*•" [/log/] g u(L)L2AvbeΛκDb(^f) (4.12)

for all K ^ L Then for any local function h at z e A {with A a cube of size L x 2L
described before (3 1)), δ > 0 and a large integer / « L , there is a constant C\
such that

(f;h)lin ^ const. u(L)
\

Ψ(\Z - b\)Db(y/f)

-CxL
2-dDA{^ff). (4.13)

Here Ψ is defined in (3.5)

We now apply Theorem 4.4 to the measure v^J,/z=o The Dirichlet form on the

right side of (4.13) are w.r.t this measure vA n\}]z=Q. Repeating the argument before

(4 9), we have from the assumption p ^ 1/2,

ηz = ot]S const. p~xEμ*>"[(Tbyfi?l α = 0,1 .

We can now bound the middle term of Φ in (4.7) by

S const. Ev*>»[f \ηz = 0] p-χu(2L) Ψ(\z - b\)Db(y/f)

The factor Ev^•»[/ I Άz = 0] = / z ( ^ ) appears because / is not necessarily a proba-
bility density with respect to v^ } J^ = 0 . Clearly,/z(0)/[/z( 1) +/ z(0)] ^ 1. This gives
a bound on the middle term of Φ, namely

Άz = of

< const p~ιu(2L) Ψ(\z - b\)Db(y/f)

The last term in Φ can be bounded in the same way. For the first term in Φ,

from the Schwarz inequality, Ev%»[f;F \ ηz = I] 2 ^ / ί ι ; x e \ { z } ^ v ( ^ [ / ; F x | ηz = I ] 2 .
,(z)

We can now apply (4 13) to bound each term E Λn[f\Fx \ ηz = 1] Repeating the
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previous argument and averaging over x e A \ {z}, we have

[/z(l) +fz(0)ΓιE^[f;F I η2 = I]2

^ const. p-λu(2L)AυxeΛ £ Ψ(\z - b\)Db(/f)
\x-b

+δp-ίu(2L)L2-dDΛ(s/f)

The summation over x and b can be estimated as in Step 2 of the proof of Theo-
rem 2.1 in Sect 3. By choosing tf large enough, the first term on the right side is
bounded by δp~ιu(2L)L2~dDA(\/~f). Summarizing, we have proved

Φ £Ξ const. P~1QL ,

where

QL = CιLAΌyeΛD^(y/f) + δu(2L)L2'dDA(y/f) + CxL
2-dDA(^ff)

+const. u(2L) £ yflz - b\)Db(y/f). (4.15)

Together with (4.11) we have thus proved Theorem 3.1 unless p —» 0. More pre-
cisely, we have

βL. (4.16)

Step 4. Finally, we have to consider the low density region. For any integer K ^ L,
let 3FK be the σ-algebra generated by {ηy : y φ UK} where Uκ is the cube in ΛL

containing z as a boundary point such that dist(z,Λ./, \Uκ) = K + I and z is a site
in A as defined in Theorem 3.1. Define the marginal density

Let Qκ(^κ) be the corresponding Q in a cube of size AT with the boundary condition
on Λ\Uκ given by # # .

From (4.16) (with L replaced by K) and the elementary bound a2 ^ 2b2 +
2

- ηz)f I J^]/^-[( l - ηz) \ 9K\

/EμΛ »[ηz I &κ] . (4.17)

Let PΛ: be the density in the cube UK and denote Kdpκ = nκ. By definition,

EμA- [ηz\Pκ'\=Eμvκ. κ[ηz-\.

Applying (4.8) to our setting, we have

const. ^ EμAn[ηz \ ^κ]/pκ S const. .
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Hence

E^»[fηz I &κ\ ^ const.[p*/(l - Pκ)W^[{\ - ηz)f \ &κ] + 2Qκ{&χ) . (4.20)

Suppose

Ld/Kd ^ p7ι/2. (4.21)

Since pκ ^ ρzL
d/Kd, we have (1 - p * ) " 1 ^ 2. By definition, £ ^

const(K/L)QL. Hence by taking the expectation of (4.20),

EμΛ"[fηz] ^ const. pz(Ld/Kd)E^*[f(l-ηz)]+2(K/L)QL

In other words, from the definition of/ z (l),

= 2/z(0) (L/Kf + (K/L) ^ — , (4 22)

provided (4.21) holds. Optimizing over K, we obtain that the optimizer is deter-
mined by

L/K =

Therefore,

.d/id+X)

/ z(l) < const /z(0) ( ^ — ) - const. fz(0)[/{d+[) ( — ) , (4.23)^ \ 4. f /f\\\/(d+\)

provided one chooses

/ Q \ 1/(̂ +1)

( ^ ^ p-W/2 . (4.24)

1 fz(0)pz ^ QL ̂ fz(0)pΓι/d/2d+ι. Then (4.23) holds. Since pz ^ 1/2 and
/ z(0)(l - p z ) S 1, one has / z(0) g (1 - p 2 ) - 1 g 2 Together with the bound
xlogx ^ const. xq if x ^ 1 and # > 1, one has from (4.23)

Pz/2( 1)logΛ(l) g const. p . / z ( l ) ( ί / + l w ^ const. β L ,

provided/z(l) ^ 1. Since the left side is negative if/ z(l) < 1, we do not need the

assumption / z ( l ) ^ 1. Using the bound/z(0)(l - pz) ^ 1,

(1 -Pz)/ z (0) log/ z (0) g - ( 1 -Pz)/ z (0)log(l -pz) ύ 2fz(0)pz ^ 2QL .

Therefore, the entropy is bounded by

^ ) S const. QL (4.25)

Case 2 QL ̂ / z ( 0 ) p z . One has from (4.17) (with K = L ), / z ( l ) ^ 4/ z(0) ^ 8.
From (4.3), the logarithmic factor in (4.16) can be omitted. This proves (4 25) and
hence Theorem 3 1 in this case.
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Case 3. QL Z fz(0)pJVά'/2d+i. Hence / z(0) ^ 2d+xp\'dQL and we can replace
(4.22) by

/ z ( l ) ^ 2d+2[{LdIKd)p\lo +p;\K/L)]QL .

Again, from (4.3) we can assume that/ z (l) ^ 4/ z(0), for otherwise (4.25) follows

immediately. Hence from (4.16) the entropy is bounded by s ^ 2pz\ logp z | / z ( l) .

Let L/K = p-χldl2 so that (4.21) holds. Then/Z(l) ^ 16 x 2dp7(d~l)/dQL Recall

s S 2pz\ logPz|/ z(l) This proves (4.25) and concludes Theorem 3.1.

V. Large Deviation Estimates

We shall prove some large deviation estimates in this section. They are estimates
based on the local limit theorem, which will be stated in Sect. VIII and proved
in Sect. IX. These estimates will be useful in Sects. VI and VII. Because of the
technical nature of this section, we suggest that the reader skip this section until its
results are needed in Sects. VI and VII. The key result is the Theorem 5.6 stated at
the end of this section.

Suppose Λ = Λι is a cube of width L and μL,n is the canonical Gibbs state
with the number of particle n and a fixed boundary condition. For applications in
the next two sections, A may be a rectangle as described in the paragraph before
(3.1). All our results hold in that case with only notational changes. For notational
simplicity we shall assume A is cube of width L for the rest of this section. All
results in Sects. V-VΠ depend on Assumptions (A1-A4) unless otherwise stated.

Let U be a subcube of A with width L/y for some constant y independent of L.
We require that

Aι \ U = a union of cubes of size L/yf (5.1)

for some constant / independent of L. In other words, we require that Aι\U has
no "thin" region. This is because the mixing assumption can be violated if such
pathological regions are allowed [MO]. Denote the density in U by r\υ and the
expected density by

pcu = E^'Vivl p% = E^\r\υ\ . (5.2)

If U — A, we shall drop the subscript U and choose λ such that pc — pgc = p =

n/Ld.

Theorem 5.1. Suppose g is a smooth function on (0,1) with

g"(y) g c, g' ύ c, g(p) = 0 . (5.3)

Let

C(y) = g(y) - d'(Pu)(y -PV)- βiPu) •
Then

β-ιL-dlogE^{exp[βLd{ζ(ήu)}]} ^ δβ (5.4)
provided that

β^βo^l (5.5)

Here δ is a small constant and βo is a fixed constant. Furthermore, for some
constant C

(f;g(ήu))2 ^ Cs(f) (5.6)

for any probability density f with respect to μL<n.
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Almost all constants for the rest of this paper depend on y Sometimes we obtain
explicitly dependence on y. All our results hold with little changes regardless of the
value of y provided y is independent of L, which is the assumption for the rest of
this paper.

We need the following lemmas to prove Theorem 5.1. The following Lemma 5.2
is useful when cutoffs are needed. For the rest of this section we shall use ε or δ
to denote small positive numbers and use β to denote arbitrary positive number

Lemma 5.2. Let v be a probability measure Suppose g is a function satisfying

Wg-υW^L-W-*, (5.7)

where v denotes the expectation of g Then for any β positive

β-ιL-d\ogEv{exp[βLd(g-v)]} g δβ , (5.8)

and δ —> 0 as L ̂  oo If g only satisfies (5.7) with ε = 0 then (5 8) still holds for
some δ independent of L

Proof of Lemma 5 2. Case 1 β ̂  /,-(<*+ε)/2 From the assumption on g,

β~ιL-d \ogEv{Qχp[βLd(g - v)]} ̂  \\ g - υ W^ ̂  L~(d/2)-£ ^ δβ .

Case 2 β ̂  L~(d+^2. Hence βLd \\ g - υ ||oo ̂  L~ε/2. We can expand the expo-
nential up to the second order to have

β-ιL-dlogEv{cxp[βLd(g - v)]} ̂  βLdEv[(θ ~ v)2] ̂  βL~ε .

The higher order terms are even smaller. This concludes Lemma 5.2. D

Recall the entropy bound

jfXdμ ^ β~]L-d log f cxp[βLdX]dμ + β-ιs(f) (5 9)

for any probability density / . This bound is a simple consequence of Jensen's
inequality From Lemma 5 2 and (5.9), a function X with small L°° norm satisfying
(5.7) can be bounded by

(f X) ^δβ + β-ιs(f) (5.10)

Optimizing β, we have
(f X)2 S δs(f).

This will be sufficient to bound (f,X)2 for all purposes in this paper. Hence any
term satisfying (5.7) is negligible and will be dropped for the rest of this paper

Proof of Theorem 5 1, Part I We first prove (5.4). Suppose p g L~d/2+ε Then

From (5 3) one has

COO ^ const. \y - pcu\2'= t(y) (5 11)

It follows that \ζ(ήu)\ ^ L-d+2ε and (5 7) is satisfied Hence (5 4) follows from
Lemma 5 2 For the rest of the proof in Part I, we shall assume that p §: £- ί / / 2 + ε

The following lemma is the key input
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Lemma 5.3. Suppose μι>n is the canonical Gibbs state with density p = n/Ld satis-
fying p ^L~dl2. Recall pc

u=EμL>n[ήu]. Then there is a large constant C > 0 such
that

PμL>n[\ηu ~ Pu\ ^ \y-PuW S exp[-const (Ld/γd)\y - p^2]

provided that \y - pc

υ\ ^ Cy^2L~^2\

Assuming this lemma, we now continue the proof of Theorem 5.1.
Suppose first β ̂  L~lOd. We can expand the exponential in (5.4) and prove

Theorem 5.1 directly. This is straightforward and we omit the detail.
Suppose L~m S β S βo- First, we consider the region \tfv - pc

v\ ^ L^d/2)+ε.
From Lemma 5.3 and (5.11),

- Pcu\ ^

Σ ^[βL'KyW^inu = y)

+ Σ exp[βLdt(y)]P*:*(ήu = y). (5.12)
y.iy-p^-L-w+t

We can overestimate PμL>n{Ϋ\u = y) by Pμ^n(r\υ ^ y). From Lemma 5.3 and (5.11),
we have

' ^y)ύ exp[-const. Lε]

for (y - pc

υ) ^ L~{dl2)+E. Hence

^ - { e x p t ^ C ^ M l d ^ -pcu\ ^ L- ( ί / / 2 ) + ε)} ύ exp[-const. Lε]

This proves that the contribution of this region to (5.4) is negligible.
Finally we have to estimate the contribution of the region \ήσ — pc

υ\ ^ £
From (5.11), we have that |C(//t/)| ^ i~d+2& ^ o r s o m e s m a π positive constant ε.
Hence ζ satisfies (5.7) and (5.4) follows from Lemma 5.2. D

We now prove Lemma 5.3. First we introduce some notations. Define the
pressure

lίΣηx)] = (yd/Ld ) log M(θ,p),

where p = ή = n/Ld denotes the total density in AL. From the Chebyshev inequality,
we have

tiv ̂ y]S -h(y,p) : = - s u p { ^ - φ(θ9p)} . (5.14)
θ

Similarly, define

R(θ,λ) = (yd/Ld)logE^=° [exp
L

Σ
xeu

,p) = -sup[λydp-R(θ,λ)]. (5.15)
λ

The following lemma gives a relation between φ and p.
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Lemma 5.4. If p ^ L~dl2 then

I φ(θ,p) - (p(θ,p) - p(θ = 0,p)) I g const. (//L*) .

Lemma 5.4 will be proved in Sect. 8. We need some more notations. Recall
that μL^χ is the Gibbs state on a cube ΛL with chemical potential λ and some fixed
boundary condition Recall U is a subcube of size L/y with the property that Λι\U
is "fat" (5 1). Let μι,θ,λ be the probability measure with density relative to μL,;.=o
given by

( ) z(θ,λyι, (5.16)

where Z(θ,λ) is the normalization. Clearly, when θ — 0 the measure μL,θ=o,?. reduces
to μLiλ.

We claim that μ̂ ,o,A satisfies the mixing condition (Al) for all 0 and λ and for
all cubes if μ satisfies the mixing condition (Al) for all λ and for all cubes. The
issue is standard, therefore, we only sketch the idea. Roughly speaking, our goal is
to prove the correlation function of two local functions fx and gy at x and y resp.
decay exponentially with \x - y\. Suppose x e U and y £ ΛL\U. Then

EμLΛ'[fx : 9y] = EKo-'[gy : E^[fx\ηX9x e ΛL\U]] .

The conditional expectation, EμL>°'}[fx\ηx,x £ AL \ U] depends on the configurations
on Λι\U only through the boundary condition From (A. 1) the dependence of
Eμi'°'/[fx\ηx,x £ ΛL\U] on the configuration at a fixed site z in the boundary is of
order exp [—const \z — x\] This proves

\EμLΛ'[fx - gy}\ g exp[-C|x - y\].

The other cases, x, y £ U or JC, y G AL \ U, can be proved in a similar way.
The following lemma provides a bound on a special correlation needed in the

proof of Lemma 5.3

Lemma 5.5. If p ^ L'd/2 then

Lemma 5 5 will also be proved in Sect. 8. We return to the proof of Lemma 5 3.

Proof of Lemma 5 3 We first bound the probability of the event in Lemma 5.3
by (5.14). From Lemma 5.4, up to an error (yd/Ld), we can replace h in (5.14) by
/ — p(0,p), where / is the Legendre transform of p, namely

f(y,ρ):=-svφ{θy-p(θ9p)}.
θ

To prove Lemma 5.3, from (5.14) it suffices to prove that

f(y,p)-p(0,P)*C(y-pc

u)
2

for \y — pcjj\ ^ Cyd^2L~(d/2\ The error ydL~d, is negligible in this region since
ydL-d < (Ld/yd)\y - pc

v\
2. We claim that

Ip^-p^l ^ydL-d'2 . (5.17)
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Assuming this bound, to prove Lemma 5.3 we only have to prove that

f(y,p) - p(0,p) ^ C(y - p%)2 . (5.18)

We now prove (5.17). From Lemma 5.4,

I Φ(θ9p) - (p(θ,p) - p(θ = 0,p)) I ̂  const. (γd/Ld) ,

if p ^ L~d/2. Note that from the convexity of φ,

-θ-ι[φ(-θ,p)-φ(O,p)] ί (ήu)^ ύ θ-ι[φ(θ,p)-φ(0,p)].

A similar bound holds if (ήu)μLtn = ρ\j is replaced by {ήu)μL!λ = p% and φ is
replaced by p. Choosing θ = L~d/2yd/2, we obtain (5.17) provided p ^ L~d/2.
Clearly, (5.17) holds trivially if p g L~dl2.

We now prove the (5.18). From the Taylor Theorem, it suffices to prove

p) = />(<>, p ) ,

d 2 f ( y , p ) / d y 2 ^C.

The first two identities follow from the definition of pgj. We now prove the last
bound. By definition,

d2f(y,p)/dy2 = (d2p(θ,p)/dθ2yl.

From simple calculation,

d p ( θ , p ) / d θ = (

d 2 p ( θ , p ) / d θ 2 = ( ^ , , ^

' ' ή u ) ^ g C , (5.19)

where the last bound follows from Lemma 5.5. This proves d2f(y,p)/dy2 ^ C and
concludes Lemma 5.3. D

Proof of Theorem 5.1, Part II. We now prove (5.6) assuming (5.4) holds. From
the Schwarz inequality

Q\+Qi, (5.20)

where

Q2 = β-ιL-

and ζ is defined in Theorem 5.1. We can use (5.4) to bound Q\ provided β S βo-
By definition of φ,

Q2 = β-ιφ(θ,p) - θpc

U9 θ = 2βydg\pcu).
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We shall prove

Qi^Cβ. (5.21)

Suppose that β ^ CL~d/2. Then β2 ^ CL~d Hence

β~]\φ(θ,p)-[p(θ9p)-p(θ = O9p)]\ £ β~ιL~d g const β.

Therefore, it suffices to prove

β~1\[p(θ,p)-p(O,p)]-θpc

u\ ^ const β.

From (5.17) and assumption on β, the error

\δp(θ,p)/dΘ\o=o - Pcu\ = \p9u ~ Pu\ ^ CL~d'2

is bounded by Cβ. We now expand p in θ. Since the second derivative of p is
bounded by Lemma 5.5, we have

β-ι\φ(θ9p) - [p(θ,p) - p(θ = 0,p)]| ^ C\p% - pc

υ\ + Cβ .

We have thus proved (5.21) provided β ^ CL~d/2

Suppose β ^ CL~dl2. We can apply Lemma 5 2 in this case More precisely,
let β = βL~d/2 and replace g by g — L~dl2g. Hence we can apply Lemma 5 2 with
β and g. This proves (5 21) in this case Putting the bounds on Q\ and Q2 together,
we have proved

β~ιL-d\ogE^"{Qχp[βLd{g(ήu)-g(pc

u)}]} ^ Cβ (5.22)

provided β ^ β0. But (5.22) holds trivially if β ^ β0. Hence the condition β ^ βo
can be dropped.

Let X = g{ήjj) - g(ρc

υ). From (5.10) and (5.22) one has

(f,X) SCβ + β-ιs(f).

Let β = Cλφ(f). We have

(f,X)2 ^ const. s(f)

This concludes (5.6) and finishes the proof of Theorem 5.1. D

We now provide a class of functions satisfying the assumption (5 3). Suppose g
is a local function at z G ΛL which may be near the boundary of ΛL. Define gjj by

gu = EμL'"[

where ΪFJJ is the σ-algebra generated by {ΐ]y\y ^U} Since the total number of
particles in /i/^ is fixed, r\υ — Avxey ηx is measurable with respect to ^ υ . By
definition gu depends on the boundary condition on dU. Let ω = (0)1,(02) denote
the boundary condition of U with ω\ (ω2 resp.) denoting the boundary condition
on ΘΛL Π dU (dU \ dΛi resp.). We require that

dist(z, dU \ oAL) = L(4y)~ι (5.23)
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This assumption will hold for all applications in this paper. Let (Juiy) be the ex-
pectation of g with respect to the grand canonical Gibbs state with the boundary
condition ω and density y, i.e.,

(5.24)

where λ is chosen so that the density is y9 i.e., EμLλ\f\υ = y\ From (A.4)

d'2-*). (5.25)

From (5.23) and the mixing condition (Al) the dependence on the boundary con-
dition α)2 is bounded by 0(L~d). Let

gu(y) = E^ig], (5.26)

where μL,ωuλ is the measure on U with boundary condition ω2 = 0 and λ chosen
such that'jS^W'p/j,] = y. Then

\9u-§utiu)\ ύO(L-d'2-*). (5.27)

From (A2), gυ satisfies (5.3). Furthermore, from the remark after (5.10) the differ-
ence between gjj and gυ is negligible. We have thus proved the following theorem.

Theorem 5.6. With previous notations and assumptions, for any probability density
f with respect to μι,n,

( 5 2 8 )

for some constant C. Furthermore,

β-ιL~d logEμί» {exp[βLd {^(%) - g'uiPuXVu ~ Pu) ~ 0u(Pu)}]} ^ δβ ( 5 2 9 )

provided (5.5) holds.

VI. Two-Block Estimates and Multiscale Analysis

We now prove Theorem 4.4. The basic ingredients for proving Theorem 4.4 are a
multi-scale estimate, a large deviation bound (Theorem 5.6) and a precise statement
of the two-block estimate. In this section, we shall use the two-block estimate and
multiscale analysis to prove part of Theorem 4.4. We then use a large deviation
estimate from Sect. 5 to conclude Theorem 4.4 in Sect. 7. Let us first define some
notations.

Recall that A is a cube of size L\ x L2 with Lz about the size of L as defined
before (3.1). Suppose q is a local function at z e A which may be near the boundary
or corners of A. Fix an integer /. Let q^ be defined by

gU) =EμL>n[g I Pj] , (6.1)

where J*y is the σ-algebra generated by {ηy;y <£Aj with Aj = {y e A : \y — z\ >
fo}}. Since the total number of particles in μ^n is fixed, ήj = Avx^^jΆx is measurable
with respect to J*y. Suppose £m+2d+2 — 2L for some integer m. The choice of the
strange exponent m + Id + 2 is for convenience and will become clear later.
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To avoid pathological cases, we have to redefine the cubes A3 slightly. Since the
site z may be in the corner, the set Aj+\ \ Aj may not be a "fat" region according
to (5.1) (with A replaced by Aj and L/y replaced by fl). In this case, we shall
enlarge Aj to AJ+\ to eliminate the pathological case. Certainly, there are only a
finite number of pathological cases and the changes will not affect our estimates.
We shall not comment on this further in this article.

For convenience of notation, we use

U = Λ™, nυ=nm, gu = g(m), y = ί2d+2. (6.2)

Also by (5.23), we can replace gυ by gυ whenever needed. We remind the reader
that cjuiy) is nothing but the expectation of g with respect to the grand canonical

gc

Gibbs state on U with E^^lfjy] = y and some fixed boundary condition described
in the paragraph before Theorem 5.6

Lemma 6.1. Recall the definition of u(L) in (3.1). Assume that the mixing con-
dition (A1-A4) hold Then

{f,g)2

μLn ύ const. (uu{L)
\b

where gυ is defined in (6.2) and Γ+2d+2 = 2L

Proof Recall the following martingale decomposition for any function g,

m-\

</;0k- = Σ (f;gU) - * 0 + 1 V . + (f',9u)μL,., (6.3)

and for each j fixed,

{f.g(j) _ gu+n)μ^ = E^ [E^-[f(έJ) - g(l+V))WJ+Λ • (6 4)

Since the total number of particles in Λ is fixed, the total number of particles in
Λj+\ is also fixed once !Fj+\ is given. From Corollary 5.7 and the definition of u
(3 1),

{f;gU) - <7(y+1)>L ^ c o n s t ^du(LY'{2-d)DΛj+i{^f). (6.5)

Using this bound and the Schwarz inequality that a ^ β~ι(m + 2 — j)2a2 +
(m + 2 — j)~2 for any positive β, one can bound the variance by

m—\ m—\

Σ (fl9U) - 0 ( / + 1 V Λ ύ const, β Σ (m + 2 - j)~2 + const β~^2du(L)
7=0 7=0

x Σ Σ (m + 2-j)W2-d)Db(y/f). (6.6)
;=0 66/1,4-1

Exchanging the order of summation in the last term, the summation over j can be
bounded by

Σ (m + 2 - y ) 2 ^ 2 - ^ ^Ψ(\z-b\), (6.7)
j:ί^\b-z\

where Ψ is defined in (3.5). Optimizing over β one has

Γm-l I 2

{ Σ (f,gU) - gU+l))μLH \ ^ const. fdu{L) Σ n i * - b\)Db(y/f).
[j=0 J b:\b

This concludes the proof of Lemma 6.1. D
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From Lemma 6.1, it suffices to bound the last term {f\gu)2

μLn in order to con-
clude Theorem 4.4. We state it as the following lemma.

Lemma 6.2. With the same notations and assumptions as in the previous lemma,

(/; gu)
2

μLn rg const. [C(δ) + δu(2L)]L2-dDΛ(y/f) , (6.8)

where δ is a small constant and gu is defined in (6.2) with £m+2d+2 = 2L.

In this section, we shall only prove parts of Lemma 6.2, stated as the following
Lemma 6.3. The rest will be presented in the next section.

Lemma 6.3. Suppose that for some constant δ\ > 0,

u(2L)L2-dDA(^/f) ^ δλ . (6.9)

Then
(f;gu(ήu))2

μL,n S const. L2-dDA(y/f) . (6.10)

Here the constant depends on £ and δ\.

We now prove Lemma 6.3. The following Lemma 6.4 will be needed. For those
familiar with hydrodynamic limits, it can be understood as a statement of the two-
block estimate.

Lemma 6.4. Suppose ξ = (η,ζ) are configurations on Λk U A^. Let v be a canon-
ical Gibbs measure on Λk U Λk with a fixed boundary condition. Define for all
xeΛk ξ(x) = (η(x\ζ(x)) by

x, if y =

and

In other words, ξ^x>}\ denotes the configuration obtained by exchanging ηx and ζx.
Define the Dirichlet form Dηζ by

Du{f) = D^ + D«> + Σ D(;}(f), (6.11)
χeΛk

where D^ (D^ resp.) is the usual Dirichlet form on the configuration η (£ resp.)
alone and

Σ / [ / ( £ W ) - f(ξ)fdv(ξ). (6.12)Σ

Then there are constants C\(k) and C2(k) such that

SftfXn - O2dv(ξ) - C2(k) ί Cx{k)Du{^f), (6.13)

and lim^oo C2(k) = 0.
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Proof of Lemma 6 4 First, the constant C\(k) can be chosen as large as possible
(depending on k). Let C2(k) = J(ή — ζ)2dv be the expectation of (ή — ζ)2 with
respect to the v measure. Hence lim£->oo C2(k) = 0. Note that the right side of
(6.13) vanishes only if the left side vanishes Since the configuration space is finite,
there exists a constant C\(k) so that (6.13) holds. More precise dependence of C\(k)
and C2(k) can be obtained But we will not need these bounds here. D

Proof of Lemma 6 3. For any two cubes α, β of size k in A one has from
Lemma 6.4,

If(i* ~ ήβfdμL,n ύ C}{k)D%Jί(^f) + C2(k) .

Here D^β is defined in (6.11) with the cubes α, β taking the roles of Λ^ x Λ^ in
the lemma. By definition D^β involves exchanging particles in the cubes α and β
From Lemma 4.3, we can bound these exchanges by the usual Dirichlet form with
only nearest neighbor exchanges. Averaging over α in Λm = U and β in A and then
using the Schwarz's inequality, we have

If(ηm ~ pfdμun ύ Cx(k)L2-dDA{^/f) + C2(k) . (6.14)

From (5.27), we can replace gυ by gυ in proving Lemma 6.3. From (A2), g is
uniformly Lipschitz continuous. Therefore, one has from (6.14),

f ^ const. E'ltiv - p)2]

^const. [Cx(k)L2-dDΛ{^f) + C2(*)] .

Choosing k large enough and using the assumption (6 9) we conclude Lemma 6.3

VII. Proof of Lemma 6.2

Let us summarize what we have proved so far. From Lemma 6.3 we can assume
that / satisfies

[u{2L)L2~dDΛ{^f)^ g <5, . (7.1)

Recall the definition of gσ in (5.26). As remarked at the end of Sect. 5, we can
replace gυ by gυ Hence we have to prove

{f\cJu)2μLn ύ const. [C(δ) + δu(2L)]L2~dDji(\/~f) (7.2)

under the assumption (7.1).

Step 1 We can decompose

where w = (g)(pcu) and pc

υ = E^'^ήjj] is the density. The second term Ω2 in (7.3)
can be bounded with the following Lemma 7.1.
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Lemma 7.1. Suppose the mixing conditions (Al) and (A3) are satisfied. Then for
any probability density f and any two nearest neighbor sites x9 y with \x — Λc | ^

λ

{Ef[ηx-ηy}}2 Sconst. u(2L) Σ \b - x ^
\b-x\ί(

Σ, \b-x\-"-'Db(y/f). (7.4)

Here £ is any integer, C(/) is a constant depending on / and u(L) is defined in
(3.1).

Proof. Let h = ηx — ηy. Recall the definition (6.1) and the σ-algebra #/. Rewrite
the left side of (7.4) as

For each j fixed, from the definition of conditional expectation,

(/;h { j ) - A ° + 1 V » = EμL-"[EμL

Consider the eigenvalue problem (with k =

Here μ7+i = μL,nWJ+x and Dj+\ is the Dirichlet form with respect to μ/+i By

definition of u(k), we can replace [u(k)k2Dj+\(y/J)] by the entropy kds(f/μJ+\) to

have a lower bound. From the entropy bound (5.9) one can bound

δ(J) by

<?(/) S β^k-^-'logf exp[βk1+d+ε(h(J) - hu+l))]dμj+x .

From (A3), one has

II £ μ y + 1 [ηx - Άy\ llco ̂  const. k~W2)~ι~ε. (7.5)

Hence

^ k1+e\\E^[ηx - ηylW^ S const,

Since / 'f(hU ) - h(j+^)dμj+χ = 0, together with Lemma 5.2 one can bound δ(f)

by βk~}~ε. To summarize, we have proved

for all β > 0. Optimizing over β, we have

Summing over j and dividing the summation into j —\ and j > 1, we have proved
Lemma 7.1. D
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We now return to the proof of Lemma 6.2. For any constant σ <C y rewrite Ω2
as Ω2 = Ω3 + £24, where

Ω3 = C(f;Avxm\x_Λc^σLηx)μLn = C(f',Aυxea\x_Λc\^σLAvyeΛ(ηx - ηy))μLtn ,

Ω4 = Cσ(f,Avxea\x_Λc^σLηy)μLίH. (7.6)

We can decompose Ώ3 = Ω5 + Ωβ with

^5 = C(f9AvxeUi\x_Λc\^σLAvyeΛί\y_Λc\^σL(ηx-ηy))μLtn,

Ω6 = Cσ(f;AvyeΛΛy-ΛclύσL ηy}μL>n. (7.7)

From Schwarz's inequality, Ω2 (7.3) can be bounded by Ω\ ̂  Ω\ -f Ω\ + Ω2

6.
Since Ω4 and Ωg are similar, we can absorb Ω4 into Ωβ. Note that there is a

factor σ appearing in the definition of Ωβ
We shall bound Ω4 in the last step. We now bound Ω5. Connect the site x to y

by a path yxy with |y| ^ const. L. There are many choices of yxy. For example, in
dimension 2 one can fix a canonical choice by first connecting x = (JCI,JC2) to (x\,y2)
via a straight line parallel to the jμ-axis. Then connecting (x\,y2) to y = (y\,y2)
via a straight line parallel to the x-axis. Rewrite

Ivl

i=\

where \y\ is the length of y and we assume that y\ = x9 y\y\+\ = y. By Schwarz's
inequality

(f\Άχ - ny)\Un ^ c o n s t

where we have bounded \y\ by const. L. We can now apply Lemma 7.1 to bound
the last term Summing over x, y, we can bound Ω5 by

Ω\ g [const + δu(2L)]L2-dDΛ(y/J) . (7.8)

3 We now bound Ωi (7.3). From the entropy bound (5 9), it is bounded by

Ωi ^ β-ιL-d\ogE^'^βLd^gu(ήu)-w(ήu-pc

u^

(7.9)

where pc

υ = Eμι'n[ήu] is a constant. From Theorem 5.6 the expectation in (7.9) can
be bounded by

β-χL~d XogE^ I exp \βLd{§,;(%) - w{ήυ - p^)}] | ^ δβ

provided that β ^ βo <C 1 (5.13). Here δ is a small constant. Optimizing over β in
(7 9) one has

= δu{2L)L2-dDΛ{^f) (7 10)
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provided that

β = δ-ι/2[u(2L)L2-dDΛ(^)f2 ^ β0 .

The last bound holds by choosing δ\ in the assumption (7.1) sufficiently small.
Hence combining (7.3), (7.8), (7.10) we have thus proved

(flSutiu))2^ ^ [const. + δu(2L)]L2-dDΛ(y/f) + Ω2

6 (7.11)

with Ωβ defined in (7.7), provided that (7.1) holds. Combining with Lemma 6.1,
we have proved

;g)2

 n ^

+2[const. + δu(2L)]L2-dDΛ(^/J) + 2Ω\ (7.12)

for any local function g.

Step 4. Finally we bound Ω6. Replacing g in (7.12) by ηz and averaging over
z G Λ9 \z — Λc I ^ σL, one has

σ-2Ω2 ^const. ί2du{2L)AυzeMz_Λc^σL Σ Ψ(\z - b\)Db(y/f)

+[const. + δu(2L)]L2-dDΛ(^f) + 2Ω\ ,

here we have dropped unimportant numerical factors. The first term on the right

side is bounded by const. u(2L)L2~dDΛ(Λ/J) We have thus proved

Ω\ £ [const. + δu(2L)\L2-dDA{^f).

Using this bound in (7.11) we have proved Lemma 6.2 assuming (7.1). To-
gether with Lemma 6.3 we have proved Lemma 6.2. This concludes our proof
of Theorem 2.1 except the proof of (A2-4) and Lemmas 5.4 and 5.5.

VIII. Proof of Theorem 2.2 and Lemmas 5.4, 5.5

In this section we prove Lemma 5.4, 5.5 and Theorem 2.2. For the rest of this
section we assume assumption (Al) holds for all λ unless otherwise stated. We
start with (A2) and Lemma 5.5 concerning only the grand canonical ensembles.

Proof of (A.2). First of all, notice that as p —• 0 one has λ —» — oo. Hence the
Gibbs state can be understood as a perturbation of the independent measure by the
Hamiltonian H. If H = 0, one has a independent measure and (A2) can be checked
directly. If p ^ ε or p ^ 1 — ε, (A2) follows from the standard cluster expansion
[R] and we omit the details. We now consider the case p is bounded away from
0 or 1.
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The derivatives of g can be computed as.

dλ I
dyά(y) = dλg(y)-r- = { g;

oy \

OA

- 3

μL,,

κ,Σnχ

Here the expectation is with respect to the grand canonical Gibbs state μu^ with λ
chosen to give the correct density p From (A. l ) f o r ε ^ p ^ l — ε the covariances
can be bounded by

Avxr\x\ ΣΆχ\ΣΆχ

g Σix) ^ const , (g Σ^Σ^x) ^ const
\ x I μL/ \ x x lμL/

Furthermore, we claim the following bound on the compressibility holds

for some constant Cp depending on p. Hence gυ satisfies (A2) in this region as-
suming this bound on the compressibility.

Finally we have to prove the last bound on the compressibility. Recall the defi-
nition of σx from (2.8). For any local functions / and h,

[h(σxη) - h(η)]

= - ( f(η) [exp {-H(σxη) + H(η)} + 1] [h(σxη) - h(η)]

Let
g = -[exp{-H(σoη) + H(η)} + 1] [h(σoη) - h(η)]9 h(η) = η0

Denote by gx the translation of g to x Recall the range of interactions in the
Hamiltonian is one. Let Λ° denote the interior of A defined by A0 = {x E A : |JC —
Ac\ > 2}. From the Schwarz inequality,

{Ld'2AvxeΛ(ηx - p)}

x \Ld({Avx€Λogx}
2)

I x 'μ
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By the definition of g,

\
AvxeΛogx, Σ (ηx - p) ) = AvxeΛo ((1 - 2ηx)

2) = 1 .
x I μux

Here we have used (1 — 2ηx)
2 = 1 since ηx G {0,1}. From the mixing condition,

there is a constant Cp such that

We have thus proved that

{Ld/2AvxeΛ(ηx - P)f) ^C;1 .

This proves the lower bound on the compressibility and concludes (A2). D

Proof of Lemma 5.5. Recall the identity

= (X2\A\U)-(X\Λ\U)2

and (X\Λ\U) denotes the conditional expectation of X with respect to the σ-algebra
generated by the configuration in A \ U. Hence the correlation functions appearing
in Lemma 5.5 can be decomposed as

(ήu>ϊu)μw = (nu\nu I Λ\ u)μLΛλ + {E^[ήu \ Λ\ U^E^I^ \ A \ u])μLΛ?.

From the mixing assumption (Al), the first term on the right side is bounded by
L~d. For the second term, again from the mixing condition, the spectral gap of the
Glauber dynamics [MO, LY, SZ] is bounded by a universal constant. Hence one has

<£«•*'[>/£, I A \ υ\,E^\r\υ I A \ U])μLΛi

ί Σ, E^ '\{oxE^\r\υ I A \ U])2],

where σx is defined in (2.8). From the mixing assumption,

σxE
μLΘ'λ[ήu I A \ U] ^ const. L~d .

Hence
A \ U])2] ^ const. L~d .

This concludes Lemma 5.5. D

We now prove (A3-4) and Lemma 5.4. Recall that μ^x is the Gibbs state on a
cube Aι with chemical potential λ and some fixed boundary condition. Let N = Ld.
Recall U is a subcube of size L/y with the property that AL \ U is "fat" (5.1). Let
βL,θ,λ be the probability measure with density relative to μL,λ=o given by

lθΣnx + λΣix) z(θ,λrι, (8 i)
xeu xeΛL I
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where Z(#, λ) is the normalization. Clearly, when θ = 0 the measure μL,β=o,λ reduces
to μL,λ We have proved that μ^o,λ satisfies the mixing condition (Al) for all
θ and λ and for all cubes if μ satisfies the mixing condition (Al) for all λ and for
all cubes

We now state our main result Theorem 8.1, a local limit theorem to be proved
in Sect. IX.

Theorem 8.1 (Local Limit Theorem). Suppose the mixing condition (Al) holds.
Let L~dEμL'0^J2χηx = pθ be the density Let X = L'd/2^2χ(ηx - pθ\ and let σ2

θ be
the variance defined by σ2

0 — EμL>θ>λX2. Let ψιit be the density of XQ Suppose the
density satisfies

L-d/2-ε ^ p o ^ \ - L-d/2-ε

Then there is a universal constant of order one such that ψ^ Q satisfies

ψL,θ(x) = (2πΓi/2CLσg] exp[-x2/(2σ2

0)][l + N-1'2Pι(x) + O(L-d+Ep-1)] (8.2)

for some ε > 0 Here

pλ{x) = μ3#3/6, μ3 - σ~3Eμ^X-j

and 7/3 is the Hermite polynomial of degree 3:

H3(x)=x3 -3x.

We now represent ψ^Q using the Fourier inversion formula. Recall the following
elementary identity for Fourier series (N = Ld),

£=0 I 0 otherwise ,

where

x e {-N + 1 5 . . . , O , 1 , . . . , N - 1} .

Hence the canonical measure μL,n can be represented as

k=0

where
N-l

r-d y^ eι2πk(ή-(n/N))

k=0

and the chemical potential λ is chosen such that EμL;[ή] = p = n/N Hence

N-\ N-l Γ r Γ "I "I Ί

ΨL, o(y) = L~d Σ ΨNθ(y) = L~d Σ EμLM e x P { i2πkL~d Σr\x- y\ \\ . (8.4)
A:=0 ' >t=0 LI L x J J J

with /? chosen such that

Eμw[η\ = p . (8.5)
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Proof of Lemma 5.4. By definition of φ in Lemma 5.4,

— βμL,n e χ p W^2 ηχ\

: = P)}
cxp[(Ld/yd)p(θ,p)]

= P)]

with j8 satisfying (8.5) and E^[fj] = p. Hence

<KΘ,p) = p(θ,p) - p(0,p) + (γd/Ld)[logψL,θ(0) - loggLβ=0(0)]. (8.6)

From Theorem 8.1, log 1/^0(0) is bounded by some constant independent of L if
p ^ L~dl2. This concludes Lemma 5.4. D

Proof of (A4). We first state the following corollary of Theorem 8.1.

Corollary 8.2. Suppose μL,n is the measure defined in (8.11). Suppose u is a local
function. Then

EμL»[u] = EμLλ[u] + O{L~d+£p-χ). (8.7)

Here the expectation is with respect to the measure μL^χ with λ chosen to give the
correct density, i.e., EμLλ[ή] = p = n/N.

We shall prove this corollary at the end of this section. Assuming this corollary,
we immediately have (A4) if p ^ / > -^/ 2 + 2 ε p o r a n v local function u we have

\EμL"[u(η)] - u(η = 0)| ^ const, p ,

and similarly if μLjH is replaced by μLίχ. Hence (A4) holds trivially for p ^ L~d/2~ε.
We now prove (A4) assuming L~d/2-ε ^ p ^ L~d/2+ε.

From the local limit Theorem 8.1 with θ = 0, we obtain a large deviation esti-
mate via standard Cramer method. Note that the variance σ satisfies σ2 rg const, p.
Hence we have the following large deviation estimate

EμL'λ[\f\ -p\^ L~d/2+εp1/2] S e x p [ - C I ε ] . (8.8)

Since this estimate is standard and can be proved using arguments similar to the
proof of Lemma 5.3, we omit the detail.

Recall (4.10)

EμL»[u]-EμL"+i[u]

= Eμ^[F]~ιEμ^[u;F] + (Ld/n + l)AυxeΛE
μ^[(u(σxη) - u(η))ηx) .

We have changed notations to our setting and F is defined in (4.4). The last term is
bounded by CL~d with the constant independent of p. Also, from the definition of
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F, we have EμLn[F]~~ι g C (cf: proof of Lemma 4 2). Suppose u is a local function
at z with range £. The variance can be decomposed as

EμL>n[u;F] = L~d £ £ μ i Λ[w,ivl +LΓd £ # M « , i v l .
|jt-z|^S+2 \x-z\>S+2

Since the range of the interaction in the Hamiltonian is one and the density is small,
one can check that

(Cp if \x-z\ ^ S + 2
\E^*[u,Fx]\ ^ {

{Cp2 if \x-z\ > S + 2

Hence

\EμL'n[u;F]\ ^ Cp/L^ + Cp2 ^ CL~ J + 2 ε .

We have thus proved that

\EμL>n[u]-EμL-n+ι[u]\ ^ CL" i / + 2 f i .

Together with (8 8), we have

\Eμι>' [u] - EμL>» [u]I S s u p \EμL>»[M] - ^ I ™[M]|

This proves (A4). D

Proof of (A 3) From Corollary 8.2, we have proved (A.3) if the dimension d ^ 3
and L~ε rg p ^ 1 — L~ε. The case p ^ L~ε can be checked by standard low density
expansion [R]. For d ^ 2, one can carry out the local limit theorem, Theorem 8.1, to
the next order and hence prove (A.3) . The proof will be somehow complicated and
will not be presented here. An alternative approach will be given in a forthcoming
paper [VY]

Proof of Corollary 8 2 Without loss of generality we can assume that
Eμι'H[u\ = 0 = Eμi»[X] = y where X = N~ι/2Σx(ηx ~ pi Our goal is to compute
Eμι<'\u\(X = 0)]/EμL>;[l(X = 0)] Since u may not be positive, we can not apply
Theorem 8 1 to Eμι>'\_ u] Let us assume that 1 -f u > 0 for simplicity. Hence
(w+ l)μi,;v is a probability measure. Define

Xu=N-χl2Σ(tιx-z), z = Eμ^[Xu] = (X;u)μL/ . (8 9)
X

Apply Theorem 8.1 to the new probability measure (u + 1 )///,,;„,

£ 'MO + u)l(X = 0)] = E(ι+u^[l(Xu = -z)] = ψ(

L

l+u\z) ,

where ψL is the function obtained by replacing all expectations in Theorem 8 1
from with respect to μ^o,) to (1 + u)μ^χ. By definition,

(l+u\Eμ"[ul(X = 0)]/Eμ^[l(X = 0)] = φ(

L

l+u\-z)ψL(0) - 1
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The variance of X with respect to the measure (1 + u)μLiχ is given by

σ2

+u = ((X - z) 2 (l + u))μLΛ = (X2(l + u))μLίλ -z2 = σ2 + {X2u)μιΛ - z2 .

From Theorem 8.1, we have

MO) = (2π)-1 / 2C iσ-1[l + O(L-d+εp-χ)] .

From (8.9) and the mixing condition (A.I), z = O(L~d^2p). Applying Theorem 8.1
to the measure (1 + u)μL^χ and using z — O(L~d^2p), we have

ψ(

L

l+u\-z) = ( 2 π ) - 1 / 2 C z σ Γ +

1

w e x p [ - z 2 ? d + 1

Combining these two estimates, one has

φ^\)φ(θyl 1 exp

From the definition of u and z = 0{L~dl2p),

a Γ z2

— - e x p - — -

= 1 1 + κ l μ ι ι

σ2

z2

We have thus proved

This concludes the proof of Corollary 8.2. D

IX. Local Limit Theorem for Gibbs Measures

We now prove the local limit Theorem 8.1. Our method is straightforward and
based on a martingale decomposition which helps organizing error terms. Martingale
methods have a long history; our proof is certainly not novel .

Recall the identity (8.4),

ψL,θ(y) = L-dLΈ &y) = L-^ΣE^ \^{ilπkL~d Σ(ηx - y)}} . (9.1)

k=0 ' A:=0 L x ]

By periodicity, for Ld odd,

Ld-\ 1

L-d Y^ ei2πk(ή-y) = _L-d j - ei2πk{ή~y) . (9.2)
k=0 2 \k\<Ld/2

Hence we shall replace the summation in (9.1) with (9.2).

Step L Cutoff for k > p~ι/2Ld^2+ε Let
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Recall the range of interaction in the Hamiltonian is one. Let Q = {x G ΛL x/2 £
Zd} be a sublattice of A and let Γ = ΛL\Q. Denote the expectation of ηx condi-
tioned on {ηy,y G Γ} by pΓ

x = EμL>θ>λ[ηx\ηy,y G Γ] . Let ^ be the expectation of
ηx with respect to the independent measure

qoj. = /normalization .

Since the interaction between ηx and its neighbors is uniformly bounded for each x
fixed, there is a constant C such that

Note that this bound is independent of the shape of Γ. It is very easy to compute px

and thus bounds on pτ

x independent of the configuration of Γ can be obtained By
definition, px takes only two values, say a and b, depending on whether x belongs
to U or not Let px = a if x G U and px — b otherwise Since the total density is
p, one has

a\U\+b(Ld - d

This implies that pQ ^ a + b ^ const, po since Ld/\U\ is bounded (depends on γ).
Hence we have

C'po ύ px + PΓ

X ύ Cpo . (9.3)

Since ηx are independent random variables after conditioning on Γ, one has

pi2πkηxL
 c

= f]

R e c a l l t h e f o l l o w i n g e l e m e n t a r y b o u n d : F o r a n y 0 £Ξ a ^ 1 a n d — π ^ β - ^ π o n e
h a s

ae
iβ - a\2 = 1 - 2α(l - a){\ - g exp(-α(l - a)β2)

We have thus proved

g lrd
exp -Σ -Id

exp(-const. pΘk2L~d)

where we have used (9.3). From the range of k one has

\Eμi^;[Ω(ε) I Γ]\ g exp(-const U).

Therefore, the contribution of this region is negligible.
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Step 2. Perturbation Expansion. From the cutoff of k and the Fourier inversion
formula, our goal is to compute

Λλ [ e x P li2πkL~d Σ(ηx - p)

for k satisfying

l*ι ύ P

The following lemma is the key input.

Lemma 9.1. With the same assumption as in the local limit theorem, one has, for
β

[exp {i2jrf£-rf £ (ηx -

= exp [ Z ^ ( ^ 2 ) - itLd(y - Pe)j { l - y W + O(L-d+%')| , (9.4)

where
t = 2πkL-d, X = L-d'2 E (ηx - pe) . (9.5)

Returning to the proof of Theorem 8.1. From the bound in step 1 we can estimate

Σ ΨLθ(y)
\k\<L*/2 '

= \l~d Σ EμLΛλ [exp iilπkL-d Σ (ηx ~ Pθ)
\ \ ι / 2 d ^ L ^ x

+O(exp(-const. Lε)).

From Lemma 9.1,

exp \=ψ^(X2) - itLd(y - pθ)]

x | l - ^-μ3 + O(L-d+BPβ1)} + O(exp(-const. Lε)) .

The summation in (9.4) can be approximated by integration. Instead of estimating
the difference between the summation and integration, we use an universal con-
stant CL to characterize their difference. Performing the "Gaussian summation," we
conclude Theorem 8.1. D

Proof of Lemma 9.1. Step 1. We shall prove Lemma 9.1 by induction and the
martingale decomposition. First let us introduce the martingale. For simplicity of
notation we assume d = 2. Let Γ be the cube of size U in the upper right corner
of A. We shall denote all configuration in this cube by ηo. We now define an order
starting from the site in A \ Γ right next to the lower left corner of Γ as x\. We
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then continue the order by wrapping around Γ. When this is done, we start the
same procedure again but with Γ enlarged by the sites already ordered. Continue
this procedure, we have an order. For simplicity we denote ηXj by r\j. Let ^ be the
α-algebra generated by ηt, i > j . Let W = Σ X G Λ ^ Define

Wj =EμL-°>>[W I &j]-EμL-θ>'[JV

Clearly, W — Σ/=o^/ From the mixing condition (A.I),

\Wj\ tk const

To prove this, rewrite Wj as

(9 6)

Σ ηχ\

Σ
xeat,,i<j

Σ

Clearly, the terms inside the first parenthesis satisfies the bound in (9.6) due
to the size of subcubes chosen previously. To bound the second term, denote
EμLΛλ\Σxexιl<jY\x\^j\ by Z. From the mixing assumption (A.I), the second term
satisfies the same bound This proves (9.6).

Rewrite ψ^giy) as

exp <̂  i2πkL~d

= Eμι>°>< j e x p \i2πkL-d

ί>o

μL^'[exp{i2nkL ~d . (9.7)

Then the expectation with #Ί given can be easily computed since, for k in the
range we are interested in, the exponent

kL~dW0 g Pg]/2L-d/2+2E < 1

is small (recall po ^ L~d^2+ε). Thus one can simply expand the exponential to have

EμL-β>'[Gxp{i2πkL-dW0} \ # Ί ] = 1 + itEμ^[W0 \ # Ί ] - ^EμL>°>'

χ t = 2πkL~d .

Note that the error term gains a factor of po from taking the expectation. The
first order term EμL>θ>'[Wo | # Ί ] = 0 by definition of Wo The variance and the third
moment are bounded by

EμL>θ'>[(Woy I # Ί ] ^ const LεEμL>θ>'[ή0 \ # Ί ] , i = 2,3

Here ^0 denotes the density in the cube αo From (9 3), we have

EμL>θ-'[ή0 I # Ί ] g const, pa.
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Using this bound, we have that the variance and the third moment are bounded by

EμL>θ>λ[(Woy I # i ] ^ const. Lεpθ, i = 2,3 .

Hence

where
Vo = EμL'θ'λ[Wo2\^\] ^ const. Lεpθ . (9.8)

Together with (9.7),

exp \i2nkL~d Σ w\ exp \~V<
I i>o ) L λ

x [l - Ij-^'^t^o3 I ^i] + ̂ (p- 1 ! - 2 ^)] J . (9.9)

We shall prove (9.4) inductively. Let us focus on the next term W\ and condition
on #2- Denote

B = ίtWx - ^{Vo-

Hence exp[Wi -~V0] = Qxp[B - ^ £ ^ [ F 0 | # 2 ] ] From (9.6), (9.8) and the cutoff

on k, \t\ = 2\πk/Ld\ ^ p-λL-d+2ε. Hence

£ tU ^

V0 -

\t3\

Expanding the exponential involving B,

exp

= exp | - L - £ « t M

By definition, .^•'"[tflJ^] = 0. The expectation of B3 can be estimated by
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The quadratic term can be estimated by

2 2 2
 ^E^Λ* [Wλ {Vo-E ]

Collecting the terms of order t3, we have that these terms summing up to

-ι^E^[W0

3 + W? + 3 ^ {Fo - EK°.<[Vo\&2] }

From the mixing condition and the assumption on t,

A

-Eμι<°>'[{V0 - E^o-ΊVol^]}2^!] ^ const. p~]L~2d+4ε

Let Vx = EμL*0'[W?\&r

1]+ E^'IVQ^]- We have thus proved

= E^o. ( e x p ίi2πkL-dΣ wλ exp \-
II ι>\ ) L

x (l - f ί ^ ^ - [(0& + ^ί) 3 I ̂ 2] + O(L-2d+2εpό1)

We can now repeat this procedure Since we have to repeat it Ld times, the error
becomes

This proves Lemma 9 1.

Appendix

We reproduce from [SY] the proof of Lemma 4 3 in this appendix. For simplicity,
we assume the Hamiltonian is given by

H(η) = -β Σ Φ)η(y)

fry)

for some β > 0. The general case can be proved in a similar way

Proof For simplicity of notation, we assume z = (0,0), y ~ (2/, 0) and the
Hamiltonian contains only nearest neighbor interactions Let A = {(0,0), (2,0), ,
(2/, 0)} C A Let us label these lattice sites by j = 0,..., { We condition on
rf = {η(x)\x G A\A}. Because H is nearest neighbor, the conditional measure is
of the form
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Expectations with respect to this measure are denoted by ( )ηc The function h
ensures the global constraint on the density and the Gibbs factor reads

Pj(η(j)\rjc) = (exv[η(j)Ej(ηc)] + exp[(>/(y) - l)Ej(ηc)]yι >

where Ej takes only a finite number of values. Accordingly we partition A into the
2d + 1 disjoint sets Ar — {j G A : Ej = βr}, r = 0,1,.. ., 2d. The basic idea is to
perform exchanges first only within Ao, then within A\, etc.

We start with AQ and label Ao = {yj :j = 1,...,«}, >>y < j//+i, |^o| = n. We
also set yo = 0 and yn+\ = £, provided yn < t. Let Txyu(η) = u(ηxy). Then

^ 0 / = ^^o^i ^ ̂ «^«+i ^.yn-i.y« * yoyi

If either y\ = 0 or yn = /, then the corresponding factors are omitted. We write the
telescoping sum

T0JU-U= Tyoyι ...(TyQyχU-U)+TyQyι . . . (Ty^U ~ U) ~\ \~ (TyQyι U ~ U). (A.I )

Now (Tyjyjtjf = Tyjyj+ιf
2 and (Tyjyj+J)ηC = </V provided 1 ^ j ^ n - 1. For

the end points we use

{Tyoyί\f\)ηc =S const.

Then, using (A.I) and Schwarz inequality, we arrive at

Γ1{(TMU - uf)ηc ^ const. £ (yJ+ι - yjy
ι ((TjJ+ιu - u)2)ηC . (A.2)

7=0

If either y\ — 0 or yn — /, then the corresponding summands in (A.2) have to be
omitted. Note that terms on the right-hand side of (A.2) are normalized by the
jump length just as on the right. Thus whenever yj+\ — yj > 1 we may iterate our
procedure for each isolated interval separately, now employing the subset A\ instead
of Ao, etc. Then

Γ\{T^u - uf)ηC S const. Σ ((Tjj+ιu - uf)ηC . (A.3)

Average over rf and use that

((Tx,x+2eιu - uf)Λ S const. [((TXtX+eιu - uf)Λ + {{Tx+euX+2eιu - u)2)Λ] . (A.4)

Inserting this bound in Eq. (A.3) yields Lemma 4.3.
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