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Abstract: In the present paper, the basic ideas of the stochastic limit of quan-
tum theory are applied to quantum electro-dynamics. This naturally leads to the
study of a new type of quantum stochastic calculus on a Hubert module. Our
main result is that in the weak coupling limit of a system composed of a free
particle (electron, atom,...) interacting, via the minimal coupling, with the quan-
tum electromagnetic field, a new type of quantum noise arises, living on a Hubert
module rather than a Hubert space. Moreover we prove that the vacuum distri-
bution of the limiting field operator is not Gaussian, as usual, but a nonlinear
deformation of the Wigner semi-circle law. A third new object arising from the
present theory, is the so-called interacting Fock space. A kind of Fock space in
which the n quanta, in the w-particle space, are not independent, but interact. The
origin of all these new features is that we do not introduce the dipole approxi-
mation, but we keep the exponential response term, coupling the electron to the
quantum electromagnetic field. This produces a nonlinear interaction among all
the modes of the limit master field (quantum noise) whose explicit expression,
that we find, can be considered as a nonlinear generalization of the Fermi golden
rule.

0. Introduction

Quantum electro-dynamics (QED) studies the interaction between matter and ra-
diation. Due to the nonlinearity of this interaction (cf. (1.2) below), an explicit
solution of the equations of motion is not known and, for their study, several types
of approximations have been introduced.

Probably the best known of these approximations is the dipole approximation
in which the so-called response term (eik'q in (1.2)) which couples matter, rep-
resented by an electron in position q, to the &th mode of the EM-field, is assumed
to be 1. The dipole approximation has its physical motivations in the fact that,
at optical frequencies and for atomic dimensions one estimates that k q^ 10~3

(cf. [10]) and therefore very small. Most of the concrete applications of QED
(e.g. in quantum optics, laser theory, ...) have been obtained under the dipole
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approximation or by replacing the response term by the first few (at most 3) terms
in its series expansion (the so-called multipole terms).

The first step towards the elimination of the dipole approximation was done
in [2,3], where the quasi-dipole approximation was introduced. In the present
investigation this approximation is not assumed:we shall just keep the response
term.

The most surprising consequence of this more precise analysis is that the limiting
noise, which approximates the quantum electromagnetic field is no longer a quantum
Brownian motion, but a nontrivial generalization of the free noises, introduced by
Kύmmerer and Speicher [9,16] who were inspired by Voiculescu's free central
limit theorems [17], and developed by Fagnola in [7]. This free noise has been
generalized by Bozejko and Speicher [5,6] and the quantum noise which, according
to the present paper, arises canonically from QED is a further generalization in this
direction.

The main difference between the usual Gaussian and the so-called free Gaussian
fields is that the vacuum expectation values of products of creation and annihilation
fields are obtained, in the free Gaussian case, by summing the products of pair
correlation functions not over all the pair partitions, as in the usual (Boson or
Fermion Gaussian) case, but only on the so-called non-crossing pair partitions,
defined in Sect. 5 of the present paper. In terms of graphs this means that the
summation does not run over all graphs, but only over the so-called rainbow (or
half-planar-cf. [20]) graphs. However it seems that the connection between these
graphs and the Wigner semi-circle law was not realized in the previous physical
literature.

Another novel feature, arising from the present analysis (and which already
emerged at the level of quasi-dipole approximation (cf. [3])) is that the noise
does not live on a Hubert space, but on a Hubert module over the momen-
tum algebra of the electron. This Hubert module is described in Sect. 7 of the
present article. The general notion of Hubert module was introduced for
purely mathematical reasons and up to now this notion had found its
main applications in K-theory for operator algebras (we refer to [4,8,14,15],
for the general theory of Hubert modules). This circumstance has required
the development of a theory of quantum stochastic calculus over a Hilbert
module (see [11,12,13]).

A third result of the present analysis is the emergence of a new type of Fock
space, which we call the interacting Fock space because the quanta in the ^-particle
space are not independent but interact in a highly nonlinear way (cf. Sect. 7 below
and in particular Theorem (7.6)). The vacuum distribution of the field operators in
this space is not Gaussian but a nonlinear modification of the Wigner semicircle law
to which it reduces exactly when the nonlinear factor arising in the interacting Fock
space is put equal to zero. The Wigner semicircle law was discovered by Wigner
[18] starting from a purely phenomenological model to mimic the behaviour of
Hamiltonians of heavy nuclei. It is rather surprising that it arises naturally in QED
and that its appearance is accompanied by the emergence of some new mathe-
matical structures whose properties make them natural candidates for the descrip-
tion of those phenomena in which the self-interaction of quantum fields plays an
essential role.

Since the dipole approximation is effective at low frequencies and small atomic
dimensions, it is reasonable to hope that the results of the present paper might shed
some light on a class of phenomena in which high frequencies or finite atomic
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dimensions play an essential role. The systematic investigation of this possibility
seems to deserve further attention.

The outline of the present paper is as follows: in Sect. 1 we describe the
Hamiltonian model: it is essentially a generalization of the Frόlich polar on
Hamiltonian, to which it reduces when one puts p = 1 and replaces the factor
l/y/\k\ by l/\k\ in formula (1.2) below, which describes the interaction Hamiltonian.
In Sect. 2 we describe the collective vectors and determine the 2-point function of
the quantum noise, to which the initial quantum field converges when λ —> 0. Sec-
tion 3 is devoted to prove the non-Gaussianity of the limit noise. It describes, in the
simplest possible case of the 4-point function, the mechanism through which only the
non-crossing pair partitions (rainbow graphs) survive in the limit. This essentially
results from a combined effect of the CCR plus the Riemann-Lebesgue Lemma. The
full limit space of the quantum noise is obtained in Sect. 4. In Sect. 5 we introduce
some combinatorial properties of the non-crossing pair partitions which shall be used
in the following sections. The technical core of the paper is Sect. 6, where we ob-
tain the limit of the joint correlations of arbitrary products of collective creation and
annihilation operators, i.e. we prove the convergence, in the sense of mixed vacuum
moments, of the collective process to the quantum noise which shall be described
in Sect. 7.

This allows to obtain our main goal, i.e. to compute the limit of the matrix
elements of the wave operator in arbitrary collective vectors.

In Sect. 7 we identify the limit noise space to a Hubert module over the momen-
tum C*-algebra of the electron (the small system in our terminology). This is the
interacting Fock space (more precisely-Fock module) mentioned above. In Sect. 8
we compute the vacuum distribution of the noise field and we show that, if the
interaction among the field modes is neglected, it reduces to a convex combination
of Wigner semi-circle laws parametrized by the momentum of the electron. Finally,
in Sect. 9, we describe, without proof, the quantum stochastic differential equation
(cf. (9.2)) satisfied by the weak coupling limit of the wave operator at time t (the
unitary Markovian cocycle, in the language of quantum probability). This has to be
meant in the sense of stochastic calculus on Hubert modules, as developed in [11-
13]. This section has been included for completeness. We did not include the proof
because, although long and elaborated from the technical point of view, it does not
need new ideas and techniques, being based on a procedure which has now become
standard in the stochastic limit of quantum theory, namely: one considers the matrix
elements, in some collective vectors, of the wave operator at time t and show that,
in the limit λ —> 0, they satisfy the same ordinary differential equation, with the
same initial condition, as the corresponding matrix elements of the solution of the
stochastic equation, which is known to be unique from the general theory [11].

In the revised version of the present paper we have enlarged the introduction,
added several comments and corrected several notational and linguistic misprints.
No statement or proof has been changed with respect to the original version of the
paper (submitted for publication in November 1992).

1. The QED Model

We consider a free particle, called, the system, and characterized by:

- its Hubert space L2(Rd) with d ^ 3
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- its Hamiltonian

where A is the Laplacian and p = (p\,p2,- ,Pd) the momentum operator.
This system interacts with a quantum field in Fock representation whose free

Hamiltonian is informally written as:

(1.1)

where to each mode k G Z is associated a representation of the CCR with cre-
ation and annihilation operators ά£9 a^ respectively (ak = (0ι,fc,fl2,;b •><*</,*))• The
interaction between the system and the field is informally written as:

(1.2)- - . .
V\k\

where A(q) is the vector potential, the tensor product p ® a^ means

(13)
7=1

and the factor λ is a small scalar (coupling constant). This interaction is obtained
from the usual minimal coupling interaction by neglecting the term of order λ2.

Notice that, dropping the A2 -term, breaks the gauge invariance of the theory.
The realization of the present program without dropping the λ2 -term is a nontrivial
problem.

We conjecture that the limit should be the same. Even more difficult is the
problem of realizing the present program for a non-free particle.

There are indications that this program should be realizable for some classes of
potentials. These topics will be discussed elsewhere. They are mentioned here only
to indicate some possible lines of development.

The total Hamiltonian we are going to consider is H = HS 4- HR + /I///. The
most important object for such an interacting model is the wave operator at time t.
In the interacting picture it can be written as

where U is the solution of the Schrόdinger equation:

jlfp = -/ΛflKOt/,(λ), OOA) = ! 0-5)

and the evolved interaction Hamiltonian Hj(t) is given by

Hj(t) := <WIs+nR)Hle-*Hs+H*> . (1.6)

Replacing in (1.1), (1.2) the sum by a continuous integral and the factor l/-\/\k\ by
a cut-off function g(k\ Hι(t) is given by the expression:

Ht(t) = i / dkeitp2/2eik^e-ίtp2/2(-ip) ® (%)(*>£ - h.c.
In*

(1.7)
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where g is a good function (e.g. a Schwartz function) and {Sf}t^Q is the unitary
group on Z,2(R ) given, in momentum representation, by

(1.8)

By the CCR, we have

e-itp2/2e-ik qeitp
2/2 _ e-ik qe-itk pe-it\k\2/2 ^ ^ ̂

e-ik qe~itk p _ e~itk p e~ik q eit\k\2 ^ (1.10)

Therefore, one can rewrite (1.7) in the form

Ht(t) = i - h.c. . (1.11)

Without loss of generality we can simply forget the factor e u\k\ /2 by transfering
it into S?. More precisely, from now on, the 1-particle free evolution shall not be
the original one (1.8), but the modified one

(Stg)(k) := e~it+k/2)g(k) . (1.1 la)

The integrals (1.7), (1.11), should be meant in the weak topology on the
subspace «^(RJ) <8> <? (of L2(Rd) ® Γ(L2(Rd))), algebraic tensor product of the
Schwartz functions and the (algebraic) linear span of the exponential and num-
ber vectors. This means that the matrix elements of H^t) in these vectors are
well defined (and this is the only thing that shall be used in the following). More
precisely, if / and h are in 5^(RJ) and t e R, then the functions

Tfthtjtt :keR^ (f9e
2^e-ipj)h)L2^; j = 1,2,...,*? (1.12)

are also in 5 (̂R ) and the integrals

A+(TfMtStg) = / Λ { / , 2 %-^2(-/^)Λ}(^^)(^)^ (1.13)
R^

(/ = 1,2, . . . ,£/) define independent copies of the Boson Fock creation field over
L2(Rd) (notice that the Schwartz functions are an algebra, thus the product of two
of them is still a test function) and therefore, for /, h as above and ψ, ψr G & the
matrix element {/ (g) ψ,Hι(t)h (g) ψ'} can be interpreted as

In conclusion we recall the basic strategy of the stochastic limit of quantum
theory: the starting point is the formal solution of Eq. (1.5), given by the iterated
series:

/ n oo t tn-ι
ϋίλ) = Σ(-ίWΛι / ΛΛ#/(fι) •#/(*„)• (1.14)

n=Q 0 0

In usual perturbation theory one considers the first few terms of the series (1.14),
in increasing powers of λ. For this procedure to make sense, it is required that the
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coupling constant be small in some sense. In the stochastic limit in quantum field
theory one renormalizes time by the replacement t ̂  t/λ2 and studies the limit, as
λ —> 0, of matrix elements of the form:

(Φλ(ξ),U^Φ'λ(η)) (1.15)

where, ξ, η G L2(Rd) and the Φχ are the so-called collective vectors. They are chosen
according to criteria which depend on the model and are suggested by the usual
perturbation theory. The basic goal of the theory is to prove that, as λ —> 0, the
limit of (1.15) exists and has the form

(Φ(ξ),U(t)φr(η)) , (1.16)

where Φ(ξ), Φ'(η) are vectors in the tensor product space of the system space with
a certain limiting space Jjf, called the noise space, whose explicit form has to be
determined, and the limit process {£/(0}f^o is unitary on the tensor product space
for each t ^ 0.

In the following, the subspace &*(Rd) of the Schwartz functions shall be often
denoted Jf C L2(Rd). For any pair f,g e Jf, the condition

f\(f,Stg)\dt<oo (1.17)
R

which plays a crucial role in the theory is satisfied.

2. The Collective Operators and Collective Vectors

One of the basic heuristic rules of the stochastic limit of quantum field theory is
that the choice of the collective vectors is suggested by first order analysis of the
usual perturbation theory. Following this rule, in this section we shall introduce
some preliminary considerations which give an intuitive idea on how to define the
collective vectors.

For each t G R+, define

A+(Stg) := / dke-ik^eitk'p(Stg)(k) ® α+ (2.1a)
R^

as explained in formula (1.13) and define A(Stg) as the formal adjoint of A+(Stg)
i.e., recalling (1.1 la)

A(Stg) := / dke-**' pJk'q(S-tg)(k) <g> ak . (2.1b)
R^

Both A+(Stg\A(Stg) act on L2(Rd) <g> Γ(L2(Rd)), where Γ(L2(Rd)) denotes the
Boson Fock space over L2(Rd), and behave like creation and annihilation operators
respectively, more precisely, for each ξ,f in the Schwartz space

A(Stg)(ξ 0 Φ(/)) = / dke-M PeP iξ 0 (S-tg)(k)f(k)Φ(f) , (2.2)
R<*

where Φ(f) is the coherent or number vector with test function / and the integral
in (2.2) is meant weakly on the domain ̂  0 $(&*), where δ(£f) denotes the space
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algebraically generated by the coherent or number vectors with test functions in £f.
In these notations, we have that

H(t) = i[A+(Stg)(-ip) - h.c.] (2.3)

and the first order term of the interated series for U^ is:

- iλfdt}H(tl) = λfdtl[A+(Stlg)(-ip) - h.c.] =Λ + ίλfdt^g] (-ip) - h.c. .
o o V o /

(2.4)

For simplicity, in (2.3), we write (—ip) instead of (—ip)® \r, where \r is the
identity operator on Γ(L2(Rd)).

In particular, in the iterated series for Utβ2 the first order term is

( ( ^ \ \
A+( (λfdt^g )(-ip) -h.c..vv ° / /

Following the above mentioned heuristic rule (see also [1]), we define the col-
lective annihilator process by:

_
Ai(0,t,g) :=A[λf dt^g }= λ / Λ, / dhΓ1*' ' <?"* ® S,g(k)ak; t e R

\ o / o R«/
(2.5a)

and its conjugate, the collective creator process, by:

/ '/A2 \ t/λ2

A+(0,t,g) := A+ (λ / dt^g }= λ f Λ, / dke-'k">e"k-P ® Stg(k)a+; t e R
V o / o Rd

(2.5b)

More generally, for any bounded interval [5, Γ] C R and Schwartz function /, we
shall define the collective creators and annihilators by:

τ/λ2

A+(S, Γ,/) := λ / Λ / dke-* *e?* P 0 Stf(k)a+

k . (2.6)
S/λ2 Rd

Notice that, with these notations, the first order term of the iterated series (1.14)
can be written in the form:

t/λ2

λ / dtM(tι ) = i[PAλ(0, t, g) - A+(0, t, g)p] (2.7)
o

which has a formal similarity with the dipole approximation Hamiltonian (cf. [2])
except for the fact that in (2.7) the collective annihilators and creators also contain
operators of the system space, hence they do not commute with p.

The first step of the program of the stochastic limit in quantum theory is to
show that in a certain sense, as λ — » 0, i.e. the collective operators converge to
some kind of creation and annihilation operators A+(S,T,f) and A(S,T,f) acting
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on some limit Hubert space. Symbolically:

A+(S9 7, /) — > A+(S, T, /); Aλ(S9 T, /) — > Λ(S, Γ, /) .

In order to determine the structure of this space, the consideration of the two
point function is naturally suggested by the fact that the vacuum distribution of the
creation and annihilation fields, before the limit, is Gaussian.

The limit of the two point function of the collective creation and annihilation
operators can be obtained as follows: for each s,t ^ 0, one has

t/λ2 s/λ2

λ2 / Λ ! / dt2fdklfdk2

0 0 Rd Rd

t/λ2 s/λ2

= λ2 f Λ! / Λ2
0 0 R</

(2.8)

which, as λ —* 0, tends to:

+ 00

t / \ s f dτf dk((ip)ξ,eίτk'P(ίp)η}g(k)(Sτg)(k) . (2.9)
-00 Rd

If, in (2.8), one replaces the zeros in the first two integrals by T/λ2, S/λ2 repectively,
then the limit (2.9) is replaced by

+ 00

(X[T,t],X[M)L*<n / dτ f dk((ip)ξ^k'P(ip)η}g(k\Sτg)(k) . (2.10)
-00 Rd

Keeping in mind the definitions (2.5a) and (2.5b) of collective annihilator and
creator, the above result can be rephrased as follows: the approximate two point
function

^s,g)η®Φ} (2.11)

tends to an object which for some aspects, is very similar to a two point function.
In Sect. 4 we show how to substantiate this analogy.

Remark. Although the collective creation and annihilation operators depend on the
operator q, the limit of their 2-point function, i.e. (2.8), given by (2.9), is inde-
pendent of q. However a remnant of the original ^-dependence remains in the limit
through the commutation relation (7.8).

The above considerations suggest to introduce the collective number vectors,
which shall play a crucial role in the following.

Definition 2.1. A collective number vector is a vector ofL2(Rd) ®Γ(L2(Rd)) ob-
tained by applying a (finite) product of collective creation operators to a vector
of the form Φ 0 ξ, where Φ is the vacuum in Γ(L2(Rd)) and ξ is an arbitrary
vector in L2(Rd). Such a vector has the form

Λ+OS^TΊ,/!) ..... A+(SΛ9Tn9fn)ξ®Φ. (2.12)
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In the following, when no confusion can arise, we shall use the simplified no-
tation

to denote a vector of the form (2.12). Notice, for future use, that the indices of the
creators in (2.13) are increasing from left to right. The linear span of the collective
vectors, for a given value of the coupling constant λ will be denoted Jjfχ and called
the space of collective vectors.

It will be convenient to operate a change in notations with respect to the pre-
vious sections and to write the state space of the composite system in the form
Γ(L2(Rd)) <8>L2(RJ), rather than L2(Rd) <

3. Non-Gaussianity of the Quantum Noise

From the previous two sections we know that our original physical model is Boson
Gaussian, i.e. the creation and annihilation fields satisfy the CCR and their vacuum
distributions are Gaussian.

In this section we want to give an intuitive idea of the mechanism through which,
by applying to the present model the procedure of the stochastic limit of quantum
theory, in the limit λ — > 0 of the vacuum correlation functions of the collective
operators all the terms, corresponding to crossing partitions, vanish and the only
nontrivial contributions come from the non-crossing pair partitions (cf. Sect. 5 below
for a quick review and references on this notion). This phenomenon corresponds to
the breaking of the Gaussianity (because in the Gaussian case all pair partitions,
and not only the non-crossing ones, contribute to the correlations). The lowest
order correlation function where the distinction between crossing and non-crossing
pair partitions (and therefore between Gaussian and non-Gaussian correlations) can
become apparent corresponds to the four point function.Therefore in this section
we shall study the limit of

( A + ( T l 9 f λ ) A + ( T 2 9 f 2 ) Φ ® ξ 9 A+(T{,f{)A+(Tί9f'2)Φ®η) (3.1)

(the general case is dealt with in Sects. 7 and 8).
By the definition of collective creation and annihilation operators, (3.1) is

equal to
τ2/λ2

f

T(/λ2 T2/λ2

τ 2 Γ 7 Γ Ί Γ Γλ J ds\ J ds2J J i
0 0 Rrf Rd

l O ® η

T{/λ2 T2/λ2 T(/λ2 T2/λ2

= λ4 / dti / dt2 / dsi / ds2 / dkldk2dk(dk'2
0 0 0 0 R W
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V If /?~#2*2 * Ppik2 * ̂ -#1*1 * PJk\ 'qp-ik'\ ' qpis\k\ Pf>-ik2 ' 1 f>ίs2k'2 ' P«,\A \ς,e e tί tί e ; ι e ί ι e z c ί ^ A ' / /

x(VϊX*ιXSr

l i/2Xt2Xί,1/{X*ίX5i2/J)(^)<0|βίίαt1fl+,αξ|0>

7Ί/Λ2 r2//ι2 r,Ά2 r.(/A2

= A4 / Λ, / Λ2 / ώi / </*2 / </*ι</*2 (3.2)
0 0 0 0 R2ί/

x [\ί>^ 2 2 ^ 2 ^ ! 1 ^ 1 1 e 2 β 2 2 ί/)

Using the CCR, one can move the ^-factors together in the right-hand side of (3.2).
Thus one can rewrite (3.1) as

τy/ι2 τ2/λ2 τλ/λ2 τ2/λ2

λ4 f dti f dh f dsi / ds2 f dkldk2
0 0 0 0 R2ί/

'kι η\

_j_ /ξ^ g-#2*2 ' Pe

ίs\k2 ' ^£-#1*1 * Pe-i*2k\ ' Pei(
s\ ~t\ )*2 **1 ̂ \

x/1(*ιX^_ίl/2

/X*ι)/:

2(*2XSί

Jl^/1

/X*2)] (3.4)

Notice that, in the first term in (3.4), f\ is paired with // and f2 with /2

; (non-
crossing); while in the second one, f\ is paired with /2

X and f2 with f[ (crossing).
With the change of variables

τι=λ2t\, τ2 = λ2t2, s{-τ{/λ2 = u, s2-τ2/λ2 = v, (3.5)

the first term of (3.4) becomes

T\ T2 σί~τι)M2 (T2-τ2)/λ2

fdτλfdτ2 f du / dυfdk{dk2

0 0 -τιβ2 _τ2/λ2 R2d

x (ξ, eίvk2 * peίuk^ ' ̂ )̂ ι '̂ (^ )/2(feXSJi'X*ι X^/2 Xfe) (3.6)

and as λ tends to zero, this goes to

+00 +00
/ duf dv j d

— oo —oo 2d

x (Suf(}(Svfί)(k2) (ξ, e^+^ Pη} . (3.7)

With the change of variables

r = 5 2 -τ/A 2 , (3.8)
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the second term of (3.4) becomes

T{ T2 (T(-τ2}/λ2 (T2-τι/λ2)

/ dτi / dτ2 / du f dv f dkλdk2

0 0 _ T ^ 2 - τ ^ 2 R2rf

χ eik\ ' k2(τ2-τι)/λ2 ^ (39)

By the Riemann-Lebesgue lemma, (3.9) tends to zero as λ — > 0.
We shall now proceed to the proof of the fact that the vanishing, in the limit, of

all the contributions coming from crossing partitions is a general feature of QED.

4. The Limit of the Spaces of the Collective Vectors

Our next step will be to try to determine the limit

of the scalar product of two collective number vectors. This will give the Hubert
space where the limits of the collective creation and annihilation operators act.

According to our choice of these vectors, this amounts to study the limit, as
λ — > 0, of scalar products of the form:

\A=1 A=l

The present section shall be devoted to the proof of the following result:

Theorem 4.1 For any N,n E TV, the limit, as λ —> 0, of the scalar product of two
collective number vectors:

\h=l h=l

exists and is equal to:

n +00 +00

&N,n Π (X[Sh,Th]9 %[S' T']) * / dUi - / dun / dk\ '"dkn

h=\ —oo —oo τ>nd

x (ξ, ft e^'Pη} ft (SuhfiKkh)fh(kh)^p (ij* Σ urkr kh+λ . (4.2)
\ Λ=l / h=\ V r=l h=r J

Remark. If the factor

ξ, ft eίu»k» * Pη\ exp (i ξj Σ? «Γ*A+I *r) (4.3)
A=l / V r=l A=r /

were absent in (4.2), then the expression (4.2) would coincide with the scalar
product

V=l
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defined on the tensor product of n copies of the space:

where L2(R) has the usual scalar product, while Jf C L2(Rd) has the scalar product

(4.5)
R

Notice that the scalar product (4.4) can also be written in the form

(4.6)

where A+( ) denotes the creation operator on the full Fock space over Z/2(R) 0 JΓ,
with the scalar product (4.5), and Ψ is the vacuum vector in this space.

Our goal in the following sections will be to write the limit (4.1) in the form
(4.6) where the A+( ) are some sort of creation operators acting on some sort of
Fock space in which Ψ plays the role of vacuum vector.

The obstruction to the use of the usual Fock or full Fock space comes precisely
from the scalar factor (4.3) which is itself the product of two factors, each of which
is related to the other two new features arising from our construction, namely:

(i) the ξ — //-scalar product is related to the fact that the noise lives on a Hubert
module rather than a Hubert space.

(ii) The exp-factor is related to the fact that the space (more precisely, the
module) over the test function space is not the usual Fock, or full Fock space, but
the interacting Fock space.

These features will be better understood in the following.
Without loss of generality, in the following we shall suppose that Sj = Sj = 0

and rewrite 7y as Sj for all j = !,...,«. Moreover, it is obvious that we have to
prove Theorem 4.1 only in the case n — N.

In order to prove Theorem 4.1 let us first notice that the explicit form of the
scalar product (4.1) is:

Tι/λ
2
 Sι/λ

2
 T

n
/λ

2
 S

n
/λ

2

λ2n / dti / dsi / dtn J dsn / dki - - - dkndk{ - - dk'n
0

x ~/ξ g—itnkn ' Pgikn'q . . . g~#1*1 " P ̂ -\q β e~ik(q eis\k('/>... e-ik'n q eisnk'n p \

x Π GζΛXfo) (&»/* X*ί XO I α*. «*,<£ - - β+ I 0) . (4.7)
Λ=l ^

By explicitly performing the vacuum expectation, (4.7) can be written in the form:

Tϊ/λ2 Sι/λ2 Tn/λ2 Sn/λ2

σeSn 0 0 0 0 ^nd

y {? p-itnkn pjkn q . . . p-it\k\ p ik\ qp-ίkσ(^ qpis\kσ(lyp m m m p-ίkσ(nyq isnkσ(n} p \
^ \S>C ' c c c *-• c c c '//

x ft (SSh-tσWfί)(kσW)fh(kh), (4.8)
A=l

where ̂  denotes the group of permutations over the symbols {1,2,...,«}.
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Lemma 4.2. In the limit λ —> 0, only the identity permutation in the sum in (4.8),
gives a non zero contribution.

Proof. The proof is an extension, to arbitrary n, of the argument used in Sect. 3 for
the case n = 2. Notice that the factors exp(± fyq) are independent of the times Sj,
tj and each of them appears twice: once with the " + " and another with the " — "
sign. If σ(j) = h, by permuting the factor Qxp(ikhq) with all the factors

Qxp(itmkmp\ m = h-l, h - 2, . . . , 1 ,

and then with the factors

exp(isrkσ(r}p\ r= l,...,σ~l(h)- I =j - 1 ,

we shall erase this factor by multiplication with exp(— ik^q) — Qxp(—ikσ(j^q). Be-
cause of the CCR, each of the first h — 1 exchanges gives rise to a scalar factor of
the form

exp(-itmkm kh), m = 1, . . . ,A- 1 ,

and each of the other σ~l(h) — 1 = j — 1 exchanges gives rise to a scalar factor of
the form

expOA(r) kh\ r = 1, . . . , σ~l(h) - 1 .
When all these exchanges have been performed, the scalar product in the expression
(4.8) becomes equal to:

GXP ό2
srk\ *ff(r) - tiki k2

r=l

r=l

= (^ Π eί(

x exp

p

h=\ r=\

n-l h

Σ Σ *rkr kh+ι (4.9)

We shall now rewrite the scalar exponential in (4.9) so to make more transparent
the difference between negligible and non negligible terms. First of all notice that,
for any permutation σ G 5 :̂

Λ-l h

Σ Σ *rkr kh+λ = tiki k2 -h tiki k3+t2k2 k3 + -
h=\ r=\

+ tiki kn-] ----- h tn-lkn-

Σ
A=l

Σ
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Notice that to say that h\,...,hn G {!,...,«} are such that the sequence σ
σ~l(h2\ ,σ~l(hn) is ordered in increasing order, is equivalent to say that

With these notations we also have

n σ-^/O-l n σ~l(hm)-\
Σ Σ Srkσ(r} kh = Σ Σ
A=l r=\ m=\ r=l

n m—\
= Σ Σ

m=l r=l

n-\
— Σ ,

r=l

κσ(m) (4.11)

Thus the difference between (4.11) and (4.10), i.e. the factor appearing in the scalar
exponential in (4.9), can be written in the form:

τι-1

h=l

n—\

m=h+\
kσ(m) + Σ tσ(h)kσ(h)

h=\
Σ

m=h+\
~ / j

m=σ(h}+\
• (4.12)

Therefore, the expression (4.8) can be written as

n / rfή /

0 0

T ifi" C IΊ^ln/Λ on/Λ

/ dtn / ώΛ /
0 0 R"^

x ( ί ,
A=l

exp i
n—1

.

Λl-1

Σ - Σ (4.13)

Now we replace the scalar product in (4.8) by the right-hand side of (4.9) and
make the following change of variables in (4.8):

τh = uh=sh-

From the Riemann-Lebesgue Lemma it follows that, as λ — > 0, the only terms (in
(4.8)) that can give a nonzero contribution are those coming from the factors such
that the identity

o =
A=l m=h+\ m=σ(h)+\

(4.14)

is satisfied for almost all (k\9...9kn) G Rnd and almost all (t\,...,tn) G R". So for
almost all (kι9...,kn) € Rnd,

Σ __ y^

7«=σ(A)+l
VA = ι , . . . ,/ ι . (4.15)

Letting A = /i - 1 in (4.15), the fact that (4.15) is true for almost all ( M , . . . , / V W )

G Rnί/ implies that in the sum Σw=σ(Λ)+ι ̂ 5 there is only one term, i.e. the cardi-
nality of the set {σ(A) -f !,...,«} is one. This is equivalent to say that

σ(n- 1)+ 1 =n. (4.16a)
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Letting h = n — 2 in (4.15) and using (4.16a) one finds

kσ(n-\) + kσ(n) — kn-\ + kn = kσ(n-2)+l + kn ,

or equivalently

σ(n - 1) = σ(n - 2) + 1 = n - 1 . (4.16b)

Iterating one finds
σ = id, (4.17)

i.e. σ must be the identity permutation.

Proof of Theorem 4.1. For σ = /, the last term of (4.9) is equal to

/ Γ n h-\ n-\ h 1 \
eXP H Σ Σ Srkr kh ~ Σ Σ Irk *Λ+1

\ |_λ=l r=l Λ=l r=l J /

( Γ / i — 1 n «— 1 «— 1

M Σ Σ srkr ' kh ~ Σ Σ *r*r
L r = l h=r+\ r=\ h=r

ί Σ £ (Sr - tr)kr * . (4.18)

r=\ h=r+\

Therefore (4.8) is equal to the limit of

/λ2 Sn/λ

dsnf

Sι/λ2 Tn/λ2 Sn/λ2

0 0 0 0

x /ξ, π ê -'̂
\ h=l

£ "Σ (*r - tr)kr *Λ+Λ + o(l) , (4.19)
r=l A=r /

where 0(1) denotes the sum over all the permutations δ G y«, different from the
identity, which, according to Lemma (4.2), tend to zero as A — > 0. With the change
of variables:

τh:=λ2th9 uh=sh-τh/λ2, A =!,...,«,

(4.18) tends to (4.2), and this ends the proof.

5. Non-Crossing Pair Partitions

Since the notion of non-crossing pair partition will play a crucial role in the fol-
lowing, we devote the present section to introduce some basic properties of these
partitions (for more complete information we refer to [5,6,16]).

Non-crossing pair partitions play, for Wigner processes, the role played by the
pair partitions for the usual Gaussian processes. More precisely: it is known that
the mixed moments of order 2n (n is a natural integer) of a mean zero Gaussian
process, are given by the sum, over all pair partitions of {1,..., 2n}9 of the products
of the 2-point functions (covariance) of the process computed over all the pairs of
the partition.
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If the sum over all pair partitions is replaced by the sum over all non-crossing
pair partitions, in the sense specified below, one obtains the notion of Wigner
process.

To each pair of natural integers (m^mh), we associate the closed interval:

[m'h,mh] := {x <G N : m'h ^ x ^ mh} , (5.1)

and we shall say that the two pairs (m^m/j), (m^m^) are non-crossing if

ί0

K,/fiΛ]n[/fiί,w*] = < [m'h9mh] . (5.2)

[[m'k9mk]

Condition (5.2) means that either the two intervals associated to the pairs do
not intersect, or one of them is contained in the other one.

Definition 5.1. Let n be a natural integer. A non-crossing pair partition of the set
{1,2,..., 2n] is a pair partition

(mi, m\ ),..., (m'n,mn) (5.3)

such that any two pairs (m'h,mh), (m'k,nik) of the partition are non-crossing.

Lemma 5.2. Given n numbers

m\ < πi2 < - < mn

in the set {!,..., 2n}. If there exists a non-crossing pair partition

(mi, mi ),..., (m'n,mn)

of the set {!,..., 2n} such that

m'h < mh\ h=l,...,n, (5.4)

then it is unique. Moreover, for each h$ = !,...,«, the number m'h is uniquely
determined by the condition:

m'hQ :=max{*G {!,..., 2n}\{mh}
n

h=l : x < mh() and \ {*+ 1,.,.,/w^ - 1}

where, \ {• •} | denotes the cardinality of set {• •}

Remark. By construction

{«*}*=! ={l... »2n}\{»*}*=ι. (5-6)

and the sequence {m'h}
n

h=l is not necessarily increasing in h.

Proof. The proof can be done by the induction using the following facts:

- in the non-crossing pair partition (5.3), m( is surely equal to m\ — 1;
- given (m(,m\) as above, {(m\,m\ ),..., (m'n,mn)} is a non-crossing pair partition

of {1,2,...,2«} if and only if {(m'^mi ),..., (mf

n,mn)} is a non-crossing pair
partition of {1,2, ...,2«} \ {m\,m\}.
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- since, by the previous two arguments, given the (m7), the pair (mi,mi) is uniquely
determined, the partition (5.3) is unique if and only if the corresponding partition
of the set {l,2,...,2w} \ {m'^mi} is unique.

In the following we shall use the notation

n.c.p.p.{l,...92n} (5.7)

to denote the family of all non-crossing pair partitions of the set {!,...,2n}.

6. Limits of Matrix Elements of Arbitrary Products of Collective Operators

In order to calculate the limit (1.15), the knowledge of the limits of scalar products
of collective number vectors is not sufficient: one has to identify the limit of matrix
elements of arbitrary products of collective creation and annihilation operators.

The goal of the present section is to describe these limits. More precisely, we
shall prove the following theorem:

Theorem 6.1. For any natural integer n and with the notations:

A\:=Aλ, A\:=A+, (6.1)

the limit

°̂ \ εe{0,l}2"

exists and is equal to

n

Σ Π
1, ,2n} Λ=l

+ 00 +00 n

X / dUl / dun / dk, dkn Π (SUhfmh)(kh)fm,(kh)
— 00 —00 RHί/ h=\

x U Π <?***• Pη\ . exp (i ξ} ± uhkh krχ(m,,mr)(mh)} . (6.3)
\ Λ=l / V Λ=l r=h+l J

In order to prove this theorem we must do some preparation. Without loss of
generality we shall assume that Sh = 0 for all h = 1,...,2«.

Let us consider the matrix elements of arbitrary products of collective creation
and annihilation operators (in contrast with (4.7) where only anti- Wick-ordered
products were considered):

(6.4)
Counting from left to right, let

1 g m\ < m2 < ••• < mn -^ 2n (6.5)
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denote the places where the creation operators appear. Since Φ is the vacuum vector,
the expression (6.4) is clearly equal to zero if either mn < 2n or m\ = 1.

Remark. The scalar product (6.4) is φ 0 only if for any r — 1,2,..., «, the cardinal-
ity of {1, . . . , 2r}\{wι, . . . , mn} is less than or equal to max{/z = 1, ...,«; m/j ^ 2r}.
That is, if it happens that, for any r= !,...,«, in the first 2r operators in the
operator product in (6.4), there are more creators than annihilators.

Using the definition (2.5) of Aχ and A^9 (6.4) becomes

7Ί/A2 Tmι/λ2 τ2n/λ2

λ2" / Λ ! - . - / Λ m ι . . . / dtmn $ dk
0 0 0

" peikί 'q - e~ikm\q eiSm\km\ ' p - - e~
itn'kn ' Peikn q . . . e-ik mn

Π
, ,2»}\{mι, ,mn}

x (0 I akl « + - - . « , „ . . . α+ | 0 > . (6.7)
1 WH

It is clear that the vacuum expectation value in (6.7) is of the form

n

Σ Π <5%Λ, kmh
(m}, ,»„)={!, ,2n}\{mΛ}^=1 A=l *

nifl<m^,h=l, ,n

Ti/λ2 T2n/λ2

xλ2" / ΛK . / Λ^/ rft Σ
0 0 R«^ (m l 5 ,«„)={!, ,2«}\{m«}^=1

mh<mh,h=l, ,n

x (ξ, e~/ij"i^" peikl'q - - e~imι'qeίtmιkl' Pe~it7"nkn' peikn'q e~ikn'qeitmnkn' pη)

xflfτήh(kh)(Stmh-t-hfmh)(kh). (6.8)
h=\

Lemma 6.2. In the limit λ —-> 0 the only terms of the summation (6.8) which give a
non-zero contribution are those corresponding to those n-uples (m\,...,mn) which
satisfy the equation

X[mr+\,2n-\](mh) ~ X\mr+l,2n-l](mh) + X.[mr+\,2n-\\(βh) ~ X.[mr,2n-\](™h) = 0 . (6.9)

Proof. Remember that the indices m/ in (6.8) correspond to annihilators in (6.4)
and are associated to exponential factors of the form

e~'V>'VV« (6.10)

in (6.8), while the indices nij correspond to creators and are associated to exponen-
tial factors of the form

e-*Jm«eitmJk'mp . (6.11)

Also in this case, as in the proof of Theorem 4.1, we shall permute the exponentials
in the scalar product (6.8) in order to cancel the factors exp(±/A:7 q). However in
this case we shall employ a different grouping strategy, namely, instead of permuting
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each factor exp(± ikj q) until it is cancelled by its conjugate factor, we bring all
the factors exp(±/λ:7 q} to the right of all the factors exp(±ία7^/ p) (α/ = /H/ or
/H/) with the exception of the factor exp(itmnkn /?), which remains on the extreme
right.

The scalar phase factor which arises when all the permutations have been per-
formed has the form exp(zT), where Σ is a real number which can be expressed as
the sum of four different types of terms:

-Slί'mA'**' (6 12a)
r=\ h=r

n—\ n

Σ Σ X(mh + \,2n-\](mr)tήirkh kr , (6.12b)
h=\ r=\

n—\ n
Σ Σ l[mh+\,2n-\}(™r}tmrkh kr, (6.12c)
r=l Λ=l

« «

~Σ Σ /[mΛ + l,2«-l](Wr)ίwΛ •** (6.12d)
r=l A=l

The term (6.12a) arises from the commutation of the factors exp(—ikr q), (r =
1,..., π — 1) with the factors Qxp(itmfιkh />), for Λ = r,..., w — 1.

The term (6.12b) arises from the commutation of the factors Qxp(-ikh q),
(h — I , . . . ,H) with the factors Qxp(ίt-^rkr p) for r = l , . . . , w — 1. The character-
istic function in this term is motivated by the fact that the term exp(—ikh q) first
appears on the right of Qxp(—itjnhkh p) because of the convention on the indices
of the collective vectors (cf. the end of Sect. 2) and the fact that m^ < /HA, this
implies that among all the factors exp —itm p, it will have to commute only with
those for which

m/j < mr < 2n

(recall that the my are not increasing in general). Notice that, since mn = 2n the nih

term of the second sum in (6.12b) is zero.
The term (6.12c) arises from the commutation of the factors Qxp(ikh q)9

(h = 1,...,«) with the factors Qxp(itmrkr /?) for r = 1,..., n — 1. The character-
istic function in this term is motivated by the fact that the term exp(/fo q) first
appears on the right of exp(—itmhkh p) for the above mentioned convention. There-
fore, among the factors exp(itmrkr p\ it will have to commute only with those for
which

πih < mr < 2n .

Finally the term (6.12d) arises from the commutation of the factors Qxp(ikh q),
(h— I , . . . ,H) with the factors exp(—itmrkr p) for r— I , . . . ,H. The characteristic
function in this term has the same origin as in the previous one.

Now notice that the sum of the four expressions (6.12a,b,c,d) can be rewritten as

Σ [X[mr+l,2Λ-l]θHΛ)foA + 1[mr+\,2n-\](mh)tmh

\^h,r^n

~ X[mr,2n-l](mh)tmh ~ X[mr+l,2«-l](^>mJ^ ' kr , (6.13)

where, in (6.13), the first term in square brackets corresponds to (6.12b), the second
one to (6.12c), the third one to (6.12a) (recall that the map j κ-> πij is strictly
increasing) and the fourth one to (6.12d).
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By adding and subtracting into the square bracket of (6.13), the terms

±*mAχ[mr+l,2Λ-l](wΛ)tΛ kr \ ±*mAX[mr+l,2n-l](w/0*A *r,

the double summation (6.13) can be rewritten as

Σ *A kr(tmh ~
l^h.r^n

+ Σ tjήhk

+ Σ ^Λ kr(χ[mr+ι,2n-\](mh) - X[mr,2i
l^A,r^«

By the same argument used in the proof of Theorem 4.1, we conclude that, in the
limit λ — > 0, only those terms of the summation (6.8) can survive, for which

Σ *mA

= 0

for almost all ( f i , . . . , f en) Ξ R2w and almost all (&ι,...,£r t) G RMί/ and this condition
is equivalent to Eq. (6.9).

Lemma 6.3. For any natural number n and any choice of 1 < m\ < - - - < mn =
2n in the set {1,...,2«}, Eq. (6.9), in the unknowns m\,...,mn has a unique
solution satisfying

mh < mh\ h= l , . . . , / ι . (6.14)

Moreover the solution (m\ , . . . , m^ ) is characterized by the property that

(mi, mi), (m2,m2 ),..., (mw,mw) (6.15)

is the unique non-crossing partition of the set {!,..., 2n} associated to the set
{mh}n

h=l in the sense specified by Lemma 5.1.

Proof. We distinguish two cases:

In this case, the non-crossing property implies that one must also have

X(mr,2n-l](mh) = Q ,

because mr < mr. Hence

X[mr+l,2fl-l](>W/0 = X{mr+l,2n-l](mh) ,

and therefore
nth > mr ^nih > mr .

2) X{mr+\,2n-\](mh) = I-

In this case, if #[mr,2«-i](#*/j) = 1, by the same arguments as above, we have

nih > ϊnr ^ πih > mr V A, r = 1, ...,«.
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Notice that this is equivalent to saying that

πih > rήr <=> πih > mr V h, r = 1,..., n

and clearly this can be reformulated as

nih > mr =>nih > mr V A, r = 1,...,«.

Now if X[mr,2n-i](mh) = 0, one must have

X\mr+l,2n-l](mh) = 1 -

That is, in any case, X[mr+\,2n-\](^h) = 1 implies that

X[mr+l,2n-l](mh) = 1 ,

which is equivalent to
rrih > mr => πih > mr .

Summing up, we have that either \m^m^\ Π [mr9mr] = 0 or [m^mh] C [mr9mr].
Hence the partition (6.14) is non-crossing.

7. Why Hubert Modules?

In order to interpret the expression (6.3), obtained in Theorem (6.1), for the limit of
matrix elements of arbitrary products of collective creators and annihilators, we de-
scribe in this section the Hubert module on which the limits of the collective creation
and annihilation processes live. By analogy with the Fock and the free Brownian
motions, we shall refer to this process as the interacting free module Brownian mo-
tion. The first example of a quantum noise living on a (nontrivial) Hubert module
was considered in [3], the theory of stochastic integration and stochastic differential
equations on Hubert modules was developed in [11-13].

For each / in Schwartz space, define

/(O := / (Stf}(k)e-Vdk (7.1)
R^

then,/ is a map from R to the bounded operators on L2(Rd). Denote by & the
W*- algebra generated by {elkp\k £Jϋd} (i.e. the momentum W*-algebra of the
system) and by ̂  the ^-right-linear span of {/;/ G JΓ}. Then ^ is a 2P -
right module and therefore the algebraic tensor product between L2(R) and 3?
(denoted by L2(R) Θ J^) is a ^ (in fact 1 Θ Bright module. On the bright
module L2(R) Θ J ,̂ we introduce a ^-right bi-linear, & valued form:

( I •) : L2(R) Θ & x L2(R) Θ &—> & (7.2)

by
(α <8>/ I β 0 g) := (*,β)L2(R} / duf dke-

iukPf(k\Sug)(k). (7.3)
R Rd

In the following we shall identify / with its equivalence class with respect
to the ^-valued inner product defined by (7.3). Thus L2(R) Θ 3F becomes a &-
pre-Hilbert module. The positivity of the right-hand side of (7.3) is not obvious
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by inspection but it follows from Theorem (4.1). For each n G TV, we denote by
(Z2(R) Θ ̂ )Θw the algebraic tensor product of ^-copies of Z2(R) Θ & and define
the ^-right sesqui-linear, & valued form:

( I ) : (L2(R) Θ ̂ )Θw x (X2(R) Θ J^)0" — > 9 (7.4)

by

<a*,
Λ=l

x exp I / Σ urkrkh+ι I (7.5)

and we still identify the Λ 's with their equivalence classes with respect to the
equivalence relation stated before. Thus for each n G N, with the ^-right bi-linear,
^ valued form given by (7.5), (Z2(R) Θ ̂ )Θw becomes a ^-pre-Hilbert module
and the notion (L2(R) Θ ̂ )Θ" will be used to denote it.

Since for each n <E N, (L2(R) ® J^)0" is a ^-pre-Hilbert module, (again the
positivity of (7.5) follows from Theorem 4.1), the direct sum C Θ ®^(L2(R) Θ
jr)Θ« makes sense and will be denoted by Γ(L2(R) Θ ̂ ) and called the Fock
module over L2(R) Θ & . In this pre-Hilbert module, the vector Ψ := 1 0 0 Θ 0
is called the vacuum vector. One can easily show that

Lemma 7.1. The number vector subset

9 n G TV, α, G I2(R),^ G #", 7 = l,...,/ι}

(7.6)

w ^ 0>-total subset of Γ(L2(R) Θ ̂ ).

Definition 7.2. For eαcΛ element of L2(R) Θ J% ί/ze creator with respect to this
element, denoted by A+( \ is defined on the &-rίght linear span of Γ by & -right
linearity and

α <8>/)[(αι (δiΛ) (8) (8) (αΛ 0fn)Ψ]

:= (α ®/) (8) (αi ® /j) (8) ® («„ 0/JΦ , (7.7)

where n e N, α, αy G £2(R), /, fj ^ G J ,̂ j = 1, . . . , n. The formal adjoint is called
annihilator and denoted by A( ).

Remark. In general, A+(C/L\ ®fl)A+(a2 0/2) is not necessarily equal to

Definition 7.3. For eacA fa e R^, ίAe fe/ί αctfo/i of eik»p* on Γ(L2(R) Θ J^) (8) ^b
w defined by

e*oPQA+(a (8)/) := ̂ +(α 0 e^f)eik°pQ (7.8)

/or α// α G L2(R), / G ̂ , where po is the momentum on Jfo ^^^ P\ is the mo-
mentum on the one-particle space of 2F.
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It is easy to show that if * denotes the adjoint with respect to the ^-valued
scalar product given by (7.3), then (V*o/>o)* = e-ik<>Po

Theorem 7.4. For each n^N, α, α/ G L2(R\ /, /~ G ̂  (j = 1, . . . , n\

A(* <8>/>4+(αι ®/ι ) Λ+(α* ®/jy (7.9)

is equal to
(α ®/ I αi ®/ί )Λ+(α2 ® /2) Λ+(αn ®/Λ)«P . (7.10)

Proo/ For each n £ N, α, α/ € I2(R), /, /} € & (j=\,...,n\ βk e L2(R), ̂  e
J^ (A: = 0, !,...,«), since A = (A+)+, we have

A+(βn®gn)Φ). (7.11)

Denote α := αo/ :~ /o Bv Definition (7.11) is equal to

n +00 +00

Π {«Λ, Λ) / rfίio / rfwn / dfa - - dkn
h=Q —oo —oo (n+l)d

exp ί Σ1 X; nΛ kh+ . (7.12)
r=Q h=r

Rewriting the expression (7.12) in the form:

n +00 +00

Π (ah, βh)' / du\- / dun / dki- dkn
h—\ —oo —oo -grid

n n _ / n—l n—\
X I ί a> h h P . 1 ί ( *̂ ΠΊ \( IΓΊ \f ίJfj ^ . PYTΛ I 7 \ Λ \ ^ jy If ,

I I I I v Uh ίyh /\™Ή )J h v h) CΛ.LI i ί / ^ / ^ iΛγi\γ

h=\ h=\ \ r=l Λ=r

+°° .
x {α, /?o) / duo / rf*b elUQk°'p (SUogo)(k0)f(k0) exp /

(7.13)

one finishes the proof.
Now let us compute the matrix elements of arbitrary products of creation and

annihilation operators on the limit Hubert module, which we interpret as limit noise
space. For simplicity we shall not distinguish / from/. What we must compute is
the following object:

(7.14)

where, n G N, αy G £2(R),/y G & (j = 1, . . . ,2/ι), ε e {0, \}2n and

Λ ° : = Λ , Λ 1 :=,4+.

It is clearly sufficient to compute (7.14) only in the case

ε(l) = 0, ε ( 2 w ) = l . (7.15)
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Lemma 7.5. Equation (7.14) is not equal to zero only if

Σε(h) = n. (7.16)
h=\

Proof. The lemma can be easily verified in the case n — \. Suppose by induction

that ΣA=I ε(h)ή=n implies that (7.14) is equal to zero and consider

(7.17)

Denote
A:=min{jce{l,...,2«}; ε(x) = 1} , (7.18)

the position where the first creator is. By Theorem (7.4), (7.17) is equal to

{<Me(1>(ai Θ /i ) Λε(*-2)(αA_2 ® /A_2Xα»-ι ® Λ-i I «* Θ /*)

(7.19)

Now by applying Lemma (7.3), one can move the inner product (α^_ι <S>/A-ι I
«A ® /A) in (7.19) out from the inner product (Φ,...Φ). Since in order to produce
this inner product we have used one creator and one annihilator, it follows that

Σ ε(r)=M. (7.20)
r=l 1:

By the induction assumption we complete the proof.
The same technique can be used to prove the following

Theorem 7.6. Denote

}; ε(r) = 1}, I < mi < ••• < mn=2n . (7.21)

The inner product (7.14) is equal to zero if {/w^}^=1 does not define a non-crossing
pair partition of {!,..., 2n}. If it does (and in this case we know from Lemma 5.2
that it is unique) (7.14) is equal to

+00 +00 n

x / * , , . . . / < / « „ / dk,...dkn π (Sujmh)(kh)fm,(kh)
— oo —oo jjm/ h=\

x /{, Π^**^ι,\ exp (i Σ Σ «**k -^K,Wr)(^)) , (7.22)
\ A=l / V A=l r=A+l /

where, {m'h,mh}n

h=l is the unique pair partition of {!,..., 2w} determined by

8. The Wigner Semicircle Law

This section is devoted to describe how the Wigner semicircle law arises from the
above considerations.
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It is well known that the distinctive characteristic of the Wigner semicircle law
is the role of the non-crossing pair partition, in the expression of its momenta.
But in our case, the situation becomes more complicated since the inner product
of the n-partίcle space is not the product of n copies of the inner product of the
one-particle space. Thus even if we obtain only non-crossing pair partitions, in the
sum each of them is weighted by a factor depending on the partition. We shall see
that the Wigner semicircle law corresponds to the case in which these weighting
factors are put equal to zero.

In order to evidentiate the above mentioned connection between the vacuum
distribution of the field operator and the Wigner semi-circle law, we introduce the
probability spaces (Ωn,<$#n,Pn) , n G N:

- Ωn \= {{m'h, πih}n

h=λ '. non-crossing pair partition of {!,..., 2«}};

-s/n is the discrete σ-algebra on Ωn;
-Pn : Ωn — > [0, 1] is the probability defined by

P»(ωw/,w) := r r . (8.1)

For each 1 ^ h, r ^ «, define a random variable:

Then

Lemma 8.1. For each non-crossing pair partition {^,/w^}2=1,

( i n~l n λ
Σ {!,..., 2/ι} exp - Σ Σ uhkh'krχ(m^mr}(mh)\

{m'h,mh}
n

h=ιeΩn \Z Λ=l r=A+l J

= \Ωn n -E.expμΣ Σ uhkh-krXhλ , (8.3)
V h=\ r=h+\ J

where Ert denotes expectation with respect to the random variables X^r, defined by
(8.2), with respect to the probability measure Pn and Ωn \n denotes the cardinality
of the set Ωn of all the non-crossing pair partitions of {1,2,..., 2n}.

For each n £ TV, α G Z2(R), / G K, define the field operator by B^j =

A(UL <g>/) + ̂ +(α (g)/). Then

) =0. (8.4)

Moreover, Theorem 7.6 shows that for each ξ G L2(Rί/),

+ 00 +00

(ξ, (Φ,B%fΦ}ξ} = Σ l lαl l&R) / dUl . . . f dun
{m'h,mh}

n

h=^Ωn -oo -oo

x / rft, . dkn /
jj«d jjί/ Λ= 1

/ n-l n \

x e x p l / Σ Σ Uhh krχ(mfmr)(mh) , (8.5)
V Λ=l r=A+l /

where μ^ is the spectral measure of p with respect to the fixed vector ξ.
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By applying Lemma 8.1, we have that

+ 00 +00

(Φ <g> ξ,B%fΦ ® ξ) =\ Ωn \n

x dk, dkn

^nd j^ί/ /z=l

Σ £ w/^ My,,r) (8.6)
A=l r=h+\ /

and in the following the right-hand side of (8.6) will be denoted by

\on » I W I ? 2 R / rfM*) ̂ (*) - (8 7)

Lemma 8.2. For each n G TV, the function M/( ) defined by (8.6), (8.7), Aαs
following properties:

i) M/( ) ^ 0 αwd continuous',

ii) M/( ) satisfies the bound, uniform in k\

fdufdx\f(x)(Suf)(X)
R

(8.8)

Notice that the vacuum odd moments of Baj are zero and, if each factor M/(&)
were the 2nth power of some function Cf(k\ independent on «, then the expression
(8.6) would be the moment of order 2n of a random variable with distribution given
by a convex combination of Wigner semi-circle laws with parameter

and mixing measure given by the spectral measure of the momentum operator in
the state ξ. This is not the case because of the interaction term in (8.6), i.e. the
factor under ^-expectation. Neglecting this term, i.e. putting X^r = 0 , V/z,r, the
right-hand side of (8.6) reduces to

I On \n IN$(R) / dμξ(k)[(f I /)(£)]" , (8.10)

where

(/ I /)(*) :=/</«/ dy(Suf)(y)f(yyuyk , (8.11)
R R<ί

which is precisely of the type discussed above with

cf(k) = (f I /)(£) .

In this sense we have claimed in the introduction that the vacuum distribution of
the limit field operator is a nonlinear modification of (a convex combination of)
Wigner semi-circle laws.
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9. The Limit Stochastic Process

Up to now we have discussed the convergence, in the sense of mixed moments, of
the collective creation and annihilation processes to a new type of quantum noise.
The results proved in the previous section, combined with techniques now standard
in the stochastic limit of quantum theory, allow to deduce the explicit form of the
stochastic equation for the limit of the time-rescaled wave operator. The full proof,
which is unfortunately rather long, shall be published elsewhere [19]. We state here
however the final result because the explicit form of the equation is particularly
simple and easy to use.

Theorem 9.1. For each t ^ 0, {Sh,Th}»=l, {Sf

hj
f

h}t, C R, {/*}tι> {/*}£ι C K
and ξ,ηeL2(Rd), the limit

η (9.1)
\A=1 A=l /

exists and is equal to the solution of the quantum stochastic differential equation
with respect to the free module Brownian Motion:

U(t) = 1 + / (dA+(g)(-ip) - (-ip)+dAs(g) - (-ip)+(g | g}_(-ip)ds)U(S)
o

(9.2)

on the full Fock ^-module described in Sect. 7, where the half-inner product
( )_ is defined by

(f I 0)_ := / dt / dke-itk?f(k)(Stg)(k) . (9.3)

The proof that the solution of the quantum stochastic differential equation (9.2)
is effectively a unitary operator and in fact the very meaning of this equation,
depends on the theory of the free stochastic calculus over a Hubert module, which
has been recently developed in [13].
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