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Abstract: The truncated 4-dimensional sphere S4 and the action of the self-inter-
acting scalar field on it are constructed The path integral quantization is performed
while simultaneously keeping the SO(5) symmetry and the finite number of degrees
of freedom The usual field theory UV-divergences are manifestly absent

1. Introduction

The basic ideas of non-commutative geometry were developed in [1,2], and in the
form of the matrix geometry in [3,4] The applications to physical models were
presented in [2,5], where the non-commutativity was in some sense minimal the
Minkowski space was not extended by some standard Kaluza-Klein manifold de-
scribing internal degrees of freedom, but just by two discrete points. The algebra
of functions on this manifold remains commutative, but the complex of the differ-
ential forms does not This led to a new insight on the SU(2)L& U(\)R symmetry
of the standard model of electroweak interactions The consideration of gravity was
included in [6] Such models, of course, do not lead to UV-regularization, since
they do not introduce any modification of the space-time short-distance behaviour

To achieve the UV-regularization one should introduce a non-commutative de-
formation of the algebra of functions on a space-time manifold in the Minkowski
case, or on the space manifold in the Euclidean version One of the simplest locally
Euclidean manifolds is the sphere S2 Its non-commutative (fuzzy) deformation was
described by [7, 8] in the framework of the matrix geometry. A more general con-
struction of some non-commutative homogeneous spaces was described in [9] using
coherent-states technique

The first attempts to construct fields on a truncated sphere were presented in
[8,10] within the matrix formulation Using a more general approach, the fields on
truncated S2 were investigated in detail in [11-13] In particular, in [11] it was the

1 Paiticipating in Project No P8916-PHY of the ςFonds zui Fόiderung dei wissenschaftlichen
Foischung in Osterrcich'

2Partially supported by the giant GACR 210/96/0310



430 H Grosse, C Klimcίk, P Presnajdei

quantum scalar field on the truncated S2 and it was explicitly demonstrated that the
UV-regularization automatically takes place upon the non-commutative deformation
of the algebra of functions

In this article we extend this approach from the 2-dimensional sphere S2 to the
4-dimensional one Since S4 is not a (co)-adjoint orbit, this extension has some
new nontrivial features We shall introduce only the necessary notions of the non-
commutative geometry we needed for our approach

In Sect. 2 we describe briefly the standard (commutative) sphere S4 as the Hopf
fibration SΊ —* S4 and the scalar self-interacting field on it Section 3 is devoted to
the generalization of the model to the non-commutative truncated sphere S4 intro-
ducing the non-commutative analogue of the Hopf fibration Then, using Feynman
(path) integrals, we perform the quantization of the model in question Last, Sect 4
contains a brief discussion and concluding remarks

2. Scalar Field on the Commutative S4

Here we describe the standard sphere S4 in the form that will be suitable for the
non-commutative generalization Our basic tools are the real quaternions

ψ = Ψ{a)ea £ H (1)

with φ{cι) real and the quatemionie units

0 Λ ( 0 Γ
v - l 0

satisfying the relations

βiβj = ~διj - ι:ljkek, e^eι = e^ (3)

We shall usually write 1 instead of e^ The coefficient φ^ — \\x φ is called the real
part of the quaternion, and φ^), i— 1,2,3, are pure quatemionie components The
explicit realization (2) of the quatemionie units allows us to identify the space of
quaternions with C2' any quaternion we represent by 2 x 2 complex matrix

( Φ? Φ i λ
<P = (4)

\-<P\ ΨiJ

The quatemionie conjugation φ —> φ* defined by

e, -> e* = -et, i = 1,2,3, e4 -+ e^ = e4,

then corresponds to the Hermitian conjugation of complex matrices We shall
frequently use both descriptions without an explicit specification. Further, the quater-
nionic length \φ\ is defined by

\φ\2 = φ*φ = φ\a) = det φ (5)
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If \φ\ = 1, φ is called a unit quaternion. The set of unit quaternions is isomorphic
to the group SU{2) (and as a topologieal space to S3)

The group Sp(4) we identify with the group of 2 x 2 quatemionic matrices of
the form

A =
cos f α sin f yβ*

- s i n f y * α cos § β*
(6)

where α, β, y are unit quaternions, and 0 G [0, π] is a real angle
The Lie algebra sp{4) = so(5) is spanned by 10 anti-Hermitian matrices ξAB =

— ξβ4, A,B = 1, ,5, given as

o
-el

— Qa, Qab — ζaζb > (7)

where a,b = 1, ,4, αφZ?. The matrices ζfl/? span the Lie algebra so(4) = so(3) 0
so(3) Supplementing (7) by five matrices

0
0

1 0
0 - 1

a= 1,.. ,4, (8)

we recover the basis of the Lie algebra su*(4) = so(5,1) It is closely related to the
Clifford algebra C4'0 with the basis ξa, a = 1,.. ,4*

C4,O =

ζaζbζc, \ ^ a < b < c ^

ξaξh, 1 S a < b ^ 4

ξa, 1 S a S 4

\

/ 4 \
lfl, 1 ύ a S 4

ξah, I ^ a < b ^ 4

ξa, 1 S a S 4

1 /V

(9)

where the matrices ξa9ζab
 a r e anti-Hermitian whereas the matrices ξA, A = 1,

are Hermitian and transform as an £(9(5) vector
The matrices A G £p(4) act in a natural way in the space H

(ΞH2 άφ + bχ

cφ + Jχ
(10)

The sphere SΊ, given by the equation

( i i )

is transitively invariant under this action Introducing the equivalence relation

z r^ z1 — zee, α — unit quaternion , (12)

we recover the sphere S4 as the Hopf fibration SΊ —> S4 To any equivalence class
(13) we assign the SO(5) vector given by the Cartesian coordinates in R5:

J+z J\XA = -tv(z+ξAz)= -tr(z ; ξAz') (13)

These are just the Cartesian coordinates of the sphere S4 embedded into R5 (similar
objects were used in [8] within a relativist!c context)



432 H Grosse, C Klimcίk, P Piesnajdei

As sd^ we denote the commutative algebra of analytic functions (polynomials)
in the variables XA, A = 1, ..,5

φ(x) = ^2AMxM, AM - complex , (14)

with the usual point-wise multiplication Here we used the multi-index notation'
M = (Mi, ,M5), xM =x^1 . x5

Ms In .o/^ we introduce the scalar product

(ΦuΦ2)oo=Ioc[ΦΪΦ2], (15)

where lod ] denotes the usual SO(5)-invariant integral on £ 4 .

/oo[. ] = ^ / Λ - ^ - l ) [ ], (16)

where the normalization guarantees that /^[l] = 1
The Sp(Λ) action (10) in the algebra ^^ generates R5 rotations, leaving the

quantity x2

A = 1 invariant The generators of this action (anti-Hermitian with respect
to the scalar product given above) are given as

φ

ψβ ξfB δ>h)Φ (17)

Here ξjB are elements of the 4 x 4 complex matrix assigned to the 2 x 2 quater-
nionic matrix t^, and φy, φ*9 α = 1, . . , 4 , are complex variables identified with the
elements of complex matrices assigned to the quaternions φ and χ in the following
way

Φ\ = ψ\, Φl = ψ2, Φ3 = Zl, Φ4 = X2,

It follows from (17) that the quantities φΆ, φ*, α = 1, . ,4, transform as S4

spinors,

JAB i>, = \ ξfB Ψβ, JAB ψ*β = \ξfB ψ; (19)

Consequently, the quantities XA , A = 1, .., 5 given as

xA = Φ^ξAΦ = ψ;ξfΦβ, (20)

where ξ%' are elements of the complex matrix assigned to ξA, transform as a vector

in R5 Moreover, the function C(x) = xA satisfies

JABC(X) = 0, A , B = l , 5 , (21)

i e C(x) is an invariant function as expected
The 5/?(4) action (17) in the algebra .ε/oc is reducible and we have the following

expansion:

(22)

where s^ζo is the carrier space of the irreducible representation of the Sp(4) group
μspanned by the harmonic polynomials Ψμ of degree p in the variables xA,A —
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1, ., 5 The polynomials Ψμ are orthonormal with respect to the scalar product
(15). The dimension of the space stfζc is

(/;+lX/7
6

which means that any field Φ £ sΫ^ can be expanded as

ΦW= Σ Σ < ^ (23)
p=0μ=0

The field action corresponding to the real scalar field Φ is given as

S[Φ] = Ioc \\(JABΦ? + V(Φ)] , (24)

where V( ) is a polynomial bounded from below
The quantum mean value of some polynomial field functional F[Φ] is defined

as the functional integral over fields from Φ £ J / ^ by

f DΦe~S[φ]F\Φλ

where DΦ = \\χdΦ{x) = f| μdap

μ (eventually, with the reality conditions for ap

μ

included).
Since here p = 0,1, . , oo, the formula for the measure is only formal We

shall not discuss the complicated (and not completely solved) problems related to
its rigorous definition. As we shall see below, such problems do not appear in the
framework of the non-commutative version of the model.

3. Scalar Field on the Non-Commutative S4

In this section we shall use various unitary irreducible representations of the group
Sp(4) Any such representation is characterized by its signature (p,k) with integer
p ^ k ^ 0 and can be expressed as the Young product

{p,k) = πp

χ-
k πk

2, (26)

of Sp(4) fundamental representations π\ — (1,0) 4-dimensional quaternionic and
%2 = (1,1) 5-dimensional real (see eg. [14]) The dimension of the representation
(P,k) is

dpk = X-(p + 2)(k + \){p - k + l)(p + k + 3). (27)

In the non-commutative (fuzzy) case we replace the commuting parameters (18)
by the non-commutative ones Namely, we shall express the parameters ψα, ψ*,
% — 15 ,4 in terms of annihilation and creation operators as

ψx=AxR~m, ψ;=R-]/2Al, (28)
where

R=A*AXί (29)
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so that the condition ι//*ι̂ α = 1 is satisfied (the operators \j/a are well defined every-
where, except in the vacuum, we complete the definition by postulating that they
annihilate the vacuum). The operators Ay_ and A* (* denotes the Hermitian conjuga-
tion) act in the Fock space #" spanned by the orthonormal vectors \n) = \n\, ..,̂ 24)
labelled by the occupation numbers ny, α = 1, ,4 They satisfy in 3F the commu-
tation relations

[Ax,Aβ] = [A*,A}] = 0, [A,,A}] = δΛβ (30)

The operators

JAB=\A*:4UΪU A,B =],...,5 (31)

satisfy in the Fock space 3F the sp(4) — so(5) Lie algebra commutation relations
The subspace #w with the fixed total occupation number

&r

N = {\n),\n\=N}, N = 0,1,2,. . (32)

has the dimension

(^+3) (33)

and is the carrier space of the Sp(4) unitary irreducible representation (TV, 0)
As the s$N we denote the non-commutative algebra of operators # ^ —

which can be expressed as polynomials

Φ(x) = Σ ^ M ^ M , AM complex, (34)

in operators

xA=ψ:ξfψβ = ψ+ξAψ, A = h ,5 (35)

restricted to the space J ^ The operators XA, A = \, . . ,5, form a vector in R5

In J//V we introduce the scalar product

2], (36)

where 7^[ ] is the analogue of the 5Ό(5)-invariant integral on S4:

INI..] = -^-TTN[...] (37)

Here Tr^[...] denotes the trace in the algebra es/#, and the normalization guarantees
that IN[\] = 1

As a non-commutative analogue of (18) we have a commutator action of the
sp(4) algebra in ,Q/^'

)], (38)

with JAB defined in (31). This is a reducible representation with the following de-
composition to Sp(4) irreducible components

(W,0)<8>(#,0)= © @(p + hp-k). (39)
p=0 k=0
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This decomposition induces the decomposition of the algebra stf^.

^ ( 4 0 )
p=0 A=0

where srfp

N is the earner space of the Sp(4) representation (/?'\k') This means
that any Φ £ ,P/N can be expanded as

φ(χ) = Σ Σ Σ < + * ""* ψp+k-p-k, (4i)
p-^0 k^O μ=\

where d'pk = dp+^p_ι and Ψp , μ = 1, . ,dp>j{>, span the space ^/^ .

h i h d i ip

In the commutative case, the decomposition (22) of the algebra sd^ contains
p

only representations (p,p) = np corresponding to terms with k — 0 in the decom-
position (40)

Note We would like to stress that it is not essential that the generators XA, A —
1, . ,5, given in (35) do not close to some Lie algebra (they close to a Lie algebra
only after supplementing them by the operators (31)) The following point is impor-
tant, however the decomposition (40) of the basic algebra s/^ under the symmetry
transformation in question (this aspect was less transparent for the truncated sphere
S2, since in this case the generators closed to a Lie algebra, see [11]) The detailed
information contained in Eq. (40) is necessary for realistic numerical or symbolical
calculations

We identify the space of the configurations of a real scalar field with the subspaee

<=®<P, (42)

of symmetric polynomials in x^, A = 1, ,5, with real coefficients

Such fields can be expanded as

ΦW= Σ Σ>£*T> (43)
p=0 //-I

where the coefficient ap

μ are real provided that Ψpp are chosen to be Hermitian (if
this is not the case the coefficients ap satisfy some relations that guarantee that
the field in question is a Hermitian operator in J ^ ) This guarantees that in the
commutative limit N —> OG we recover from (43) only fields that have the proper
form (23)

In the non-commutative case the field action corresponding to the real scalar
field Φ is given as

S[Φ] = IN \\OΛBΦΫ + V(Φ)] , (44)

where V( ) is a polynomial bounded from below Obviously, this action has the
following basic properties:

1) it has the full SO(5) symmetry corresponding to S4 rotations, and
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2) it describes a model with a finite number of modes since, in fact, it corre-
sponds to a particular matrix model

The quantum mean value of some polynomial field functional F[Φ] is defined
as the functional integral

f DΦe~swF\Φ']
(F\Φ~\) = j L J (45)

However, here DΦ = JΊ dap

μ (eventually with the reality conditions included) is
the usual Lebesgue measure, since now the product is finite (p = 0,1,. ,7V, and μ =
1, ,d'pp) The quantum mean values are well defined for any polynomial functional
F[Φ].

4. Concluding Remarks

We have demonstrated that the interacting scalar field on the noneommutative sphere
S4 represents a quantum system that has the following properties

1) The model has the full SO(5) space symmetry under the rotations of the
sphere S4. This is exactly the same symmetry as the interacting scalar field on the
standard sphere S4 possesses

2) The field has only a finite number of modes Then the number of de-
grees of freedom is finite, which leads to the non-perturbative UV-regularization,
i.e all quantum mean values of polynomial field functionals are well defined and
finite

In our approach the UV cut-off in the number of modes is supplemented with a
highly non-trivial vertex modification due to non-trivial products of fields Our UV-
regularization is non-perturbative and is completely determined by the algebra stf^
It is originated by the short-distance structure of the space, and does not depend on
the field action of the model in question.

Moreover, it can be shown that the Schwinger functions

Sn(F) = (Fn[Φ]) 9 (46)

where Fn[Φ] = Σ <,' μϋi^μl^N (ΨltΦh satisfy the Osterwalder-Schrader
axioms.

(051) Hermίticity
S*n(F) = Sn(ΘF)9

where ΘF is the involution defined by ΘFn[Φ] = (F,,[Φ])*.
(052) Co variance

where JΛF is a mapping of functionals induced by SO(5) rotations
(OS3) Reflection positivity

Σ Sn+m{ΘFn®Fm) ^ 0.



Finite 4D Quantum Field Theory in Non-Commutative Geometiy 437

(OS4) Symmetry

where πF is a functional obtained from F by arbitrary permutation of indices of
P1 Pn

Note We do not include the last Osterwalder-Schrader axiom, the cluster prop-
erty, since the compact manifold requires a special treatment (however, it can be
recovered in the limit where the radius of the sphere grows to infinity, but these
considerations go beyond the presented scheme). Qualitatively, the properties of the
Schwinger functions are the same as those valid for the truncated sphere S2, see
[11] We would like to stress that the properties of standard Schwinger functions not
included above (eg support, or singularity and growth, specification) are essential
again in the commutative limit N —> oo.

The usual divergences will appear only in the commutative limit N —> oo It
would be very interesting to isolate the large-TV behaviour non-perturbatively By
this we mean the Wilson-like approach in which the renormalization group flow in
the space of Lagrangians is studied. In this context a connection may be found with
similar recent works [15]

Combining the results of this paper with those of [11-13] we obtain a set of
UV-regularized Euclidean quantum field models on S2 and S4.

a) the scalar field on the truncated S2, which is super-renormalizable,
b) the Gross-Neveu model on the truncated S2, which is renormalizable,
c) the scalar field on the truncated S4 with Φ4 interaction which is renormalizable

too

Analogous models formulated on standard Euclidean planes (R2 or R4 instead
of spheres) served as important examples in the proof of the existence of quantum
fields in continuum Euclidean spaces in the framework of the Wilson approach (see
[16,17] for the super-renormalizable case, and [18,19] for the renormalizable one)

We have an alternative approach, the regularization procedure is non-perturbative
and preserves all space symmetries of the models in question. The UV-regularization
in our scheme can be interpreted as a direct consequence of the short-distance
structure induced by the non-commutative geometry of the underlying space This
can lead to a better understanding of the origin and properties of divergences in
quantum field theory
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