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Abstract: In this note we will give a construction of the Poincare group out of the
modular groups of the wedge algebras provided the groups act on the algebra of every
double cone like the associated Lorentz boosts. This construction will use the concept
of half-sided modular inclusions instead of the first and second cohomology of the
Poincare group as used by Brunetti, Guido and Longo. By our method we obtain
directly the Poincare group and not its covering group.

1. Introduction

The modular groups of different subalgebras appearing in the theory of local observ-
ables have been used to construct the symmetry-group of the whole theory. There are
two examples, namely the construction of the Mδbius-group in chiral quantum field
theory by H.-W. Wiesbrock [Wie2] and the construction of the Poincare group in
the four-dimensional theory of local observables due to Brunetti, Guido and Longo
[BGL] and of Guido and Longo [GL].

If one starts from two or more one-parametric groups, these groups will generally
create an infinite dimensional group. In the above-mentioned examples, however,
we obtain only a finite dimensional Lie-group and one is interested to understand
the reason for this reduction. By superficial consideration one might think that the
reduction is due to the locality of the action of the modular groups we are starting
with. These locality assumptions are consequences of either the result of Bisognano
and Wichmann [BW1,2] or of the conclusions of Borchers [Bchl]. But this alone does
not lead to a reduction and I think that this reduction is due to the fact that there are
pairs of algebras the intersection of which fulfills the condition of half-sided modular
inclusion with respect to both algebras.

With two algebras fulfilling the condition of half-sided modular inclusion one
finds a group U(t) which maps the large algebra onto the small one if t takes the
value 1. This group has either a positive or a negative spectrum, from which one is
usually able to show the uniqueness of this group. This uniqueness seems to be the
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reason why one obtains finite dimensional Lie-groups and not a central extension of
them.

Probably it will be extremely difficult to prove such a conjecture, because the
modular groups of two algebras will immediately generate an infinity of algebras
and it is almost impossible to classify their intersections. Therefore, one can only
look for examples in order to support the presumption. In the case of the chiral field
theory it is easy to see that the concept of half-sided modular inclusion, introduced
by Wiesbrock [Wiel], is the source of the reduction. In this note we will treat the
case of Brunetti, Guido and Longo and give a construction of the Poincare group
(and not of its covering group) by using half-sided modular inclusions instead of
cohomology theory. Also here we start from the assumption that the modular groups
of the wedge algebras act like their associated groups of Lorentz boosts. The assumed
locality of the modular action will be used in order to construct subalgebras fulfilling
the condition of half-sided modular inclusion with respect to two or more wedge
algebras.

We start from a representation of a quantum field theory of local observables with
similar properties as in the vacuum sector. For a given domain O the von Neumann-
algebra, generated by the representation of the local observables located in O, will be
denoted by ^M(O). The cyclic and separating vector for these algebras will always
be the same vector Ω. The starting point of the investigation are the wedges. They
are defined with help of two linearly independent lightlike vectors ί\ , IΊ belonging to
the forward lightcone by the formula

W^i,*2] = {e^i+/%+^-; α > 0,^9 <0,(^,^) = 0,i = 1,2}, (1,1)

the scalar product means the Minkowski-space product. The translated wedges will
be denoted by W[ί\ ,ίι,o\. They will be needed only for the construction of the trans-
lations. It is often convenient to choose two vectors £3, £4 in the space perpendicular
to t\ and IΊ spanning this space. For £3,^4 we require the conditions

(*ι,40 = (̂ 3) = (4Λ) = (4Λ) = (4>Λ) = o, £2

3 = £2

4 = -1. (1,2)

For many calculations it is convenient to introduce a fixed time-direction t, t2 = 1
in the forward lightcone and a fixed coordinate system. This is equivalent to introduce
a second, euclidean, metric on the Minkowski-space. The scalar product in this metric
will be denoted by angular brackets (.,.}. If t\, ...,£4 is a basis of the Minkowski-
space then we denote the dual basis with respect to the euclidean product by ra^,
i.e.,

(ei,mj) = δijj, i,j = l,...,4. (1.3)

In this setting the Lorentz boosts belonging to the wedge W[t,\ , £2] have the following
representation:

£3)(m3

with ~

Our assumptions are the same as those of Brunetti,Guido and Longo, namely, that
the modular group belonging to a wedge algebra acts on the algebra associated with
any double cone in the same manner as the associated Lorentz boosts.

(1.5)
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This implies for the algebra of the wedge the relation

, af = Δ [Λ[t, f, 6](s)£, , Λ[t, I', b](s)l2, Λ[l, I', b
(1-6)

Formula (1.6) is an important ingredient which will often be used.
In the next section we will collect some known results which are needed for

our investigations. Furthermore, we describe pairs of algebras in the theory of local
observables fulfilling the condition of half-sided modular inclusion. In Sect. 3 we
construct the translations and in the last section the Lorentz group will be constructed.

For the unit operator acting on the representation Hubert space we use the symbol
H. The unit matrix acting on M4 is denoted by 1.

2. On Pairs of Algebras Fulfilling the Condition of Half-sided Modular Inclusion

First we want to collect some known results.
Let ^M be a von Neumann algebra with cyclic and separating vector Ω then the

modular operator and the modular conjugation of the pair (^M, Ω) will be denoted

by Z\^ and J^, respectively. The combination J^Z\^ = S^& will be called the
Tomita conjugation of (*̂ ?, Ω). Since in all our investigations the vector Ω will be
kept fixed we drop this vector in the characterization of the appearing objects. The
essential ingredient of our investigation is the following result which we quote for
the convenience of the reader:

Theorem 2.1 (Borchers [Bchl], Wiesbrock [Wiel,2]). Let ^M be a von Neumann
algebra with cyclic and separating vector Ω.
(1) IfU(t) is a continuous one-parametric unitary group with

i. U(t)Ω = Ω,
ii. U(t) has a non-negative generator,

iii.

then with Λf\= <ιdU(t)^ follows :

(2) If ,Λ/" is a sub von Neumann algebra of Λ& having Ω as cyclic vector and

adZi^/r C Λ^ for t < 0,

then a continuous unitary group U(t) exists fulfilling the conditions of (I) and

(3) If (I) or equivalently (2) is fulfilled then the following relations hold between the
different operators:

U(~2) =

Remarks 2.2.
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(1) The property Λ^ C Λ& and ad/V^/F C Λf for t < 0 is called -half-sided
modular inclusion.
(2) If one abbreviates ad U(t)Λ£ by Λ£\hvc\ one gets the inclusions

Λf C Λ& for ί > 0,

Λf D ̂  for ί < 0,

Λ£ C Λf2 for tι> t2.

Concerning the uniqueness of the group U(t) the following result is known:

Theorem 2.3 [Bch2,Prop. 3.4]. Let Λ&a and Λ£, a G II be two families of von Neu-
mann algebras on the Hubert spaces 3$ m ? &@n with the cyclic and separating vector
Ωm , Ωn, respectively. Assume there are continuous unitary one parametric groups

, U^(ά) both fulfilling spectrum condition and define

(-α), Λ£

Assume moreover

Λ6aC_^b, Λ^^Λf for a>b.

If there exists a unitary map W with W^@n = J^m and WΩn = Ωm and in addition

^ = WΛζW*, and ^^ι=

then follows
V αel ,

The same is true if we require that <yM$ and Λ&\ as well as Λζ and Λζ both fulfill
modular inclusion for negative arguments of the modular groups.

Remark 2.4.

(l)lfΛ^ fulfills condition (2) of Theorem 2.1 then ad U(a)^ =
ad U(a+V)^M = <A£+ι fulfills the same condition for α > 0. The corresponding group
U^(t) is obtained by scaling

U^(t) = U(at).

(2) If A'" fulfills condition (2) of Theorem 2.1 then A^ and J/^ can be computed
with help of Z\^ and U(l) or with help of J^ and U(l\ respectively. Hence one
finds the same relations

Next we turn to the characterization of pairs of algebras fulfilling the condition of
half-sided modular inclusion. For this investigation it is important that the modular
groups of the wedge algebras act like the associated Lorentz groups.

Lemma 2.5. Let i,i' be two linear independent lίghtlike vectors in the boundary of
the forward light cone, then the pair

, t', a]) D Λ6(W[ί, lf, a + XI]), λ > 0 (2. 1)
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fulfills the condition of —half-sided modular inclusion. Correspondingly the pair

Λ6(W[l, tf, α]) D Λ6(W[l, I', a - μt'}), μ > 0 (2.2)

fulfills the condition of +half-sided modular inclusion.

Proof. For the wedge W[l,l',0] with ί = (1, 1,0,0),^ = (1, -1,0,0) the Lorentz
boosts associated with the modular group of the wedge algebra are of the form

( cosh2τrί -sinh2τr£ 0 0\
— sinh 2πt cosh 2πt 0 0 1 n „.

0 0 1 0 I ' ( '
0 0 0 I/

From this follows (2.1) and (2.2) in case α = 0 and l,t' are the above vectors. The
general statement is obtained by applying the corresponding Poincare transformation
(as coordinate transformation) to the special situation. D

The first step in our further construction will be to look at the family of wedges
having one light ray in common,

{W\t, t2]\l fixed}, (2.4)

and at the stabilizer group of the vector L It is well known that the stabilizer S(f)
of a lightlike vector is isomorphic to the euclidean transformation of M2. (See e.g.
Gelfand, Minlos and Shapiro [GMS].) The rotations are the transformations around
the space-direction of the light ray. In order to understand the translations let us
introduce a second lightlike vector 12 which we choose in such a way that I , ί, 12

lie in one two-plane. Let T(K) be the tangent hyperplane at the forward lightcone
V+ containing the vector L Then the affine hyperplane 12 + T(t) intersects dV+ in a
two-dimensional set (parabola) homeomorphic to M2. The translations of S(f) have
this set as orbit.

In the concrete example

these translations become (α = (αi, a2) G M2)

^ α \
2^ αi a2 ^

(2.5)Λe(a) =
2

«_

αi

V &2

2
1 — —

-oi
-α2

αi

αi
1
0

tt2

«2

0
1

(See also R. Jost [Jo] Appendix.) It is easy to check that this is a representation of
the two-dimensional translation group,

Λ\ά)Λ£(b) = Λ\a + b}.

The transformed vectors ^(α) := Λ^(a)li are of the form

I2(a) = a2i + £2 + 2α^3 + 2a2l4 = (1 + α2, -1 + α2, 2oι, 2α2),

ail + £3 = (αι,αι,l,0),

= 02^ + ̂ 4 = (02,02, 0,1).
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The dual base can easily be computed and one finds

mι(o) = -t + —(-2 - a>ι£3

2, (2.6')

m3(α) = —

m4(a) = —a2l2 + (-4-

Using the representation (2.6) and (2.6') we list the euclidean scalar products for later
use,

=1, (m2(a),l) =0,
= (b-a)2, (m2(a),l2(b)) =1,

(mι(a),£3(b)) =bι-aι, (m2(α), £3(6)} = 0,
(mι(α), £,(&)} =62-02, (m2(α),£4(6)} =0,

(2.6")
{ra3(α),ί} =0, (m4(a),t) = 0,

<m3(α), t2(b)) = 2(6ι - α,), (m4(α),
=1, (m4(a),£3(b)) =0,
=0, {

Using the two basis t and m we get for Λί(a) the representation (m^ =

Λe(a) = () (mi + £2(a)} (m2 + £3 5/

I) (mι(6) + I2(a + b)} (πι2(b) + I3(a + 6)) (m3(6) + I4(a

and for Λ[(, £2(a)](t) the representation

= £)e(t)(mι(a) + €2(α)}e(-ί)<m2(α) + £3(α)){m3(α) + £4(a))(m4(a).
(2-3')

In order to relate Λe(a) with the boosts Λ[£,l2](t) we compute the following
product with help of (2.3') and (2.6"):

, l2(a)](t)Λ[ί, £2(b)](-t) = t) (mm + £2(a)) (m2(b) + £3(a)} (m3(6)

+£4(α)){m4(6) + e(ί){^){m1(α), €3(6)}{m3(6) + t}(m,(a\ I4(b)) (m4(b)

(a)) (m3(α), £2(b)} (m2(b) + €4(α)} (m4(α), I2(b)) (m2(6)}

Comparing this result with the second equation of (2.5') we get

Λe(a -b)= lim Λ[l, £2(a)](t)Λ[ί, I2(b)](-t). (2.7')

Later we will have to show that the corresponding product A[i\,iι(ά)\lt x
2(b)]~lt converges for t -^ oo strongly to a unitary operator t/(α, b) and that

this operator acts local on every double cone, i.e.,
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This will be done in Sect. 4.
Now we are prepared to look at the inersection of two wedges with a common

lightlike vector. We show

Lemma 2.6. The algebra Λ&(w[i, iv] Π W[l, 12}\ fulfills the condition of -half-

sided modular inclusion with respect to both algebras Λ&(W[i, i\\) andΛ&(W[i, ^D

Proof. We identify t\ with £2(ά) and 12 with 4(6). The wedge W[ί,ί2(a)] has the
representation

> 0,/J < 0,71,72 e R}. (2.8)

We apply to this expression the identity in the form of

1 = ί)(mι(b) + I2(b))(m2(b) + ί3(b))(m3(b) + I4(b))(m4(b),

and obtain with help of (2.6")

t, ί2(a)] = {ί)[a + β(a - b)2 + (7, α - 6)] + £2(b))β + 4(6)>[2(αι - 61)

0,/3 < 0,71,72 <E R}.
(2.80

Therefore, the intersection VF[^,ίι] Π W[l,l2] is characterized by

{α^ + ̂ 2(α) + 7ι^3(α) + ^4(α);α > 0,/3 < 0,71,72 e R,

{α + /5(α-6)2 + (7,α-6)} > 0}.

Applying A\i, t2(a)}(t) to (2.9) amounts to replace the coefficient a of i by e(tχ and
the coefficient β of £2(ά) by e(—t)β. Hence applying Λ[£, £2(a)](t) to points of the
intersection leads to points

o (2.10)
a > Qβ < 0,71,72 G M,(α + β(α - 6) + (7>α- &)) > 0}.

Since we can write

e(ί)α + e(-t)β(a - b)2 + (7, α - 6) = α + /3(α - 6)2 + (7, α - b) + (e(t) - l)α

we find that the intersection is mapped into the intersection for e(t) > 1 which
means for t < 0. Since the modular groups of the wedge algebras act as their asso-

ciated Lorentz boosts we conclude that the algebra <Λβ(w[l,l2(ά)] Π W[l,£2(b)]\

fulfills the condition of —half-sided modular inclusion with respect to the algebra
Λ6(W[l, I2(a)]) and by symmetry also with respect to the algebra Λ6(W[l, I2(b)]).

D

Remark 2.7. If we look at three wedges with one common lightlike vector ί, i.e.
W\l, ί\\, W\l, 4], W[ί, £3] then the algebra of the intersection

ύ n W[t,t2] n W[e,e3]\ (2.11)

also fulfills the condition of —half-sided modular inclusion with respect to all three
algebras W[ί, 4], i = 1,2,3. This is a consequence of the identity
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Λ& (w\ι, iι]nw[t, 4] π w\t, t

{] n w\ι, ι2[ n^%w[t, ιγ\ n w\ι, e

and the fact that both algebras on the right-hand side fulfill the condition of —half-
sided modular inclusion with respect to ^M(W[i,i\\) and hence also for the inter-
section. For the other two algebras the statement follows by symmetry.

3. Construction of the Translations

We start our investigation by looking at the family of wedges W[l, I', a] where I and
f are fixed and α is of the form α = X( + μi' . Therefore, we suppress in the first part
the indices [£,£'} and write simply WM^tα]1*, and so on.

Let W[a] and W[a + XI] be two wedges and λ > 0. Then by Lemma 2.5 the
algebra ^M(W[a + λ^]) fulfills the condition of — half-sided modular inclusion with
respect to the algebra Λ6(W[a\). Hence by Theorem 2.1 a unitary group f/[α, \i](t)
exists with positive generator fulfilling

adϊ/[α, XC\(l)Λ6(W[ά\) = Λ£(W[a + λfl). (3.1)

Furthermore, this group satisfies the following properties (e(ί) = e~2πt):

t7[α, Xί}(t)Ω = β,

= U[a, ,
'

U[a, \C\(\ - e(ί)) = Δ[a + Xΐf* Δ[a
'lt

For the first two lines see Theorem 2.1. The second line together with (1.6) implies
the third line. The last line follows from (3.1) and from the second line of (3.2).
Because of Theorem 2.3 the group C/[α, Xί](s) is uniquely defined by the properties
listed in the first and third line together with the positivity of the spectrum. From the
last line of (3.2) we obtain

£/[α, λfl(l) = lim Δ[a + Xff* ΔfaΓ* (3.3)

Notice that by the last line of (3.2) the limit converges in the weak and hence in the
strong topology. Moreover, from representation (3.3) we see that C/[α, X£](s) acts like
the translation in the ί direction. Hence by the uniqueness Theorem 2.3 we find that
this is independent of α, i.e.

(3.4)

The mentioned uniqueness of the groups C/[α, Xf](t) implies for λ, μ φ 0 the identity

U[a,Xί}(s) = U[a,μί}(-s). (3.4')
/^

Hence we only have to deal with groups U[ί](s).
Using the wedge W[a] again we can construct a group C/[α, t!](s) in the same

manner. By proper definition, this group satisfies again the spectrum condition and
the relations similar to (3,2)-(3.4). The only change is
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ad A[afU[a, if}(s) = U[a, if}(e(-t)s). (3.20

Also here we obtain a group U[i'}(s) which does not depend on the first parameter.
It remains to show that the groups U\t}(s) and U[i'}(s) commute. To this end we

notice that we can map Λ&(W[a\) onto Λ&(W[a + U — si'}) on two different ways,
namely using either Λ&(W[a + ti}) or Λ&(W[a — si']) as intermediate algebra. This
yields

- si'}) =

U- si'}) =

We want to show that the product of translation operators coincide. Therefore, we
compute with help of (3.2) and (3.2') and obtain

U[a + ti, if}(-s(l - e(-

Δ[a + ti- si'}lμΔ[a + U]~lμΔ[a + U]lμΔ[aΓlμ,

U[a - si',i}(t(\ - e(μ)))tf[M'](-*(l - e(-μ))) =

Δ[a + ti- si'ΓΔ[a - si'ΓlμΔ[a - sif}lμ Δ[aΓlμ .

Using the independence of the first parameter we obtain

a). (3.5)

Having constructed the Poincare group in two dimensions we have to go to higher
dimensions. First we want to show that the translations defined in different two-
planes also commute. To this end we fix a lightlike direction i and look at the
family of wedges defined by i and another lightlike vector {W[i,i'};ie φ i}. Us-
ing the -half-sided modular inclusions ^M(W[ί,ίι,Xe\) C ^(W[^ι,0]) and
Λ£(W[i,i2,\i}) C ^M(W[i,i2,Q\) we obtain two different translation groups
U[i,i\,i}(t) and [/[£, ^2,flCO respectively. Both groups act like translations on ev-
ery double cone and hence on every wedge. Therefore, by Theorem 2.3 they have
to coincide. Hence the groups depend only on the direction of the translations and
not on the two-plane which has been used for constructing them. Consequently we
obtain groups U[i}(t). From this it follows that all these groups U[i}(s) commute for
different i, since for every two different έ's there exists a wedge which is defined by
these two vectors. Since all these unitary groups fulfill the spectrum condition there
exists a group V(a), a e E4 such that U[i}(s) coincides with V(si). Hence we have
constructed the translation group of M4 which transforms by the modular groups in
the expected way.

We collect the results obtained so far:

Lemma 3.1. Assume all modular groups of the wedge algebras act like their associated
Lorentz groups. Then a unique continuous representation of the translation-group V(a)
exists which fulfills spectrum-condition and acts geometrically on the local algebras

+ α),

where K denotes a double cone. (It is assumed, that Λ&(K) coincides with the inter-
section of the wedge algebras of all wedges containing K.) This representation V(a)
is contained in the algebra generated by the modular groups.

Moreover, the modular groups of the wedges and the translations transform each
other as if they were members of a unitary representation of the Poincare group.



712 HJ. Borchers

Proof. We know that V(a) transforms the algebras of the wedges in the geometric
manner. This implies the correct action on Λ&(K) by passing to the intersection.
The rest follows from (3.2) and (3.2') and the fact that every translation can be
decomposed into translations in lightlike directions. D

From this result we obtain

Proposition 3.2. Let a representation of a theory of local observables fulfill the above-
mentioned conditions. Then this representation fulfills wedge duality, i.e.

Λ6(W[l, t'])' = Λ£(W[tf, I]).

Proof. Since in every two-dimensional subspace associated with a wedge we have
a representation of the Poincare group which acts local and since the Lorentz boosts
coincide with the modular group it follows that for every localized operator A belong-
ing to the right wedge the expression U(A(t))AΩ has a bounded analytic continuation
into the strip — ^ < Imt < 0 with continuous boundary values. This follows from the

fact that AΩ is in the domain of ΔΪ. Hence the conditions of [Bch3] are fulfilled
and the theory obeys wedge duality. D

Since an algebra and its commutant has up to a sign the same modular group we
obtain the following symmetry:

]-{t. (3.6)

4. Construction of the Lorentz Group

Our aim is to show that the operators Δ[ίι,t2\lt generate a representation of the
Lorentz group. Therefore, we have to show that

]it = t (4.10

holds in case the equation

Π^ί)

ϊ4
<)K*(0) = l (4.1)

is fulfilled. To show this we are only allowed to make transformations which do not
change the conclusion, i.e. the transformations (1.6), (3.6) and those derived from
this. We will find other transformations by looking at half-sided modular inclusions.

The first step of our construction will be to look at the family of wedges having
one lightray in common,

{W, 41;^ fixed}, (2.4)

and the stabilizer group of the vector L We have discussed this group in the section
following formula (2.4)

Looking at Eq. (2.7') we see that we have to show that the corresponding product
A\l, ̂ (α)]1*^^? ^2(6)] -1< converges for t — > oo strongly to a unitary operator U£(a, b)
and that this operator acts local on every double cone, i.e.,

ad U*(a, O

Lemma 4.1. The product
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converges for t —> oc strongly to an operator L^(α, b). This operator acts geometri-
cally on local algebras, i.e. with the notation of Sect. 2

ad U(a, b)Λ6(K) = Λ&(Λa - b)K). (4.2)

Proof. Since by Lemma 2.6 Λ6(W[l,l2(a)] Π W\ί,ί2(b)}) fulfills the condition of
— half-sided modular inclusion with respect to the two algebras Λ&(W\ί,l2(b)~\)
and ^£(VF[£, I ι(β)\} there exist by Theorem 2.1 two one-parametric unitary groups
U*[a, 6; o](ί), Ul[a, 6; 6](ί) with the properties

(4 3)( j

Both these groups fulfill similar properties as listed in (3.2). From this we derive

ad U*[a, 6; αKlΓ^fα, 6;

These operators are connected with the modular operators of the algebras and their
intersections by the formulas

where Zi[Π] denotes the modular operator of the intersection. We find

f/£[α,6;α](l - e(QΓ1E7€[α,6;6](l - e(ί)) = ^[^^(αrf^tA^

This shows that for t — > oo the product on the left converges weakly and hence also
strongly. Therefore, also the right-hand side converges strongly. Since the approxi-
mations Δ[£, £2(0)]^ Δ[£^ l2(b)]~l1 act geometrically we see with (3.6) that this is also
true for the limit

U*(a,b)= lim U*[a,ha](l-e(ty)-lU*[a,hb](l-e(t)). (4.4)
t— KX)

Equation (3.6) shows that the limit acts as stated in the lemma. D

Next we have to show that the operators f/(α, 6) depend only on the difference
(a — b) and that the operators V(a — b) = U(a, b) define a representation of the two
dimensional translation group.

Lemma 4.2. The operators Ui(a^ b) depend only on the difference of the arguments

These operators define a continuous representation of the two-dimensional abelian
group A^(a)

Vl(a)V£(b) = V\a + 6), o, b G IR2.

Proof. We first exploit Eq. (1.6) which leads to
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a - b) - b)f,
ad Δ[ί, l2(b)fU\a, c) = U\z(t)(a - b) + b, e(t)(c - b) + 6),

ad U\a, c)Δ[t, I2(c)]is = Δ[l, £2(e(t)(b - α) + c -

ad ί/*(α, &)^(c, d) = U£(c + α - b, d + α - b).

The first line follows from (1.6) together with (2.3') and (2.6). Replacing in the first
line the second operator by a product and taking the limit we get the second line.
The third line is obtained by iterating the first line and taking the limit again. The
limiting procedure is well defined since Ul(a, c) is the strong limit. So we obtain first
the weak convergence but again by unitarity the strong convergence. The last line can
easily be derived from the third line.

From the relation U£(a, b) = Ul[a, b; a](l)~lU£[a, b; b](l) we conclude

U£(a,b)U£(b,ά) = l. (4.6)

Since the subalgebras

2(a)] Π W[ί, 4(6)] and ̂  (w[ί, 4(α)] Π

fulfill both the condition of —half-sided modular inclusion with respect to the

two algebras ^M(W[ί,£2(a)]) we see that the triple intersection ^(w[£,l2(a)] Π

W[ί, 4(6)] Π W[t, I2(c)]\ fulfills also the condition of - half-sided modular inclu-

sion with respect to Λ&(W\t, £2(a)]). By symmetry the same holds with respect to
the algebras ΛK(W[£, 4(6)]), ̂ M(W[l, 4(c)]). Hence we obtain as in the last lemma
three groups U£[a, 6, c;α](ί), Ul[a, 6, c;6](ί), U£[a, 6, c;c](ί). Now we can represent
U£(a, b) with help of these operators

U£(a, b) = Ul[a, 6, c; a](lΓlU£[a, 6, c; b](l).

This leads to the relation

b,c)^(c,α)=l, ,

b,c) = ̂ (α,c).

For the second equation we have used (4.6). Now we start from the last equation of
(4.6') and use the last line of (4.5),

U£(a, b)U£(c, d) = U£(a, b)U\c, b)Ue(b, d)

= U£(c + α - 6, ά)U£(a, b)U£(b, d) = U£(a + c - 6, d).

Taking the inverse of this relation we obtain with (4.6)

C/V, b)U£(c, d) = U\a, d-(c- b)), (*)

whereby the arguments have been renamed. Comparing the last two equations, we
get with / = c — d the equation

This shows that U£(a, b) depends only on the difference-variable. We set

V\a - b) = U\a, b) = U£(a - b, 0). (4.7)
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Inserting this into (*) we find

V\a - b)V\c -d) = V\a -d + c-b).

Hence the Vί(ά) define an abelian representation of the two-dimensional translation
group.

It remains to show that this is a continuous representation. The second line of
(4.5) together with (4.7) gives

ad Δ[ί, i2(b)fV\a) = V£(e(t)a). (4.8)

Since the modular group is continuous we see that Vi(a) is continuous in radial
direction. Multiplying this expression with V(b) we see that V(e(ί)α+6) is continuous
in t for every value of a and b. Hence V(ά) is continuous. D

With the operators V^(α) and Δ[ί, i2(b)\lt we can construct the group G(ί) gen-
erated by these elements. These groups have three generators and will be described
in Corollary 4.3. While the groups V*(a) have a trivial intersection for different I
this is no longer true for the groups G(ί) and G(ίr). The intersection consists of
the elements A[£,i']lt. Since the modular groups of the corresponding wedges are
unique there is no obstruction between the representations of the different G(£). The
multiplication-rule of the group G(f) is the following

Δ\t, l2(0)][tV(a)Δ[e, l2(Q)]isVb) = Δ[l, £2(0)Ϋ(t+s}Ve(-s)a + b). (4.9)

Corollary 4.3. The elements of the form

\a) (4.10)

yield a continuous representation of the group generated by {Λl(a),Λ[l,l2(b)} with
the multiplication rule (4.9).

Proof. We know that V\a) maps Λ6(W[t,l2(ty]) onto Λ6(W[ί, 4(α)]). From this
follows together with (4.8)

2(a)Ϋs = V(a)Δ[e,e2(0)]iaVl(-a) = Δ[e,e2(0)]iaVl(e(t)α - α).

Hence by (4.8) we get a group with the stated product rule. D

Using the groups G(K) and G(t') we will make a transformation of (4.1) in such a
way that there appears only a product of two types of elements such that the factors
belong either to G(i) or to G(f!). We will call two products equivalent if they are
transformed with help of (1.6) and (3.6) or with elements derived from this. First we
show

Lemma 4.4. Let I, ί, £' lie in α two-plane. Then every element Λ[ί\ , I2](t) is equivalent
to a product of the form

where t' is either t or —t.

Proof. We look at the transformation Λ [ £ ι , £ 2 ] ( t ) . If ί\ = I and 12 = £' then we get
the lemma with α = b = 0. If t\ = £' and 12 = I then we use (3.6) for transforming
the element to the previous situation. If one of the two vectors l\,ίι coincides with I
we can assume that this is ί\. Then there is a transformation A^(a) mapping 4 onto
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a multiple of P. Therefore, Λ [ ί , ί 2 ] ( t ) is equivalent to adΛ\a)Λ[έ,t' ](t). If one of
the two vectors 1\,12 coincides with I' we can assume that this is £2- By the same

argument we find that A[i,ί2](t) is equivalent to adΛl'(b)Λ[e,ί'](t).
Assume next that ί\ and £2 are not multiples of ί or (! . Then there is a transfor-

mation Λe(a) mapping 12 onto a multiple of t! '. By this transformation t\ is mapped

onto ^3. Hence we get a transformation Λ£ (b) which maps 1-$ onto a multiple of I.
Since this transformation does not change t! the original transformation is mapped
onto Λ[£,£'](t). If one of the vectors is already in the right position then we need
only one transformation. If necessary we can change the order of vectors because of
(3.6). Hence every element Λ[lι,l2](t) is equivalent to an element of the form

ad{Λέ(a)Λ£t(b)}Λ[l,e']tf)

where t' is either t or — t. D

Using this lemma we show:

Lemma 4.5. Let t,t,(! lie in a two-plane then every product

is equivalent to the product

m

) JJ Λ*'(6(ί)M V0)- (4. 1

Proof. Using the last lemma we replace every Λ[(^ί](t^) by an element of the

form ^ά{Ai(a\i))Ai\b\i))}A[i,i'](t'(ι)\ Using (4.8) in the form

a) = Λl(e(t)a),

ά) = Λl/(e(-t)a)

we can commute all A[t, i'](t'(ϊ)) to the front and multiply them. Therefore, we end

up with an expression listed in the lemma. Since the Λ*(a) and the A1 (a) are groups

all arguments are unequal to zero except perhaps for the first Λ* (b) or the last Λ*(a).
D

Using this lemma we have to investigate expressions of the form (4.11). For
further simplification of this expression we must investigate the rotations.

Let A1 (a) be an element in the stabilizer group of L Then Λl(ά)t is a vector to

which we can apply Λ* (b). There will be an element b(a) such that Λ£ (b(a))Λ*(ά)t
belongs to the two-plane containing £, I' and t. In this situation s(a) exists such that
Λ[l, l'](s(a)) maps this vector back to t. Therefore, the product represents a rotation

(b(a))Λa) = Rl(a). (4.12)

In the same manner we obtain a second rotation if we start with A1 (α),

Λ[£, e/](s/(ά))Λl(b/(ay)Λ£'(ά) = R\a). (4.120
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First we need to determine 6(α), s(a) and the element Rl(a) and b'(a), s'(ά) and R2(a)
respectively. This we do in our standard coordinate system. Λl(ά) maps the vector t

onto Λ^(a)t = (1 + ^-, ^-, αi, 0,2) and hence we get

Λ*(b)Λ<(a)t = ((1 + |)(1 + ̂ ) + |̂  + (6, α),

α2 62 α2

+

This vector belongs to the plane spanned by ί and ί1 for

α

+ αz

Inserting this we find

" hα 4 2α2 + α4

This implies

( 2 + 2α2 + α4 -(2α2 + α4) 0 0\

-( a +a ) a +α (4.137)

0 0 0 I /

from which follows

: 77^-Γ. (4-13")

In order to compute the rotation Rl(ά) notice first that Ai(a) leaves the vector

(1,0, 0) x (0, αb α2) unchanged. The same holds for X(- ̂ ) and A\l, ί'](s(ά)) so

that τΛτr(l, 0, 0) x (0, αi, α2) is the axis of rotation. (The multiplication is the vector-

product in M3.) The angle of rotation can be computed by applying Rl(a) to the vector
(0,1,0,0). One finds

A\l, ef](s(a))Λl/ (6(α))^(α)(0, 1 , 0, 0) =

— (0, 1 - α2, -2αι, -2α2) = (0, 1,0,0) - , , , .
+α2 1+α 2 ||α|| ||α||

This implies the following characterization of Rl(a)

( axis of rotation : jAr (1 , 0, 0) x (0, αi , α2),
R\a)\ { l | α" 2 „ „ (4.13W)

[ angle of rotation : cos φ = j^ , sin φ = — -^ft .

By similar computation one finds
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α α α2 + α4 0 0 ,
0 1 0 ' ( '

(4.14)

(2α2 + α4) 0 0

0 0 1 .

(4.14")

1,0,0) x (0,αι,α2),

angle of rotation : cos φ = ̂ y, sin φ = ̂ |.

Fixing the axis of rotation and replacing in (4.12) and (4.12') the Lorentz trans-
formations by its representants then we obtain a family of representations

(4.15)

In this formula d means the normalized rotation axis. The angle φ does not admit the
value 7Γ. In the original definition φ was non-negative, but we can drop this restriction
by identifying R(ί, d, -φ) with R(ί, -d, φ).

Next we investigate the rotations defined in (4.15). First we show:

Lemma 4.6. The operators U(R(t,d,φ)) defined in Eq. (4.15) do not depend on
the argument L They are continuous in the direction d and in the angle provided
—π < φ < 7Γ.

Proof. First we show that U(R(l,d,ψ)) is continuous in -0. Notice first that

V^'(— j^j)V^(α) is weakly continuous in a and by the unitarity of the product
also strongly continuous. Repeating this argument we find that the expression

A[t,llil8(a)Vi\-^Wi(a) is continuous in α. If we keep the direction of α fixed
then we obtain that U(R(l, d, ψ)) is continuous in ψ.

Next we show that the expression U(R(t, d, φ)) depends continuously on L Notice
first that (1.6) and the definition of U(R(i, d, Ψ)) implies the relation

fi1 = Δ[R(t, d,

Consequently (4.15) implies

ad U(R(l, d, φ))U(IWι ,d,ψ) = U (R(R(ί, d, ψft , d, ψή (4.150

in case ί\ is perpendicular to d. From this we obtain continuity in ί since we know
the continuity of U(R(£, d, φ)) in ψ.

Let now ψ be an irrational multiple of 2π. Then {nψ mod 2π; n G Έ} is dense
in the open interval (— π, π). Choosing ψ = ψ in (4.15') and t\—ί then we obtain

U(R(£, d, ψ)) = U(R(R(£, d, φ)£, d, ψ)).

Iterating this equation we get:

U(R(l, d, ψ)) = U(R(Rn(l, d, φ)l, d, φ))

= U(R(R(£, d, nφ)l, d, φ)), n e Z.
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Using the continuity in I we find that U(R(i, d, φ)) is independent of ί, provided
φ/2π is irrational. Since U(R(l, d, φ)) is continuous in φ it follows the independence
of ί for all φ. Since U(R(d, φ}) is continuous in φ we conclude from

ad U(R(df, φ))U(R(d, ψ)) = U(R(R(df, φ)d, ψ))

that U(R(d, φ)) is also continuous at d in any direction. Since this is true for any
point d on the unit-sphere we obtain continuity in d. D

Knowing the identity of the different representations of the rotations we can make
a further transformation of the expression (4.11).

Lemma 4.7. The expression (4.11) is equivalent to one of the expressions

Proof. Assume that at the end of (4.11) there is an element A* (a). We can replace it

by Λl\^)Λ[l,lf](-s(a))Λ[l,lf](s(a))Λl\--^)Λl(a). The last three factors give
rise to an element R((,, d(α), φ(ά)). By using (4.8') the A factor can be commuted to

the left. The remaining A* factor can be combined with the factor of the same kind
which was to the left of Λ^(ά). Therefore, at the end we find after these manipulations

an expression of the form Λ£'(b)R(l, d(ά),φ(ά)). Now we can perform with Λ£'(b)
the similar manipulation and obtain a factor R(l',d(b),φ(b)). This can be replaced
by R(t,,d(V),—φ(V)). So we obtained for the last two factors of (4.11) the factors
R(i, d(b), —φ(b))R(i, d(α), φ(ά)). Repeating this procedure we end up with one of the

expressions (4.16). If there is an element A1 (6) at the end of (4.11) the procedure is
the same. D

We are interested in the situation where the expression (4.16) is of the value 1.
In this situation (4.16) can be simplified.

Lemma 4.8. Assume (4.16) has the value 1. Then one finds A[l, l f ] ( i t Q ) = 1 and

Λ*(OQ) = 1 and A*' (OQ) = 1.

Proof. We consider the first line of (4.16). Since the product has the value 1 it
follows that ί is mapped onto itself. Since the first two factors leave the direction of I
unchanged the same must be true for the product of the rotations. But this implies that
the product of the rotations, which does not change t, maps I onto itself. Hence we
get A[t, l'](to)l = £ which implies to = 0. Since the product of the rotations maps ί
onto itself it also keeps i' fixed, which must be true also for AE(CLQ) = 1. This implies
α0 = 0. The second line of (4.16) can be handled in the same manner. D

Knowing that U(R(d, φ)) depends only on the direction of the axis of rotation
and the rotation angle we have to show that these operators form for fixed axis of
rotation a representation of the circle group.

Proposition 4.9. For fixed axis of rotation the operators U(R(d, φ)) give rise to a
representation of the rotation group. This implies in particular that
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U(R(d, TT)) = lim U(R(d, φ))

exists and U(R(d, φ)) is continuous in φ on the whole circle.

Since the proof of this proposition is straightforward but lengthy we will present
it in the appendix.

Now we are prepared for the main result.

Theorem 4.10. Assume the modular group of every wedge algebra
*Λ£(W\i\,i2, α]) acts on every algebra of a double cone like the associated group of
Lorentz boosts. Then the modular groups Δlt[lι,l2,a] define a representation of the
Poincare group.

Proof. In Sect. 3 we have constructed the translation so that it remains to con-
struct the Lorentz transformations. To this end we have to show that the equation

]\Λ[i(^\i(^](t(i)) = 1 implies the relation Π Δ[i({\ fifi1^ = 1. We saw in (4.11)
that the product can be transformed into

To show this the principle of half-sided modular inclusion was needed. Using Lemma
4.8 and Lemma 4.9 the product in question can be transformed into Π R(l, d(ϊ), φ(ϊ)) =
1. So it remains to show that this implies f] U(R(l, d(ϊ), φ(i)) = 1. From the relation

aάU(R(dl,φl))U(R(d2, φ2) = U(R(R(dl,φl)d2, φ2)

it follows that the operators U(R(d, φ)) give rise at most to a central extension of the
rotation group. Since we know that the representations are unique for the rotations
around a fixed axis we conclude by Mackey's method of induced representations
[Mac] that the U(R(d, φ)) form a single valued representation of the whole rotation
group. Hence follows Π U(R(l, d(ϊ), φ(i)) = 1. D

Appendix

Proof of Proposition 4.9. Due to the independence of U(R(i,d,φ)) from t we
obtain with α2 = 1 the relation

(-aa). (4.17),
1 + a2 I +a2

Applying adΔ[l,l' ]lt to this relation we find by (4.8')

1 + a1

Notice: If we fix the vector £ and the axis of rotation d then we have also fixed α.
Therefore, we obtain

(4.18),
1 + λ2 1 + μ2

for the product of two rotations around the same axis. Using (4.8') this expression
becomes



Half-sided Modular Inclusion and the Construction of the Poincare Group 721

(4.18')
We want to apply formula (4.17') to the third and fourth factor of the expression
(4.18'). This implies the following identifications:

λ(l +μ ).
i -ι- ur

For the last transformation we have used (4.13"). Since the left-hand sides have the
same sign, this must also hold for the right-hand sides. Hence we get the restriction
λμ > 0. We can solve (4.19) and obtain

l+α 2 =
1

1 -λμ'

e(Qα= Λ(1_+

Λ

μ \ λ μ ^ l , λ μ > 0 , (4.19')

(—t)a μ(l — λμ)

1+α2 l+μ2 '

Inserting (4.19') into (4.18') then the expression (4.18) obtains the form

Λίί> p'-\i(s(Xa)+s(μa))ve' f __ _ x Λ r / j /- 2i(s(αα)
L > J ( 2 ^ l ' J

(μα)

The argument of the operator V1 becomes ^£ . For computing the argument of V£

notice first the relation

e(2s(αα)) = e(s(αα))2 = l = (1 - λμ)2.

Inserting this we find

λ μ(l — λμ) λμ (1 — λμ)2

(l+λ 2)(l+μ 2) l+μ 2 ' 1 - λμ (1 + λ2)(l + μ2)
Λ+μ

_ 1-λμ

If we set

A^r = P (4 2°)1 — λμ
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then the product (4.18) becomes

' 1 + p2

Finally it remains to look at the exponent of the modular operator. We know e(s(λα)) =
y^, which implies s(λα) = — log(l + λ2). Hence we obtain

= -log(l + λ2)(l V)(l+α2)2

λ2)(l+μ2)

Since p is symmetric in λ and μ it follows that the rotations around a fixed axis
commute and give rise to a rotation (provided Xμ ^ 1). It remains to show that the

relation φ(\a) + φ(μά) = φ(pa) is fulfilled. From (4.13///) we obtain ei(^(λα) = ̂ ^
from which we get

λ2

This shows that the group-relations are fulfilled.
The restriction for the calculation was Xμ > 0 and \μφ\. Therefore, we have to

look at the angle π and at the product with different signs of the angle. Let us regard
the second problem first. We find with (4.13") and (4.17)

1 + cr J 1 + OLL

1 +cr

1 +a2

This implies
R(d, φΓl = R(d, -φ), -π<φ<π.

From this we obtain the multiplication rule (φ > ψ)ι

R(d, φ)R(d, -ψ) = R(d, φ - ψ)R(d, ψ)R(d, ~ψ) = R(d, φ -

A similar calculation is valid for φ < ψ. We have to discuss the point φ = π.
We define R(d, π) := R(d, ττ/2)2. Since R(d, φ) is continuous in φ we see by the

multiplication rule and the continuity of the square that R(d, φ)2 is defined for all
values of φ φ π. It remains to show that the product rule is fulfilled also for φ = π.
Notice first that R(d, ττ/2)2 = R(d, φ)R(d, π - ψ) - R(d, π) holds for 0 < φ < π.
From this one obtains,

R(d, π)R(d, φ) = R(d, )fl(d, )Λ(d, φ) = R(d,

= R(d, φ — π).
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Moreover, we get with 0 < φ < π/2,

R(d, π)2 = R(d, π - ψ)R(d, φ)R(d, π - φ)R(d, φ} = R(d, π - φ)2R(d, φ)2 =

R(d,-2φ)R(d,2φ) = 1.

This implies R(d, π) = R(d, -π) and the proposition is proved. D
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