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Abstract: Our objective is to explain the phenomenon of permanent currents within
the context of the Ginzburg-Landau model for superconductors. Using variational
techniques we make a connection between the formation of permanent currents and
the topology of the superconducting sample.

1. Introduction

Superconductors are materials whose electrical resistivity is effectively zero. They
are also known for their peculiar magnetic properties. For example, the magnetic
fluxoids, defined precisely in (3.15) below, can only have discrete values. Another
interesting property of superconductors is the existence of permanent currents. Such
currents are created by submitting a superconducting ring to an external magnetic
field. The currents are observed to persist even after the applied field is turned off.
The main objective of this paper is to explain the phenomenon of permanent currents
and their relation to fluxoids. In particular, we consider the connection between the
formation of permanent currents and the topology of the superconducting sample.

We shall use the Ginzburg-Landau theory to model the superconductor. For
this purpose we denote the superconducting electrons density by u(x), and set A to
be the magnetic vector potential. In the absence of an applied magnetic field, the
energy is described by the functional (see e.g. [A,DGP])

Eε(u,A) = I \I(V - ίΛ)u\2 + s-2V(u)dx + fhvxA\2dx, (1.1)
Ω Z

 R3
 l

where V(u) = \(\u\2 — I ) 2 , Ω is a bounded domain in R3, u is a complex-valued
function defined on Ω, A : R3 —> R3 and ε" 1 is the Ginzburg-Landau parameter.
Note that (1.1) consists of two terms. The first is the energy associated with the
superconducting electrons, which are confined to the domain Ω, occupied by the
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superconducting material. The second term is the energy of the magnetic field which
is defined over the entire space. It is the absence of an applied field which leads
one to consider A : R3 —> R3 rather than A : Ω —> R3.

Assume now that Ω is a bounded domain in R3 which is topologically equivalent
to a solid torus and which has Lipschitz continuous boundary. Our main result is
a theorem stating that for each integer m, and for sufficiently small ε, there exists
a nontrivial minimizer (uf,A™) of (1.1) associated with the mth element of the
homotopy group π\ of mappings from Sx —> Sι. Our proof consists of two parts.
We first introduce the functional

E0(u,A)= fh(V-iA)u\2dx+ fhvxAfdx. (1.2)
Ω λ R3 2

Minimizers (um,Am) (lying in appropriate Sobolev spaces) are constructed and
classified according to their 1-homotopy type using the direct method of the
calculus of variations. We then show that each (um,Am) can be approximated (for
small ε) by a local minimizer of (1.1).

We note that the existence of stable nontrivial solutions to the Ginzburg-Landau
equations in non-simply connected domains was first established by Jimbo and
Morita [JM] who considered the special case where the domain Ω is a solid of rev-
olution having convex cross-section. This assumption allows them to seek solutions
via separation of variables and so involves quite different techniques than those
used here.

We further remark that we limit ourselves here to domains that are topologically
equivalent to the solid torus for simplicity, and because this is the most relevant case
in physics. Nevertheless, our method can be easily extended to establish the classi-
fication by homotopy type of local minimizers for the Ginzburg-Landau functional
in smooth multiply connected domains with arbitrary topology.

2. Preliminaries and Notation: Sobolev Spaces and 1-Homotopy Type

Before proceeding with our variational approach, we must introduce appropriate
Sobolev spaces for the arguments u and A of the functionals EQ and Eε defined by
(1.2) and (1.1). We begin with spaces for u : Ω —> C Throughout, we are assuming
Ω c R3 is topologically equivalent to a solid torus.

As is standard, we will denote by Hι(Ω) the space of real-valued functions ly-
ing in L2(Ω) and having weak derivatives lying in L2(Ω). We denote by Hι(Ω; C)
the space of complex-valued functions having this property. Then Hλ(Ω;Sλ) rep-
resents all Hι(Ω;(C) functions having modulus 1 at almost every x G Ω. It is this
space which we wish to partition according to 1-homotopy type. Recall that the
1-homotopy type of a continuous function u : Ω —> C, is the 1-homotopy type of
the restriction of u to any 1-dimensional skeleton of a triangulation of Ω. Equiva-
lently, and more simply, the 1-homotopy type corresponds to the winding number
of u when restricted to any closed curve in Ω which loops once around the hole of
the torus. The extension of homotopy classification from smooth maps to functions
lying in certain Sobolev spaces is nontrivial and was accomplished by White [W].
We will take a slightly different tack than that used in [W] by combining the fol-
lowing two theorems, which are specific applications of much more general results
by White and Bethuel-Zheng, respectively.
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Theorem 2.1 (cf. [W], Theorem 2.1). For each K > 0 there is an ε > 0 such that
if f\ and fz are Lίpschίtz mappings from Ω into Sι satisfying the conditions

ll/i - /2lli2(Q) < ε, | |V/;|| i2 (Ω) ^ K for i = 1,2 ,

then f\ and fz have the same l-homotopy type.

Theorem 2.2 (cf. [B], Theorem 1, also [BZ]). Smooth maps from any compact
Riemannian 3-manifold M to Sι are dense in Hι(M;Sι)

From Theorem 2.1 one sees, in particular, that any two smooth maps which
are sufficiently close in Hι-norm must have the same l-homotopy type. From
Theorem 2.2 we can then use approximation by smooth maps to define the
l-homotopy type of any function in Hι(Ω;Sι) via density. Henceforth, for each
integer m, we will denote by H^(Ω;Sι) those Hι(Ω;Sι) functions that can be ap-
proached in the /^-norm by smooth functions having l-homotopy type m. Fixing
any smooth element Ψ in ///(Ώ S1) note that any element u of H^(Ω;Sι) can be
expressed as

u= Ψmeiζ , (2.1)

where ζ G Hι(Ω). In light of Theorem 2.1, note also that l-homotopy type is
preserved under bounded weak /^-convergence. That is, if {uj} is a sequence
of functions in H^(Ω;Sι) satisfying a uniform bound

then there exists a function u e H^(Ω; Sι) such that ujk —> u weakly in Hι(Ω;Sι).
This compactness property allows one to apply the direct method from the calculus
of variations while working within a given space Hl(Ω; Sι).

We discuss now appropriate spaces for the magnetic vector potential A. Given
the nature of the functionals Eo and Eε an obvious space to work in is / ^ ( R 3 ; ! * 3 ) ,
which one can take as the closure of CQ° vector fields v under the norm J R 3 | Vυ\2 dx.
However, the functionals (1.1) and (1.2) are invariant under the gauge trans-
formation

u^ueiφ, A->A + V\IJ, (2.2)

where ψ is an arbitrary function in Hfoc(R3;R). To fix the gauge, we will frequently

find it convenient to assume div^4 = 0. Specifically, we denote by H^w the closure

of C °̂ vector fields v having divergence zero under the norm J R 3 |Vf | 2Jx. We

note for future reference that the quantities /R 3 \VA\2 dx and /R 3 |V X A\2 dx are

equivalent for A G ^ ^ 3

3. Existence of Minimizers

In this section we carry out the process of obtaining local minimizers of Eε in a
neighborhood of local minimizers of EQ. We begin by establishing existence and
uniqueness of local minimizers for the functional EQ.
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Theorem 3.1.

(i) For each integer m there exists a minimizing pair (um,Am) to the problem

among all u e Hl(Ω;Sι) and all A e H^W(R3;R3).

(ii) For each integer m and each pair (um,Am) minimizing E$ in H^(Ω;Sι) x

/ / ^ ( R ^ R 3 ) there exists a positive constant γm such that if (v,A) £ Hι(Ω;Sι) x

H^(R3;R3) satisfy

\\» ~ um\\HHΩ-,si) ^ Ίm, E0(v,A) ^ E0(um,Am), (3.1)

then v — eιaum for some constant α and A — Am.

Proof of (i). Existence follows easily from the direct method. A minimizing
sequence (uj9 Aj) e H^(Ω;Sι) x Λ^ V (R 3 ;R 3 ) will be bounded and so (weakly)
compact using Theorem 2.1. Using that \uj\ = 1, we then write EQ(UJ,AJ) as

E0(uj,Aj) = fhvujl2 + \\Aj\2 -2Im[(Aj,\7uj)ϋ]]dx + \ J |V x Aj\2dx ,
Ω2 λ 2

R3

to most readily see that the integrals will be lower-semicontinuous under weak

convergence in H^Ω S1) x 4J i v (R 3 ;R 3 ) .

Proof of (ii). Let (wf^f 1 ) be any pair minimizing Eo in Hl(Ω;Sι) x //Jjv(R3;R3).
We will first argue that if (uf.A™) is any other pair in this space satisfying

u? = u?eia (3.2)

for some constant a and

Aΐ=A<ϊ. (3.3)

In view of (2.1), we will now fix a smooth function Ψ e Hϊ(Ω;Sx). For con-
venience, we will take as our Ψ the function which minimizes the Dirichlet
integral among Hf(Ω;Sι) competitors (i.e. Ψ is the harmonic map in this ho-
motopy class). The existence of such a minimizer follows from Theorem 2.1 using
the direct method. Henceforth we write any element v of the space Hl(Ω;Sι)
as v=Ψmeiζ for some ζeHι(Ω). We will denote by θ : Ω -+ R the multi-
valued function arg Ψ. Note that the function Vθ ( = —ίΨ~xVΨ) is a smooth func-
tion on Ω and that Aθ = 0. Thus consideration of the functional EQ restricted to
H^(Ω;Sι) x //^(R^R 3 ) is seen to be equivalent to consideration of the functional
Eζ1 depending on arguments (ζ,A) G Hι(Ω) x Hι(R3;R3) given by

\\A\2 (AVΘ + Vζ) + \Vζ\2 + \\A\2 - (A,mVΘ + Vζ) + \ J |V x A\2dx .

Note that in this formulation, gauge invariance (2.2) can be expressed as

E^(ζ,A) = ES'iζ + φ,A + Vφ) for any φ e //,2

OC(R3). (3.4)
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To establish (3.2) and (3.3) we write < and w2

m as uf = e^mΘ+^\ i = 1,2. Since
(ΦP.AP) minimize Eζ1 among competitors in Hι(Ω) x H^V(R3;R3) for i= 1,2,
the gauge invariance (3.4) implies that these pairs minimize E™ among competitors
in HX(Ω) x Hι(R3;R3) as well. Taking variations of £ o

w with respect to its first
and second arguments separately then implies

(3.5)

for all βeH\Ω) and

f (A? - (mVθ + VφF)9B) dx + f (Vx^f ,V x B) = 0 / = 1,2, (3.6)
Ω R 3

for all B GHι(R3;R3). In (3.5) we have used the harmonicity of θ and that
άivAp = 0. As (3.5) implies that the functions φf are themselves harmonic (and
in particular smooth), we may introduce functions φ™, i = 1,2 as any Hfoc(R3)
extensions of φf for / = 1,2 respectively. Then for / = 1,2, let B{ = A™ - Vφ™
and consider the four relations derived by setting i = 1 in (3.6) with B = B\, i — 2
with B = Bu i = 1 with B = B2 and / = 2 with B = B2. Adding the first and fourth
and then subtracting the second and third of these equations yields

/ \(AΓ -A?) - V{φT - ΦTtfdx + / |V x (A? -A?)\2dx = 0 . (3.7)
Ω R 3

Since divv4^ = 0, we conclude from this that

A7? - A% = Vψ for some φ such that V^ = V0Γ - Vφ% in Ω , (3.8)

and such that Aφ = 0 in R3 with Vφ e Hι(R3;R3). In particular, by Sobolev
imbedding, Vφ is a harmonic function in L 6 (R 3 ;R 3 ); hence φ is a constant and
(3.2) and (3.3) are established.

We have now shown the uniqueness, up to a constant rotation, of any minimizing
pair (um,Am) in Hl(Ω;Sι) x H^(R3;R3). However, by Theorem 2.1, there exists
a constant ym > 0, such that any v G Hι(Ω;Sι) satisfying

ll"-"WLl(fl;Sl) ^Ίm (3.9)

must lie in the space H^(Ω;Sι). Hence, if (3.1) holds, then necessarily Eo(v,A) =
Eo(um,Am) and we may apply the previous argument to find

v = umei* and A = Am . D (3.10)

Having established existence and uniqueness of minimizers of Eo in each
1-homotopy class, we now establish the existence of corresponding local minimizers
to EB.

Theorem 3.2. For each integer m there exists a positive number ε$ such that
for all positive ε < εo the functional Eε possesses a local minimizer (u™,A™).
Furthermore, (u?,A?) converges to (um,Am) in Hλ(Ω\<£) x Λ^ V (R 3 ;R 3 ) as s -> 0,
where (um,Am) minimizes Eo in H^Ω S1) x H^V(R3;R3).
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Remark. In particular, the local minimizer (uf,Af) will satisfy the Ginzburg-
Landau system of equations that arises as the Euler-Lagrange equations for the
functional Eε\

(V -iA)2u+-^(l - K Ί 2 K w = 0 in Ω (3.11)
o

and
V x V x ^ - f (A?\u?\2 - Im[wf Vu?])χΩ = 0 in R3 , (3.12)

where XQ denotes the characteristic function equaling 1 in Ω and 0 elsewhere.

Proof. Fix any integer m and consider the problem

MEε(u,A)

minimized over the set

{ ( M ) € Hι(Ω;C) x ^ V ( R 3 ; R 3 ) : \\u - um\\ffHΩ.C) ^ U ,

where (ww,^m) minimizes Eo in H^(Ω;Sι) x Λ^V(R 3;R 3) and the constant ym is
taken from Theorem 3.1. Again the direct method yields a solution {uf.Af) to
this problem. We will show that uf —> um in Hλ(Ω\ (C) as ε —> 0, thus proving the
theorem. Since

£ o « , A m ) ^ ^ « ? Λ m ) ^ ^ ( « W , ^ M ) = E0{um,Am), (3.13)

we find immediately that

/ F « ) ^^o(wm,^m)β2,
Ω

and therefore |w "̂| —> 1 pointwise a.e. as ε —> 0. Also the condition ||wε

w — um\\H\^Ω.^

^ ym implies that for a subsequence {ε7} —> 0 one has

< -> U as εy -> 0

weakly in ^ ( Ω C) and strongly in L2(Ω;<C) for some Hι(Ω\Sι) function U.
Applying (3.13) to the sequence {Af}, we find that

A™ ^A as εj -> 0

weakly in H^(R3;R3) and strongly in L2(Ω,R3) for some //d\v(R3;R3) function A.

Furthermore, by lower-semicontinuity of the //^-norm and of the expression
/R3 IV x A\2 dx we have

r Ω Ω

(3.14)

liminf / \V x A™.\2dx ^ / |Vx^ | 2 ί/x,
£^° R3 ' R3

and therefore,
Eo(U,A) ^ liminf £ 0 ( C < ) . (3.15)

Taking a limsup in the inequalities (3.13) and combining this with (3.15) we find
that U eH^Ω S1) satisfies

E0(U9A) S E0(um,Am) and \\U - um\\Hι{Q.C) S ϊm
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Hence, by Theorem 3.1, U = eiaum for some α and A =Am. Relabeling uf by
e~ί0Luf we find that we

w -> um weakly in /^(Ω C) and Af-*Am weakly in
4i iv(R 3 ; R 3 ) However, (3.13) and (3.15) also imply that

Together with (3.14), this implies that the L2-norms of Vuf and V x Af converge
to those of Vum and V x Am on Ω and R3 respectively. Hence, the convergence
is in the strong sense and the theorem is proved. D

Fluxoίd quantization. The homotopy classification we have introduced is equivalent
to the physical phenomena of fluxoid quantization (see [KZ]). To explain, let σ
be a closed curve in Ω looping once around its hole. Then let Σ be any surface
bounded by σ. Writing u = peίΦ, we denote by H = V x A the magnetic field and
by J = p2(VΦ —A) the superconducting current. Then the fluxoid is defined by

FL= fHdΣ+ J ^dσ . (3.16)
Σ σ P

Using Stokes theorem, we get

FL= JVΦdσ .
σ

For the solutions obtained in this section, Φ = Φf takes the form Φ — mθ 4- </>ε

m,
where φf is smooth. It then follows that the fluxoid value of an m-type minimizer
is 2πm. Hence, the m-type minimizers can be classified according to the values of
their fluxoids.
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