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Abstract: We develop a resummed high-temperature expansion for lattice spin sys-
tems with long range interactions, in models where the free energy is not, in general,
analytic. We establish uniqueness of the Gibbs state and exponential decay of the
correlation functions. Then, we apply this expansion to the Perron-Frobenius oper-
ator of weakly coupled map lattices.

1. Introduction

The theory of Gibbs states was originally developed for the mathematical analysis
of equilibrium statistical mechanics. An interesting application of the theory was
found by Sinai, Ruelle and Bowen in the 70's [42, 43, 39, 1] who applied it to
the ergodic theory of uniformly hyperbolic dynamical systems. While this so-called
thermodynamic formalism has been very successful in ergodic theory, the Gibbs
states that describe the statistics of such dynamical systems are quite simple from the
point of view of statistical mechanics: they describe one dimensional spin systems
with spins taking values in a finite set and interacting with exponentially decaying
potentials. In particular, phase transitions, i.e. the coexistence of several Gibbs states
for the same interaction, which are of major interest in statistical mechanics, are
absent in such systems.

More recently, it has been realized that certain infinite dimensional dynamical
systems possess attracting sets that are extensive in a suitable volume. This is be-
lieved to be the case for many classes of nonlinear parabolic partial differential
equations on some spatial domain: the dimension of the attracting set (or a bound
for it) increases to infinity as the domain becomes unbounded [44]. Discrete time
dynamical systems, such as coupled maps, were introduced to model these phe-
nomena [29]. Bunimovich and Sinai [5] showed that these systems give rise to a
thermodynamic formalism for spin systems on a lattice of more than one dimen-
sion. Because of this last feature, the possibility of phase transitions is at least open.
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However, most rigorous analyses have so far been limited to weakly coupled maps
which corresponds to "high temperature" in statistical mechanics. But, even in that
regime, coupled maps give rise to interactions of a rather peculiar kind, and proving
the absence of phase transitions for the latter is not completely trivial.

In statistical mechanics, the common wisdom is that "high temperature" leads
to uniqueness and decay of correlations (mixing for lattice translations). Mathe-
matically, one introduces a suitable Banach space of "interactions" parametrizing
the Gibbs states and high temperature means small norm. For small norm the in-
teraction uniquely determines the Gibbs state [10,11]. However, the question of a
suitable norm turns out to be subtle. One can distinguish between three properties:
uniqueness of the Gibbs state, exponential mixing and analyticity (in the potentials)
of the correlation functions. In the last case one has complete control of the Gibbs
state in terms of a convergent expansion, the high temperature expansion. In the
other two cases, less detailed information is available.

As we shall recall in Sect. 2, there exist Banach spaces of interactions where
exponential mixing holds, but analyticity does not hold, in general. It turns out that
the interactions corresponding, in the thermodynamic formalism, to coupled maps
belong to such "pathological" Banach spaces of interactions.

The purpose of this paper is twofold. First we wish to give a unified treatment of
the high temperature states discussed above. We show how all the previous results
(e.g. the uniqueness results of Dobrushin [10, 11]) and also the generalizations
needed for dynamical systems can be obtained by a simple resummation of a high
temperature expansion based on an idea of von Dreifus, Klein and Perez [ 17] used
for disordered systems (such a resummation was used already by Fisher [20]). The
resummation uses in an essential way the fact that the interactions are real and thus
is not in conflict with the lack of analyticity.

Then we apply these results to the study of the ergodic theory of coupled Cι+δ

circle maps. We rederive, generalize and complete the previous studies of such
maps. We believe this is necessary due to some confusion and incorrect results
in the literature (see Sect. 4). Our approach is slightly novel since we derive the
thermodynamic formalism without introducing Markov partitions and symbolic dy-
namics (which however exist in the models we consider). One motivation for this is
that systems where one expects phase transitions (based on numerical and theoretical
evidence [38, 34]) will, most probably, not have useful Markov partitions. In our
formalism such systems (e.g. coupled bounded variation interval maps) nevertheless
give rise to a thermodynamic formalism, but with potentials whose thermodynamic
limit we are presently unable to control.

The paper is organized as follows. Section 2 contains a review of the theory
of Gibbs states and of the various spaces of potentials. We also formulate and
prove in Sect. 2 our main statistical mechanics theorem. This section is completely
independent of the dynamical system part of the paper. Section 3 defines coupled
map lattices and states the main theorem, whose proof can be found in Sect. 4. We
have tried to be rather self-contained in the statistical mechanics hoping the paper
would be accessible to the dynamical systems community.

2. Resummed High-Temperature Expansions

. Lattice Systems. We consider a lattice sp
a copy of a finite set Ωo or more generally a compact metric space; we stick

2.1. Lattice Systems. We consider a lattice spin system: to each / £ 7f we assign
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to the former, but the generalization to the latter case is straightforward. Given
X C Zd, a spin configuration in X, denoted by sx, is an element sx G Ωx = xieχΩi.
An interaction is defined by a family Φ = (Φx) of (continuous) functions indexed
by finite subsets X of Zd:

ΦX:ΩX-*R. (1)

We let \\ΦX\\ denote the sup norm of Φx. We consider translation invariant
Φ's : Φχ+i = TjΦx, where τ/? i G Zd is the natural Zd action on functions defined
on Oχ to functions defined on Ωχ+i. Given i c Z r f , \Λ\ < oo, and a configuration
s'ΛC = (s'i)ieA

c in ΩΛc, the Hamiltonian in A (with boundary conditions s'ΛC) is defined
as

sxnΛC) , (2)

where, if sx E Ωχ9 sγ G Ωγ, for X Π Y = 0, j j V s y is the obvious configuration
in Ωχιjγ. The associated (finite volume) Gibbs measure is a probability distribution
on ΩΛ:

1 4 J f ( ^ | 4 ) ) (3)

(we put a minus sign in (2) for convenience), with

c) - Σ e x p ( - J f ( $ i | 4 ) ) . (4)

See e.g. [39, 41, 19] for more details on the theory of Gibbs states.

2.2. Finite Range Interactions. Suppose first that Φx is of finite range, i.e., for
some R < oo, Φx = 0 if the diameter of X, d(X) > R (we put on Zd the metric
|/| = maxα |/ α | ) . Then, if supx \\Φχ\\ is small enough, a convergent high-temperature
expansion (so-called polymer expansion) yields the following results (see [21, 4,
32, 41]):

1) The Gibbs state is unique i.e., the finite-volume Gibbs measures (3) converge,
as A I Z^, independently of the boundary conditions to a unique measure on Ωzd

satisfying certain consistency conditions (the DLR-equations).
2) The correlation functions in that Gibbs measure decay exponentially (see

(12) below).
3) The free energy F{Φ) defined as liiru.+oo \A\~λ \ogZ(A\s'AC) and the corre-

lation functions are analytic: Given finite subsets X\9...,Xn and λ eCn, define Φλ

by Φy = λaΦγ for each Y =Xa -\-j, for some j G Zd and some α = l,...,n and
φ?

γ = φγ for the other 7's. Then, F(Φλ) is analytic in the poly disc \λa\ ^ ε, for ε
small enough.

The smallness of \\Φχ\\ is however not a necessary condition for uniqueness
and analyticity. For example, one dimensional finite range systems always satisfy
all three conditions above. Dobrushin-Shlosman [15, 16] gave several equivalent
conditions to be satisfied by the finite volume distributions (3) that guarantee that
the Gibbs state is unique and that analyticity and exponential decay of correlations
hold (they call these properties "complete analyticity"). Similar results were later
rederived by Olivieri and Picco [35, 36] using expansion methods.

To formulate one of these conditions, used in [35, 36], it is convenient to cover
Zd by disjoint cubes of side L, called L-cubes. We fix such a covering. We choose
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L sufficiently large, and, in particular L > R, where R is the range of Φ. Then the
condition becomes: There exists a function / : N —> R such that

Z(Λ\sχy)Z(Λ\s)

Z(Λ\sx)Z(Λ\sy)

and

- 1 ύf(\χ-y\) (5)

lim n2{d-l)f(n) = 0 . (6)
n—too

Here, A is an arbitrary union of L-cubes and s an arbitrary configuration in QAc\
s^ = sz for z ^ A, where A = x, y or xy. Actually, it is enough to check (5) for /L's
being subsets of a sufficiently large volume. Then, the fact that (5) holds for larger
volumes follows from (13) below. As remarked in [33], the condition of Olivieri
and Picco which we use here is slightly weaker than the complete analyticity of
Dobrushin-Shlosman: indeed, it applies only to volumes of a rather regular shape,
since they must be unions of Z-cubes, while in [15, 16], arbitrary volumes are
treated.

2.3. Infinite Range Interactions. Many of these results extend to infinite range
interactions but one has to carefully distinguish between different Banach spaces
of interactions in which different results are valid. Without trying to be exhaustive,
one has basically the following results: (see [41] for a review)

1) If

l|φ||i = Σ 1*111**11 (Ό
oex

is small enough, then the Gibbs state is unique [10, 11, 43].
2) If, for some y > 0,

| | Φ | | 2 = Σ eyd{X)\\Φχ\\ (8)
oex

is small enough, then the Gibbs state is unique and its correlation functions decay
exponentially [23].

3) If, for some y > 0,

\\Φh = Σ eylXl\\Φχ\\ (9)
oex

is small enough, then the Gibbs state is unique and its correlation functions are
analytic [26].

The reasons for these different norms are as follows: usually, correlation func-
tions do not decay faster than the interactions, so that something like (8) is needed
to get exponential decay.

As for analyticity, Dobrushin and Martirosyan [13] have shown, by explicit
counterexamples, that analyticity will not hold, (at least not uniformly in the volume,
see [19], p. 958), in a neighbourhood of zero, in any space larger than the one
defined by (9): Let

I | Φ | | A = Σ K\x\)\\Φχ\\ - (10)
oex

Then, if lim^^oo h(n)e~yn = 0, Vy > 0, there exist (complex) interactions with
arbitrarily small \\Φ\\h such that the corresponding partition function vanishes for a
sequence of cubes Λn —> oc (see [18], p.971 for a simple such counterexample).
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From the point of view of polymer expansions, the norm (9) is quite natural,
as was remarked by Brydges ([4] p. 141): the exponential weight in (9), depending
on the size of X, is needed to control the sum over small polymers lying inside a
big one.

However, this norm is stronger than (7) and, sometimes, than (8): if the lattice
dimension d is larger than one, and if X is, e.g., a large cube, \X\ ^> d(X). So,
for some Φ's, uniqueness and exponential decay hold but analyticity does not, and
it seems that the first two properties cannot be proven using convergent polymer
expansions (the existing proofs use Dobrushin's methods). The problem is that these
expansions tend, when they converge, to yield analyticity almost automatically.

The reader should not be misled by the fact that standard high-temperature
expansions for spin \ systems [21, 26, 9] seem to show analyticity for interactions
that are small in a weaker norm than (9). Indeed, in these papers, the interactions are
written in a special representation ("spin" or "gas" language) and the norm used for
the interactions is quite different from the sup norm. This slightly confusing point
is very nicely clarified in [18].

2.4. The Main Result. The analyticity results of Dobrushin and Shlosman were
extended, for the analyticity part, by Dobrushin and Martirosyan [12] to infinite
range interactions of the form

φ = φ° + φ\ (11)

where Φ° has finite range and is completely analytic, in the sense of [15, 16], while
IIΦ1!^ is small (actually, Dobrushin and Martirosyan discuss the Φ° part in terms of
specifications instead of interactions; this could be done here too). In the dynamical
systems problem of Sect. 3 we will encounter an interaction of even more general
type, namely of the form (11), but with IJΦ1^ (instead of || Φ1 |J3) small. Our main
result is

Theorem 1. Let Φ = Φ° + Φ1, where Φ° is completely analytic. Then, there exist
ε > 0, m > 0, C < oo such that, ίf\\Φι\\2 ^ ε, there is a unique Gίbbs state μ for
Φ and the correlation functions satisfy, for all F, G, with F : ΩA —> R, G : ΩB —> R,
where A,B C Zd are finite:

\(FG) - (F)(G)\ ί CminilAUBDWFWWGWe-^^ , (12)

where d(A,B) is the distance between the sets A and B and (F) = f Fdμ.

Remark. 1. We shall discuss various extensions and variations of this result after
giving the proof in Sect. 2.5.

Remark. 2. Our proof is based on a high-temperature expansion instead of
Dobrushin's method. We shall resum the expansion and use then, in an essential
way, the fact that Φx is real, so that our proof applies even when analyticity does
not hold. It is inspired by a recent work of von Dreifus, Klein and Perez [17]
who developed a high-temperature expansion for disordered systems. Their problem
was similar to ours: due to Griffiths' singularities [22], analyticity does not hold,
in general, for disordered systems, while we have to circumvent the possibility of
Dobrushin-Martirosyan singularities [13]. Actually, a simple version of our method
appears already in Fisher's upper bound on the two-point function for the Ising
model [20]. On the other hand, in a recent paper, Jiang and Mazel [28] consider
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real interactions similar to ours, and develop a convergent high-temperature expan-
sion which yields uniqueness and exponential decay of the correlation functions, but
for systems defined on a two-dimensional lattice (their method crucially depends
on the fact that in two dimensions boundaries of volumes are proportional to their
diameters).

2.5. The proof. Before starting with the proof, we will use another representation
for the partition function of Φ° derived from (5, 6) by Olivieri and Pico. They show
that if (5, 6) holds then the interaction Φ° "has a cluster (or polymer) expansion."
Precisely, this means that the partition function admits the following representation.
If A is a union of disjoint L-cubes, and s G ΩΛc,

Z\A\s) = e*W Π W(sΛcJexpΣΦγ(sγnΛc) , (13)

where Z° refers to the partition function with interaction Φ°, the product runs over
connected components of Λc = (Jα Λ

c

a and the sum runs over connected sets of
L-cubes Y, so that Y Π /t + 0 (and φγ is a constant if Y Π Λc = 0). We define a
subset X C 7jd to be connected if Vϊ,y G X there exists a path /(I) , . . . , i(ί) with z(l)
= / , / ( O = ; , / ( i t ) e i | / ( t ) - / ( H l ) | = l,Vit5 where |/| =max α |ια |. W^O de-
pends on Sj, for / G Λ£> such that <i(z, yd) ^ 7?. We have the following bound: for
any ε > 0, there exist L < oo, y > 0 such that, for the expansion defined with
L-cubes,

(^W|| ε̂ (14)

(there is no loss of generality in assuming that y here is the same as in (8)).

Remark. Our condition (5) is Condition A in [35] (together with (3.7) in d = 2),
or Condition C in [36] (see (2.65)). The representation (13) follows from (2.53),
(2.56), (2.60) in [36], or, more precisely, from the extension of (2.53) to arbitrary
boundary conditions. In [35, 36] volumes of various shapes are used, but one can
always regroup terms and index them by Z-cubes, as was done here for simplicity
of notations. The reader may notice that (13) is what we get at high temperatures,
the only difference being that a site is replaced here by an L-cube: / is the bulk
free energy, the product over the W's gathers all the boundary terms, and the sum
over φy is the usual cluster expansion. The constant L is, in effect, of the order
of the correlation length of the system. Note also that, if Φ° is a finite range one-
dimensional interaction (i.e. it couples spins only along lines parallel to a lattice
axis), then the transfer matrix formalism implies that (5) holds. In our application
to coupled maps, Φ° will be exactly of that form (see Proposition 3 in Sect. 4).

Remark. In the proofs, we shall denote by C or c a constant that may vary from
place to place.

Proof of Theorem 1. We shall prove (12) where the expectation will be taken with
respect to a finite volume Gibbs state with open boundary conditions (to simplify
notations), i.e. the sum in (2) is restricted to X C A. The corresponding expectation
is written ( ) Λ . Our bounds are uniform in A. We can then study the limit A] Z?',
and prove (12) in that limit. The uniqueness of the Gibbs state can be shown in a
similar way, and will be discussed at the end of the proof.
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First, we write the LHS of (12) using duplicate variables:

2((FG)Λ - (F)Λ{G)Λ)

= Σ (F(s\) - F ( * \ * \ *

J*P(S\)-J>?(si)), (15)

where F = F{s\) - F(s*),G = G{s\) - G{s\).
We may replace Φx by Φ^ — ΎcS.Sχ Φx, by adding a constant to the Hamiltonian.

Thus, we may, without loss of generality, assume that Φx

x ^ 0 for all X, and that
Φ1 still satisfies \\Φι\\2 S 2ε. Now, we perform a usual high-temperature expansion
on the Φ1 part of Jf:

( Σ Φjr(^)) = Σ Π fx , (16)
\jsr,i=i,2 y

where the sum runs over sets 9C of subsets of Λ9 and

/x - exp(Φl(4) + Φλ

x(s2χ)) ~ 1 (17)

satisfies:

0 ύ fx, (18)

Σ e^WfrW g Cε (19)

(use (8) and ||Φ11|2 = ε ) Insert (16) in (15) and, for each term in (16), define
V = V{3C) =AUBU&, where ^ = \JXe%Σ_ and for any X c Zd, X is the set of
L-cubes intersected by X. We have

2 Σ Σ

where Jiff = - Σxcv(φχ(sx) + ΦA-( 4 ) ) » a n d z ° ( ^ \ ^ k Z F ) i s t n e partition function
with interaction Φ°, .s1^ boundary condition in V, and open boundary conditions in
Λc. Now, we use (13) for Z°(/ l\F |4), and we define Ψγ(sYnv) by:

φγ(sγnv) = Ψγ(sYnv) + ΦY , (21)

where

φ 7 = rxάn φγ(sγΠv) (22)

so that Ψγ ̂  0. Then, we perform a high-temperature expansion of Ψγ:

exp ( Σ ΨYVYΠV)) = Σ Π 9Y , (23)

\r,/=i,2 y ^ r e ^

where 7Π(/L\F)Φ0 and f is a set of such 7's; # 7 = exp(ιί/7(1sJ,nF)+
Ψγ(sγnv)) — 1 satisfies:

0 ύ ΘY , (24)

Σ expf^)||^|l SCε (25)
\ L J
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(using (14)). Finally, we insert the result in (20). We get

(20) = Z(Λ)-2 £ Σ ( )
&& S y,l=\,2 X£X Y(ί<y V Y /

(26)

where if — e2f\A\v\ \\a i=χ 2 W(sι

v ) (Fα are the connected components of F), and

the sum over Y runs over Y Π (A\V)ή=Φ.
Now comes the main observation: for each term of (26), decompose V U {Y\Y G

^} into connected components, where connected is defined in an obvious way: any
two sets can be joined by a "connected path" P = (Z/)"=1, where each Zz is either
an I or a 7 and Zu Zi+\ are adjacent, i.e. d(Zi9Zi+ι) ^ 1, Vz = 1,...,« — 1. If A
and Z? are in different components, then the corresponding term in (26) vanishes.
Indeed, because of the factor FG, the summand is then odd under the interchange
of sj and s1 for all i in the component containing A (or R). Here, we use the fact
that, since L > R, R being the range of Φo, every X C V contributing to the sum
defining Jf7 ,̂ belongs to a single connected component Fα.

So, for each non-vanishing term in (26), we can choose a "connected path," as
defined above, P = (Zi)n

i=x, where Z\ = A, Zn = B_. So we get a bound on (26):

|(26)| ^ z(ΛΓ 2 4Π| | |G| |Σ Π II/ΛΊI Π WQYW ΣPΣ Π fx
p xep YEP

x Π ( 1 + Λ r ) Π 0 r Π ( l f

(27)

where we used the positivity of fx, #y, iV (in particular, in order to insert the
products over 1 + fx, 1 + gy), we bounded F,G by 4||77 | | | |G||, and we wrote J2P

to denote the sum over the pairs (SC^) for which the chosen path is P. Now,
observe that, by resumming the expansions, the sum over 9£,®J,sι

v is less than
Z(A)2\ we get an upper bound on Σ%%/ ^Ύ resumming first over all <& that are
sets of 7's intersecting Λ\V, with Y φ P and then over all 2E that are sets of X's
in A, with X_ ̂  P (since each term in (27) is positive). This upper bound is equal
to Z(A)2. So, we finally get

(27)^4 | |F | | | |G | |£Π \\fx\\ £ \\gγ\\ . (28)
p xep YEP

Now, to get (12), we have to bound the sum over P. First use

d(A,B) ί cL Σ (1 + d(X)) + E d(Y) (29)

for some c < oo, where the factor cL enters because we consider Z\ = A, Zn — 5,
or Zi = X_9 which are unions of L-cubes. We choose m = ^ , and use (29) to
bound emd{Aβ\ Finally, we have to control the sum over P in (28). Using (29) and
(15,20,26,27,28), we bound

oo n—\

e"M)\(FG)Λ - (F)Λ(G)Λ\ ^ C\\F\\ \\G\\ Σ Σ Π h{Z,),
»=2(z,)"2-

ι'=2
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where each Z, is either a X or a 7, h(Z) = expCήhψQ1)\\fx\\ or ^ P
and each Z; is adjacent to Z/_i. We can bound the sum over (Zt) by the (ordered)
product

where Σ* l means that Zt is adjacent to Z/_i. Now,

VOGZ

if Z/_i is an X, or

Σ:1 '-1 Λ(zf) ^ cιrι ("
Z, \0GZ

if Zz _i is a 7, since the number of translates of Zz , 0 G Z/ that are adjacent to Zz _i
(with Z/_i = X or 7) is bounded by a constant times \X\ or |7 | , respectively. We
then use the bounds

Σ | ( / ) | | (30)
oex 2 J

and

(^W d (31)

which follow from (19,25) (in (30), we use the fact that the sum over 0 G X_ is
bounded by CLd times the sum over 0 G X, and \X\ ^ Cd(X)d while in (31), we
use \Y\ S Cd(Y)d g C(2cL)d(^)d). Finally, for ε small enough, we bound (28)
by a convergent geometric series:

oo

emd(A,B)l{FG)Λ _ {F)Λ{G)Λ\ <g Cmin(M|, |5 | ) | |^ | | | |G|| Σ (CLdεf ,
«=o

where min(|y4|, |5 |) controls the sum over Z2 (assuming that |̂ 4| is the minimum,
otherwise interchange F and G).

To prove the existence of the Λ\Ήί limit (in the sense of finite subsets ordered
by inclusion) and the uniqueness of the Gibbs state, consider F as in (12) and two
boundary conditions s G ΩAC^S' £ ΩΛtc. Compare

(F)Λ(s) - (F)As') = Σ Fv(sl

Λ\sHs2

Λ,\s') (32)

with yd, Λ' such that A c ΛΠ Λ', and do the same expansion as above. The
only terms that do not vanish are such that the connected component contain-
ing A intersects d(AnAf), because F is antisymmetric under the s1 ^ s2 inter-
change. Hence, for each non-zero term, we may choose a path P connecting A to
d(A Π A'). By the arguments given above, the sum over those paths is bounded by

I Qxp(-md(A,d(A Π A'))\ and (32) goes to zero as A, A! \ Zd. D



712 J. Bricmont, A. Kupiainen

In the next sections, we shall need a simple extension of Theorem 1 to a situation
where the interactions depend (weakly) on A. Assume that, for each finite A C Z^,
φA = Φ̂} + ΦΛ, where Φj}, Φ\ satisfy the hypotheses of Theorem 1 uniformly in A.
Assume also that

\\ΦΛX-ΦΛ'X\\ ^εe-^x W (33)

for X C A c A\ so that Φx = \imΛ+zd ΦΛX exists. Then we have

Theorem 2. Under the above assumptions, the conclusions of Theorem 1 hold]
moreover, \\mΛ^Zd v̂  = μ, where VA is defined by (2-4) with Φx replaced by ΦΛX
and the sum in (2) is restricted to X C A.

Proof. We study the limit A | Zd of v .̂ Let A C A denote the largest cube con-
taining the origin in Zd such that \A\ ^ \d(A) (so that d(A) —> oo if d(A) —> oo).
Write the Hamiltonian

= Σ ®x + <ζf +

where Φ^ = ΣXCΛ~ΦΛX ~ Φx can be regarded as an interaction coupling all the

variables in A and Φx = limΛ^zd ΦAX By (33), we have the trivial bound:

ll^ίll ύ Σ \\ΦΛX - Φχ\\ ύ
xcΛ

So, Φ^ satisfies an estimate similar to the one of Φ1 (with a smaller y). If we
introduce this representation of Jf and expand Φ^, considering it as a part of Φ1,
we see that the only non-zero term must contain a path connecting A to dA. Since
ί/(/ί) —> oc when /I | Z^, the existence of the limit for VA follows. The rest is then
as in the proof of Theorem 1. D

Remark. 1. We used in an essential way the fact that Φ is real when we used
the positivity of fχ,gχ9W. This can always be arranged for Φ real by adding a
constant but not, of course, for complex Φ. This "trick" of taking advantage of the
positivity of the interactions was used e.g. in [2,17,20,28]. The main interest of
our method is that it yields uniqueness of the Gibbs state and exponential decay
of correlations without using much combinatorics. Readers who are familiar with
cluster expansions will notice that, in order to prove analyticity, one has to resum
over (tree) graphs, which implies a sum over families of "bonds" Z overlapping
with a given bond (and it is in the control of this sum that the norm (9) enters).
Here, thanks to positivity, we can resum the expansion and reduce ourselves to a
sum over paths, i.e. we sum only over one bond Z adjacent to a given bond.

Remark. 2. Here we first had L determined by the Φo part of the interaction and
then we chose ε small enough. However, in applications such as those of the next
sections, the splitting of the interaction into Φo and Φ\ is somewhat arbitrary, and
L and ε are not independent. All we need is that Ldε be small enough, see (30,31).

Remark. 3. The exponential decay (12) implies the decay of all the truncated
correlation functions and, therefore, the fact the free energy and the correlation
functions are C°° (in the same sense as analyticity was defined above); see e.g. [41],
Sect. II 12. Of course, the bounds obtained in this way on the truncated correlation
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functions contain factorials that prevent us from drawing any conclusions about their
analyticity.

Remark. 4. Since we used 11 <2>x 11̂  ^ ε only in the bounds (19,30), we can easily
extend our results in several directions: First, one recovers uniqueness of the Gibbs
state if we assume only ||Φ11| i ^ ε, and Φ° as before. Instead of (19), we have

(34)
oex

and (30) holds without the factor exp(|(l + d(X))). Taking Φ° = 0, this yields
a simple proof of Dobrushin's uniqueness theorem (possibly without an optimal
constant). Using (30,31) (without exp(|(l + d{X)))) we can also bound

Σ \(FτiG)-(F)(G)\ <oo (35)
i<EZd

(just sum over Zn = τzi?). Therefore, one recovers the result of Gross [24] on the
C2 property of the free energy.

We may also consider potentials decreasing with a power law: introduce the
norm

||Φ| | 4 = Σ \X\e^d(X)\\Φχ\\ . (36)
oex

Then, if \\ΦX\\4 is small, we get an upper bound d(A,B)~y in (12). Of course, here
we need the factor \X\ in (36) to control the sum (30).

Finally, let us remark that we do not use the translation invariance of Φ except
when we speak of the free energy, of analyticity or of differentiability. Hence,
uniqueness of the Gibbs state and the decay of correlation (12) hold for arbitrary
interactions on arbitrary lattices with

or sup Σ (

i ieX i i£X

small enough.

3. Coupled Map Lattices

We consider the following class of dynamical systems. The phase space Jί —

(Sι)z , i.e. Jί is the set of maps z = (zj).sZd from Zd to the circle. Jί inher-

its its topology and Borel σ-algebra & from Sι: it is a compact metric space and

we let m denote the product of Lebesgue measures on the Sι -factors. Jί carries a

natural Z^-action, denoted by τi9 i G Zd.
To describe the dynamics, we first fix a map F : Sι —> Sι. We take F to be an

expanding, orientation preserving Cλ+δ map with δ > 0. We describe F in terms
of its lift to R, denoted by / and chosen, say, with /(0) G [0,1[. We assume that

f'(x)>λ-1, (1)

where λ < 1. Note that there exists an integer k > 1 such that

f(χ \ \\ — f(γ\ _J_ ]r WvcD (Ί\
J \Λ. ^Γ 1 j — J \A) \ At VΛ d JV . \^)
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We let # " : Jί —> Ji denote the Cartesian product 3F = XieZdFi where Ft is a copy
of F. 3F is called the uncoupled map.

The second ingredient in the dynamics is given by the coupling map A : Jί-^Jί.
This is taken to be a small perturbation of the identity in the following sense. Let
Ai be the projection of A on the /th factor. We assume that At is C1 in each zy

and satisfies (we use the parametrization z7 = elmxJ on S\ xj G [0,1[ and we let aj
denote the lift of Aj : Aj = e

2πiaJ):

<
OXj

together with a Holder condition

daj dat

δxj dx.

for some ε,β,δ > 0, with x = (xi)i€Zd-

Furthermore, we suppose that A is Z -invariant:

(3)

(4)

A = i € Zd , (5)

although this is not essential, see Remark 2 in [3] and Remark 4 at the end of
Sect. 2.

Example. An example often considered (see e.g. [3]) is the coupling map

aj(x) =xj +

where g is a periodic Cλ+δ function in both variables, with exponential falloff in
\j — k\ as in (4). More general examples of such A's can be found in [3] (where,
however, we restricted ourselves to analytic maps).

The coupled map T : Jί is now defined by

T =AO$Ϊ .

We are looking for "natural" Γ-invariant measures on Jί. For this, write, for A c
ΊLύ\ JίA = (Sι)Λ, and let mΛ be the product of Lebesgue measures. Let &Λ C $ be
the σ-algebra of subsets of M generated by the Borel sets of MA (identified in the
obvious way with subsets of .

Definition 1. A Borel probability measure μ on & is a SRB measure if

(a) μ is T-invariant.
(b) The restriction μ^ of μ to &Λ is absolutely continuous with respect to YΠA

for all AcZd finite.

Remark. This is a natural extension of the notion of SRB measure to infinite
dimensions, since each Sι factor can be regarded as an unstable direction.
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It is convenient to introduce the space of Holder continuous functions
for A c Zr f, \A\ < oo equipped with the norm

δ —
|G(x)-G(y) |

χ,y

We also write to denote the continuous functions on with the sup norm.

Definition 2. A Borel probability measure on 3$ is regular if its restriction μ^

to &Λ is absolutely continuous with respect to TΠA for all A C Zd finite and if

), where hΛ = %£:

log
hΛ(x)

hΛ(y)
=£ c (6)

i€Λ

Remark. A similar condition was introduced by Volevich [45]. If μ is a Gibbs state
on M for some translation invariant interaction such that Σoex llΦdl < °° a n d

\φχ(χ)-φx(y)\ ^
i ex

with

0(ΞX

C(X) < oo ,

then μ is regular. This follows easily from the DLR equations:

hΛ(x) = /v(x|z)φ(z),

(7)

(8)

(9)

where v(x|z) is defined as in (2.3). To get (6), using (9), by Jensen's inequality it
is enough to bound

sup log
v(x|z)

= sup Ijf(x|z) - g sup Φχ(* V z) - Φx(y V z)|
XΠΛή=φ

which, using (7,8), is bounded by the RHS of (6).

We will prove

Theorem 3. Let F and A satisfy the assumptions given above. Then there exists
ε0 > 0 such that, for ε < ε0, T has an SRB measure μ. Furthermore, μ is invariant
and exponentially mixing under the space-time translations generated by τz and
T: there exists m > 0, C < oo, such that, VB,D c Zd,\B\,\D\ < oo and VG e
L°°(JfB)yH e%δ(JίD),

(10)\fGoTnHdμ-jGdμfHdμ

where d(B,D) is the distance between B and D and C depends on d(B), d(D).
N*Nv μ weakly, as N —• oo, Γ* beingFinally, for any regular measure v, T

the transpose of T.

Remark. We shall construct an expansion for the Perron-Frobenius operator of Γ,
which will be quite similar to the expansion of the previous section, for Φ of the
form (2.9), with Φ° one-dimensional and HΦ1^ small. Bunimovich and Sinai [5]
have reduced the problem (for a one dimensional lattice of maps, and a slightly
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different model) to a spin system with exponentially decaying interactions of the
same form. We shall rederive this estimate below (see Proposition 2). However, they
did not discuss in detail the resulting statistical mechanical system (the reference
to [12] is slightly misleading, since the latter authors assume HΦ 1^ small, which
probably does not hold in general here). The work of Bunimovich and Sinai was
extended by Volevich [45-47], Pesin and Sinai [37], and by Jiang [27]. Our results
are quite close to those of [47], where lattices of dimension d > 1 are considered.
In that paper, the statistical mechanics is based on an extension to infinite range
interactions of results of Dobrushin and Pecherski [14].

An extension of [5] is also claimed in [25,8]. However, there the treatment
of the statistical mechanics part of the problem is wrong. The authors essentially
claim that uniqueness of the Gibbs state holds for any Φ, with | |Φ | | 2 finite. Although
this is true in one dimension, it certainly does not hold in higher dimensions. The
Ising model, or any finite range model of this type that undergoes a phase transition,
provide counterexamples. Moreover, the "proof" would also yield analyticity, which
does not hold even under the correct assumption that Φ is of the form (2.9), with
Φ° one dimensional and IIΦ1!^ small, because of the counterexamples in [13].

Finally, in [3], we constructed a convergent expansion for the Perron-Frobenius
operator, but we needed stronger assumptions on the coupled map lattice (analyticity
instead of smoothness). These assumptions, in the present context, would imply that
||Φι\\3 is small and that we could use the usual cluster expansion.

4. SRB Measure from a Gibbs Measure

The SRB measure μ is constructed using the Perron-Frobenius operator for T. We
first introduce a finite volume cutoff version of Γ, TA : MA —> MA, A c Zd, \Λ\
< oo. For definiteness, we let A be a cube centered at 0. Set TA — AA O #4 with

&Λ = XΪEΛFI and

AA=RΛoAo<gΛ, (1)

where ^Ά ^A —• ̂  extends z E MA to M by

i e A

(here z/, 1 E Sι, and the choice of 1 is arbitrary), and RA : M —> MA is the restric-
tion. It is more convenient to work in the covering space R"1 of MA and to introduce
the corresponding lifts aA.fA^A as maps from ΈLΛ to itself. Our assumptions for A
then imply the following properties for aΛ.

Lemma 1. The maps <2A are Cx+δ diffeomorphisms with the following properties:

there exist β > 0, C < 00, independent of A, such that Vx E RΛ,

a) aΛ(x + n) = ̂ ( x ) + n Vn e ZΛ.
b) The derivative of aA can be written as DaA^x) = / + £/i(x), where I is the

unit matrix, and εΛ is periodic function satisfying

\εΛ(x)ij\ ^ Cεe-W-Λ , (2)

)ij - εΛ(y)ij\ ύCεΣ e-^-^-^\xk - yk\
δ . (3)

keΛ
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c) εΛ(x)ij = εΛ*(x V OAf\A)ij for ij e A c A'.

d) Let A C Af, RΛγ = x, y £ RΛ and ij G A. Then

|εΛx),y - SA'iylA £ Cse-n'-»e-wA>, (4)

where d denotes the distance.

Furthermore a^1 satisfies a), b) and d), with possibly different β,C.

Proof. (2) and (3) are just a restatement of (3.3), (3.4) (we can take C = 1 here).
By definition of a lift, aA(x + n) = aA{x) + m(n) for some m(n) G ΊJA. Write aΛ

— id + 6, where id is the identity. Order points of A in an arbitrary way such that
A = {it\£ = 1,...,\Λ\}. Then, given x,y G ΈLΛ, define w(w) by letting w£° equal JC,V
for / ^ « and yl( for if < n. Then,

Ml

and, from (2),

1
( 1((l - /)w<") + ίw("+ ')) | |x ί f l - yin\

0

r-yin\ (5)

Hence,
\h (xλ — h(\M < CP V ^"^^'"^Ίr — v (f>Λ
\υι\*) υι\j )\ = ^ f c z_̂  ^ IΛ7 Λ; \ΌJ

Let |«y | ^ 1. Then, for ε small, m(n) = n and thus by iteration a) holds for all n.
Point c) follows from the definition (1) and d) follows from c) and (3).

Now, the inverse function theorem implies that a~^1 exists. Writing Da^ι(x)

= 1 + εA(x) = (1 + εA(a^ι(x)))~ι and using (2) with C = 1, we get:

oo oo n

\tΆV*)ιj = 2_j \bΛ\aΛ \X))ιj\ = Z^ b λ-j 11 e J
n=\ n=\ i2,-4n /=1

where i\ — i, in+\ = j . This is readily bounded by εe~^ι~^ for any β < β and

a^
y

C = C(β) < oo. This proves (2) for a^1 and, from this, we deduce, as above that
1 — id + b, where b satisfies (6). Thus, a) holds also for a~[ι. To prove (3) for

\ we use (3) for εA and

i2,..JfJί=\ k £=\

with i\ = iJn+\ =j, which, using (6) for b, is bounded by

^(Cε)nΣe-kli-Jl+li-kl)\xk-yk\δ (7)
k

with β < βδ and C as above. The proof of (4) is similar. D
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The Perron-Frobenius operator PA for TA is defined as usual by

JG o TΛHdmΛ = jGPΛHdmΛ (8)

for G G L°°(J?A),H £ L1(J?Λ)- Let us work in the covering space TϋΛ and replace
G,H by periodic functions denoted g,h : g(x + n) = g(x), Vn G ZΛ. Insert ti = ^ o
Xi in (8) to get (with CΛ = [0, l]Λ)

fg o tΛhdx = J' g(aΛ(x))P°Λh(x)dx , (9)
cA cΛ

where P°A is the Perron-Frobenius operator for fA, i.e.

where s G {0,...,& - \}A (and £ was introduced in (3.2)). Note that P°A maps
periodic functions into periodic functions because the sum is periodic even if the
summands are not: indeed, (3.2) implies that f~ι(x + 1 + k — 1) = f~ι(x Λ-k) —
f~λ(x) + 1 (so that, if we add 1 to xz, it amounts to a cyclic permutation of Si)
and that / ' is periodic.

Since, for a periodic function k,

f k(x)dx = fk(x)dx

(both CΛ and ^ ( Q ) are, up to their boundaries, fundamental domains for the action

of ΊJA on RΛ), we obtain the formula

where we defined

ψAa(x)i = f-\aχι(x)ι+si), (11)
and (with a slight abuse of notations) we write PΛ for the operator acting on periodic
functions induced by the Perron-Frobenius operator defined by (8). Note that, by
Lemma 4.1.a, aA\x + n) = aA

l(x) + n and, so, PΛ maps also periodic functions
into periodic functions.

The invariant measure μ is constructed as a weak limit of the measures T^JΠA,
with TA being the transpose of TΛ, as N —> oo and A f Z?. These in turn are given
by the Perron-Frobenius operator

by putting H = 1 in (8). PA\ has a direct statistical mechanical inteφretation which
we now derive.

First, iterating (10), we get

«i)(χ)= Σ Π
Si,...,S^y /=1

(f'iΨs, Λ - l

ι£Λ

(12)
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where, for t = 1, the argument of Da^1 is x, and we write φs for ι/̂ s. From now
on, we shall consider X E Q .

Next, we introduce a convenient notation: x G CA and SI,...,SJV in (12) col-
lectively define a configuration on a "space-time" lattice {0,...,N} x A. Thus, let
Z++1 = Z + x Z^,Z+ being the non-negative integers. To any subset X C Z^+ 1 as-
sociate the configuration space Ωx = x α 6 χΩ α where, for α = (/,/), Ωα equals [0,1]
if ί — 0, and equals {0,..., k — 1} if t > 0. We could use the existence of a Markov
partition for TA to write x as a symbol sequence, as is usually done, e.g. in [5], but
we shall not need this representation. Since we shall use below Theorem 2.2, let
us emphasize that, as we explained in Sect. 2, this theorem extends to the present
setting: we can replace the finite set Ωo by as compact metric space such as [0,1],
and we never used translation invariance (see Remark 2.4), so we may take Z++1

as our lattice, with different phase spaces at different sites.

Let AN = {0,...,N} x A and s = (x,Si,...,s#) G Ω ^ . We shall write x,s, as

before, for elements of ΩΛ, A c Zd, and use s to denote elements of ΩΛ, A c Z^+ 1.

For any X C Z++ 1, we shall denote by X_ the projection of X on Zd. Then (12)

reads

( < l ) ( x ) = Σ e~^{S) (13)

with e ΛN being the summand in (12).
The final step is to write Jf^ in terms of potentials. First, write DaΓ^ = 1 + εΛ,

where, by Lemma 1, SA satisfies (2)-(4). Then expand

detDaA = det(l + εA) = exp | — Σ vΛi

where
oo ( — 1 ) "

Ui/(x) = Σ (sΛ(x)n)u . (14)n

Lemma 2. There exist ε\ > 0, C < oo swc/z that, for ε < ε\,

IK/Hoc ^ Cε

| ^ Cε
i

and, for A c Λ\ x = RAY, i G A,

uniformly in A, A1.

Proof Straightforward, using (2)-(4), and the bound (7), for εΛ. •
Given α = (t,i) G A^ we set

VΛa(s) = VΛiiφ^ o o ψsι(χ)) + logf'((ψSι o o ^S l(x)), ) , (15)

and hence

#'ΛN(S)= Σ VΛ*(S), (16)
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where %α depends on S\AΓ The representation (16) still needs to be localized in
order to express J f in terms of potentials. We shall write each VΛθL as a telescopic
series ((19) below) and use the Holder continuity of log/ 7 and of vΛι to show that
the resulting potentials decay exponentially (Proposition 1 below).

We use the notation of Sect. 2: given s e Ωx, s' e Ωγ for X ΓΊ Y = 0 we de-
note by sV s' the corresponding configuration in X U Y, and, if Z C X, we let
sz = s\z Also, let 0x e Ωx be (0x)a = 0, Vα <E X (note that 0 belongs to Ωa for
any α).

Now, given t, choose an arbitrary ordering of the points of {0,...,/} x Zd =
\p.t\£ G N} in such a way that |α^| is a non-decreasing function of i where, for
α = (t'J),

W = ̂ k Ί + Σ l Λ l - (17)
M k=x

M will be taken sufficiently large below (see (25)).
Consider VAa in (16). Let 7α

m = {α - α^|0 ^ / ^ m}, and set, for s G Ωy«,

Φγm(s) = VAa(sYnt V 0(y f )c) - VΛoί(SγΓl V 0 ( ^ _ l ) c ) . (18)

Note that the two configurations on the RHS of (18) differ only at site α — αm. We
have then the identity

fc«ω= Σ φy«ω + ?i«(o), (i9)

and we define
ΦΛX(S) - Φ ^ ( j ) , (20)

provided there exists m, α such that X = 7^, otherwise we set ΦAX(S) = 0 (note
that there is at most one such pair (m, α)). ΦAJC depends only on sx. Due to (16),
(19), we have

^ΛN{S)= Σ φMs) + constant, (21)
XCΛN

where constant = ΣαeΛ v ^ W Note that (17) was chosen so that Y™ with |α m | <
1 is a one-dimensional interval of length at most M in the time direction.

Now write
ΦA = Φ\ + Φ\, (22)

where Φ° collects the X's with |α m | < 1 in (20) and Φ1 all the others. We have
the following basic bound:

Proposition 1. There exist &2 > 0, C < oc, such that, if ε < 82, then Φγm given

by (18) is bounded by

\Φγm(s)\ S Cεn-δQimλ/tme-β'M , (23)

where αm = (tm,im) λ1 = λδ^2, εf = εδ, βf = y , where δ is as in (3.4). Moreover,
for any Λf D A,

Φjnr(s) - Φγm(s)\ ^ Cϋ!β^'d{^M) , (24)

where 7 ^ z'51 ίAe projection of Y™ on Zd.
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Choose now M in (17) to be the smallest integer such that

λfM < εδ . (25)

Then, we have

Proposition 2. There exist y > 0, ε0 > 0, C < oo such that, if ε < ε0, Φ1 satisfies
the bound

Σ e^HΦ^II ύ Cεό (26)

uniformly in a and A. Moreover,

\ΦΛX{S) - ΦΛlχ(s)\ g Cεδe-yd&Λϊ , (27)

with X_ c A C A'.

Since Φ° has no coupling in spatial directions and has range M in the time
direction we get the following decomposition of its partition function Z°. Given
V C Zd

+

+\ we let, for i e Zd, Jτ = (Z+ xi)ΠV so that V = \J.Jt. Then

Proposition 3. 77zere exist γ > 0, C < oo independent of M such that, if J is an
interval of the form [(/, t), (/, ί

Z\j\s) = λ'W{s-)W{s+)i\+9Λs-,s+)) > (29)

where s+ = s({u+m),(/,/+(/+ i)M)] ««^ ^- = % ,ί-M),(ί,θ) w z ' ^

iw (30)

Since this last proposition is rather standard in statistical mechanics, we defer its
proof to the Appendix. For the proof of the other propositions, we need some
lemmas.

Lemma 3. There exist B < oo such that ΨΛS> given by (11), satisfies

( , \
IΆΛS(X)/ - <AΛV(X'),| ^ λ\xi -x't\ +Bε £ \xj -xfj\e-β\ι-J\ + e~^lM) (31)

\J'eΛ J
for i G A C A\ and s = S'\A For A = /I7, we get (31) without the term e~^hdΛ\

Proof Proceeding as in (5, 6), and using Lemma 1 for a^1, we get

ύ [xt-x' +Bε (Σ\xj-x'j\e-βli-Jl+e-βd(i'dΛ)

\jeΛ

Now, by (3.1), (/ ' ) ' < λ and this implies the claim. D
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Iterating (31) then yields

Lemma 4. Let φs = ΨΛS, Ψl/ = ΨΛ'S' Then, there exist C < oo such that

^ X" I \Xi - x\\ + Cε Σ e-h'-Λ \xj - x)\ J + Cεe-ld^δΛ), (32)

V J*Λ J
where i € A c Λ', s = s'\Λ and λ = λι/2. For A = A', we get (32) without the term

Proof of Lemma 4. The proof is done by induction. For n = 1, we can use
Lemma 3. Using (31) and (32) for n — 1, we get

^ λλn~ι +Cελe-2d{iM)

Bε

Regrouping terms, and exchanging kj in Σkp w e

keΛ
Σ XJ-XJ\

Now choose C large enough so that λC + 5 + 0(ε) < 1 c (which is possible since

λ = /I1/2 > A) and we get (32) for n. D

Remark. It is easy to extend Lemmas 3 and 4 to the situation where A = A' but
5; and to get, instead of (32),

\Φstn °-'°Ψsh (X)/ - *Aŝ  ° * * ' ° Ψs'tι (xOi I

|JC, - x[\ + Cε

(33)
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Proof of Proposition 1. Using (15) and (18) we can write

Φγm(s) =

where α = (t,/), / = t — tm + 1, §tk, tk — t,...,l is a configuration that coincides
with stk in Y™ and with 0 outside, and y and y are two configurations such that
pj = yj for jή=i- ίm. Finally, g is given by (15).

Using the Holder continuity of / ' and Lemma 2, we get

+ Cε Σ e-^-

, - (<fo o

keΛ

Now, use (32) in Lemma 4 for A — A! and the fact that pj = yj for jή=i — im

to get (23). By definition, λδ = λ5'2 = λ'.
For (24), we bound

o o ̂ β- (y)) - ^

where ψ'-, = ΨΛ'S' a n ( i &'t is defined like st9 but with A' instead of A. Now use the
Holder continuity of / ; and Lemma 2 and then, use (32), where only the last term
contributes. D

Proof of Proposition 2. The bounds (26), (27) follow from Proposition 1 because
we excluded from Φ1 the terms with δoim = 0 and tm < M, and because of our
choice of M in (25): To get (26), we use d{X) ^ C(tm -f \im\) which follows from
(20) and from the definition of 7α

m. D

Proof of Theorem 3. We shall construct μ as the weak limit of T^mΛ = (P
as N —> ex), ΛL t Z r f, and, for that, we shall use the results of Sect. 2, the repre-
sentations (13,21,22) and the bounds of Proposition 2. Thus, let G eL°°(yMB),
\B\ < oo; we have

JG o TΉ

AdmΛ = Σ I 0(x)exp(-^»)rfx (34)

f

(replacing G by the periodic function g). We shall first construct the unique Gibbs
state μ with Hamiltonian Jf on the following "mixed" phase space: the lattice
is Zd

+

+\ Ωa=Sι if α = (0,/), / e Zd and Ωa = {0,...,A: - 1} if α = (ί,/), ^ > 0.
Then, μ will be the restriction of μ to the "time zero" phase space Jί, as shown
by (34). Since we want to use Theorem 2.2 (or, rather a trivial extension of it to
the present setting), let us check now that our system satisfies the hypotheses of
this theorem. We cover Z^ + 1 with L-cubes, L = £QM9 where

Me~y'o ^ εδ (35)
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(here, it would be more natural to take, instead of cubes, segments parallel to the
time axis, but we shall keep the notations of Sect. 2). We bound HΦ^Ih = £ u i n "
formly in A and we get (2.33) from Proposition 2 (with ε = Cεδ of Proposition 2).
We get (2.13,2.14) from (28) and Proposition 3 as follows. Let f = \ogλ and
φγ = log(l + gj) for Y being and interval J as in Proposition 3 with \J\ = nL,
n ^ 1 and φγ = 0 otherwise. Then (30,35) imply (2.14) (with ε replaced by Cεδ),
using

Σ Lne^e'1^ = M ^ ^one~y^°~ι)n ^ CMe~y'°.
w ^ l «Ξ>1

In order to be able to use estimates (2.30, 2.31) (see Remark 2.2), if we observe
that L = ί^M with M given by (25) and / 0 by (35) so that M ^ C\ logε |y 0 ύ
C\ logβ| and Ld+ιεδ < 1 for s small.

So, Theorem 2.2 proves the existence of μ. Its invariance under T and under
the lattice translations follows by construction: Let G £ ^{Jίβ)- Observe that since
the limit A | Zd,N —> oo taken above can be taken in any order,

μΛ= lim(P%l)mΛ
TV—>OO

exists and is TA invariant. On the other hand,

lim WGOTΛ-GOTWVO = 0 (36)
A^Ίβ

since G is continuous. Therefore,

JG o Tdμ = lim JG o TΛdμ = lim lim ίG o Γ^φ71'

= lim lim lim jGoTΛo TΉ

A,dmA, . (37)
ΛTZ ί /4/ΐZέ /W> o°

By (36), we may replace here 7^ by TV and we get

(37) = lim lim fG o TN/xdmA, = fGdμ .

The Zd-translation invariance of μ implies the same invariance for μ.

On the other hand, since the limit A j Zd,N —* oo of (34) exists for any
GeL°°(JiB) with \B\ < oo, we see, by taking characteristic functions of sets
of zero Lebesgue measure, that μA is absolutely continuous with respect to the
Lebesgue measure, for any \A\ < oo.

The space-time exponential mixing of μ follows essentially from the exponential
clustering of μ which itself follows from Theorem 2.2: By an approximation argu-
ment, it is enough, to prove (3.10), to consider G £ ^{JίB), and H as in (3.10):
Then, as in (37),

JG o ΓHdμ - jGdμjHdμ

= lim lim (\GPn

A(HPΉ

A\)dmA- \GPN

A\dmA\HPN

A\dmΛ . (38)

Following Eqs. (10,12,13), we get:

= Σ e-*Λ»+»ωh(s), (39)
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where

o.-.oφSι(χ)). (40)

Proceeding as in (19), we write

h(s) — Σ hγ™(s)+ constant, (41)

where α = (n, i) for some i E D, and

hγm(s) = h(Sγm V 0(y«)c) - A ^ - i V 0{γm-\)c) .

Since h is Holder continuous, proceeding as in the proof of Proposition 1, we
get an estimate on hym similar to (23):

I hγm{s) I ̂  C\\H\\δλ
ltme-td{i-im>D) . (42)

Now, we insert (39, 41) in (38), and we shall use the exponential decay of
correlation (2.12) for μ with B being a subset of {0} x Zd and A = Y™. Notice
that, since (n - tm, i - im) e Y™,

d(Y?,B) + d(Y™) ^ \(d(ί - im,B) + (n - tm)),

where the distance in the LHS is taken in Z +

+ 1 , while, on the RHS, it is taken in

I/. By construction of Y™, we have

d(D) + tm + d(i - im,D) ^ ^
M

for some c > 0. So, the exponentially decaying factor coming from (2.12) can be
written as

exp(-m'd(A,B))

- e x p ( ~ T ( J ( z " ίm'B) + ( w " " ί m ) ) ) e x p

for any m' ^ m (where, only here, m comes from (2.12) and is not the index of
Y™). By choosing w! small enough, we may bound (42) by

C\\H\\δ exp ( - (m' + ~ ) (ίM + rf(i - im,D))J .

Then, from this and

Σ ex

we get (3.10).

Finally, let v be a regular state. We want to show that MB C Zd, \B\ < oo, VG

lim ΓG O Γ ί̂A; = ΓGφ .
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Since \\G o T% - G o TN\\oo ^> 09 as Λ ϊ Zd, it is enough to show that

lim lim (fG o TΉ

Aώ - (G(PN

A\)dmΛ) = 0 . (43)

Since G o TA is &A measurable we may replace dv by hA(xA)dxA where hA =

We have

fGoT%hΛdmΛ= fgP%hΛdxΛ

Σ (44)

where /^(.s) is defined by (40), with n replaced by N. With the same notation,
introduce hA{s) where

,yα = 0 Vα = (/,/), t S Y and d(i,B) ^

and ^ = sα otherwise. Let

- 1

hΛ(β) = ί Σ / hΛ(s).

(45)

(46)

Insert the identity

in (44). Since

hΛ(s) = ί l - hΛ(s) + hΛ(s) (47)

= / P%hΛdxΛ = J hΛdxΛ = 1 , (48)
^ cΛ

(46) implies that | ^ | =

So, we can bound

dPΛ)~\ where ί/p^ is a probability measure.

hΛ{s)

Now, since v is regular

\\oghA(s)-\oghA(s)\ ^

g exp(2sup I log *,,(*) - logAΛ(J)|) - 1 (49)

] ( χ ) , - φfN o • • • o ,//s-.(x),f . ( 5 0 )

Now we use (33) and the definition (45) of s to bound each term in (50) by

if d{UB) S N and by Cλ^N)e-f{d(UB)-N) if d(i,B) > N. Hence, (50) is bounded
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by C(\B\)λΘ{-N\ Combining this with (49), (47), (48) and since G is bounded, we
have

\JGoTN

Λdv-$G{P»\)dmΛ\

ύ\ Σ J g(

(51)

Since g depends only on x# and HA(S) depends only on sa, with α = (tJ)J > | or
d(i,B) > N the first term in (51) is also bounded by CGλΘ^N\ using the exponential
decay of the Gibbs state defined by Jf (uniformly in A and N) proven above and
the normalization

Σ, I cxp(-MΆN(s))hΛ(s)dxΛ = 1

which follows from (46). D

Appendix

Proof of Proposition 3. We need to study a one-dimensional system with potentials
Φ°γ, Y C Z+, Y = [tu h + 1, , h\ \t2 - h I < M, tx ^ 1 satisfying

\Φ°Y\ g Cλ'\γ\ (A.I)

for λr < 1 (we suppress here the A dependence of Φ).

Let 2Γ be the transfer matrix for Φ°, i.e. 2Γ is the linear operator on functions

on 5 Ξ {0,1,...,A:- 1}M (i.e. on R1^1) given by

(A.2)
tes

with

3Γ{s, t) = a(s)a(t)eUM , (A.3)

where

a(s) = exp - Σ Φ°γ(s) (A.4)

and

U(s,t) = ΣΦγ(sVt), (A.5)
y

where Y C [1,2M] with M,M + 1 G 7 and (s V ί)/; equals /̂ if i ^ M and //_M if
/ > M.

Let J be as in the proposition; we have

° ^ ) , (A.6)
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where ( , ) is the scalar product in R ' S ' , and

fs_(s) = Φ)eU(s-s),

hs+(t) = a{t)eu^. (A.7)

We can apply the Perron-Frobenius theory since ?Γ has strictly positive entries. 2Γ
has a non-degenerate largest eigenvalue λ with left and right eigenvectors u and v:

u?Γ = λu ,

Fv = λv. (A.8)

The vectors v and u can be chosen with positive entries: u{s\v(s) > 0, Vs G S and
we normalize them by

Σ, u(s)v(s) = 1 . (A.9)
s£S

We may write y = λQ + R9 where Q{s9t) = υ(s)u(t), Q2 = Q and QR = RQ = 0.
Hence ^ = λ ' β + R*, and

So define ^ ( ^ _ ) = (fs_9v)9 W(s+) = (M,A J + ), and

so that, using (A.6), Z(J\s-9s+) is of the form (4.29). To estimate gj it is conve-
nient to introduce the matrix

Since P(s,t) > O j ^ P f o ί ) = I, we can view P(s,t) as the transition probability
(from state s to state ί) of a Markov chain. P has a unique stationary distribution
pP — p, where z?^) = u(s)v(s). Write

where

* ί ^ .

We have QR = RQ = 0 and Pe = Q + R?.
A standard result in the ergodic theory of Markov chains implies that

Σ
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where

y = mm
. P(s',t)

xxim ,
s,s',t P(s,t)
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(A.17)

for any q, with q(s) ^ 0, ^2sq(s) = 1. Postposing the proof of (A. 16), we rewrite
it, using (A. 13, A. 14), as

Σ
t

(A.18)

We use (A.11,A.15) to write

\gj(s-,s+)\ =

using (A. 18) with

(fs_,υ)(u9hs+)

q(s) =

Λ-l

mins hs+(s)υ(s)- 1
(A.19)

and using Σsu(s)v(s) = 1 to bound (u,hs+) ^ mmshs+(s)v(s) ι.
Now, we need to show that γ > 0 uniformly in M and we have to bound the

last factor in (A. 19) by a constant independent of M. Using (A. 12, A. 17),

. £r(s',t)v(s)

s,sf,t __

where we use (A.8) in the last equality. So, since υ(r) > 0,

*-4||t/||y ^ mm
s',t,s,r ,

^ e

by (A.3). Using (A.1,A.5), we see that ||£/|| ^ C\(λ'), uniformly in M. Now con-
sider

7 . , , , S max — t
hs+(s)v(t) s,t,r hs+

(A.20)

by (A.3.A.7). Inserting (A.20) in (A.19) yields (4.30).
We are left with the proof of (A. 16). Since pP = p and since Σp(s) = Σq(s)= 1,

the LHS of (A. 16) can be written as

Σ
s,s'

and it is enough to prove that

(A.21)
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for all s,s'. Let fsy(t) = sigFi(P'(s,t) - P'(s',t)). Then, the LHS of (A.21) equals

\(P'f)(s)-{P'f)(s')\

f)(z) - P(sf,z)(P'~l f)(z)

vj,z) - P(s\z)\) sup K ^ - 1 /)(z) - ( P ^ 1 / )(z ' ) | , (A.22)
2 V z / z,z'

where, to get the last inequality, we use

\μι(F) - μ2(F)\ ^ - ( Σ l^iO) ~ J^OOl ) sup |F(z) - F(z')\
2 \ z J z,z>

(see e.g. [41] Lemma 5.1.8) where μ\,μi are the probability measures μi(z)

= P(s9z), μ2(z) - P(s',z) and F = P'~ι f.

Since P{syz),P{s,zr) are probability measures,

\Σ \P(S,Z) - P{s\z)\ = Σ +(P(s,z) - P(s\z)),
^ z z

where the last sum runs over positive terms

by definition (A. 17) of γ.

Inserting (A.23) in (A.22) and iterating yields (A.21), using in the last step

s u p | / i ; S , ( z ) - / ί > ί , ( z ' ) | ^ 2 . D
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