On the Lieb-Thirring Constants $L_{\gamma, 1}$ for $\gamma \geqq \mathbf{1 / 2}$

Timo Weidl
Department of Mathematics, Royal Institute of Technology, S-10044 Stockholm, Sweden.
E-mail: weidl@math.kth.se

Received: 11 April 1995

Abstract

Let $E_{i}(H)$ denote the negative eigenvalues of the one-dimensional Schrödinger operator $H u:=-u^{\prime \prime}-V u, V \geqq 0$, on $L_{2}(\mathbb{R})$. We prove the inequality $$
\begin{equation*} \sum_{i}\left|E_{i}(H)\right|^{\gamma} \leqq L_{\gamma, 1} \int_{\mathbb{R}} V^{\gamma+1 / 2}(x) d x \tag{1} \end{equation*}
$$

for the "limit" case $\gamma=1 / 2$. This will imply improved estimates for the best constants $L_{\gamma, 1}$ in (1) as $1 / 2<\gamma<3 / 2$.

0

Let $H=-\Delta-V$ denote the Schrödinger operator in $L_{2}\left(\mathbb{R}^{d}\right)$. If the potential $V \geqq 0$ decreases sufficiently fast at infinity, the negative part of the spectrum of H is discrete. Let $\left\{E_{i}(H)\right\}$ be the corresponding increasing sequence of negative eigenvalues, each eigenvalue occurs with its multiplicity. This sequence is either finite or tends to zero.

Estimates on the behavior of the sequence of eigenvalues in terms of the potential have been in the focus of research for many years. In the earlier papers the main attention was paid to bounds on the number of negative eigenvalues ($[2,4,18,16$, 7, 14, 12, 6]). In [15] Lieb and Thirring proved inequalities of the type

$$
\begin{equation*}
\sum_{i}\left|E_{i}(H)\right|^{\gamma} \leqq L_{\gamma, d} \int_{\mathbb{R}^{d}} V^{\gamma+\kappa}(x) d x, \quad \kappa=d / 2 \tag{2}
\end{equation*}
$$

Since then these estimates and the corresponding constants $L_{\gamma, d}$ have been studied intensively (e.g. [13, 9, 10]). Up to now it was known that (2) holds for all $\gamma \geqq 0$ if $d \geqq 3$, for $\gamma>0$ if $d=2$, and for $\gamma>1 / 2$ if $d=1$. On the contrary (2) fails for $\gamma=0, d=2$ and for $\gamma<1 / 2, d=1$. In this paper we prove (2) for the remaining case $d=1, \gamma=1 / 2$, which does not seem to have been settled so far. This result will imply an essential improvement for the estimates on the constants $L_{\gamma, 1}, 1 / 2<$ $\gamma<3 / 2$. Moreover we deduce a new integral bound on the transmission coefficient of the corresponding scattering problem.

In conclusion the author expresses his gratefulness to M.Sh. Birman, who introduced him to the topic of negative bound states of Schrödinger operators. Moreover I am grateful to A. Laptev, under whose intensive supervision this paper was written.

1

In this subsection we provide some auxiliary results on the negative spectrum of the Neumann problem for the Sturm-Liouville-operator

$$
\begin{gathered}
\left(L_{I}^{N} u\right)(x)=-u^{\prime \prime}(x)-V(x) u(x) \\
x \in I=[0, l], \quad u^{\prime}(0)=u^{\prime}(l)=0, \quad 0 \leqq V(x) \in L_{1}(I) .
\end{gathered}
$$

Let $N_{I}(V, E)$ be the number of eigenvalues $E_{i}\left(L_{I}^{N}\right)$ of L_{I}^{N} below $E<0$. According to the Birman-Schwinger principle ($[4,18]$), the value of $N_{I}(V, E)$ does not exceed the square of the Hilbert-Schmidt norm of the integral operator

$$
\left(Q_{E} u\right)(x)=\sqrt{V(x)} \int_{0}^{l} G(x, y, E) \sqrt{V(y)} u(y), \quad x \in I
$$

Here

$$
G(x, y, E)=\left\{\begin{array}{ll}
\frac{\cosh (\lambda x) \cosh (\lambda(y-l))}{\lambda \sinh (\lambda l)} & x \leqq y \\
\frac{\cosh (\lambda y) \cosh (\lambda(x-l))}{\lambda \sinh (\lambda l)} & y \leqq x
\end{array}, \quad \lambda=\sqrt{|E|}, E<0, x, y \in I,\right.
$$

denotes the Green function of the problem $-u^{\prime \prime}-E u, u^{\prime}(0)=u^{\prime}(l)=0$ on I. In view of

$$
|G(x, y, E)| \leqq \frac{\operatorname{coth}(\lambda l)}{\lambda}
$$

one obtains the inequality

$$
\begin{equation*}
N_{I}(V, E) \leqq \frac{\operatorname{coth}^{2}(\lambda l)}{\lambda^{2}}\left(\int_{I} V(x) d x\right)^{2}, \quad \lambda=\sqrt{|E|}, E<0 . \tag{3}
\end{equation*}
$$

We apply (3) to the lowest eigenvalue $E_{1}\left(L_{I}^{N}\right)$, and find

$$
\begin{equation*}
\vartheta\left(\lambda_{1} l\right) \leqq l \int_{I} V(x) d x, \quad \lambda_{1}=\sqrt{\left|E_{1}\left(L_{I}^{N}\right)\right|}>0, \quad \vartheta(x):=x \tanh x . \tag{4}
\end{equation*}
$$

The function $\vartheta(x)=x \tanh x$ is strongly increasing in $x \geqq 0$. Let $\varsigma(y)$ be the inverse function of $\vartheta(x)=y, x, y>0$. From (4) we immediately conclude

Lemma 1. Let $E_{1}\left(L_{I}^{N}\right)$ be the lowest eigenvalue of the Neumann problem L_{I}^{N} on $I=[0, l]$. Assume $0 \leqq V \in L_{1}(I)$. Then the estimate

$$
\begin{equation*}
\lambda_{1} \leqq \varsigma\left(l \int_{I} V(x) d x\right) / l, \quad \lambda_{1}=\sqrt{\left|E_{1}\left(L_{I}^{N}\right)\right|} \geqq 0 \tag{5}
\end{equation*}
$$

holds.

Next we recall a criteria, providing the existence of not more than one negative eigenvalue of the operator L_{I}^{N}.

First notice that for functions $u \in C^{\infty}(I)$, satisfying the orthogonality condition $\int_{I} u d x=0$, the inequality

$$
\begin{equation*}
|u(x)|^{2} \leqq \frac{l}{3} \int_{I}\left|u^{\prime}\right|^{2} d x, \quad x \in I \tag{6}
\end{equation*}
$$

holds. Indeed, we have

$$
l u\left(x_{0}\right)=\int_{0}^{x_{0}} u^{\prime}(x) x d x-\int_{x_{0}}^{l} u^{\prime}(x)(l-x) d x .
$$

This gives

$$
\left|u\left(x_{0}\right)\right|^{2} \leqq \frac{\left(x_{0}^{3 / 2}+\left(l-x_{0}\right)^{3 / 2}\right)^{2}}{3 l^{2}} \int_{0}^{l}\left|u^{\prime}(x)\right|^{2} d x
$$

Passing to the upper bound in $x_{0} \in I$ we find (6). The constant $l / 3$ in (6) is sharp.
Lemma 2. Assume that for the non-trivial potential $0 \leqq V$ the estimate

$$
\begin{equation*}
l \int_{I} V(x) d x \leqq 3 \tag{7}
\end{equation*}
$$

holds. Then the Neumann problem L_{I}^{N} on $I=[0, l]$ has exactly one negative eigenvalue.

Proof. The existence of the eigenvalue is obvious. By (6) we find

$$
\begin{equation*}
\int_{I}\left|u^{\prime}\right|^{2} d x-\int_{I} V(x)|u|^{2} d x \geqq 0, \quad u \in C^{\infty}([0, l]), \int_{I} u d x=0 . \tag{8}
\end{equation*}
$$

The inequality (8) holds on a set of functions of codimension one with respect to the domain of the quadratic form of the Neumann problem L_{I}^{N}. Thus L_{I}^{N} itself has not more than one negative eigenvalue.

2

We turn now our attention to the one-dimensional Schrödinger operator

$$
H u=-u^{\prime \prime}-V(x) u, \quad x \in \mathbb{R}, \quad 0 \leqq V \in L_{1}(\mathbb{R}),
$$

realized as a self-adjoint operator on $L_{2}(\mathbb{R})$ in the form sum sense. Let H_{+}and H_{-}denote the self-adjoint operators on $L_{2}\left(\mathbb{R}_{ \pm}\right)$, corresponding to the Neumann problem on the positive and negative semi-axes respectively.

Assume $V \not \equiv 0$ on \mathbb{R}_{+}. Fix the point $l_{0}=0$, and by iteration construct the sequence $l_{k}, k \in \mathbb{K} \subset \mathbb{N}$,

$$
\begin{equation*}
l^{(k)} \int_{l_{k}}^{l_{k+1}} V(x) d x=3, \quad l^{(k)}:=l_{k+1}-l_{k} . \tag{9}
\end{equation*}
$$

If it occurs that $\int_{l_{n}}^{\infty} V(x) d x=0$, we formally choose $l_{n+1}=+\infty$. For the elements of the sequence $l^{(k)}$ we have the bound $l^{(k)} \geqq 3 / \int V(x) d x>0$. Hence the intervals $I_{k}:=\left[l_{k}, l_{k+1}\right], k \geqq 0$, cover \mathbb{R}_{+}.

On each interval we consider the Neumann problem $L_{I_{k}}^{N} u=-u^{\prime \prime}-V(x) u, u^{\prime}\left(l_{k}\right)=$ $u^{\prime}\left(l_{k+1}\right)=0$. Let $H_{+}^{N}=\oplus_{k \in \mathbb{K}} L_{I_{k}}^{N}$ denote the orthogonal sum of these operators. We have $H_{+}^{N} \leqq H_{+}$. For the ordered sequence of the respective negative eigenvalues this implies

$$
\begin{equation*}
E_{i}\left(H_{+}^{N}\right) \leqq E_{i}\left(H_{+}\right) \tag{10}
\end{equation*}
$$

In case of a semi-infinite interval the potential is identically zero on this interval, the respective Neumann problem has no negative spectrum. Therefore it will not play any role in our considerations.

By Lemma 2 the Neumann problem $L_{I_{k}}^{N}$ on the finite intervals I_{k} has exactly one negative eigenvalue. Because of (9) the bound (5) for $\lambda_{1}\left(I_{k}\right):=\sqrt{\left|E_{1}\left(L_{I_{k}}^{N}\right)\right|}$ turns into $\lambda_{1}\left(I_{k}\right) \leqq \varsigma(3) / l^{(k)}$, or equivalently ${ }^{1}$

$$
\begin{equation*}
\lambda_{1}\left(I_{k}\right) \leqq \frac{\varsigma(3)}{3} \int_{I_{k}} V(x) d x \tag{11}
\end{equation*}
$$

Since $V \in L_{1}\left(\mathbb{R}_{+}\right)$, the sequence $\int_{I_{k}} V(x) d x$ tends to zero as $k \rightarrow \infty$. Thus both operators H_{+}^{N} and H_{+}are semibounded and their negative spectra are discrete. The negative spectrum of H_{+}^{N} coincides (as set and in its multiplicity) with the sequence of eigenvalues $\left\{E_{1}\left(L_{I_{k}}^{N}\right)\right\}=\left\{-\lambda_{1}^{2}\left(I_{k}\right)\right\}$. By (10) we have $\left|E_{i}\left(H_{+}\right)\right| \leqq\left|E_{i}\left(H_{+}^{N}\right)\right|$. Together with $0 \leqq V \in L_{1}\left(\mathbb{R}_{+}\right)$this implies

$$
\begin{aligned}
\sum_{i} \sqrt{\left|E_{i}\left(H_{+}\right)\right|} & \leqq \sum_{i} \sqrt{\left|E_{i}\left(H_{+}^{N}\right)\right|}=\sum_{k} \lambda_{1}\left(I_{k}\right) \\
& \leqq \frac{\varsigma(3)}{3} \sum_{k I_{k}} \int_{I^{\prime}} V(x) d x=\frac{\varsigma(3)}{3} \int_{0}^{\infty} V(x) d x
\end{aligned}
$$

and we find the claimed result for the negative eigenvalues of the Neumann operator on the semi-axes

$$
\begin{equation*}
\sum_{i} \sqrt{\left|E_{i}\left(H_{+}\right)\right|} \leqq L_{\frac{1}{2}, 1}^{+} \int_{\mathbb{R}_{+}} V(x) d x, \quad L_{\frac{1}{2}, 1}^{+} \leqq \frac{\varsigma(3)}{3}<1.005 \tag{12}
\end{equation*}
$$

Naturally the analogous bound with the same constant holds for the operator H_{-}. Because of $H_{-} \oplus H_{+} \leqq H$ we obtain the analog estimate on the negative eigenvalues of the Schrödinger operator H on \mathbb{R},

$$
\begin{equation*}
\sum_{i} \sqrt{\left|E_{i}(H)\right|} \leqq L_{\frac{1}{2}, 1} \int_{\mathbb{R}} V(x) d x, \quad L_{\frac{1}{2}, 1} \leqq \frac{\varsigma(3)}{3}<1.005 \tag{13}
\end{equation*}
$$

We recall the reverse estimate for the operator H (see and [15, 9]). The first sum rule of Faddeev-Zakharov [8] states

$$
\begin{equation*}
\int V(x) d x=4 \sum_{i} \sqrt{\left|E_{i}(H)\right|}+\pi^{-1} \int \ln \left(1-|R(k)|^{2}\right) d k \tag{14}
\end{equation*}
$$

[^0]for (not necessary sign-defined) potentials $V \in C_{0}^{\infty}(\mathbb{R})$. In this $R(k) \in[0,1]$ is the reflection coefficient of the operator H. The integrand on the right hand side is negative, hence
\[

$$
\begin{equation*}
\sum_{i} \sqrt{\left|E_{i}(H)\right|} \geqq \frac{1}{4} \int V(x) d x \tag{15}
\end{equation*}
$$

\]

This bound can be closed to all potentials $V \in L_{1}(\mathbb{R})$.
The estimate from below on the constant $L_{1 / 2,1}$ can be improved. For a potential $0 \leqq V \in L_{1}(\mathbb{R})$ the number $N(V, E)$ of eigenvalues $E_{i}(H)<E<0$ is bounded by

$$
N(V, E) \leqq \frac{1}{2 \sqrt{|E|}} \int V d x
$$

(see (3.7) in [5]). For the lowest eigenvalue this gives

$$
\begin{equation*}
\sqrt{\left|E_{1}(H)\right|} \leqq \frac{1}{2} \int V d x \tag{16}
\end{equation*}
$$

The constant in this estimate is sharp. Indeed, if the non-trivial potential $0 \leqq V \in$ $C_{0}^{\infty}(\mathbb{R})$ is supplied with a sufficiently small coupling constant $\alpha>0$, the operator $H_{\alpha} u=-u^{\prime \prime}-\alpha V u$ has exactly one negative eigenvalue $E_{1}\left(H_{\alpha}\right)$. This eigenvalue obeys the asymptotics (see [17])

$$
\sqrt{\left|E_{1}\left(H_{\alpha}\right)\right|}=(\alpha / 2) \int V d x+o(\alpha), \quad \alpha \rightarrow 0 .
$$

We conclude $L_{1 / 2,1} \geqq 1 / 2$.
The previous arguments can be adapted to the problem on the semi-axes. Assume that $0 \leqq V$ is continuous on \mathbb{R}_{+}up to the point zero, and has compact support. We supply this potential with a small coupling constant $\alpha>0$, and consider the lowest eigenvalue $E_{1}\left(H_{+, \alpha}\right)$ of the respective Neumann problem on \mathbb{R}_{+}. Let $u_{\alpha}(x)$ denote the corresponding eigenfunction. The even extension $u_{\alpha}(x)=u_{\alpha}(-x)$ is an eigenfunction of the operator H_{α} with the extended potential $V(x)=V(-x)$ on \mathbb{R}. The corresponding eigenvalue is $E_{1}\left(H_{\alpha}\right)=E_{1}\left(H_{+, \alpha}\right)$. Since the operators H_{α} and $H_{+, \alpha}$ have only one negative eigenvalue for sufficiently small $\alpha>0$, we find

$$
\sqrt{\left|E_{1}\left(H_{+}\right)\right|}=\alpha \int_{0}^{\infty} V d x+o(\alpha), \quad \alpha \rightarrow 0 .
$$

We obtain $1 \leqq L_{1 / 2,1}^{+}<1.005$, our bound on the constant for the Neumann problem on the semi-axes is almost sharp!

Finally we remark the analog of (15) for the operator H_{+}. For a summable potential $V(x)=V(-x)$ it holds

$$
\begin{equation*}
\int_{0}^{\infty} V(x) d x \leqq 2 \sum_{i} \sqrt{\left|E_{i}(H)\right|} \leqq 2 \sum_{i} \sqrt{\left|E_{i}\left(H_{-} \oplus H_{+}\right)\right|}=4 \sum_{i} \sqrt{\left|E_{i}\left(H_{+}\right)\right|} \tag{17}
\end{equation*}
$$

The results of this subsection we summarize in
Theorem 1. 1. The inclusion $0 \leqq V \in L_{1}\left(\mathbb{R}_{+}\right)$implies the inequality

$$
\begin{equation*}
\sum_{i} \sqrt{\left|E_{i}\left(H_{+}\right)\right|} \leqq L_{\frac{1}{2}, 1}^{+} \int_{0}^{\infty} V(x) d x \tag{18}
\end{equation*}
$$

For the best constant $L_{\frac{1}{2}, 1}^{+}$in (18) we have the estimate $1 \leqq L_{\frac{1}{2}, 1}^{+} \leqq \varsigma(3) / 3<1.005$. Reversely, a priori assuming $0 \leqq V \in L_{1}^{\text {loc }}\left(\mathbb{R}_{+}\right)$, the discreteness of the negative spectrum together with the convergence of the sum in (18) imply $V \in L_{1}$ and (17).
2. The inclusion $0 \leqq V \in L_{1}(\mathbb{R})$ implies the inequality

$$
\begin{equation*}
\sum_{i} \sqrt{\left|E_{i}(H)\right|} \leqq L_{\frac{1}{2}, 1} \int V(x) d x \tag{19}
\end{equation*}
$$

For the best constant $L_{\frac{1}{2}, 1}$ in (19) we have the estimate $1 / 2 \leqq L_{\frac{1}{2}, 1} \leqq \varsigma(3) / 3<$ 1.005. Reversely, a priori assuming $0 \leqq V \in L_{1}^{\text {loc }}(\mathbb{R})$, the discreteness of the negative spectrum together with the convergence of the sum in (19) imply $V \in L_{1}$ and (15).

Remark. As usual one can drop the assumption $V \geqq 0$. One has to ensure that the corresponding operators H, H_{+}are defined in the form sum sense, and the integrand in (18) and (19) has to be replaced by $V_{+}(x):=\max \{0, V(x)\}$.

Notice that (19) and (14) together with $1 / 2 \leqq L_{1 / 2,1}<\infty$ imply
Theorem 2. Assume $V \in C_{0}^{\infty}(\mathbb{R}), 2 V_{ \pm}=|V| \pm V$, and let $R(k)$ be the reflection coefficient for the corresponding one-dimensional Schrödinger operator $H u=$ $-u^{\prime \prime}-V u$ on $L_{2}(\mathbb{R})$. Then the integral estimate

$$
\frac{1}{\pi} \int\left|\ln \left(1-|R(k)|^{2}\right)\right| d k \leqq \int V_{-} d x+\left(4 L_{\frac{1}{2}, 1}-1\right) \int V_{+} d x \leqq\left(4 L_{\frac{1}{2}, 1}-1\right)\|V\|_{L_{1}(\mathbb{R})}
$$

holds.

3

We turn now to the case $\gamma>1 / 2$. We restrict our considerations to the operator H on $L_{2}(\mathbb{R})$. Here the inequalities

$$
\begin{equation*}
\sum_{i}\left|E_{i}(H)\right|^{\gamma} \leqq L_{\gamma, 1} \int_{\mathbb{R}} V^{\gamma+1 / 2}(x) d x \tag{20}
\end{equation*}
$$

are well established, but we will give an essential improvement of the estimates for the corresponding constants $L_{\gamma, 1}$. For $\gamma \geqq 3 / 2$ in [1] it has been proven that $L_{\gamma, 1}=L_{\gamma, 1}^{c l}$. The last notation stands for the classical constant

$$
L_{\gamma, 1}^{c l}=\frac{\Gamma(\gamma+1)}{2 \sqrt{\pi} \Gamma\left(\gamma+\frac{3}{2}\right)}
$$

Hence we will stress the case $1 / 2<\gamma<3 / 2$. We shall compare our results with the bounds of Lieb and Thirring,

$$
\begin{equation*}
L_{\gamma, 1} \leqq L_{\gamma, 1}^{L T}:=\frac{\gamma^{\gamma+1}}{\sqrt{2}(\gamma-1 / 2)^{\gamma+1 / 2}(\gamma+1 / 2)} \tag{21}
\end{equation*}
$$

and their improvements by Glaser, Grosse and Martin ([9]) $L_{\gamma, 1} \leqq L_{\gamma, 1}^{G G M}$, with

$$
\begin{equation*}
L_{\gamma, 1}^{G G M}:=\inf _{1<m<3 / 2} \frac{(m-1)^{m-1} \Gamma(2 m) \gamma^{\gamma+1} \Gamma\left(\gamma+\frac{1}{2}-m\right)}{2^{2 m-1} m^{m-1} \Gamma(m) \Gamma\left(\gamma+\frac{3}{2}\right)\left(m-\frac{1}{2}\right)^{m-\frac{1}{2}}\left(\gamma+\frac{1}{2}-m\right)^{\gamma+\frac{1}{2}-m}} \tag{22}
\end{equation*}
$$

Our proof of Theorem 1 can be generalized to the case $\gamma \geqq 1 / 2$. However, this direct approach gives the bound $L_{\gamma, 1} \leqq(\varsigma(3))^{2 \gamma} / 3^{\gamma+1 / 2}$, which is not very sharp. A better bound can be found using the fact that the ratio $L_{\gamma, 1} / L_{\gamma, 1}^{c l}$ is non-increasing in γ, see [1]. We find

$$
L_{\gamma, 1} \leqq L_{\gamma, 1}^{*}:=4 \varsigma(3) L_{\gamma, 1}^{c l} / 3=\frac{2 \varsigma(3) \Gamma(\gamma+1)}{3 \sqrt{\pi} \Gamma\left(\gamma+\frac{3}{2}\right)} .
$$

This bound is sharper than (21) and (22) for all $1 / 2 \leqq \gamma \leqq 3 / 2$. In particular, $L_{1,1}^{*}<0.853$, while $L_{1,1}^{L T}=4 / 3$ and $L_{1,1}^{G G M}=1.269 .{ }^{2}$

If we consider only potentials \tilde{V} proportional to a characteristic function of a set $M \subset \mathbb{R}$ of finite measure,

$$
\tilde{V}(x)=v \chi_{M}(x), \quad \chi_{M}(x)=\left\{\begin{array}{ll}
1 & x \in M \\
0 & x \notin M
\end{array}, \quad v>0\right.
$$

we can find a better constant by "interpolating" between the cases $\gamma=1 / 2$ and $\gamma=3 / 2$. Indeed, the ratio

$$
\psi(\gamma, \tilde{V}):=\frac{\sum_{i}\left|E_{i}(H)\right|^{\gamma}}{\int \tilde{V}^{\gamma+1 / 2} d x}
$$

is analytic and continuous up to the boundary for complex γ in the strip $1 / 2<\Re \gamma<$ $3 / 2$. On the boundary we have the estimates

$$
|\psi(\gamma, \tilde{V})| \leqq L_{\frac{1}{2}, 1} \leqq \frac{\varsigma(3)}{3}, \quad \text { as } \Re \gamma=\frac{1}{2}, \quad|\psi(\gamma, \tilde{V})| \leqq L_{\frac{3}{2}, 1}=\frac{3}{16}, \quad \text { as } \Re \gamma=\frac{3}{2} .
$$

By the Hadamard Lemma we obtain

$$
\begin{equation*}
\psi(\gamma, \tilde{V}) \leqq \tilde{L}_{\gamma, 1}^{*}:=\left(\frac{\varsigma(3)}{3}\right)^{\frac{3}{2}-\gamma}\left(\frac{3}{16}\right)^{\gamma-\frac{1}{2}}, \quad \frac{1}{2}<\gamma<\frac{3}{2} . \tag{23}
\end{equation*}
$$

In particular, $\tilde{L}_{1,1}^{*}<0.4341$. We notice, that (23) is sharper than the results for characteristic functions by A. Laptev in [11] for the case of dimension one .

For completeness we recall the estimate from below on the constants $L_{\gamma, 1}$, obtained in [15]. To do so we consider the best constants $L_{\gamma, 1}^{1}$ in the inequalities

$$
\begin{equation*}
\left|E_{1}(H)\right|^{\gamma} \leqq L_{\gamma, 1}^{1} \int V^{\gamma+1 / 2} d x, \quad \gamma \geqq \frac{1}{2} . \tag{24}
\end{equation*}
$$

Obviously $L_{\gamma, 1} \geqq L_{\gamma, 1}^{1}$. For $\gamma>1 / 2$ the corresponding variational equation can be solved analytically and one obtains ${ }^{3}$

$$
\begin{equation*}
L_{\gamma, 1}^{1}=\pi^{-1 / 2} \frac{1}{\gamma-1 / 2} \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1 / 2)}\left(\frac{\gamma-1 / 2}{\gamma+1 / 2}\right)^{\gamma+1 / 2}=2 L_{\gamma, 1}^{c l}\left(\frac{\gamma-1 / 2}{\gamma+1 / 2}\right)^{\gamma-1 / 2} \tag{25}
\end{equation*}
$$

[^1](see [15]). Moreover in the previous subsection we showed that (25) remains true for $\gamma=1 / 2$ and $L_{1 / 2,1}^{1}=1 / 2$. For $\gamma \geqq 3 / 2$ it holds $L_{\gamma, 1}^{1} \leqq L_{\gamma, 1}^{c l}$. For $\gamma<3 / 2$ we have $L_{\gamma, 1}^{1}>L_{\gamma, 1}^{c l}$, this implies $L_{\gamma, 1}>L_{\gamma, 1}^{c l}$ as $1 / 2 \leqq \gamma<3 / 2$ (see [15] and also [10]).

We proved
Theorem 3. For the numerical values of the best possible constants $L_{\gamma, 1}, 1 / 2$ $\leqq \gamma \leqq 3 / 2$ in (20) the estimate

$$
2 L_{\gamma, 1}^{c l}\left(\frac{\gamma-\frac{1}{2}}{\gamma+\frac{1}{2}}\right)^{\gamma-\frac{1}{2}} \leqq L_{\gamma, 1} \leqq L_{\gamma, 1}^{*}=\frac{4 \varsigma(3)}{3} L_{\gamma, 1}^{c l}=\frac{2 \varsigma(3) \Gamma(\gamma+1)}{3 \sqrt{\pi} \Gamma\left(\gamma+\frac{3}{2}\right)}, \frac{1}{2} \leqq \gamma \leqq \frac{3}{2}
$$

holds. For potentials \tilde{V} proportional to characteristic functions, the constant $L_{\gamma, 1}$ in the Lieb-Thirring inequality can be replaced by $\tilde{L}_{\gamma, 1}^{*}$ from (23).

Notice that the bound $L_{\gamma, 1}^{*}$ on $L_{\gamma, 1}$ does not tend to $L_{\frac{3}{2}, 1}=L_{\frac{3}{2}, 1}^{c l}=3 / 16$ as $\gamma \rightarrow$ $3 / 2-0$. For γ near $3 / 2$ the estimate on $L_{\gamma, 1}$ can be improved. To do so we shall recall some auxiliary material from real interpolation theory.

4

Let ℓ_{p} denote the ideal of p-summable sequences $\left\{u_{n}\right\}_{n \in \mathbb{N}}$, equipped by the standard quasi-norm

$$
\left\|\left\{u_{n}\right\}\right\|_{\ell_{p}}^{p}:=\sum_{n}\left|u_{n}\right|^{p}, \quad p>0 .
$$

For a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \in \ell_{p_{0}}+\ell_{p_{1}}$ one can define the $\left(p_{0}, p_{1}\right)-K$-function

$$
K\left(\left\{u_{n}\right\}, t, p_{0}, p_{1}\right):=\inf _{\substack{u_{n}=u^{(0)}\left(u_{n}^{(1)} \\ u_{n}^{(n)} \in \ell_{p_{t}}\right.}}\left(\left\|u_{n}^{(0)}\right\|_{\ell_{p_{0}}}^{p_{0}}+t\left\|u_{n}^{(1)}\right\|_{\ell_{p_{1}}}^{p_{1}}\right), \quad t>0
$$

For a function $f \in L_{p_{0}}+L_{p_{1}}$ one may use the analogous definition

$$
K\left(f, t, p_{0}, p_{1}\right):=\inf _{\substack{f=f_{0}+f_{1} \\ f_{t} \in L_{p_{1}}}}\left(\left\|f_{0}\right\|_{L_{p_{0}}}^{p_{0}}+t\left\|f_{1}\right\|_{L_{p_{1}}}^{p_{1}}\right), t>0 .
$$

On functions $h:(0, \infty) \rightarrow[0, \infty)$ we define the functionals

$$
\begin{aligned}
\Phi_{\eta, q}[h]= & \left(\int_{0}^{\infty}\left(t^{-\eta} h(t)\right)^{q} \frac{d t}{t}\right)^{1 / q}, \quad \eta \in(0,1), 0<q<\infty \\
& \Phi_{\eta, \infty}[h]=\sup _{t>0} t^{-\eta} h(t), \quad \eta \in(0,1)
\end{aligned}
$$

Notice that $h_{1}(t) \leqq h_{2}(t)$ implies $\Phi_{\eta, q}\left[h_{1}\right] \leqq \Phi_{\eta, q}\left[h_{2}\right]$. According to the "power theorem" of real interpolation theory, see [3], it holds

$$
\begin{gather*}
\Phi_{\eta, q}\left[K\left(\left\{u_{n}\right\}, \cdot, p_{0}, p_{1}\right)\right] \asymp\left\|\left\{u_{n}\right\}\right\|_{\ell,, r}^{p}, \tag{26}\\
\Phi_{\eta, q}\left[K\left(f, \cdot, p_{0}, p_{1}\right)\right] \asymp\|f\|_{L^{p, r},}^{p} \tag{27}\\
p=(1-\eta) p_{0}+\eta p_{1}, \quad r=p q, \quad \eta \in(0,1) \\
0<q \leqq \infty, \quad 0<p_{0}, \quad p_{1}<\infty, \quad p_{0} \neq p_{1} .
\end{gather*}
$$

The quasi-norms on the right hand side denote the Lorentz scale of sequence ideals $\ell^{p, r}$ or function spaces $L^{p, r}$, respectively. For the definition of these ideals see, e.g., [3] or [19]. We just point out, that $\ell_{p}=\ell^{p, p}$ and $L_{p}=L^{p, p}$.

In general it is difficult to trace the constants in the two-side estimates in (26), (27). However for the special case $q=1$ one has the equalities (see [3], p. 111, proof of Theorem 5.2.2).

$$
\begin{gather*}
\Phi_{\eta, 1}\left[K\left(\left\{u_{n}\right\}, \cdot, p_{0}, p_{1}\right)\right]=\Theta\left(\eta, p_{0}, p_{1}\right)\left\|\left\{u_{n}\right\}\right\|_{\ell_{p}}^{p} \tag{28}\\
\Phi_{\eta, 1}\left[K\left(f, \cdot, p_{0}, p_{1}\right)\right]=\Theta\left(\eta, p_{0}, p_{1}\right)\|f\|_{L_{p}}^{p} \tag{29}\\
p=(1-\eta) p_{0}+\eta p_{1}, \quad \eta \in(0,1), \quad 0<p_{0}, \quad p_{1}<\infty, \quad p_{0} \neq p_{1},
\end{gather*}
$$

where

$$
\Theta\left(\eta, p_{0}, p_{1}\right)=\int_{0}^{\infty} t^{-\eta-1} \inf _{y_{0}+y_{1}=1}\left(\left|y_{0}\right|^{p_{0}}+t\left|y_{1}\right|^{p_{1}}\right) d t
$$

Below we shall use these identities for improving the bounds on $L_{\gamma, 1}$ for certain $\gamma \in(1 / 2,3 / 2)$.

5

In this subsection we consider the Schrödinger operator

$$
H=-\Delta-V(x), \quad V \geqq 0, \quad x \in \mathbb{R}^{d}
$$

in arbitrary dimensions $d \geqq 1$. We assume that this operator is semibounded from below and that its negative spectrum is discrete. Let $\left\{E_{n}(H)\right\}$ be the non-decreasing sequence of negative eigenvalues of the operator H, each eigenvalue appears with its multiplicity.

Let us start from the Ky-Fan inequality for the discrete negative spectrum. If $V=V_{0}+V_{1}$, and the operators

$$
H_{0}=-\theta \Delta-V_{0}, \quad H_{1}=-(1-\theta) \Delta-V_{1}, \quad \theta \in(0,1)
$$

have discrete negative spectrum, then the inequality

$$
\left|E_{m+n-1}(H)\right| \leqq\left|E_{n}\left(H_{0}\right)\right|+\left|E_{m}\left(H_{1}\right)\right|
$$

holds for all $m, n=1,2, \ldots$ We construct the sequences

$$
\begin{gathered}
a_{k}:=E_{s}\left(H_{0}\right), \quad s=1+\left[\frac{k}{N+1}\right] \\
b_{k}:=E_{l}\left(H_{1}\right), \quad l=N\left[\frac{k}{N+1}\right]+(k \bmod N+1), \quad N, k, l, s \in \mathbb{N},
\end{gathered}
$$

and obtain

$$
\begin{equation*}
E_{k}(H) \leqq a_{k}+b_{k}, \quad k \in \mathbb{N} \tag{30}
\end{equation*}
$$

Assume now $V_{i} \in L_{p_{i}+\kappa}\left(\mathbb{R}^{d}\right), \quad \kappa=d / 2,0<p_{i}<\infty$ for $d \geqq 2$ and $1 / 2 \leqq$ $p_{i}<\infty$ if $d=1$. From (30) and (2) it follows, that

$$
\begin{aligned}
& K\left(\left\{E_{k}(H)\right\}, t, p_{0}, p_{1}\right) \leqq\left\|\left\{a_{k}\right\}\right\|_{\ell_{p_{0}}}^{p_{0}}+t\left\|\left\{b_{k}\right\}\right\|_{\ell_{p_{1}}}^{p_{1}} \\
& \quad \leqq(1+N) \sum_{n}\left|E_{n}\left(H_{0}\right)\right|^{p_{0}}+t\left(1+N^{-1}\right) \sum_{m}\left|E_{m}\left(H_{1}\right)\right|^{p_{1}} \\
& \quad \leqq(1+N) \theta^{-\kappa} L_{p_{0}, d}\left\|V_{0}\right\|_{L_{p_{0}+\kappa}\left(\mathbb{R}^{d}\right)}^{p_{0}+\kappa}+t\left(1+N^{-1}\right)(1-\theta)^{-\kappa} L_{p_{1}, d}\left\|V_{1}\right\|_{L_{p_{1}+\kappa}\left(\mathbb{R}^{d}\right)}^{p_{1}+\kappa}
\end{aligned}
$$

Interchanging the definitions of the sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ one can see that in the previous expression the role of N and $1 / N$ can be interchanged. Thus we can assume that N is of the form k or $1 / k, k \in \mathbb{N}$. Passing to the lower bound over all suitable decompositions $V=V_{0}+V_{1}$ one finds
$K\left(\left\{E_{k}(H)\right\}, t, p_{0}, p_{1}\right)$

$$
\begin{gather*}
\leqq \frac{(1+N) L_{p_{0}, d}}{\theta^{\kappa}} K\left(V, t \frac{\left(1+N^{-1}\right)(1-\theta)^{-\kappa} L_{p_{1}, d}}{(1+N) \theta^{-\kappa} L_{p_{0}, d}}, p_{0}+\kappa, p_{1}+\kappa\right), \tag{31}\\
N=\cdots, \frac{1}{3}, \frac{1}{2}, 1,2,3, \cdots \quad \kappa=\frac{d}{2}
\end{gather*}
$$

with $0<p_{i}<\infty$ for $d \geqq 2$ and $1 / 2 \leqq p_{i}<\infty$ for $d=1$. This relation allows one to apply interpolation methods directly to the sequences of negative bound states, although the mapping $V \mapsto\left\{E_{n}(H)\right\}$ is strongly non-linear.

6

Let us return to the one-dimensional case and choose $p_{0}=1 / 2$ and $p_{1}=3 / 2$. Applying the functional $\Phi_{\eta, 1}$ to both sides of this inequality, by (28) and (29) we obtain

$$
\sum_{k}\left|E_{k}(H)\right|^{\gamma} \leqq L_{\gamma, 1} \int V^{\gamma+\frac{1}{2}} d x, \quad \frac{1}{2}<\gamma<\frac{3}{2}
$$

where

$$
\begin{gather*}
L_{\gamma, 1} \leqq \frac{\Theta(\eta, 1,2)}{\Theta\left(\eta, \frac{1}{2}, \frac{3}{2}\right)}(1+N)^{1-\eta} \theta^{-(1-\eta) / 2} L_{1 / 2,1}^{(1-\eta)}\left(1+N^{-1}\right)^{\eta}(1-\theta)^{-\eta / 2} L_{p_{1}, 1}^{\eta} \tag{32}\\
\gamma=\frac{(1-\eta)}{2}+\frac{3 \eta}{2}, N=\ldots, \frac{1}{3}, \frac{1}{2}, 1,2,3, \ldots
\end{gather*}
$$

Let $M(\eta)$ be the minimum of the sequence

$$
(1+N)^{1-\eta}\left(1+N^{-1}\right)^{\eta}, \quad N=\ldots, \frac{1}{3}, \frac{1}{2}, 1,2,3, \ldots
$$

It occurs that $M(\eta) \rightarrow 1$ as $\eta \rightarrow 0$, 1 . If we minimize (32) in $\theta \in(0,1)$, we find $\theta(\eta)=1-\eta$, and

$$
\begin{gather*}
L_{\gamma, 1} \leqq L_{\gamma, 1}^{* *}:=C(\eta)\left(\frac{\varsigma(3)}{3}\right)^{(1-\eta)}\left(\frac{3}{16}\right)^{\eta}, \quad \gamma=\frac{1}{2}+\eta, \tag{33}\\
C(\eta)=\frac{\Theta(\eta, 1,2)}{\Theta\left(\eta, \frac{1}{2}, \frac{3}{2}\right)} \frac{M(\eta)}{\sqrt{\eta^{\eta}(1-\eta)^{1-\eta}}} . \tag{34}
\end{gather*}
$$

The involved functions Θ can be evaluated as

$$
\Theta(\eta, 1,2)=\frac{2^{\eta}}{\eta(1-\eta)(1+\eta)}
$$

and

$$
\begin{gathered}
\Theta\left(\eta, \frac{1}{2}, \frac{3}{2}\right)=\frac{\left(\frac{2}{3} \sqrt{1+2 / \sqrt{3}}\right)^{1-\eta}}{1-\eta}+\sqrt{\frac{1}{2}}\left(\frac{3}{2}\right)^{\eta}\left(I_{0}(\eta)+\frac{2}{3} I_{1}(\eta)\right) \\
I_{0}(\eta)=\int_{u_{0}}^{1} u(1-u)^{\frac{\eta-2}{2}}(1+u)^{\frac{\eta-1}{2}} d u \\
I_{1}(\eta)=\int_{u_{0}}^{1} u(1-u)^{\frac{\eta}{2}}(1+u)^{\frac{\eta-3}{2}} d u \\
u_{0}=\sqrt{\frac{2}{2+\sqrt{3}}} .
\end{gathered}
$$

Notice, that $C(\eta) \rightarrow 1$ as $\eta \rightarrow 1$, thus $L_{\gamma, 1}^{* *} \rightarrow 3 / 16$ as $\gamma \rightarrow 3 / 2$ and $L_{\gamma, 1}^{* *}<L_{\gamma, 1}^{*}$ as $\gamma \rightarrow 3 / 2$.
Theorem 4. For the constant $L_{\gamma, 1}$ in (19) the bound

$$
L_{\gamma, 1} \leqq \min \left\{L_{\gamma, 1}^{*}, L_{\gamma, 1}^{* *}\right\}, \quad 1 / 2<\gamma<3 / 2
$$

holds.

7

Let $\left\{\phi_{i}\right\}$ be some $L_{2}\left(\mathbb{R}^{d}\right)$-orthonormal system, $\phi_{i} \in W_{2}^{1}\left(\mathbb{R}^{d}\right)$. Then (2) implies ([15, 13])

$$
\begin{gather*}
\sum_{i=1}^{n} \int\left|\nabla \phi_{i}\right|^{2} d x \geqq K_{p, d}\left(\int \rho_{\phi}^{p /(p-1)} d x\right)^{2(p-1) / d} \tag{35}\\
\rho_{\phi}(x):=\sum_{i=1}^{n}\left|\phi_{i}(x)\right|^{2}
\end{gather*}
$$

with suitable constants $K_{p, d}$. In case of $d=1$ and $p=3 / 2$ this turns into

$$
\sum_{i=1}^{n} \int\left|\phi_{i}^{\prime}\right|^{2} d x \geqq K_{3 / 2,1} \int \rho_{\phi}^{3} d x
$$

$$
\max \{d / 2,1\} \leqq p<1+d / 2, \quad \text { excluding } p=1 \text { for } d=2
$$

The constant $K_{3 / 2,1}$ is related to $L_{1,1}$ via the formula

$$
L_{1,1}=2 / \sqrt{27 K_{3 / 2,1}}
$$

Our improved estimate on $L_{1,1}$ implies $K_{1} \geqq 0.203$, compare with $K_{1} \geqq 1 / 12$ in [13].

We also point out the case $p=d=1$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} \int\left|\phi_{i}^{\prime}\right|^{2} d x \geqq K_{1,1}\left\|\rho_{\phi}\right\|_{L_{\infty}(\mathbb{R})}^{2} \tag{37}
\end{equation*}
$$

with a constant $1 \geqq K_{1,1} \geqq 1 /\left(2 L_{1 / 2,1}\right)$, see (3.27) in [15]. Thus we find (37) with $1 \geqq K_{1,1}>0.497$.

References

1. Aizenman, M., Lieb, E.: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. 66A, 427-429 (1978)
2. Bargmann, V.: On the number of bound states in a central field of force. Proc. Nat. Acad. Sci. USA 38, 961-966 (1952)
3. Bergh, J., Löfström, J.: Interpolation spaces. An Introduction. Berlin, Heidelberg, New York: Springer 1976, 123p
4. Birman, M.S.: The spectrum of singular boundary problems. Mat. Sb. 55 No.2, 125-174 (1961), translated in Am. Math. Soc. Trans. (2), 53, 23-80 (1966)
5. Birman, M.Sh., Solomyak, M.Z.: Schrödinger operator. Estimate for number of bounded states as a function-theoretical problem. Am. Math. Soc. Trans. (2), vol. 150, 1-54 (1992)
6. Blanchard, Ph., Stubbe, J.: New estimates on the number of bound states of Schrödinger operators. Lett. Math. Phys. 14, 215-225 (1987)
7. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Trans. AMS 224, 93-100 (1977)
8. Faddeev, L.D., Zakharov, V.E.: Korteweg-de Vries equation: A completely integrable hamiltonian system. Funct. Anal. Appl. 5, 280 (1971)
9. Glaser, V., Grosse, H., Martin, A.: Bounds on the number of eigenvalues of the Schrödinger operator. Commun. Math. Phys. 59, 197-212 (1978)
10. Helffer, B., Robert, D.: Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture I,II. I - J. Asymp. Anal., to appear, II - Ann. de l'Inst. H. Poincare, 53, 2, 139-147 (1990)
11. Laptev, A.: On inequalities for the bound states of Schrödinger operators to appear in Proc. Conf. Holzhau 1994
12. Li, P., Yau, Sh.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309-318 (1983)
13. Lieb, E.: On characteristics exponents in turbulence. Commun. Math. Phys. 92, 473-480 (1984)
14. Lieb, E.: The number of bound states of one body Schrödinger operators and the Weyl problem. Bull. Am. Math. Soc. 82, 751-753 (1976)
15. Lieb E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann, Princeton (1976)
16. Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Dokl. AN SSSR, 202, N 5 1012-1015 (1972), Izv. VUZov, Matematika, N.1, 75-86 (1976)
17. Simon, B.: The bound state of weakly coupled Schrödinger operators on one and two dimensions. Ann. Phys. 97, 279-288 (1976)
18. Schwinger, Y.: On the bound states for a given potential. Proc. Nat. Acad. Sci. USA 47, 122-129 (1961)
19. Triebel, H.: Interpolation Theory, Functional Spaces, Differential Operators. Berlin VEB Verlag Deutscher Wissenschaften 1977

[^0]: ${ }^{1}$ On the other hand for $u(x)=l^{-1 / 2}$ one has $E_{1}\left(L_{I_{k}}^{N}\right) \leqq-l^{-1} \int_{I_{k}} V(x) d x$, and $\lambda_{1}\left(I_{k}\right) \geqq \sqrt{1 / 3}$ $\int_{I_{k}} V(x) d x$.

[^1]: ${ }^{2}$ One can apply an argument of Glaser, Grosse and Martin [9], to deduce a bound on $L_{0,3}^{s p h}$ for spherical symmetric potentials from $L_{1,1}$. Although one considers only a special class of potentials, even the new bound on $L_{1,1}$ is not sharp enough to reach Lieb's result for $L_{0,3}$ by this method.
 ${ }^{3}$ In particular this gives $0.2451<L_{1,1}<0.853$.

