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Abstract: Using the general theory of [10], quantum Poincare groups (without
dilatations) are described and investigated. The description contains a set of
numerical parameters which satisfy certain polynomial equations. For most cases
we solve them and give the classification of quantum Poincare groups. Each of
them corresponds to exactly one quantum Minkowski space. The Poincare series
of these objects are the same as in the classical case. We also classify possible
i?-matrices for the fundamental representation of the group.

0. Introduction

The Minkowski space with the Poincare group acting on it is the area of the quan-
tum field theory. However, it is not known yet what is the area of a deeper theory,
which would involve also the gravitational effects. It was suggested by many authors
that it would be a quantum space. It means that instead of functions on spacetime
we would have elements of some noncommutative algebra, called "the algebra of
functions on the quantum space." On the other hand, such a quantum space should
be in some sense similar to the ordinary Minkowski space. The simplest models
of such a situation can be obtained by choosing some properties of Minkowski
space endowed with the action of the Poincare group and classifying all quan-
tum groups and spaces which satisfy those properties. There are many examples
of quantum Poincare groups, the corresponding Minkowski spaces and 7?-matrices
(cf. e.g. [4,2,11,6,5,1,15] and remarks in [10] concerning these papers) but such
classification still doesn't exist. Our aim is to provide it. In Sect. 1 we define a quan-
tum Poincare group as a quantum group which is built from any quantum Lorentz
group [14] and translations and satisfies some natural properties. The corresponding
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commutation relations are inhomogeneous and contain a set of parameters
TABCD Our scheme contains the examples provided in [4,1], but doesn't contain
the examples of [2,11,5] (see however Remark 3.9 of [10]) because we consider
quantum Poincare groups without dilatations. Also the example [6] (formulated in
the language of universal enveloping algebras) has no corresponding object in our
scheme (for q φ ± 1).

It turns out that there are many quantum Lorentz groups which can be used
in our construction. However all of them correspond to q = ± 1 . For each such
quantum Lorentz group (except the classical one and one more for q = — 1 which
are considered in Remark 1.8) we classify all quantum Poincare groups. We
also provide the corresponding quantum Minkowski spaces and i?-matrices for the
fundamental representation of the quantum Poincare group (for one family of con-
sidered quantum Poincare groups there is no nontrivial 7?-matrix). The Poincare
series of the corresponding objects are the same as in the classical case. The proofs
of our results (using [10]) are contained in Sect. 2. In particular, the question of
finding all quantum Poincare groups is reduced to a set of polynomial equations for
HABCD, TABCD which we solve (in the indicated cases) using the computer MATHE-
MATICA program. Some results of the present paper were presented in [9]. In [16]
a similar classification is provided in the case of Poisson manifolds and Poisson-Lie
groups.

We use the terminology and results of [10]. The letter S means that we make a
reference to [10], e.g. Theorem S3.1 denotes Theorem 3.1 of [10], (S1.2) denotes
Eq. (1.2) of [10]. The small Latin indices a9b,c,d9...9 belong to J = {0,1,2,3}
and the capital Latin indices A,B,C,D,..., belong to {1,2}. We sum over repeated
indices which are not taken in brackets (Einstein's convention). The number of
elements in a set B is #B or \B\. The unit matrix with dimension N is denoted by
IN A = l2 The Pauli matrices are given by

j σ2={i )

If V, W are vector spaces then τvw \V®W^W®V is given by τγw(x ® y)
= y 0x, x e V,y e W. We often write τ instead of τvw. We denote C* = C\{0},
R* = R\{0}.

1. Quantum Poincare Groups

In this section we define and (in almost all cases) classify quantum Poincare groups
as objects having the properties of the usual (spinorial) Poincare group. The proofs
of the results are shifted to Sect. 2.

The (connected component of) vectorial Poincare group

P = SOo(l,3)xR4 = {(M,a): M e SO0(l93),a e R4}

has the multiplication (M,α) (M\af) = (MM\a+Ma'). By the Poincare group
we mean the spinorial Poincare group (which is more important in quantum field
theory than P)

P = SL(2,C)xR4 = {(g,a): g e SL(2,C),a G R4}
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with multiplication (g,a) (g\a') = (gg\a-\-λg(a')), where the double covering
SL(29C) 3 g ^ λg e SOo(l,3) is given by ^(x), σz = g(xjσj)g+,g G ffl(2,C),
x G R4. The group homomoφhism π : P 3 (g,a) —> (λg,a) G P is also a double
covering. In particular, (—12,O) 6 P can be treated as rotation about 2π which is
trivial in P but nontrivial in P (it changes the sign of wave functions for fermions).
Both P and P act on Minkowski space M — R4 as follows (g,a)x = (λg,a)x =
λgx + a,g G SL(2,C), a,x G R4, and give afBne maps preserving the scalar prod-
uct in M (in a more abstract setting we would treat M as an afBne space without
distinguished 0). Let us consider continuous functions WAB, Pi on P defined by

WAB(g, a) = gAB, Pi(g, a) = at .

We introduce the Hopf *-algebra T?o\y(P) = (08,Δ) of polynomials on the
Poincare group P as the *-algebra 08 with identity / generated by WAB and
pu A,B = 1,2, i G J> (according to the Introduction, J> — {0,1,2,3} in this section)
endowed with the comultiplication Δ given by (Δf)(x,y) = f(x y),f G 08, x,
y G P(f*(x) = f(x)). In particular,

ΔWCD = + Λij 0 /7y

/?* = /7i9 where

Λ=V-ι(w®w)V,

In order to prove (1.1) we notice that

CD(gg\a + λg(a')) =

g\af) = (wCF 0 wFD)((g9a),(g',af)) ,

\a + λg(a')) = at + λg{a')i = at + (λg^a

= Pi(g,a) + Λij{g9ά)pj(gr9cΐ) = (/?,- 0 / + Ay 0 Pj)((g,al(g\af)),

where we used the formulae ((TZ )CD —

(1.1)

(1.2)

Since we get
(1.3)

and A = A. We put /? = (pi)iej. One can treat WCD as continuous functions on the
Lorentz group L = SL(2,C) (wcD(g) = #cz>> ^ ̂  ̂ ) We define the Hopf *-algebra
Poly(L) = (jtf,Δ) of polynomials on L as *-algebra with / generated by all WCD
endowed with Δ obtained by restriction of Δ for 08 to $t. Clearly w and A are
representations of L. It is easy to check that

1. 08 is generated as an algebra by s/ and the elements pt, ί G J.
2. s$ is a Hopf *-subalgebra of 08.

PΛ is a representation where A is given by (1.2).
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4. There exists i G J> such that pt φ stf.
5. J W C Γ, where Γ = srfX + stf, X = span {pt : z G «/}.
6. The left ^/-module s& span {piPj, PίJ : /,y G «/} has a free basis consisting

of 10 + 4 + 1 elements.

(5. and 6. follow from the relations pia — api, pipj = PjPi, a G si, and elementary
computations, a free basis is given by {piPj,pi,l : i ^ jJJ G J}). According to
[14], Poly(L) satisfies:

i. (stf,A) is a Hopf *-algebra such that s/ is generated (as a *-algebra) by
matrix elements of a two-dimensional representation w;

ii. w © w = / Θ w1, where w1 is a representation;
iii. the representation W Q W ^ W © w i s irreducible;
iv. if s/',A',w' satisfy i.-iii. and there exists a Hopf *-algebra epimorphism p :

si1 —• ^ such that p(w7) = w then p is an isomorphism (the universality condition).

We say [14] that H is a quantum Lorentz group if Poly(//) = (s/9A) satisfies
i.-iv.

Definition 1.1. We say that G is a quantum Poincarέ group if the Hopf ^-algebra
Poly(G) = (βτA) satisfies the conditions 1.-6. for some quantum Lorentz group
H with Poly(//) = (s/,A) and a representation w of H.

Remark. 1.2. The condition 5. follows from
while 6. is suggested by the requirement W(β> © ^ ) = ( ^ ®^)W for a "τ-like"
matrix W (cf. Theorem 1.13). Moreover, the condition 4. is superfluous (it follows
from the condition 6. and Proposition S0.1).

Remark. 1.3. Different choices of (H,w) can give a *-isomorphic &.

Theorem 1.4. Let G be a quantum Poincarέ group, Poly(G) = (^, A). Then si is
linearly generated by matrix elements of irreducible representations of G, so si
is uniquely determined. Moreover, we can choose w in such a way that si is the
universal ^-algebra generated by wAB, A,B = 1,2, satisfying

(1.4)

(1.5)

(1.6)

where X = τQf and

1) E — e\ 0 β2 — i

(w φw)E = E ,

E'(w ©w) =E',

X(w ©w) = (w ©w)X ,

Q' = o
0
0

E' = -eι

0 0
t 0
0 t
0 0

) e2 + e1

0
0
0

/-I

0 < t S 1, or

E,E' as above, Qr =

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

or
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3) E = e\ 0 e2 — e2 0 e\ + e\ (g) <?
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= — ex + e2 + e2

1 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1

r ^ 0, or

4)

E,Ef as above, Qr =

1 1 1 0
0 1 0 - 1
0 0 1 - 1
0 0 0 1

or

5) E = e\ 0 e2 + e2
Ef = ex e2 +

6)

Γx 0 0 0
0 -t 0 0
0 0 -t 0
0 0 0 Γx

0 < ί ^ 1, or

E,Ef as above, Q' = ί

l 0 0 1
0 - 1 0 0
0 0 - 1 0
0 0 0 1

or

E,E' as above, Q' = /

r 0 0 s
0 - r .s 0
0 s -r 0

,j 0 O r

r = (ί + r 1 ) / 2 , s = (t-Γι)/2, 0<t<\,

e\ = Q, e2 = (I), eι = (I 0 ) , e2 = (0 1 ). Moreover, all the above triples
(E,E',Qf) give nonisomorphίc (s/,A). We can {and will) choose pt in such a way
that p* = pi.

In the following we assume that G is a quantum Poincare group, Poly(G) =
{β,A) and w,p are as in Theorem 1.4. We set q = qι/2 = 1 in the cases l )-4),
q = -l, qι/2 = i in the cases 5)-7), s = ± 1 , L = ^ 1 / 2 ( 1 0 2 + q~xEE'), L = ^τLτ,
G = ( F - 1 (8) 1)(1 (g)X)(I 0 1)(1 0 F), G = ( F " 1 0 1)(1 ®L)(X~ι 0 1)(1 0 V),
R = (V~ι 0 V~x)(\ 0X ®\){L 0L){\ 0X~x 0l)(K0 V).

Theorem 1.5. & is the universal ^-algebra with I generated by WAB and pi satis-
fying (1.4), (1.5), (1.6) and

Pίa = (a * fij)pj + a*ηt- A^j * a), a G si , (1.7)

(R - l®2)ki,ιj(PiPj - ηi(ΛJs)ps + Tij - AimAjnTmn) = 0, (1.8)

Pi = Pi (1.9)
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where f = (fj)ijej,η = (ηOiej and T = (T^J^J are uniquely determined by
s = ±1, HEFCD, TEFCD £ C and the following properties:

a) srf 3 a —> p(β) = ( Λ / \ I £ ̂ s ( C ) w α unital homomorphism,

C) Λ(WC Z )) = G/CDy, ^ ( W C D ) = VΓ^HEFCD, Tij = ( F - 1 (8) V-l)ijiEFCDTEFCD.

The *-Hopf structure in Poly(G) is determined by:

Aw = W φ W, ZlvP

Quantum Poincare groups corresponding to different s are nonisomorphic.

Theorem 1.6. For each case in Theorem 1.4 and each s (except the case 1),
s = I, t = 1 and the case 5), J = ± 1 , t — I) we list H and T giving (via formulae
in Theorem 1.5) all nonisomorphic quantum Poincarέ groups G:

1) s = - 1 , ί = 1:

HEFCD ~ ° ' | , ( l . io)

TEFCD = VEFJVCDJTΪJ , J

wwere
a) 7o3 = - Γ 3 0 = w, Γ12 = -Γ21 = * , oίAer Ttj equal 0, a = cosφ, b =

sin φ(one parameter family for 0 ̂  φ ̂  π/2) or
b) Γ02 = 7Ί2 = /, T2o = T2\ = -/, oί/zer 7/y ê wα/ 0, or
c) all Tij equal 0.

1) ,s = ±1,0 < t < 1:

Γ1122 = ία,

72112 = " * , Γ221! = - W , > ( l . H )

HEFCD and other TEFCD equal 0

a.) a — cos φ, b — sin (/> (owe parameter family for 0 ̂  φ < π) or
b) a = b = 0.

2) s= 1:

// = —Γβ -I- hi}

Tvny-di, τnu=-c-di ( U 2 )

oί/zer HEFCD and TEFCD equal 0 and

a) α = 1, c = d = 0 (owe parameter family for b G R) or
b) α = 0, 6 = 1 , ύf = 0 (owe parameter family for c ^ 0);
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the second case:

#1212 = a + bi, Γ2112 = (a2 + 62)/2, Γ 2m = c - di /

Tun = -(a2 + 62)/2, Tl2n =-c - di, Tn2\ = - c + di,

67

oίΛer HEFCD and TEFCD equal 0 0nJ >

(1.13)

a) 0 = 1 , £ = 0, c = r cos 0, d = rsinφ (two parameter family for r > 0,

0 S Φ < π/2 or r = φ = 0) or

b) a = b = 0, c=l, d = 0, or

c) a = b = c = d = 0.

2)s = - 1 , (1.12)

a) 0 = b = 0, c — 1, c? = 0, or

b) 0 = Z? = c = ί/ = O.

3) 5 = ± 1 , r _ 0, 0// HEFCD and TEFCD equal 0.

#2212 = -26/, #2122 = -6/, #2112 =a-bi,

#2111 = 6/, #1222 = 6/, #1212 = a, #1211 = —6/,

Hιm= -26/, #1112 = 36Z/4, #1111 = -46/,

Γ1112 = 962/8 + 3fl6//2, Γ1121 = -962/8 + 3α6//2 ,

Tun = ~9b2β - 3abi/2, Γ1 2 2 1 = 362/2 ,

= 962/8 - 3fl6i/2, Γ2 1 1 2 = -36 2 /2,

HEFCD and TEFCD equal 0

(1.14)

a) 0 = cos φ, b — sin 0 (one parameter family for 0 ^ φ < π) or

b) a = b = 0.

4) s = — 1, 0// HEFCD and TEFCD equal 0.
5) s = ± l , 0 < * < 1,

Γ1122 = /«, —6, Γ2211 = —ia , "I

all HEFCD and other TEFCD equal 0 and )
(1.15)

a) a = cos φ,b — sin (

b) a = b = 0.

parameter family for 0 ^ φ < π) or

6) s — 1, 0// HEFCD and TEFCD equal 0.

6 ) ί = - l :
the first case:

#1111 = — (a + 6/), #1122 = a + 6/, #2112 = —26/

#£FC£> <z«d all TEFCD equal

= -26/ Ί

0 0m/ /
(1.16)
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a) a — cos φ, b — sin φ (one parameter family for 0 ^ φ < π) or
b) a = b = 0;

the second case:

#1212 =a + bi, Tιm = -(a2 + b2)/2 , ϊ

Γ1221 = -{a2 + b2)/2, T2U2 = (a2 + b2)/2 , I (1.17)

other HEFCD and TEFCD equal 0 and J

a=l, b = 0.
7) s = d=l, 0 < t < 1, α/7 HEFCD and TEFCD equal 0.

Remark. 1.7. The classical Poincare group is obtained in the case 1), s = I,
t — 1, // = 0, Γ = 0. The quantum Poincare group of [4] corresponds (in spinorial
setting) to 1), s= 1, ί = 1,

#1111 = -#1122 = ^#1221 = ^#2112 = -#2211 = #2222 = /A/2, ^ R ,

other HEFCD and all Γ ^ C D equal 0. The quantum Poincare group of [1] corresponds
to 1), s = 1, t > 0, H = 0, 7 = 0 (ί is denoted by g there). The so called soft
deformations correspond to 1), .s = ± 1 , £ = 1, # = 0, Γfl̂ , = — Γ α̂ G z'R.

Remark. 1.8. In the remaining cases 1), s = 1, ί = 1 and 5), ̂  = d=l, t — I, one
can consider Tmn defined as in Theorem 1.5 and

(then HABCE = \VAB,iVCDjZijΛV^D). In the case 1), s = Ij = 1 a pair (Z,Γ) cor-
responds to a quantum Poincare group if and only if

Tmn = -Tnm e /R, Z ^ , ^ = -Z^sQsj G /R , (1.18)

{[(τ - I 0 2 ) (g) 1][(1 0 Z)Z - (Z 0 l)Z]} l 7 j n,π

= -\k(δingjm-δjngim\ t0 G R , > (1.19)

J
w h e r e g00 = l,gfn = ^22 = #33 = -1> other Qij = 0,

> τ)

+ (1 0 τ)(τ (8) 1) - (τ (8) 1)(1 0 τ)(τ (8) 1)

is the classical (not normalized) antisymmetrizer. In the case 5), s = nil, t — \ in
addition to these conditions we assume

7flί2 = 0 for #{* :/* e {1,2}} = 1,

Z f l / 2 > ί 3 = 0 f o r ( - l ) # ί ^ e t 1 2 » = J ,

and get in that way all quantum Poincare groups (up to an isomorphism but not
necessarily nonisomorphic).

Let us set η = g, a — —iTmnem Aen, b — —iZij^g^ei A Ωj^ and c = 0 (see
[16]). Then (1.19) (using (1.18)) is equivalent to (3)-(4) of [16] where t0 is
identified with t of (3)-(4) of [16]. Thus the table in [16] gives many examples of
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quantum Poincare groups (cf. also the remarks at the end of [16]). The proofs of
these statements involve the above formulae and the results obtained in the proof
of Theorem 1.6 (with λ = —\to in the case 1), s = 1, t = 1 and λ = — |ZYQ m the
case 5), s = ±1, t = 1).

We denote by rfπ the number of monomials of nth degree in 4 variables,

dn = #{(a,b,c,d) G N 0 4 : a + 6 + c + rf = /ι} .

Theorem 1.9. Lei ^ correspond to a quantum Poincare group G and s/,w,p be
as in Theorem 1.4. We set

MΉ = stf span{ph #•„ : / i , . . . , / M G / , w = 0 , 1 , . . . 9 N } .

Then &N is a free left &#-module and dim\^^N = Σn=o dn

We denote by / : P x M —> M the action of Poincare group on Minkowski space,
^ = Poly(M) denotes the unital algebra generated by coordinates */(/ G J) of the
Minkowski space M = R4. The only relations in # are XjXj = xyxz. The coaction
Ψ : ^ -^ si 0 % and * in V are given by 7
χeP,yeM.

Let x = (g9a) eP,y eM,f e<#. One has

a) = (λgy)i + α, = (

= Λtjig, a)xj(y) + ^ ( ^ α) = {Atj 0 xj + pt 0 /)((gf, α), .y), hence

Ψx, = Λij (8) */ + pi®l . (1.20)

One gets
6) ^ is a unital *-algebra generated by Xi,i £ «/, and !P : ^ —> ̂  (g) ̂  is a

unital *-homomorphism such that (ε ® id)1^ = id, (id 0 ¥/) ιF = (zl 0 id)*F, xf = JC,
and (1.20) holds.

Let !Pir c J ^ Θ FF" for a linear subspace W C<g,f E W,y9a G R4. Then
/ ( ^ + fl) = /(/((β,«)^)) = (y/)((β,α),3;) = (y/)((β,0),^) = /(/((e,0λ
(t(e,α) = k(e,0) for A: G J / ) , / = /(0)/ G C/ (in fact we have used the translation
homogeneity of M). Therefore

7) if ΨW C si (8) ̂  for a linear subspace JF C ^ then W C C/.
Let us consider (# ' , IF') which also satisfies 6)-7) for some x\ G ̂ 7 . Then

x; - xft) = AijΛim ® ( Λ : ^ - x ^ ) .

Setting W = span{x xj - JCJ^ : i, I G J^} and using 7), one gets x\x\ — xpc' = β///,
an G C. Thus α = {βn\iς.j is an invariant vector of A Q> Λ9 i.e. a — c * g, where c G
C,gfOo = l,0ii = 022 = 033 = -1,0,, = 0 for zφy. But αϊ7 = -aiu hence
c = O,JCZ JC{ = x\x\ and we fix the proper choice of (^, Ψ) by means of

8) if ($', Ψ') also satisfies 6)-7) for some x G ̂ ; , then there exists a unital *-
homomoφhism p : ^ —> <^/ such that p(x/) = x and (id 0 p)Ψ = ίF'p (universality
of (

Definition 1.10. PFe ̂ αjμ ί/zαί (^, ¥/) describes a quantum Minkowski space associ-
ated with a quantum Poincare group G, Poly(G) = (β9Λ\ if 6)-S) are satisfied.

Remark. 1.11. This definition doesn't depend on the choice of A (see Proposi-
tion S5.7).
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Theorem 1.12. Let G be a quantum Poincare group with w, p as in Theorem
1.4. Then there exists a unique (up to a ^-isomorphism) pair (#, Ψ) describing
associated Minkowski space:

*$ is the universal unίtal ^-algebra generated by xz , / = 0,1,2,3, satisfying
x* = Xi and

(R - l®2)ij,kι(xkxι - ηk(Alm)xm + Tkl) = 0 , (1.21)

and Ψ is given by (1.20). Moreover,

dimVN =Σ,dn, (1.22)
n=0

where ΉN — span{xiχ xίn : i\,...,/« G «/, n = 0 , 1 , . . . , N } .

We set m = ( F " 1 0 F ^ X

( R Z -R Z (R-1®2)T\ /0 0 0 m\

0 0 1 0 m 0 0 0 0
0 1 0 0 ' mp = 0 0 0 0 ( L 2 3 )

0 0 0 1 / \0 0 0 0/
Theorem 1.13. Lei G be a quantum Poincarέ group with w, p as in Theorem 1.4.= Cid Θ CRP Θ Cmp.

2) Lei us consider the cases listed in Theorem 1.6. 77zeτ2

) W ) 9 (1.24)

if and only if

a) W = x id(xeC*)or
b) W = y RP +z mp (y9z G C,/or 4), 5 = 1 , b + 0 one must have y = 0).

Those W are invertible if and only if we have the case a) or b) with yφO.

2. Proof of the Classification

In this section we prove the theorems of Sect. 1.
Let H be a quantum Lorentz group, i.e. Poly(//) = (<B/,Δ) satisfies the condi-

tions i.-iv. of Sect. 1. According to [14], we can choose w in such a way that stf is
the univeral *-algebra generated by WAB,A,B = 1,2, satisfying (1.4)—(1.6), where

1) E — e\ <g> e2 — qe2 <S> e\,Ef — — q~ιeι (8) e2 + e2 <g> β 1 , β is given by
(13)-(19) of [14], q G C\{0,/,-/}, or

2) E = e\ (& e2 — e2 (& e\ + e\ ® e\, E' — —eι 0 e2 -j- e2 0 ^ ! + e 2 0 e2, β is
given by (20)-(21) of [14], we set q — 1 in that case,

e{ = Q , ^2 = (ί)?^1 — (l>0 ),^ 2 = (0,1) (due to the remarks before formula (1)
in [14], E'EφO, which means # φ ± i). In all these cases X is invertible, A is
given by Aw^ = wik 0 wkj and ( J / , Zl) corresponds to a quantum Lorentz group.
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The numbers α + 0 are not essential now and are chosen in such a way that

(X 0 1)(1 ®X)(E 0 1) = 1 0 E (2.1)

(see (5) of [14]). Then (we use (6) of [14] and direct computations)

τχτ = β~xX (2.2)

for some β G {1,-1,/, -/}. We set E = τE G Mor(lw®w),E' = Wτ G Mor
(w@w,/), where ez 0 e / ,e

 /'0e/',ϊ,y = 1,2, are treated as reals. Using (2.1), (2.2)
and

(see (3) of [14]; matrices of is1' and £ are inverse one to another), one obtains
(using e.g. diagram notation)

0 1)(1 0 £ ) = £ ® 1 , (2.3)

0 E) = E 0 1 , (2.4)

β\χ-χ 0 1)(1 0A r " 1 )(£ 0 1) = 1 0 2?, (2.5)

(10^)(I 0 1)(1 01) = £' 0 1, (2.6)

(Ef 0 1)(1 0X- 1 )(X~ 1 0 1) = 1 0 £ ' , (2.7)

j8" 2 (# 0 1)(1 ®X)(X 0 1) = 1 0 E', (2.8)

2 1 1 ) = ^ / 0 l . (2.9)

Proposition 2.1 (cf. Theorem 6.3 of [8], Remark 2 on page 229 of [14]). Let
q E C\{0, roots of unity} (we treat q — ±1 as not α root of unity). Then

1) //zere exist representations ws(s G N/2) of H such that w° — /, wx^2 = w,
dim ws = 2s + I and

WSQ ws' - w\s~s'\ 0 w | 5 - / | + 1 θ θ ws+s' (s,sr G N/2) .

2) ws© w ^ s,.?' G N/2) αr^ all unequivalent irreducible representations of H.

3) WSQ w^ ~ w 7 ® ws(s,sf G N/2).

4) Each representation of H is completely reducible.

Proof. Let j/hoi be the subalgebra of stf generated by matrix elements of w. Then
Poly(/4oi) = (^hob^i^ ) is a Hopf subalgebra of Poly(//) = (sd,A). According
to Proposition 4.1.1 of [14], <β/hoi is m e universal algebra generated by matrix el-
ements of w satisfying the relations (1.4) and (1.5). Due to Theorem 4.2 of [13]
and the facts given in cases I, III of the Introduction to [13] (cf. (1.9), (1.30) and
Theorem 1.15 of [3]), 1) holds and matrix elements of ws(s G N/2) form a linear
basis of j/hoi Using Proposition 4.1.2-3 of [14], matrix elements of WSQ WS'(S,
/ G N/2) form a linear basis of sd. Now Proposition 4.1 of [13] (see also
Proposition A.2 of [7]) gives 2) and 4). The condition iii. of Sect. 1 implies
(Tr w)(Tr w) = (Tr w)(Tr w). That and 1) give that Tr v(v G Irr H) commute
among themselves. By virtue of Proposition B.4 of [3] (cf. also Proposition 5.11 of
[12]), one obtains 3). D
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Proof of Theorem 1.4. We have the Hopf *-algebra ^ , its Hopf *-subalgebra stf
and two-dimensional representation w o f ^ which satisfy the conditions i.-iv., (1.2)
and 1.-6. of Sect. 1. We shall use the results of Sect. 1 of [10] with A replaced
by i f = wφ w, J?AB,CD = WACWBD* Hence we deal with pAB = VABJPΪ instead of
Pi. By virtue of (SI.3), it suffices to check (S1.5) for the generators: a = wAB or
a = WAB*- Inserting such a into (SI.5), we get

Gc£ G Mor(w© w© w, w© w@ w), Gj^ G Mor(w© w© w, w@ w© w),

where

(Gcf)ABC,DEF = fAB,EF(WCD% (G&)ABC,DEF = JΛB,EF(WCD*) (2.10)

Thus Gif = (1 0 X H G^ = 5 ( X - 1 0 1), where A is an intertwiner of
w'@iv0w,5 is an intertwiner of wφ VP@ w ~ w© w1 Θ w. But w 1 0 w, w, w® wι,w
are irreducible (we use Propositions 4.1 and 4.2 of [14]), hence

Mor(w@ w@ VP, wφ w© w) = CEE' 0 1 Θ C l 0 3 ,

© w© w, w©VP© w) = Cl (g) M 7 Θ C 1 Θ 3 .

Therefore Λ = Z , ® l , 5 = l<g)Z, where

L = al®2 + bEE', L = ά\®2 + bEE\ a,ά,b,beC. (2.11)

According to (SI.3), / : J / ^ M 4 ( C ) should be a unital homomorphism. It
means that / should preserve the relations (1.4), (1.4)*, (1.5), (1.5)*, (1.6) ((1.4)*
denotes the relation conjugated to (1.4) etc.), i.e.

(σ.sf®iχi®

(G^®l)(l(g)

(1Θ2®E')(G^

{\®2®E'XG<e

ί Cĵ f 0 1 )(1 0 \j<£)\X. 0 1

Using (2.3),(2.5),(2.6) and (2.8),

(I®1)<

Γ2(ΐ®i)(

(1<8>£'>

fi-2(l®£')ι

G^)(£ (8>1^)

G^)(£®1®2)

® 1)(1®G^)

0 1)(10G^)

!) = (l̂ 2(g)X)l

Eqs.(2.12)-(2.

;i0Z)(£0i)

;i®Zχ^(8>i)

(Z0 1)(1 0L)

(Z<8>1)(1<8>Z)

_ jo;

= E'>

= E'

[G<g €

-®E,

2®E,

® 1 0 2 ,

®1®2,

)1 ) (1®G,) .

15) are equivalent to

= 1(8

= 1(8

= E'i

8)1.

(2.12)

(2.13)

(2.14)

(2-15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Using (2.11), computing a,b,ά,b, and inserting them into (2.11), one gets that the
solutions of (2.17)-(2.20) are

L=LU Z = ̂ τZτTτ, ij = 1,2,3,4, (2.21)
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where
Li = qi(l®2+qΓ2EE')9 (2.22)

qιi2 = ±qKq$A = ±4~^ Using these relations, (2.1), (2.4), (2.6) and (2.8), we get
that (2.16) is satisfied. Therefore, the solutions of (SI.3), (SI.5) are given by (2.10),
where

Gj? = (1 ®X\L <g> 1), G<e = (\®L)(χ-χ <8> 1) , (2.23)

L,L are given by (2.21)-(2.22) (in general 16 solutions). Moreover,

(8) 1) . (2.24)

We know that pAB (8) pCD form a basis of (i2)inv which transforms under Δu
according to S£ φ i f . It is easy to check that the decomposition into irreducible
unequivalent components

corresponds to

ΊΦWfθWo, (2.25)

where

φE = 0, φE = 0} ,

'): </>e(C2<8>C2)', φE = 0},

): xjj e (C2 0 C 2 / , ψE = 0} ,

We — C(Fr 6d FfΛ(

(indices as in the matrix multiplication rule have been omitted). But Rτ^ is the
matrix of p in the basis pAB (8 pCD (see the remark after (SI. 13)). Using (2.24),
we get that (2.25) corresponds to

p = βqiq]~λ θ -βqίqf ® -βqΓ3q]~ι ® βqΓ3q]3

Comparing the condition 6. with Proposition SI.6, we get dim^Γ = 6. Therefore
K[ny = W\ Θ Wj. But Proposition SI.4 implies K C ker(p + id), hence βqiqf =
βqT3q~j~λ — l Remembering that β e {1, —l,z, —/}, qή= ±i, we get q — ± 1 . Thus
we can (and will) omit £3,^/4. We obtain β — q, ί = j ox β — —q9 i^jiq G {1,-1},
/,y G {1,2}). In all these cases p = l 0 — 1 0 — 1 0 1, hence K = ker(p + id).
Moreover, p2 — id,7?2 = \® . By virtue of Proposition 2.1 the conditions a)-c)
of Sect. 2 of [10] are satisfied and we can use the results of Sects. 1-4 of [10]. In
particular, Corollary S4.2 implies the first statement of the theorem.

Let us pass from 5£ to A = V~ι^V (see (1.2)). Since V = τV, A = A. We
replace pAB, A,B = 1,2, corresponding to i f by pt = VrA

x

BpABJABCD by fυ

= VrA

x

BfAB^CDVCDj (cf. (S1.2)), Rχ9G<e and G<? by R = (Vlχ 0 V~ι)R^(V 0 V\
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G = (V~ι 0 1)G<?(1 0 V\ G = (V-1 0 1)G<?(1 0 K). Then (2.10) gives

fij(WCD) = GiC,Dj, fij(wCD*) = GiQDj (2.26)

Now we pass to a new /?,- such that p* — pt without change of M ,Γ2,ξ, p, K, fy,
R,G and G (see Proposition S4.5.1. and (SI.2)). We redefine PAB accordingly. By
virtue of Proposition S4.5.2, (S4.10) holds. Setting a — WEF* and passing back to
& one has /BA,DC(^EF) = /AB,CD(WEF*). It means

- Ϊ - 1
)EBA,DCF = (G&)ABE,FCD , (2.27)

i.e. (ZΓ1 0 1)(1 0 I " 1 ) = (Z" 1 0 1)(1 0 I ' 1 ) (we used (2.23),(2.21),(2.2)). Thus
Z,/ = Zy, z = j . Consequently, β = q = ±1 and z = j = 1,2. Conversely, this con-
dition gives (S4.10) for a = WEF* and (using So * = * o S " 1 ) α = w^1, hence for
all flGi. The list of X such that β = q — ±1 is provided in the formulation of
Theorem 1.4 (they contain the factor α which is computed in such a way that (2.1)
is satisfied, we also restricted the range of parameters according to remarks on
p. 220 of [14]). For E,E'9X as in Theorem 1.4 and ftj computed above (S1.3),
(S1.5) and (S4.10) (for A) are satisfied.

According to Proposition 2.1, the only 2-dimensional irreducible representations
oϊH are UwU~\ UwU~\ U e GZ(2,C). Thus if φ: st\ -> st2 is an isomorphism
of Hopf *-algebras srf\,s$2 included in our list, then

(1) φ(w) = UwU'x or (2) φ(w) - UwU~ι .

Let us consider the case (1). We denote E,E',X for Au i= 1,2, by EuE'^Xi.
Applying φ to (1.4)—(1.6) for J ^ , one gets

(U-ι®U~ι)Eι =k~ιE2, (2.28)

E[(U®U) = k'E'2, (2.29)

Φ~λ ®U-ι)Xι(U®U) = lX2 (2.30)

for some k,k', I G C*. Considering (2.28)-(2.29), one gets Ex = E2 = E and

U e GL(2, C)9k = k' = det U for E = eλ 0 e2 - e2 0 eλ ,

for Z1 = e\ 0 2̂ — ̂ 2 0 e\ +

for E = e\ ® e2 -}- e2® e\.
Inserting such U in (2.30), one gets (for E = e\ ® e2 — e2 ® e\ see Sect. 5.1 of

[14]) Xλ =X2=XJ=\9so

Ul } U ) = X (2.31)
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and in particular cases:

1) t= 1: U €GL(2,C)

' 'x 0
0<t<l:Ue,lQ . .

3) U =

4) U =

6) U e ίm (eζ e\\ : m G C.,φ G R | ,

Oλ (1 0 λ (0 lλ / 0 1Λ ^

i j . « ( ^ o - l j ' w ( ^ l θ j ' m ^ - l 0 J : w e C *
Next, let us consider the case (2). Then

(£/~i 0 U~^)E\ = k E2 , (2.32)

Ef(U ® U) = k'Ef (2 33)

(t/" 1 0 [/-^iCC/ 0 C/) = r 1 ^ " 1 (2.34)

for some A;,̂ , / G C*. Considering (2.32)-(2.33), one gets E\ — E2 — E,

U e GL(2,C), k = k' = - det U for E = ex 0 e2 - e2 '

for is = £

for E — e\§§e2

Inserting such U in (2.34), it is possible only forXi = X2 — X in the following
cases:

1) t= 1: U eGL(2,C),l= 1,

^VmGC*,x€C,/=l,

-1 / lθ
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5)/ = l : I / e { ( j

(/ is computed for normalization of X as in Theroem 1.4, which includes α).
In particular, all considered (jtf,A) are nonisomorphic. D

Remark. 2.2. Using (2.17)-(2.21) for i=j= 1,2, β = q = ±1, one also gets

(1 0 L){L 0 1)(1 0 £) = £ 0 1 , (2.35)

(1 0 L)(L 0 1)(1 0 £) = £ 0 1 , (2.36)

(£' 0 1)(1 0 L)(L 0 1) = 1 0 £ ' , (2.37)

( # 0 l ) ( l 0 Z ) ( Z 0 l ) = l (g)F. (2.38)

Let us repeat that K = ker(p + id), p2 = id, the conditions a)—c) of Sect. 2 of
[10] are satisfied and we can use the results of Sect. 1-4 of [10]. We notice that
L,L, G, G and R given before Theorem 1.5 and in the proof of Theorem 1.4 coincide
(z =j=\ corresponds to s = 1, while z =7 = 2 to s = — 1). They correspond to
A as in (1.2), λ = A.

Proof of Theorem 1.5. Using Theorem 1.4 and Corollary S3.8.a, & is the universal
*-algebra with / generated by wAB and pt satisfying (1.4)—(1.9). Next, (S2.6)
coincides with a), (S4.10)-(S4.11) imply b), (2.26) gives the first formula of c).
The next two formulae in c) can be treated as definitions of HEFCD and TEFCD Since
w,w and 0* are representations, formulae concerning the Hopf structure follow.
Uniqueness of /, η, T and the *-Hopf structure is obvious.

Let ^,J* describe two quantum Poincare groups and jtf,A,A,p,f,η,T,
stf, A, A, p,f9 ή9 T, be the corresponding objects as in Theorems 1.4 and 1.5.
Assume that φ: M —• & is an isomorphism of Hopf *-algebras. According to Propo-
sition S4.4, one has φ(s/) =jtf and we put φ^ — φ\^\ srf —>sέ'. Due to the proof
of Theorem 1.5, one has

(1) φ(w) = UwU~λ or (2) φ(w) =

Using (1.2), one gets φ{A) = MAM~ι, where

M = V-\U®U)V in the case (1),

M = qλl2V-\U 0 U)XV in the case (2).

Using (1.3) and (2.2), one gets M = M^i2 = βqx'2 since β - q = ±1).
By virtue of (S4.2), one has

fij(wcD) = UCA (M )iifιm(wAB)MmjUBD in the case (1),

fijiwcϋ) = UCA(M~ι)ufιm(wAB*)MmjUBD in the case (2).

Using (2.28)-(2.30) or (2.32)-(2.34), we get L = L in all cases. Thus there are
no isomorphisms between quantum Poincare groups with different s. D
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Using the computer MATHEMATICA program, we made several computations
performed in

Proof of Theorem 1.6. Let J1, J / 5 A, Λ, p, / , η, T describe a quantum Poincare group.
According to Propositions S4.4 and S4.5.3, it is always possible to replace η by
ή = η -\- fh — εh, where hj G R. We put s$ =&/, w — w9 c = 1,M = I4, φ^ — id, and
/ doesn't change. Thus we substitute HEFCD by

HEFCD = VβFjήiiwcD) — HEFCD + f

where fEF,Aβ(wcD) are given by (2.10) and (2.23), hEF = VEF,ιh (i.e. hu,h22 G R,
1̂2 = fei G C). In each equivalence class obtained by such substitutions we restrict

ourselves to exactly one H singled out by the following constraints:

no constraints for 1), s = 1, t = 1,

Hun e zR, H2222 e iR,H\222 = 0 for 1), s = 1, t+ 1,

^1112 = 0, #2112 e iR for 2), j = l ,

/ / i m = 0, / / m 2 G iR, //1211 G /R for 3), s = 1,

#2111 e iR, Hun £ R, ^1112 G /R for 4), j = 1,

/ / m i G /R, //2111 = 0,7/2222 G zR for 5), j = 1, ί φ l ,

/ / m i G zR, /Γ2222 G zR for 5), J = 1, ί = 1,

//1122 G zR, //1112 = 0, //2 2ii G zR for 6), s = 1,

//1122 G zR, //2222 G zR, 7/1222 = 0 for 7), s = 1,

//mi G ZR, //i222 = 0, //2222 G /R for 1), J = - 1 ,

//1122 G zR, Hun = 0, //2211 G zR for 2), j = - 1 ,

//2111 = 0, //mi G zR, //2 2 1 1 G zR for 3), s = - 1 ,

//2211 G zR, //1222 = 0, / / n n G zR for 4), s = - 1 ,

//1222 = 0, //mi G zR, H2222 G zR for 5), s = - l , ί φ l ,

//1222 = 0 for 5), s = - 1 , ί = 1,

//1211 = 0, H2U2 G zR for 6), s = - 1 ,

//1122 G zR, //1222 = 0, //2222 G zR for 7), j = - 1 .

We also may and will assume (S3.50).

By virtue of the theory presented in Sect. 1-4 of [10] (see e.g. Theorem S3.1
and Proposition S4.5) HEFCD a n d TEFCD give a quantum Poincare group if and
only if (S1.5),(S2.6),(S2.14),(S3.1),(S3.2),(S4.10),(S4.11) and (S4.12) are satis-
fied (cf. the proof of Theorem 1.4). We shall investigate subsequent conditions
and dealing with the next ones we assume that previously investigated condi-
tions are satisfied. We already know that / is a unital homomorphism satisfying
(2.26), (S1.5) and (S4.10). Thus (S2.6) means that applying ηt to the relations
(1.4),(1.4)*,(1.5), (1.5)* and (1.6) (* means that we conjugate the relation) and
using (S2.5), one gets relations on H™AB = ηi(wAB) and H™AB = W(WAB*), which
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should be satisfied. They read as follows:

{(G 0 1)(1 0 Hw) + (Hw 0 \)}E = 0 , (2.40)

{(G 0 i χ i ® i Γ ) + ( # * 0 1)}£ = 0 , (2.41)

(1 ®E'){(HW 0 1) + (G 0 1)(10//W)} - 0 , (2.42)

(1 0 E'){(H* 0 1) + (G 0 1)(1 0 H*)} = 0 , (2.43)

( I 0 2 0X){(/T 0 1) + (G 0 ϊ)}
? (2.44)

= {(H* 0 1) + (G 0 1)(1 0 H»)}X . J

Setting β = WEF* in (S4.ll), one gets

(H*)iE,F = mi^FF1 ) = ~MWEL ) ΆJ(WLF) = -G-lEiJL ' H™L,F (2A5)

(we used (S2.5),(S1.4) and (2.26)). Conversely, (2.45) gives (S4.ll) for a = wEF*
and (using 5 Ό * o 5 Ό * = id)Λ = w^1, hence for all α e J / (it suffices to check the
conditions (S4.10)-(S4.11) on generators of J / as an algebra: they are equivalent
to Theorem 1.5.b for a*).

Using the 16 relations (2.1),(2.3)-(2.9),(2.17)-(2.20) and (2.35)-(2.38), one
gets that (2.40) is equivalent to (2.42), (2.41) is equivalent to (2.43). Moreover,
(2.40) is equivalent to (2.41) (one conjugates (2.41) and uses (2.27), (2.45)).
Thus (2.41)-(2.43) are superfluous. The remaining equations: (2.44) (with inserted
(2.45)) and (2.40) give a set of R-linear equations on HEFCD = VEFJH™CD.

Next, (S3.50) gives a set of linear equations on TEFCD = VEFJVCDJTΪJ By
virtue of (S3.50) and (S4.14), one obtains (f was denned after (S4.12)) RT = -f,
RD — —D, where D = f — T. Therefore D corresponds to a subrepresentation of

equivalent to wι θw 1 . But (S4.12) means that D is an invariant vector of
, hence D = 0, f = T (conversely, this implies (S4.12)). This gives a set of

R-linear conditions on TEFCD

According to Proposition S3.13 and Corollary S4.9, we may replace (S2.14)
by (S3.55) for b = wAB. But this is equivalent to M e Mor(w,ylφyl0w), where
MijQB = τij(wCBy Using [(R + i f 2 ) 0 l ] M = 0 (see (S3.54)), one gets M = [{V~ι 0
V~ι)(l 0 X 0 1)0 1]N9 where N G Mor(w,w0w©VP©w@w), (L\ 0Li 0 l)N =
—N(L 0 Z doesn't depend on s, one can put s = 1). Thus NABCDF,G — PABF,GECD

with P E Mor(w, wφ wφ w), (Lx 0 1)P = qι/2P. It means P = λί 0 E + μE 0 1,
= 0. Hence μ = ^λ, P = λ{\ 0 £" + ^#£ 0 1). On the other hand,

Using (1.2), (S2.5), (2.45) and (2.26), one gets a set of equations containing terms
bilinear in Re HABCD> Im HABCD, terms linear in Re TABCD, Im ̂ 5cx> and terms
linear in Re A, Im A.

We shall prove that (S3.1) is equivalent to λ e qι/2R. One has (see (1.2))
p = (V~ι 0 V'1 0 V~lyV, where F = ((R- i f 2 ) 0 1)F and

Jς>RTVAB,CD = VQRjVTVjX
i
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Using Proposition S3.13,

τίj(wACwBD*) = τίj(wAC)δBD + GjA,EsGiE,Cmτms(wBD*) .

But by virtue of Proposition S4.8,

Using once again Proposition S3.13 for a = WLS, b = w^J, multiplying both sides

l j L a n d conjugating both sides, one gets

(see (2.27)). Inserting all these data, after some calculations (using the 16 relations),
one obtains

where A = (1 ® I 0 X 0 \){E 0 X 0 £ ) ,

5 = 10(101" ' 0l)(£f0JE')0l,

C = (

We shall also use Z> = 1 0 1 0 (1 0 1 0 1)(£ 0 E). Using (2.24) and the 16 rela-
tions, one has

1)A = -A - qC, (Rj? 0 \)B = -B - qC ,

1)C = C, (7?^ 0 1)Z) = D + qA + #£ + C ,

(1 0Rg)A = -A - qD, (1 0R<?)B = -B - qD ,

(1 0Rce)C = C + qA + qB + D, (1 0 7 ^ ) D = D .

In particular, (i?^ 0 \)J = —/ (it also follows from (S3.54)). Thus we can compute

- 2 ( F 0 F 0 V)A3FV~ι = (V®V®V)A3FV~ι

l l + ( l 0 R<e){Rg 0 1)

0 1(1

= 3(λq - λ)(A - B) .

But A+B ( i m f ί ^ X - 1 0 X " 1 0 i μ ] = i m J £ ' 0 C 2 0 C 2 0 i m £ i while im[(l0
X~x 0 X " 1 0 1)B] = C 2 0 f f o ^ C2, where dim imE = dimim^ = dim Wo = 1),
hence A3F = 0 if and only if A = ^ , i.e. λ e qι/2R.

We notice that

~ (w 0 w Θ w3

hence

Mor(/, Λ®A®A) = {0} . (2.46)
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Therefore (S3.2) is equivalent to A^{Z 0 I4 — I4 0 Z)T = 0. This gives a set
of equations, which are R-linear in RQ HABCD Re TEFGH, ^^ HABCD Re TEFGH, Re

HABCD Ini 7>/ΓG// and Im HABCD Im TEFGH. Our strategy is as follows: we set con-
straints for HABCD as before, solve R-linear equations, insert these data into R-
bilinear equations and finally use the condition for λ and the last set of equations. In
the cases 1), t = 1, s = 1 and 5), t = 1, s = ±1, we haven't solved the R-bilinear
equations (but see Remark 1.8). In other cases one gets the following solutions
(with the parameters being real numbers):

(1.10) with Tab = -Tba e /R for 1), s = - 1 , t = 1,

(1.11) for 1), j = ± l , 0 < t < 1,

(1.12) or (1.13) for 2), s = 1,

(1.12) with Λ = 6 = 0 for 2), j = - 1 ,

(1.14) for 4), s=l,

(1.15) for 5), j = ± l , 0 < f < 1,

(1.16) or (1.17) for 6), s =-\,

in the remaining cases all HEFCD and TEFCD must equal 0. Moreover, A = 8&2 in
the case 4), s = 1 and A = 0 in other solved cases.

Let us remark that for fixed WAB and pt : φi,t]i and HEFCD are uniquely de-
termined (cf. (SI.6)). Moreover, TEFCD satisfying (S3.50) are also uniquely deter-
mined: if Tf would also satisfy (S3.46) and (S3.50), then for L = T - T' we would
have

0 = (R - If 2)(L - (ΛQΛ)L) = (R- lf)L - (ΛQ>Λ)(R - lf2)L

= -2(L - (ΛQΛ)L) ,

L G Mor(/,/L©yl), but RL = —L gives that Z corresponds to the subrepresentation

wι 0 w1 of /L@Λ, Z, = 0, Γ = Γ;.
It remains to check which pairs (H, T) as above give isomorphic objects. By

virtue of Propositions S4.4 and S4.5 and above remarks it would mean that (//, T)
is obtained from (//, T) via formulae (S4.3)-(S4.4) with c,A, G R, cφO, M as in
(2.39). After some calculations one can choose one pair (//, Γ) in each equivalence
class (for each considered case). The results are presented in the formulation of the
theorem. D

Proof of Theorem 1.9. By virtue of Corollary S3.6 it suffices to prove d im^ = dn.
Taking A = 5£ = w ® w, one has the projection Sn = ^[ΣπGπλJ^π? where Rπ =
(Rse)ix {R^\ for a minimal decomposition π — tiχ tik, R^ = (1

1)(L ® L)(l ® X~ι 0 1). Putting

Kx = ( I 0 " " ) ( )

(1 0 X 0 0 X 0 1)(X 0 0 X ) ,

and Kτ defined similarly with X replaced by τ, one can define S'n — KxSnKχX and
S" = K~ιS'nKτ. Therefore dim5Λ =tvSn= XvSf

n = trS". One gets the formula for
S" as for Sn but with R# replaced by R% = (1 0 τ 0 \){L 0 Z)(l 0 τ~ι 0 1) (we
use the 16 relations).
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Moreover, L®L=L0® τLoτ, where Lo — I®2 + q~ιEEf, E = e\ ® e2 — qe2 <S>
ex + toe\ <g> e\, E' — -qeι ® e2 + e2 ® eι + t0e

2 ®e2, q = ± 1 , t0 — 0,1 (for # = - 1
one has to — 0). Replacing e\ by cei, c + 0, one has to replace eι by c~ιeι

9 Lo by
Zo with to replaced by c to. Thus (for # = 1) t r £ " doesn't depend on to G C
(for ίoΦO and also for ίo = 0 in limit). So we may put ίo = 0. Then Loβ\ 0 e\ =
e\®e\9 L0e2 ®e2=e2® e2, Loeχ (g) e2 = qe2 0 βi, Io^2 Θ e\ = ^ i 0 ^2 Setting
^αj? = «̂ 0 eβ9 one has

It is easy to show that S'n'(R'!f)k = (R#)kS" = S'n
f,S'n' is a projection,

form a basis of imS'J. We get

dim Sn = tr ̂  = dim im S"

D

Proof of Theorem 1.12. We know that A® A ~ / θ w1® w1 θ wι θ w1, where
ker(i^ + l f 2 ) corresponds to M ^ Θ W 1 . Therefore (S5.2) holds. Moreover, (2.46)
coincides with (S5.4). Using Theorem S5.6, we get the first statement. The second
statement follows from Proposition S5.3, Proposition S5.5 and d i m ^ = dn (see the
proof of Theorem 1.9). D

Proof of Theorem 1.13. We know that (S3.59) holds (see (S3.2) and (2.46)) and
Rή= =b l ^ 2 (see the proof of Theorem 1.4). Moreover, (AQA)mf — mr means that
m' is proportional to m. According to the proof of Theorem 1.6, F = 0 if and only if
λ = 0 (otherwise, using λ = qλ,A + B + qC = 0, acting 1 0 R<?, C = D, Vo 0 C 4 =
im C = imD = C 4 0 Fo, where Fo = im[(l 0 X 0 1 )(£ 0 ^ ) ] , dim Vo = 1, contra-
diction), which means Z> = 0 in the case 4), s = 1 and no condition in other cases
listed in Theorem 1.6. Then we use Proposition S3.14. D

Remark. 2.3. According to Corollary S3.8.b, £8 is the universal unital algebra gen-
erated by stf and pt(i G «/) satisfying /«# = 7^, (S3.48) and (S3.47) for w and w
(cf. Remark S3.10).
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Note added in proof. We take that opportunity to make corrections in our paper ref. 8:

1) At the beginning of Theorem 4.6 add in a separate paragraph:

Assume that the Haar measure on Gc is faithful.

2) on page 417, line 6 up, replace μ~1^2 by μ+ι^2

3) on page 390, line 3 up, replace w1 o w2 by wιφ w2
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