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Abstract: The spreading of wave packets evolving under the Anderson Hamiltonian
on the Bethe Lattice is studied for small disorder. The mean square distance travelled
by a particle in a time t is shown to grow as t2 for large /.

1. Introduction

The Anderson model [6] gives a description of the motion of a quantum-mechanical
electron in a crystal with impurities. It is given by the random Schrόdinger operator

Hλ = \Δ + λV on /2(X); (1.1)

where IL is either TLd or the Bethe lattice IB (same as Cayley tree -an infinite
connected graph with no closed loops and a fixed number K + 1 of nearest neighbors
at each vertex (K ^ 2, so IB is not the line R); the distance between two sites x
and y in IB will be denoted by d(x, y) and is equal to the length of the shortest
path connecting x and y). The (centered) Laplacian A is defined by

(Δu)(x) = Σu(y), (1.2)
y

where the sum runs over all nearest neighbors of x in IL, and V is a random poten-
tial, with V(x\ x G IL, being independent, identically distributed random variables
with common probability distribution μ. The real parameter λ is called the disorder.

It follows from ergodicity that the spectrum of the Hamiltonian Hχ is given by

(1.3)

with probability one [33,9,3], where σ(\Δ) equals [-d,d\ if IL = TLd and [-y

if IL = IB. The decomposition of σ(Hχ) into pure point spectrum, absolutely
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continuous spectrum and singular continuous spectrum is also independent of the
choice of V with probability one [26,9,3]. In the physics literature ([6,32,37,
1,2,29] and others) one finds the following picture: In one and two dimensions,
as long as the potential is random (i.e., Λ,ΦO), the model shows exponential lo-
calization (i.e., pure point spectrum with exponentially decaying eigenfunctions).
In three and more dimensions both localized and extended states (i.e., absolutely
continuous spectrum) are expected for small disorder, with the energies of extended
and localized states being separated by the mobility edge\ the model exhibits the
Anderson metal-insulator transition. In the Bethe lattice the picture is similar to
the multidimensional case ([1,2,27,31,30] and others), with perhaps a mobility
interval instead of a mobility edge (see the discussion in [22]).

An alternative way to distinguish between localized and extended states is by
looking at their time evolution. Let us consider a particle which is localized at the
origin 0 of 1L (we fix an origin 0 for the Bethe lattice) at time t = 0, at time

t it will be described by the wavefunction \$λ^ = QitHλOQ9 with (So being the delta
function at x = 0. A measure of the spread of the wave packet at time t is given
by its mean square displacement

>i(0 = Σ M2lΛθl2 = Σ A2 |e^(o,*)|2 , (i.4)

where \x = d(09x) (it is not a norm in IB) and e^(0,x) = (δ^QίtH^δx}. We always
have ([35], we give the argument in Lemma A.I)

with C =
d2 if 1L - ΊLd ,

K if 1L = B .
(1.5)

In the case of free motion (λ — 0) one has r\(f) ~ const t2. Anderson [6] argued
that for large disorder, there are only localized states so the particle localizes near
the origin, i.e., suptr

2(t) < oo with probability one (see the discussion in [14]).
In three or more dimensions, the particle should diffuse with probability one for
small disorder, and one should have [14,28] ΊE(r2(t)) « const t, where E denotes
expectation with respect to the probability distribution of the random potential.
On the Bethe lattice, however, we should expect ΊE(r2(t)) w const t2 at small dis-
order, since on the Bethe lattice both free motion and what should be diffusive
motion (e.g., the simple random walk) have mean square displacements growing
as t2.

There are now many proofs of exponential localization for the Anderson
Hamiltonian: for any disorder in one dimension (e.g., [15,26,8,11] and others),
and for large disorder or low energy in the multidimensional case (e.g.,
[14,13,10,36,28,11,5,4,19,16,12] and others) and on the Bethe lattice [5,4,16].
When the single site potential distribution μ has a bounded density and compact
support, it is also proven that Έ(suptr

2(t)) < oo for large disorder, both in the
multidimensional case [28,4] and on the Bethe lattice [4].

There are presently no rigorous results about extended states in Zd. In previous
work [20,21,23] we proved the existence of extended states on the Bethe lattice
for small disorder. In this article we show that

fr

2(t\\
limsupE -^Y- > 0 (1.6)
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on the Bethe lattice, for sufficiently small disorder. Combining this result with the
uniform deterministic bound given by (1.5), we conclude (see Lemma D.I) that

P limsup-^ > 0) > 0 (1.7)
\ t-^oo t J

for the Anderson model on the Bethe lattice with small disorder. It follows from
ergodicity that

/ r2 (t} \
P limsup -̂ — > 0 for some x e B I = 1 , (1.8)

y f->oo t I
where

= Σ d(x9yγ\(^δx)(y)\2 . (1.9)

We will now describe our results in more detail. Our assumption on μ is that
its characteristic function h(t) = f e~ltvdμ(v) is dίfferentiable on (0, oo), with h'(t)
absolutely continuous, h'(t) and h"(t) bounded on (0, oo). These conditions are
satisfied by any probability distribution μ with a finite second moment (e.g., uni-
form, Gaussian or Bernoulli distributions) and by the Cauchy distribution. Our main
result is:

Theorem 1.1. Let IL = IB, then for sufficiently small λ we have

1 t
liminf - fΈ(r2

λ(s))ds > 0 . (1.10)
ί—>oo t

0

In particular, we have (1.6), (1.7) and (1.8).

Notice that (1.6) follows immediately from (1.10). From (1.5) we know the
uniform deterministic bound:

Z for any t. (1.11)
1 0 ό

Thus we also get
/ 1 t \

P limsup -z fr2

λ(s)ds > 0 I > 0 (1.12)
\ ί^oo t o /

from (1.10) by Lemma D.I. Ergodicity again gives

/ 1 * \
P I limsup -j fr*fλ(s)ds > 0 for some * e IB 1 = 1 . (1.13)

V t-*oo t o /

This paper is organized as follows: In the next section we reformulate the prob-
lem in terms of Green's functions; Theorem 1.1 is shown to follow from Theorem
2.2. A review of the mathematical setting we use is given in Sect. 3. Theorem 2.2
is proven in Sect. 4. The appendices contain some results needed in our proofs.

2. Green's Functions

We will now reformulate Theorem 1.1 in terms of the Green's function Gχ (x, y'9z) =
(δx,(Hχ —z)~lδyY We start with the well known relation (see Lemma A.2)

00 1 °° Γ /ι / *ι\ |2\ ϊ
= -̂ / Σ*| 2E (\Gλ(θ,X;E + iη-)\ )\ dE , (2.1)

2π-oo UelL V 1 V 2/ ' / J
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valid for any η > 0. Similarly to (A.8), (A.9) and (A. 10), we always have

(2.2)

(2.3)E

and

sup (2.4)

By a Tauberian Theorem (e.g., [34, Theorem 10.3]; notice the proof is also
valid for liminf), Theorem 1.1 follows from (2.1), (2.3) and

Theorem 2.1. Let IL = B, then for sufficiently small λ we have

00 (

l iminf^ 3 / \ Σ\*
ηlO _oo [xeiB

(2.5)

By Fatou's lemma, Theorem 2.1 follows immediately from the next theorem.

Theorem 2.2. Let IL = B, //2£« there exists λo > 0, such that for any λ with
\λ\ < ΛO we can find energies E^ e (— VK, VK)9 with lim^^o^ = ±V

has purely absolutely continuous spectrum in the interval Iχ = (E^ \

liminf η3 Σ \x\2 E(\Gλ(Q,x',E + iη}\2) > 0 for all E G Iλ . (2.6)
and

Purely absolutely continuous spectrum was proved in [20,21], in the remainder
of this article we will prove (2.6).

Another quantity that has been used to distinguish between localized and ex-
tended states is

(2.7)

Dλ(E) is related to the D.C. conductivity by a Kubo-like formula [29,14]. The
belief is that Dχ(E) = 0 in the localization region and Dχ(E) > 0 in the region
of extended states. The usual proofs of localization (e.g., [14,13,11,5,4]) all show
Dχ(E) = 0 in the energy intervals where they give localization. For the Bethe lattice
(2.6) gives

Corollary 2.3. Let IL = B, and let Λ,0, h be as in Theorem 2.2. Then Dλ (E) = oo
in Iλ.

3. The Mathematical Setting

We fix an arbitrary site in IB which we will call the origin and denote by 0. Given
two nearest neighbors sites x,y G IB, we will denote by IB(*^) the lattice obtained
by removing from B the branch emanating from x that passes through y\ if we do
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not specify which branch was removed we will simply write Bw. Each vertex in
Bw has degree K + 1, with the single exception of x which has degree K.

Let θf\x,y;z) denote the Green's function of the operator Hχ restricted to B(0)

with Dirichlet boundary conditions; we will write Gχ(z) and Gλ (z) for Gχ(Q, O z)

and Gf }(0,0;z), respectively. For any λ G R, z = E + iη with E G R and η > 0,
we define

(3.1)

(3.2)

where &f\z) + /J^0)(z) is the decomposition of G^ (z) into its real and imaginary
0

If Λ, = 0 we can calculate G§\z) obtaining [3]

parts; here φ± G R2 with φ2± = φ± φ±. Notice J ( z ) > 0 since η > 0.

(3.3)

where we always make the choice Im y > 0. If \E\ < VK9 we have the pointwise

limit

(3.4)

η

We now introduce the Banach spaces Jζ,, 1 ̂  p ^ oo, given by the completion
of

{g : [0,oo) x [0,oo) ̂  C of class C2; \\g\\χ = ||||̂ ||||2 + \\g\\p < 00} , (3.5)

where

with d±g(φ2

+,φ2_) = d/dφ2±g(φ2+,φ2_) . We have [20,21] ξ^ G JΓoo for all λ G R
and z = E + iη with η > 0. The map (λ,E,η) — » ξ^ε+ίη is continuous from IR x

R x (0,oc) to jΓoo. If |£| < v^ we have ξ^E G JC, and lim^io £<u+»/ = ίo,^
in JΓoo. (Notice that although ξ0,£ can be defined for any E G R by a pointwise

limit, as in (3.4), £o,£ is in the Banach space Jίf^ if and only if \E\ < \fK.)
We will also use the Hubert space Jzf , defined as the completion of

{g : [0, oo ) x [0, oo) — » C measurable

2φ+ί/2φ_) < 00} . (3.6)

We can identify j£? with the subspace of L2(R2 x R2,d2φ+c/2φ_) consisting of
functions depending only on φ\ and φ2., and define 2F as the restriction to & of

the Fourier transform on Z2(R2 x R2,ί/2φ+ί/2φ_), so 2F is the unitary operator on
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3? given by

™ IR2χIR2

We define linear operators

y = 4J<Γ3+d_ (3.8)

and

where M(g(φ2

+,φ1_)) denotes multiplication by the function g(φ1

+,φ1_). It turns out
that 2Γ is unitary on Ufa [7] and a bounded linear operator from Jfΐ to Jί^, 3S^Z

is a bounded linear operator on all Jf^, and g —> gn is a continuous map from Jf^o
to Jfi for any n = 2,3,... . Moreover, ξ^z satisfies the nonlinear equation in Jf^:

ξλ,z = y&izZiz , (3.10)

not only for all λ G 1R and z = E + iη with η > 0, but also forη = 0 i f λ = 0 and
|£| < \X£. (Equation (3.10) can be verified by writing explicitly the right-hand
side and performing all integrations.)

The following result is proven in [20,21] and will play a major role in the proof
of Theorem 2.2.

Theorem 3.1. For any E such that \E\ < \fκ there exist λE > 0 and εE > 0, such
that the map (λ,Ef,η} —> ξ^Ef+iη G J^, defined for

(λ,Ef,η) G ([(—λE,λE) x (E — εE,E + εE) x (0,oo)]

has a continuous extension to (—AE?^) χ (E — εE,E + SE) x [0, oo) satisfying
(3.10).

4. Proof of Theorem 2.2

We start from the equation

Έ(\Gλ(0,X;z)\2) = (ξλ,2\ryzξλ,z}λ,z, (4.1)

where

~ I f(φ2

+,φ2_)[®λ,zM(ξκ

λ-
l)g](φ2

+,φ2_)d2φ+d2φ- (4.2)
2χR2

^M(ξκ

λ-
l)g}y (4.3)

is a bounded symmetric bilinear form on Jδf, and hence on J^o, and Ί^^z =

^^^zM(ξ^~l) is easily seen to be a contraction operator on J5f. A derivation
of (4.1) is given in Appendix B.
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Thus

Jλ(E + iη)= £ \x\2Έ,(\Gλ(09χ ,E + iη
xeiB

K 4-

r=\

761

(4.4)

(4.5)

where

Lemma 4.1. Let λ 6 R, z = £ + /»/ vw'iΆ E e IR α«J j? > 0.

(i) For all f,g e <?,

(ii) i^\z is a compact operator.
(iii) Let

(iv) For any r = 0, 1, 2, ... we have

> > 0

0 .

(4.6)

(4-7)

(4.8)

(4.9)

(4.10)

Notice that (4.8) is in [31].

Proof, (i) follows from 2F being unitary on 3? where we have 3F f — 3P f . (ii) is
a consequence of 3&λ>z&'$λtz being a compact operator in JSf for η > 0, which can
be shown as in [25, Proposition 9(i)].

To prove (iii), we use (3.10) and (3.8) to get

θλ,z = -2(3+

Since [7,25]

we have

0ι,z = ̂ [

as

= -2(d+

f J] = TTA.Z θλ,z +

^J] . (4.11)

(4.12)

(4.13)

- φ2_))) .

We prove that

(ξλ,z\Wλ,zθλ,z}λ,z > Q and > 0

(4.14)

(4.15)
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in Appendix B. Using (4.8), we have

A. Klein

zUz - ^(ξλ,z\^z

lξλ,z)λ,z (4.16)

< fa, WMte, (4.i7)

since (ξλ,z | Wr£ ξλ,z)λ,z > 0 by (4.1). Similarly,

(θλ,z I "Mr** θλ,z)λ,z = (θλ,z 1 1Γ^ θλ,z)λ,z - ^(θλ,z IT*} ξλ,z}λ,z (4.18)

< (θλ,z ^r

λ,zθλ,z)λ,z, (4.19)

since (θλ,z \ Ofr£ ξλ,z)λ,z > 0 by (4.15) and (4.16). Thus (iv) is proven. D

Lemma 4.2. Let λ e IR, z = E + iη with E e R an d η > 0. 77ze«

4η I6η2

r=0

Proof. Using (4.8), we have

f>2 (6,z I ̂ ;z αZ)A,Z

(4.20)

(4.21)

. (4.22)

Since 1̂ [Z is a compact operator and (ξ^z \ i^r

λzθ^z)^z is not constant and has a
limit as r — > oo by (4.9), we can apply Theorem C.I to conclude that (ξχίZ

θλ,z)λ,z — * 0 exponentially fast, so we have

'

K

r=0
(4.23)

Repeating the procedure, we get

(4.24)

- (2R+

(4.25)

As before, we use (4.10), the compactness of W\z and Theorem C.I to let R — > oo
in (4.25). Combining the resulting expression with (4.25) we get (4.20). D

We now need the following extensions of (4.8).
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Lemma 4.3. Let λ e IR, z = E + iη with E e 1R and η > 0. Then for any r =
1,2,... we have

(4.26)

and

(θί* = (θλ,z

4η

«2 r
(4.27)

Proof. Equation (4.26) follows immediately from (4.28) by induction. Using (4.26)
twice, we get

= ί^z I θλ,2)λ,z - •£ r (ξλ,z I θλ,z)λ,z
A

so (4.27) follows. D

Lemma 4.4. Let λ G IR, z = £ + wy wzY/z

u=\

-ΣΣ
2 «=lί=l

,z , (4.28)

IR > 0. Then

K\K
(4.29)

Proof. From (4.27) and (4.15) we have

^Σ
r=\

θλ,z)λ,z-^r(ξλ,z θλ.

K

,z I θλ,z)λ,z

(4.30)

(4.31)

(4.32)
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where
_K(θλ,z\θλ,z)λ

λ'Z~ >u)>u

with x V y the maximum of x and y and [*] the largest integer ^ c.
Equation (4.29) now follows from (4.20) and (4.32). D

We are ready to prove Theorem 2.2. If \E\ < \fK, (3.4) gives

(4.34)

and

(ξo,E\ξo,E)o,E = |G0(0,0;£)|2 = + ** ^ > 4K . (4.35)

Thus

(ξo,E\θ0,E)0,E = J^J*^ > 0 (4.36)

and

\&(K — F2Λ
> 0. (4.37)

We now use Theorem 3.1, for each E such that \E\ < ^fκ we can pick
λβ > 0 and εE > 0 so the map (λ9E'9η) —» ξ^E'+ίη £ ^oo has a continuous ex-
tension to (—A£,A£) x (E — £E>E + £E) x [0,cx)) satisfying (3.10). It follows that
the map (λ9E'9η) —> θ^Et+iη G f̂ also has a continuous extension to (—λβ,λ E ) x
(E — &E)E-\- εE) x [0,oo) and (4.7) holds. In addition, the complex valued maps
(λ,E',η)^ (ζλ,E'+iη\θλ,E'+iη}λ,E'+iη and (λ,E',η)-* (θλ^Eι+ίη\θλ^+ίη)λ^+iη have
continuous extensions to (—λ E ,λ E ) x (E — εE,E + ε£) x [0,oo) such that

(ξίE'+iη\θίE'+iη)λ,E'+iη > 0 and (θλ^+iη \θ λ,E>+iη] λ,E>+iη > 0, (4.38)

if λβ > 0 and ε^ > 0 were chosen suflSciently small.
Theorem 2.2 now follows from (4.29). D

A. Time Evolution and Green's Functions

In this appendix we prove some useful facts. We consider the Hamiltonian

Hλ = \Δ + V on/ 2 (IL), (A.I)

where V is a fixed potential; we define r2(t) as in (1.4).
We start with a result of Simon [35].

Lemma A.I. For any t E IR we have

r2(0 ^ \\\A\\2 t2 . (A.2)
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Proof. Let |;c| denote also the operator multiplication by x\. We have

Using the Fundamental Theorem of Calculus we get

< -Δ

765

(A.3)

(A.4)

D

The next well known lemma gives the Laplace transform of r2(t) in terms of
the Green's function G(x,y,z)= (δX9(H -z)~λδy} (e.g., [14,28]).

Lemma A.2. For any η > 0 we have

00 1 00 f

/e-" ί r 2 (OΛ=z L / Σ
0 2π-oo UeiL

Proof. By the spectral theorem,

eiL
dE . (A.5)

(A.6)
o

Taking matrix elements of both sides and applying PlanchereΓs Theorem we get

|2

o
(A.7)

The lemma follows. D

From (A.7) we obtain

Combining Lemmas A.I and A.2 we get

oo

/
— oc

This last estimate should be compared with

2π

Σ W 2

sup
2 4

which follows from Lemma A.I and the inequality

,2

Σ

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)
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B. The Supersymmetric Replica Trick

In this appendix we derive (4.1) and (4.15), using the supersymmetric replica trick
(see [18,24,31]).

Let A be a finite subset of B, we will use H^A to denote the operator Hχ
restricted to 12(A) with Dirichlet boundary conditions. The corresponding Green's
function is

and z = E + iη with E <E IR, η > 0 . (B.I)

The supersymmetric replica trick (see [18]) says that if x\9x2 G Λ9 then for all z G C
with η = Imz > 0, we have

( ϊ

where Φ(x) — (φ(x)9 ψ(x\ Ψ(χ)) with φ(x) G IR2 and ψ(x)9 ψ(x) anticommuting
"variables" (i.e., elements of a Grassmann algebra),

Φ(x) Φ(y) — φ(x) φ(y) + ^(ψ(x)Ψ(y) + Ψ(y)ΨW)

and
r̂ l - 9DΛΦ = Π rfφ(jc) with JΦ( c) = -d\l/(x)d\l/(x)dzφ(x) .

To compute functions of ^, ψ we expand in a power series that terminates after a
finite number of terms due to the anticommutativity. The linear functional denoted
by integration against dψ(x)dψ(x) is defined by

We will use the (bad, but convenient) notation Φ(x}2 — Φ(x) Φ(x) and φ(x)2 =
φ(x) φ(x). We will also denote a generic Φ(x) = (φ(x)9ψ(x)9ψ(x)) by Φ =
(φ9ι//9φ). Notice that if /: [0,oo) —> (C is continuously differentiable, then /(Φ2)

The lattice IB/ will consist of all sites in IB whose distance from the fixed origin

0 is less than or equal to /; similarly Ώ>fM, B^} will denote all sites in B(*W, B(*},
respectively, whose distance from x is less than or equal to /. (For convenience we
also allow / = oo, in which case it may be omitted from the notation.) We will

write Hλj, / / / and H for Hλ^r Hχ ^(x\y} and Hχ B(X), respectively. Similarly, we

will use Gv(x9y;z) for G^fay z) and GA,/(z), cyz)9 C / ( z ) for
G. m(X\y)(x,x',z)9 G. (X)(x,x\z\ respectively. We have (see [3, Proposition 1.2])

λ, IB, Λ, JD,

lim GA /(*, 3^;z) = GA(Λ:, j z) for any x, y G B, E G JR and η > 0 , (B.4)
) 00

with similar limits for GλJ(z\ G%\y\z) and G^(z) .
We now fix Λ: G B and set r — \x\ = J(%, 0). Let Jto,jcι,...,jc r be the shortest

path from 0 to x9 i.e., XQ — 0, ;cr = x and d(xn9xn+\ ) = 1 for « = 0, 1, . . . ,r — 1,
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with xnή=xnf for nφnf. For each n — 0, l,...,r — 1, let Jn = {1,...,^ — 1} for n =

l,...,r- 1 and Jn = {0,1,...,K- 1} for n = 0,r; we write {jtj^ y e Jn} for the
collection of nearest neighbors sites to xn which are not in the path jto,*i,...,Jt r.
By IBXj/ we denote the lattice consisting of all sites in IB whose distance from the
path co,*ι,...,x r is at most /; notice that as a set

We write T^,*,/ and G^xj(Q,x;z) for //^B^/ and Gχ&xJ(Q,x\z\ respectively. As in
(B.4), we have

lim G^/(0,x;z) - GA(0,x;z) . (B.5)

(B.6)

If / < oo are finite and Imz > 0, (B.2) gives

"Π Q-iΦ^'φ^A ! f[ Ξn\DBχlΦ ,
Ln=0 J U=0 J

where

exp< -
j€Jn

By an explicit computation,

/exp j - / ( Φ(xn)

= exp

Thus

where

Σ

xωl

Π ̂n=0

=o

«=0

IBί&M
Φ

(B.8)

(B.9)

(B.10)
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We now let / — » oo, obtaining

GA(0,Jc;z) = i

(π r,
I n=Q

We can now integrate over the anticommuting variables, getting

/ι=0

χ
n=0

n==0 Δli

Ί r

Tn(φ(xn)
2)\ I\d2φ(xn).

{ n=Q ) n=Q

Thus

|G;(0,Jt;z)|2 = — f V f Q-i(<p+(χn) <p+(χ,,+})-<p-(χn) <P-(χH+\))
K n=Q (^Tr)

x Π Γn(φ+(xn)
2,φ^(Xn)

2) Π d2φ+(Xn)d2φ^(xn), (B.13)
«=0 Λ=0

where
Γ^.φi) = Ύn(ψ2

+) rn(φ2_) . (B.14)

Since the {F( c); c G IB} are independent random variables, we have

;z)|2)- -ί f2- -
π2

 Π=0 (2π)2

n=0

with

where |/Λ| = A" — 1 if w = 1, . . . ,r — 1 and |Λ| = K for w = 0,r, where ξ^z is de-
fined in (3.1).

A moment of reflexion now reveals that (4.1) is simply an elegant (and useful)
way of rewriting (B.15). Moreover, we have from (3.1) and (4.7) that

θλ,2 = E (z) exp -(G(z)φl - G φ 2 . (B.17)

Proceeding as in the derivation of (B.I 5), we get

and

proving (4.15).
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C. Some Spectral Analysis

Let 9C be a Banach space. A bounded linear operator A on Sf will be said to be
of type K if A has discrete spectrum outside some closed set contained in the open
unit disk in the complex plane, i.e., we have

σ(Λ) = ΛU{λι ,λ 2 , . . . ,Λ*} , (C.I)

where A C D = {z e <C; z| < 1} is closed in C and {λι9λ29...9λk} C C\D is a
finite collection of isolated eigenvalues with finite multiplicity. Powers of compact
operators and, more generally, Riesz operators are of type K.

Theorem C.I. Let A be a bounded linear operator of type K on the Banach space
% and let us fix x € 3f and I G #"*. We set

α(/ι) = l(Anx) for n = 1, 2, . . . . (C.2)

T/" α(«) is wo/ constant in n and lim^oo α(«) exists in (C, £/*£« α(w) — > 0 exponen-
tially fast as n — > ex), z.e., ί/zere ex/ sf C < oo αwd 7 > 0 such that

|α(/ι)| ^ Ce-yΛ /or all n = 1,2,... . (C.3)

Proo/ By redefining /I we can assume |λ/| ^ 1 in (C.I) for all ί= 1,2,..., A:. It
follows from (C.I) that (see [17, Sect. III.6])

Λ = Λ + Σ(Λ Λ + A ) , (C.4)
z=l

where P and PI9 A, z = 1,2,..., &, are bounded linear operators on SC such that:

(i)
PiPj = δijPi for all ij = 1 , 2, . . . , k . (C.5 )

(ii) For each i = 1, 2, . . . , &,

A (C.6)

and
Z)f'' = 0 for some positive integer A/ . (C.7)

(iii)
/I (C.8)

and
P/Λ - RPi = 0 for each i = 1, 2, . . . , k . (C.9)

It follows that

A" = Rn + Σ (A/Λ + A)" for all n - 1, 2, . . . . (C.10)
z=l

Since the spectral radius of 7? is < 1, l(Rnx) can be bounded as in (C.3). Thus
it suffices to consider the case when R = 0, in which case we will show that α(w)
does not have a limit in C as n — > oo, unless it is constant in n.
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From (C.6) and (C.7) we have

(λfi i + A-)" = X}Pi + Σ ("
s=l

for any n ^ ht — 1. It then follows that

/((ΛΛ+A)V) = Σ (
5=0 \S

for some complex numbers a^ s = 0, 1, . . . , ht — 1. If they are not all zero, we can
choose s/ E {0, 1, . . . , A; — 1} such that

> + A)"*) =
\si

for some complex numbers 6 / Φ O and /?/(«) with lim,,-^ βi(n) = 0.
Thus, if Λ = 0 and α(w) φ 0, we have, for all n ^ sup/=1>2 ^(A/ — 1), that

for some r ^ 1, nonnegative integer s, positive integer ί, distinct θ} E [0, 1), y =
1,2,...,*, and jδ(«) with lim^oo β(n) = 0. If ί = 1, we have limw_»oo α(«) = oo,
unless r = 1 and s = 0, in which case we also have β(n) = 0, so α(«) is either
constant or has no limit as n — > oo. If t > 1, we use Lemma C.2 below to con-
clude that limsup^^^ |α(«)| = oo, unless r = 1 and s = 0, in which case |α(w)| is
bounded but α(w) has no limit as n — > oo. D

Lemma C.2. Lei 0, <G [0,1), j = 1,2,...,* fo? distinct (t > 1) αm/c/, 7 = 1,2,...,*

6e nonzero complex numbers. Then Γ(n) = Σy=ι CjQl2πθJn has no limit as n — > oo.

If Θ7 E [0, 1), y = 1,2, ...,* are all rationals, then the range of Γ(n) consists
of a finite number (at least 2, since * > 1 ) of values, each taken infinitely many
titnes. It thus suffices to prove that if fly E [0, 1), y' = 1,2,...,* are all irrationals,
then Γ(n) has an infinite number of distinct limit points as n —> oo.

So suppose θj G [0, 1), j = 1,2, . . . ,* are all irrationals. Relabeling the indices
if necessary, we can find u G {1,2,...,*} such that I9θ\,θ2,...,θu are linearly in-
dependent over the integers, and there exist linear functions fj on ]R(M+1) with
integer coefficients, j = u + 1, u + 2, . . . , *, such that θj = f j ( l , 0ι, Θ2> > θu) for j =
u + 1, w + 2, ...,*. We define the complex valued function F on the w-dimensional
torus TM by

F ( q > i 9 ( p 2 , . . . , ( p u ) = Y,CjQl2nφJ with φ/ = Jj(l,(pi,(p29--.,<pu)
7=1

for y = M + l , M + 2,...,* .

We also let τ be the rotation on T" given by

τ(φι, 92, > φ«) = (φi + #1 > <P2 + 02, - , <P« + 0«) ,
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all sums being modi. As the Jjy j = u + l,u + 2,. ..,£, are linear functions, we
have

Γ(n) = F(τ?(0909...,0)).

Since I , θ ι , θ 2 , .9θu are linearly independent over the integers, τ is a minimal
ergodic transformation on TM, and hence the orbit of any point in TM visits each
neighborhood infinitely many times. F being continuous, it follows that any point
on its range is a limit point for Γ(n) as n —»• oo. But the range of F is a connected
compact subset of C, which is clearly not a single point, and hence has infinite
cardinality. D

D. Some Elementary Probability

Lemma D.I. Let Xn be a sequence of random variables such that:

1 . With probability one

O^Xn^M<oc for all n. (D.I)

2.
limsupE(^) > 0. (D.2)

Then

Proof. By passing to a subsequence we assume TE(Xn) > a for all n and some
a > 0. We have

F ( limsupΛ; > 0 J > 0 . (D.3)
V «-κx> /

a < E (xn\Xn > ^) + E (xn;Xn g |) (D.4)

^ MF (Xn > I) + ̂ F (jς, ^ I) (D.5)

so

We now define the events

An = \Xn > 1

and
A = Iimsupv4w .

n— >oo

It now follows from (D.7) that

V(A) ^ limsupF(Λ) ^ — > 0 . (D.8)
— a

Since

A c < limsupJiζ, > 0 > ,
t n-+oo )

the lemma is proven. D
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