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Abstract: The new discrete Edwards models in this paper are defined in terms of the
so-called restricted intersection local times of the lattice random walk in two dimen-
sions. We study the asymptotic behaviours of these new discrete Edwards models in
the superrenormalizable cases. In particular, by approximating these models we can
construct new polymer measures in two dimensions which are different from the
original polymer measures obtained by approximating the original discrete Edwards
models. The new discrete Edwards models can be thought of as zero-component
lattice 04-fields with different cutoffs in the free and interacting parts.

1. Introduction

Let {Bt}t^o be the Brownian motion in Rd. The so-called polymer measure (or
Edwards model) is formally defined by

/ l l \

vλ(dω) = N~ι exp l-λ j J δ(Bs - Bt)dsdt μ(dω) , (1.1)
V o o /

where λ ^ 0 is the coupling constant, Nχ is the normalization constant and μ is
the Wiener measure. There has been a lot of works on the existence of the poly-
mer measure vχ. For instance, Varadhan (see Appendix to [28]) first proved the
existence of vχ for d — 2, and Stoll [26] then used the nonstandard approach to
give a proof for the existence of the polymer measure vχ for d = 2. For d — 3 and
small enough λ > 0, Westwater [29] first constructed the polymer measure vχ. At
the same time as discussing the Borel summability, Westwater [30] proved that the
polymer measure vχ is also well defined for d = 3 and all λ e [0, oo). Recently,
Bolthausen [7] used an alternative approach with a simple proof, inspired by the
approaches presented in [10] and [13], to construct the polymer measure vχ for
d = 3 and small enough λ > 0. In the following considerations we always assume
that vχ for d — 3 is the polymer measure defined by Bolthausen. For d = 4, it
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was shown in [3] that a measure related to vχ exists if the coupling constant λ is
non-positive and infinitesimal.

Let {Xn}n^o be the simple random walk in Zd on the probability space
(Ω, J%P), and

Tm,n=2.n^l2i: t δ(Xi9Xj).
i=\ j=i+m

As for vχ we can formally define a probability measure μmn λ on the space

(1.2)

where E is the expectation with respect to P (for the precise definition of μm^χ,
we refer to [2]). We shall call the measure μ\in,λ "(original) discrete Edwards
model" (see [20 or 24]). For mn > 1, the measure μmn,n,λ n a s been called a
modified discrete Edwards model in [2]. Heuristically, the intersection local time
f0 Jo δ(Bs - Bt)dsdt can be approximated by T^n (see [20 or 24]). Hence, it is
strongly believed that the measure vχ can be approximated by μι>n,λ Indeed, Stoll
[26] already proved this assertion for d = 2. In fact, it was shown in [2] that Vχ
can also be approximated by μmmn,λ ford = 2 if lim^oo mnjn — 0. Moreover, [2]
shows that vχ foτd = 3 can also be approximated by μmn,n,λ if lim^^oo njmn = oo.
By means of this approximation, the polymer measure vχ for d = 3 and arbi-
trary 1 G [0, oo) was constructed in [2] by using a similar approach as in [7].
For d = 4, some other kinds of discrete models were discussed (see e.g. [4,6,11
and 19]).

For the case of a non-positive coupling constant λ, there has been also a lot
of work on the model μ\in,λ

 o r some other modified models (see e.g. [3,8,9,14]).
In [22], Le Gall obtained some estimates on the exponential moments for the renor-
malized self-intersection local time of planar Brownian motion.

We remark that the measure μm,n,χ is only related to the intersections of the
random walk {Xn} with long ranges if m is "not too small compared to nΓ As
mentioned before, however, we know that the measure vχ for d — 2 and 3 can
be approximated by μmn,n,λ if win is "not too small compared to nΓ From this
point of view we can say that the measure v̂  is only related to the intersec-
tions of Brownian motion {Bt} with long ranges. In this sense, the intersections
of Brownian motion within a short range are ignored in the construction of the
polymer measure v̂  which were considered in the literature mentioned before.
In this paper we will propose new discrete Edwards models defined in terms of
the so-called restricted intersection local time of the simple random walk in two
dimensions. These new discrete Edwards models are indeed related to the inter-
sections of the random walk within short ranges. We will study the asymptotic
behaviours of these new models and define the new polymer measures as their
limits.

By the random walk representation of the lattice 04-field (see [3,12,15,17,28])
we know that there is a tight connection between the intersections of random
walks (or Brownian motions) and the </>4-field, a quantum field model. In fact,
the Edwards model can be formally thought of as the zero-component φ4-field (see
e.g. [6,10,16]). The discrete Edwards model μ\>n,λ (see (1.2)), which is defined
in terms of the so-called intersection local time of the lattice random walk, can be
thought of as the zero-component lattice φ4 -field with the same cutoff in the free
and interacting parts. However, the new discrete Edwards model given in this paper
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(see Sect. 2 below), which is defined in terms of the restricted intersection local time
of a lattice random walk, can be thought of as a zero-component lattice φ4 -field
with different cutoffs in the free and interacting parts. We will be especially inter-
ested in the two dimensional case, in which the new polymer measures constructed
in the present paper can be proved to be different from the original polymer mea-
sures in two dimensions defined by Varadhan in [28] (or by Stoll in [26]). Using
this fact one could hopefully obtain different continuum limits for a φ\-field by
approximating the lattice φ\ -field with different cutoffs in the free and interacting
parts.

The remainder of this paper is organized as follows: In the next section, we
introduce our new discrete Edwards models and then state the main results. In
Sect. 3, we derive a reasonable estimate on the normalization constant with small
coupling constants. In Sect. 4 we derive a reasonable estimate on the normalization
constant for all positive and finite coupling constants. From the discussion in Sect. 5
we can see that the new measures in many cases (e.g. lim^^oo n~x m^Qogrif — oo
and lim^oo n~ιm2

n(\ogn)512 — 0)) are different from the original polymer measure
vχ in two dimensions. In Sect. 6, we prove that the polymer measure constructed in
this paper and the original one (i.e. vχ) are identical, if the restricted set (i.e. Z^n

below) is rather big (e.g. \imn->00n~xm1

n(\ognγ = 0). In the Appendix we use the
random walk representation to derive a formal connection between the new models
and the lattice φ4 -fields with different cutoffs in the free and interacting parts, which
also explains the motivation for the present study.

2. Models and Main Results

As in Sect. 1, we let {Xn}n^o be the simple random walk in Zd on a probability
space (Ω,#\P) . Let

J 2 n~xm2 ΣΊ=χ Σ ; Wi I{Xi=Xj^γ d = 2,

I "» — 1/2 3 v^« v^fl T J i

[ 2 n ^ m 3 Σ,=i Σ,=, +i W , e 4 } > d = 3 >

where

Zd

m = {mx : xβZd}cZd .

It is clear that ,SΊ}W = T\tn, where T\iΆ was defined in Sect. 1. As in [5], the
random variable Sm,n (for m > 1) is called the intersection local time restricted
to the subset Z^. Some renormalization results for the restricted intersection lo-
cal time S(mn,n) were already obtained in [5], In particular, for d — 2 we ob-
tain a renormalization result for Smrltn of the type of those first obtained by Yor
in [31] for the normalized intersection local time of Brownian motion in R3, if
lmifl^oo n~ιm2

1(\ognγ = oo and lim^^oo n~ιm2

ι(logn)2 — 0. This renormalization
result is different from that corresponding to the usual intersection local time of the
simple random walk in Z 2 (see e.g. [23,25]). This gives the possibility to construct
different polymer measures in two dimensions by approximation from these discrete
Edwards models defined in terms of the random variable Smmn. The main aim of this
paper is in fact to construct rigorously such new polymer measures in two dimen-
sions. We now define a formal probability measure on C0([0,1] —>• Rd) in terms of
the restricted intersection local time Sm,n. From now on, we always assume d — 2
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and limswpn^oon'1 ml(logn)5/2 < oo. Let

2
β= - logw,

π

n k-l j \
y = γγι 2_^ 2-^ zL-/ 2-j pi\y)Pj\ —i\y)Pk—j] (y) 5

where pι(y) = Po(Xι — y), and {Px} is the probability law of the random walk
{Xn}. Let X{n) e C0([0,1] -> i?2) be defined as follows:

a n d X ^ is linear on [(/ — l)n~ι

9in~ι] for / = 1,...,«. For 0 ^ ίi < < tk ^ 1
and A\,...Ak G &(R2), we set

, (2.1)

where .£" is the expectation with respect to P, and

fc=l

One can easily extend the cylinder measure (2.1) to a probability measure vWjΠ^ on
Co([0,1] —> i?2), which we write for simplicity as

Vm,n,λ(dω) = (Eexp(-Sm,n(λ))Γι exp(-Sm,n(λ))P(dω). (2.2)

It is clear that the measures v\,n,λ and μ\,n,λ coincide (both of them are identical
to the original discrete Edwards model). For m > 1, the measure vm^χ defines
a new discrete Edwards model, which is different from the model μm,n,λ defined
by (1.2). In the present paper, we first study the asymptotic behaviour of vmnifljχ.
One of the main results is as follows.

Theorem 2.1. 7/>limsupΠ_^00m
2«~1(logτz)5//2 = 0, then {vmn,n,λ\n^\ is tight for all

λ G [0, oo). Moreover, all limit measures of {vmn,n,λ\ and the original polymer
measure vχ in two dimensions are different for λ G (0, oo), provided limw_>oo n~λm2

n

(log«)3 = oo.

Remark. It seems possible that all limiting measures of {vmntntχ} are singu-
lar with respect to the Wiener measure μ on Co([0,1] —> R2) for 1 G (0, oo), if
lim^oo n~ιml(\ogn)5/2 = 0 and lim^oo n~ιmj;(\ognγ = oo.

Similarly as for vm n χ(dω) we can define new probability measures on C0([0,1]
2

= (Eexp(-Sm,n(λ))Γl
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(the Smtn being defined at the beginning of this section) and

v"m,n,λ(dω) = (Eexp(-Sm,n(λ))Γι exp(-Sm,n(λ))P(dω),

where

Sm>n(λ) = λSm,n - 2λn-χm2 £
k—\

We have the following results for {v'mnλ} and {v"m^χ\.

Theorem 2.2. (i) If l imsuρn_ o o n-χm2

n(\ognγ/\og\ogn = 0, then {v"mn,n,λ}n^\
is tight for all λ ^ 0, and {vmn^n,λ\ and {v"mn,n,λ\ have the same asymptotic
behaviour.

(ii) 7 / Ί i m s u p ^ ^ m2

nn-1 (\ognf = 0, then

Vmn,n,λ, vmn,n,λ> V"mn,n,λ, ~> Vλ, Π -^ OO

/or α// A G [0, oo), where Q} represents the weak convergence and \χ is the original
polymer measure in two dimensions defined in Sect. 1.

Remark. We do not know whether or not {v^ n λ} is still tight for some λ > 0, if

lim^oo n~ιnξ(\ognγ = oo.

3. On the Small Coupling Constants

As in [2], we first give a reasonable estimate on the normalization constant for
small coupling constants. The m&in result in this section is as follows.

Proposition 3.1. If l i m s u p ^ ^ m2

nn~x(logn)5/1 < oo, then there are constants
λ0 > 0, c\ e (0,1) such that

cx S Eexp(-Smn,n(λ)) S c~\ Vλ e [(Uo] .

In particular, if l imsup^^^ m2n~ι(\ognγ < oo, then there is a constant ci G
(0,oo) such that y = C2« + O(\) for i = 1,...,«.

The idea to prove Proposition 3.1 is basically from the proof of [2, Theorem 3.1].
However, some arguments here are different from those given in the proof of
[2, Theorem 3.1]. We prefer to give here a slightly detailed proof of Proposition 3.1.
From the proof given below one can also see why we have to assume in
Proposition 3.1 that

limsup m2

nn~x(logn)5/1 < oo .
n—>oo

As in [2], we set

d/2

pn(x) (=: p(n,x)) = 2 ( ^ - ) exp ( -
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For m = mn, we set
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7=1

yj(=:y(m,n)) = γ,

i n J2

ιJι;i2j2 = λm2n-λ Σ Σ Σ

l I

Σ

/
Σ
i=k

i=k
) I

{Xiezl}

gf'\x) = fi fe).
For notational convenience, we will henceforth drop m and λ from the above nota-
tions. We further set

k=l
exp(-Λ+i,/) λn

δ(Xι,x)

i

-Σ - exp(-Λ,/

Then we have

Let

f = λ2n-2m2

Σ Pk(y)gj-k(O)gι-j{x - y)

-y) ,

\7kPk(y)gι-k(χ - y)

Σ Σ Σ rn2 Σ Pk{y)Qi-k{z - y)
j\=k+\ί=k+\j=jχ + \ z e Z l

x gh-i(z - y)gj-jl(z - y)gι-j(χ - z)
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A™ = λn-χm2 Σ Σ Σ W{xk=xj=y}

x exp(-Λ+ij -

γ: Σ Σ Σ Σ E[I{Xk=x y}
k=\jλ=k+\ i=k+\j=h+\ yfZeZ2

j -Jj+\,ι)

In general, by definition we know that gι(x) + gk,k+ι-\(x) for A: ̂  2 and x φ
However, we can see that the conditional distribution of Jk,k+ι-ι given {Xk-\ G
is the same as that oϊJ\j. Using this fact, as in [2 or 7] we can show that

™ +A™ Z sdψ ± Aψ +Af)

We introduce the following notation:

v , x \βk(χ)- P(Kχ)\
K(m,n) = sup sup J

V max
SiSn ((lθg(ϊ + I))" 1/ 2 lθg(/l/ϊ + 1)) V 1 '

where £?(k) = \ log(n/k + 1) + (log«)~1/2. For notational convenience, we write
shortly K for K(m,n). Let </>(JC) be a generic polynomial in x with nonnegative
coefficients, which might be different from line to line. We begin with several
lemmas.

Lemma 3.2. There is a constant c^ G (0, oo) such that

m2 Σ P4k(y)P4i(* -y)^cJ\+ m2^Λ p(4(k + /),*)

for all k,l ^ 1 and x G R2.

Proof It is easy to show that

,|2
\x ~

5 τ
\y-kx/(k+l)\^m/2

xl2
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{k + l)\y\2 \x\2

Iβkl 4(k + .

which implies the desired result. D

Lemma 3.3. The following holds for all x G Z 2 :

\A?\ ύ

Proof. As in [2] we set

/ /

Σ 9j-k(0)(Pk(y) - Pj(y))gι-j(x - y)
2

i i ( i

I3=λn-ιm2Σ Σ Σ Pj-k(0)pj(y)9l-j(x - y)
\

- β k P k ( y ) g ι - k ( χ - y ) \ •

It is easy to show that

Λ(P=h+I2+h.
As in [5] we set for x = (x\9X2)9

Sn(x) = {y = (yuyi) e Z2 : Xi - m/2 ^ yt < Xi + m/2, i = 1,2} ,

and let η(x) be the point jμ in Z^ such that x G ̂ (.y) (this will be used in Sect. 6).
We first consider I\. By Lemma 3.2 we can show that |/i| is less than

S λφ{K)n-λm2 έ Σ Pj(y)gι-j(χ - yWogjT]/2 log(/i// + D) v l
2

v

1 ι -"•' lp(4l,x)
y=2 "
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^ λφ(K)(n-ιl\og(n/l+ l)(log(/+ 1))~1/2 + «~ V((log/)3 / 2

g λφ(K)(n-ιllog(n/l

if n~ιm2 ^ (9(l)(log«)-5/2.
By a similar argument as for I2 given in the proof of [2, Lemma 4.2] we can

show that

\I2\ ^ { 2 {

We finally consider 73. By the definition of βj we know that

|/31 g λn~λ Σ φ(K)log(n/j + \)m2 Σ PjMOi-j^ ~ y)
7=1

Thus, by the same argument as for I\ given before we can show that |73| is less
than

λn~ιφ(K) Σ I (1 + m2 1 ) \og(nlj + l)p(4l,x)

/ 1 9 /

^ ^ ( A j ί w - ^ 2 log(/ + l)(log(w// + 1) + loglog(/ + 1)) + - log(w// •

g A0(^)((log/i)-1/2 + l/nlog(n/l + l))j&(4/,jc),

if n~ιm2 ^ O(l)(log«)~5//2. Combining the above estimates we get the desired
result. D

Lemma 3.4. The following holds for all x G Z2 :

\A^\ ^ λ2φ(K)(n~ιl + (logn)~ι)p(4l,x).

Proof As in the proof of [2, Lemma 4.3] we set

1 ι h ι

Bι=λn Σ Σ Σ Σ m Σ Pk(y)(Pi-k(z - y)pjι-i(z - y)

x Pj-h(z - y) - Qi-k(z - y)gh-i(z - y)gJ-Jι(z - y))gM(x - z),

B2 = λ2n-2 έ ykm
2 Σ Λ(^to/-*(^ - y) - m4 Σ Σ Σ

Σ Pk(y)Pi-k(z - y)Pjλ -/0 - 7 ) ^ -yi (z - y)Qι-Aχ - z)
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Then, we have

and that \B\\ is less than
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A{2) =

λ2n~2φ(K) Σ Σ Σ Σ Σ
k=\jι=k+\i=k+\j=jι+l

-z)

Let

τ = (/ - 0" - 7 i

It is clear that σ ^ j — k.
By Lemma 3.2 we can show that

έ έ Σ έ ™4 Σ (iog«rl/2

~ z )

4 έ Σ Σ Σ (logn)"1/2

k=\jι=k+\ i=k+\j=jι+l

Σ Pk(y)τ~ι Σ
yezl zez2

m

- z)

S 0(i)n-2m2Σ Σ Σ Σ (iog«)~1/2 Σ Pk(y)

Σ (iogπ)-'/V

2 k + σ+l-j
2

ί 0(1) (^(lo&nΓl/2 + ~ n

^ O(l)(n-Ί + (log«Γ3/2)p(4/,x),

,x)

p(4l,x)

if n~ιm2 S O(l)(log«)~5//2, where we have used the basic inequality: xy ^
2 2
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Let Ϊ£(k) — | \og(n/k + 1 ) . As in the proof of [2, Lemma 4.2] we can show
that if a V b V c ^ 1,

«"2Σ Σ Σ Σ
k=\jχ=k+\ i=k+\j=j\ + l

i - k))a(&Ui ~ Of

- z)

i i h i
Y" Y" T ^
Z_-/ Z_-/ Z—/ =j\ +1

x τ ι (1 + w2 -

- P(4l,x)

l))2n"2/2log(n//

A: + σ + / - j

)(n~2l2(\ogn/l

+«"2m4(log(/ + l)γn-ιί\og(n/l + 1)) ^(4/,x)

^ O(l)(w"2/2(log(Λ//+ O + GogwΓ 1 )^/,^),

if n~ιm2 ^ O(l)(log«)~5/2. Combining the above estimates we can conclude that

Bλ\ S λ2φ(K)(n-χI + (lognyλ + «"2/2log(«// + l))p(4/,jc).

To consider 2?2, we set

/ Γ
Σ Pk(y)gι-k(χ- y)

1 h l

- Σ Σ Σ w Σ Pj(z)Pi-k(z- y)
Jι=M i=k+\j=jx+\ y,zezl

-j(χ - z)

4 Σ (Λ W -

x ^ _ (̂z - y)ph-i(z - y)Pj-Jι(z - y)gι-j{χ - z).

By the definition of y7 we know that

n-ιγj ^ O(l)n-ιm2(lognγ .

έ ΣΣ
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Thus, by Lemma 3.2 we can show that

Σ pΛy)gι-Λχ-y)

+λ2n~2 έ Σ Σ ί > 2 Σ Pi{y)ph-i{y)Pk-h(y)
j=3k=jjι=l i=l y

Pj(z)θι-j(x-z)

Γ I n k-\ h f
^ λ2φ(K)n~2 \m4(logn)3 + Σ Σ Σ Σ ^ r

L j=3 k=jJι = l i=l \ιUl ~ι

m2

^ λ2φ(K)((lognΓι+n-1l)p(4l,x),

if n-χm2 g O(l)( log«Γ 5 / 2 .
We now consider Dj. It is easy to show that

λ2n-2Σ έ Σ Σ Σ QVOO
Λ Λ * l 2

x pi-k(z - y)pJι-i(z - y)pj-h(z - y)p(4(l-j),x - z)

^ λ2n-2l2p(4l,x).

Then, we can show that the main term in the expression of D2 is the following:

2 Σ Σ Σ Σ
k=lj\=k+li=k+lj=jι + l

x Pi-k

which is denoted by D'2. In fact, we can show that

D'2 S O(l)λ2n~2rn4(logn)4

where

Dϊ = λ2n-2Σ Σ Σ Σ ™4 Σ
7=71+1

Let us first recall an estimate on pn(x)- By [20, Proposition 1.2.5] we know that
for any given α G (1/2, 2/3),

if |JC| ^ «α and />«(x) > 0. Using this estimate we can show that

\Dξ\ ύ λ2φ(K)D2 + λ2φ(K)(logn)-ιp(4l,x),
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where

D2 = n-2Σ Σ Σ Σm4 Σ \(Pj(z)-pk(z))\
k = \ j = k + 2 j λ = k + \ i = k + \ z G 2 }

By computation we know that

/ u j-\ h
n~2m2Σ Σ Σ Σ

k=\ jλ=

) , (3.1)

if n~λm2 ^ O(l)(log«)~5 / 2. Moreover, we can show that

2 1/2 I j - \ h 12 / j

T T T

) , (3.2)

if n-λm2 S O(l)(log«)- 5 / 2. We remark that

\ p j ( z ) - p k ( z ) \ ^ l l ^

ifj>k^ j/2. Then, using (3.1) and (3.2) we can show that

\D2\ S φ(K)λ2(n~2l2 + (logn)-ι)p(4hx).

Combining the above estimates we can conclude that

\D2\ ύ λ2φ(K)(n-2l2 + (lognΓι)p(4l,x).

The proof of Lemma 3.4 is then complete. D

We now consider A) \ We can show that the first term on the right-hand side

^p is bounded in absolute value by

Σ Σ E \l{xk=Xi=y} exp(-Λ+ u - Jj+ι,ι)

j j I I

x Σ Σ Σ Σ V{xiλ=xhezl,xi2=xhezl}

ez*} )j
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^ λ W Σ Σ Σ Σ Σ Σ Σ{Pk{y)9h-k{z\-y)
k \ k \ l k\ i i j j \ j jy x 2 l h=k+\ ii=i\ j\=j

x gi2_iχ(z2 - z\ )gj-i2(y-z2)gh-j{zx - y)gh-h(z2 - zλ )gι_h(z - z2)

+ Pk{y)Qiλ-k{z\ ~ y)gi2-iι(z2 - zλ)gj_i2(y - z2)

x gh-j{z2 - y)gh-h{zx - z2)gι-h(x - zλ)).

2 Σf^i Σ^=i Σ^=iFrom this we see that the quantity of the form of n~ιm2 Σ f ^ Σ ^ Σ ^ 3

x pt2(0)pt3(0), which has a bad estimate (see the arguments given in [5, Sect. 3]),
does not appear on the right-hand side of the above estimate. Thus, using the
arguments given before we can show that the first term on the right-hand side of
A) can be bounded in absolute value by:

λ3φ(K)(n-2l2 + (logn)-ι)p(419x).

By the same reason as before we can show that the second term on the right-hand

side of Λ^ p is bounded in absolute value by:

which proves that

\A(p\ S (λ3 + λ4)φ(K)(n-2l2 + (lognyι)p(4l,x).

We now consider s/f*. Let

ξι =

ξ2 = λn~ι Σ m2 Σ hxk=xj=y} •
;=*+> yezl

It is clear that
|ξ,| ^ O(l)(lognΓ3'2 ,

\ίn-χm2 S O(l)(logn)-5/2, and

j / P = Σ £ e x p ( - Λ + i , , ) ( l - e x p ( - £ 2 + ξλ) - (ξ2 - ξχ))δ{X,,x)
k=\

^ Σ £exp(-Λ+u)(l - exp(^)(l - ξ2) ~ (6 - ξι))δ(Xhx)
k=\

^ Σ ^exp(-Λ+1,/)(l - (1 + ξι + 0{ξ\))(l - ξ2) - (ξ2 - ξi))δ(Xhx)
k=\

= Σ £exp(-Λ+ u)(^ 2 + 0{\)ξ\ + O(\)ξ\ξ2)δ{Xux).
k=\

Similarly, we can show that

k=\
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By computation we can easily show that

ΣEexp(-Jk+u)ξ2δ(Xhx) g φ(K) f-( logf lΓ 1 / 2 + ( log^)" 2 ) p(4l,x)
k=\ \ n J

ΣEexp(-Jk+ltl)ξ2δ(Xl9x) ^ λφ(K)((\ognyι/2 + - log(/ι//

and

Σ^exp(-Λ+i,/)ί2^/^) ^ ^ 1 2 2

£=1

Using the above estimates we can show that

Proof of Proposition 3.1. Having the preparations given before, by a similar argu-
ment as in the proof of [2, Theorem 3.1] we can easily prove Proposition 3.1.

In fact, we need only to show that

Σ Σ Σ ^ 2 Σ
l=\k=\j=k+\ y e

-n~x Σ Σ Σ Pj(0)m

l=\k=Xj=\

S φ(K)(n-ιm2(log(i+l))2log(n/i+\)+l). (3.3)

Indeed, we can show that the left-hand side of (3.3) is less than

n-ιm2φ(K)ΣΣ Σ Pk(y)gι(y) Σ PjW

2

Γ /- *~k m2 n ι ι~k 1 n

S φ(K)(n-ιm2(\og(i + I)) 2 log(/i// + 1) + 1),

which proves (3.3). Since n~ιm2 ^ O(l)(log«)~5 / 2, we know by (3.3) that

K(m,n) ^ λφ(K(m,n)),

and so there are constants c^ G (0, oo) and λ§ > 0 such that

A:(W,/I) ^ c4A, Vλe[θ,λo].

In other words, we have

\gk(x) - p(k,x)\ S O(\)λp(4Kx\ k G [l,/i], Vx e Z 2 , l G [0, Ao] .

This implies the desired result by choosing a sufficient small λo > 0. D
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Remark 3.5. From the proof of Proposition 3.1 given above one can see that the
constant λ0 G (0, oc) depends on the factor lim supn_+ oon~ιm2{logn)512. However,
one can also see that the constant λo given in Proposition 3.1 is independent of m
and n, if \imsupn^00n~ιm2(logn)5/2 = 0.

4. On the Large Coupling Constants

In this section we always assume limn_^00«~1m2(log^)5/2 = 0. The main aim of
this section is to prove that the assertion given in Proposition 3.1 also holds for all
finite and positive coupling constants, i.e.

Proposition 4.1. For any given λ G (0,oo) there are constants c\,C2 G (0,oo) such
that

cx £Eexp(-SmH9n(λ)) S c2.

Remark that

Let

G(A)= JQχV(-J^λ)dP, WAcZ2.
A

Let Ex be the expectation with respect to Px. The next lemma plays a key role in
the proof of Proposition 4.1.

Lemma 4.2. There are constants c^^c^ G (0, oo) and XQ > 0 such that

£ x exp(- i" f )gc 3 , λε[O9λo], (4.1)

ExI{Xι=y} exp(-J" f) ύ O(\)p(c4l,y-xl VA G [0,4>], / ^ n/2 (4.2)

for all x j G Z2.

Proof. It was proved in the proof of Proposition 3.1 that (4.1) and (4.2) are correct
for x = 0. Without loss of generality, we may assume x G iSw(0)\{0}. Let

τ = inf{k ^ 0 : Xk G Z 2 } .

By the strong Markov property we can show that

= ExI{τ>ιXι=y} + ExI{τ=UXι=y} Qxp(-λβn~ιm2 + λ2n~2m2y)

+ Σ ExI{τ<Uτ=z}Ez(Qxp(-Jhι^τ)I{Xι_τ=y}). (4.3)

By Proposition 3.1 we know that there is a constant λo > 0 such that

-Ju-τ) ^
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if λ G [0,/ίo] and z e Z^. Using the last estimate and (4.3) we can easily show that
(4.2) is true.

We now prove (4.1). Without loss of generality, we may prove (4.1) only for
I — n. We first derive an estimate on the stopping time τ. For any x e Z2 we have

Let ln = mί{k ^ 1 : km2

n ^ T < (k + \)m2

n}. Then

( In kml

Π Π {Xί $zn

= EΛ

lχ-\

Π Π {Xi$Zln},PXι,(x>ml)\. (4.4)
k=\ i=(k-l)ml + l

By [21, Theorem 3.4] we can show that if y e 5^(0),

for some constant c5 G(0,oo). By the symmetry property of {Xn} we know
that

Px , (τ>m2

n) = Px 9 _.(χ , )(τ >/nj)

^ 1 -

By (4.4) we can show that

Px(τ > T) ^ (1 - csOogm,)-1)7" . (4.5)

By (4.5) we know that for any given M 2: 1 there is a constant M\ £ (0, oo) such
that

Pχ(τ > Tn) ^ exp(-Mlogn),

if Tn € [Mλm
2

n{\ogn)2,{Mx + I)m2

n(logn)2l
On the other hand, we can show that

k—\

Hence, there is a constant c6 G (0, oo) such that

E

From this we can see that there is a constant cη G (0, oo) such that

Eoexp U n " 1 ζβkm
21{Xk£zlιλ g exp(c7 log«), A e [0, Ao] (4.6)

We now prove that the following holds under the assumption |ΛΓ — jvj2 ^
" 2 :

ExI{Xn=y} exp(-J™f) ^ O( 1 )p(c4n, y-x). (4.7)
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Indeed, if \x — y\2 ̂  0(1 )n, by (4.3) and (4.5) we can easily show that the left-
hand side of (4.7) is less than

EχI{τ>n/2,Xn=y} β x p ( - J ^

exp(-2j"f) + O(l)ExI{τύn/2}p(4(n - τ\y -Xτ)

y-x)9 λe[0,λ0]

for some constant c8 G (0,oo). Hence (4.7) is true if |JC — y\2 S O(\)n. We now
assume |JC — y\2 ̂  Kn for some large K ^ 1. In this case, we know that the left-
hand side of (4.7) is less than

<9(l)exp(-c8(log«)3 / 2) + O(l)p(64n,x - y)

We need only to consider the last term on the right-hand side of the above estimate,
which is denoted by /. Indeed, we have

/ ^ 0{\)PιJ2{τ > Tn) + Ex[I{τύTn}I{\xτ.y\^

x EXτ ^ { y }

^ O(l)n-M/2 + O(ϊ)n-ιP0 ί max \Xt\ ̂  7|x - y\β
V 2 2

^ O(l)p(c\on,x - y),

for some constants cg,c\o G (0,oo), where 2 " 2 ^ (log«)1 / 2 and |x — jμ|2 ^

K g )
We now prove that (4.7) holds under the assumption: Kn(\ogn)χl2 ^ \x — y\2 ^

O(\)n(\ognγ12. Indeed, by an argument similar to the one given before we can
show that

/ S O(\)PιJ2(τ

x EXτ

S O(l)p(cnn,x-y)

for some constant c\\,cn G (0,oc). Hence, (4.7) is also true in this case. We now
prove that (4.7) holds under the assumption: \x — y\2 ̂  Kn(\ogn)3^2 for some large
K ^ 1. Indeed, by (4.6) and the Holder inequality we have

/ S O(\)Pι

x

/2(Xn = y)exp(cΊlogn) ^ O(\)p(cnn,x - y)

for some constant cπ G (0, oo).
Concluding the above estimates we obtain the desired result. D
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We now use Lemma 4.2 to prove the next two lemmas which will be used in
the proof of Proposition 4.1.

Lemma 4.3. Assume that limn^oomln'^ilogn)5^2 = 0.

(i) For any given λ G [0, oo) there are constants c\4,c\5 G (0,oo) such that

G{Xι = x)£ cupicishxX VxeZ\ l ^ n . (4.8)

(ii) For any given λ G [0, oo) there is a constant c\β G (0, oo) which is inde-
pendent of m and n such that

Eexp(-Jhn ) ^ ci6.

Proof, (i) By Proposition 3.1 we know that there is a constant λo > 0 such that

g,(x) £ O(l)p(4l,x), Vx e Z2, I ^ 1, λ G [0,λ0] •

By definition we can easily show that

J\,n ^ JlJ+J!+\,n, I E [l,/l] .

Thus, by Lemma 4.2 we can show that

G(Xι=x) ^ J exp(-J{J)I{Xι=x}exp(-Jι+hn)dP
Ω

,x), Vx G Z\λ G [0,A0] .

We now prove that (4.8) holds for λ G [O,22o] As in the proof of [2, Lemma 4.1]
we may prove (4.8) only for / = n. Without loss of generality, we may assume
n = 2*i and m = 2mK Then we have (see the proof of [2, Lemma 4.1])

ζ 4 7 4 7
yez2

^ 0{\)p{cλη2
n\x)

for some constant c\η G (0, oo), which implies the desired result,
(ii) This is an immediate consequence of (i). D

For convenience, we assume n = 2nι. Let

JfUnλ = #{k S 2"' : 2«-m - 1 g |Ai -X^-i] g 2«2,Xk e Z2

m\{0}} .

Lemma 4.4. There is a constant c\s G (0, oo) such that

θ(\J {Jfi,nχ ^ M((n - ix)V XfTrn-2exp(-2/-"'-2)) ^ CnM

Proof. By Lemma 4.3 we know that
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and so
2 / 7 1 - 1 (2n\-χ \ ( \χ2\

Σ G(Xk = y)^ 0(1)log ( ^ v 2 J e x P [--^)

Then, as in the proof of Lemma 4.3 we can show that

EGJίUnχ ύ 2 Σ Σ G{Xk = y,Xinχ-x = x)
k=\ 2(i-l)/2_i^|JC

Σ G(Xk =Σ

By Lemma 4.3 we have

' Σ
k=l

Σ
_ig|z|g2I'/

4\{o>

Σ

which implies the desired result. D

To state the next lemma, we let {Xn}n^o be a simple random walk in Z 2

independent of {Xn}n^o- Let {Px} be the probability law of {Xn}. Let

GX(A) — Jexp(— J χ\nx-\{x))dpQ ,
where A

2nλ-\

i=\

and Z^ —x — {z —x : z e Z^}. By Lemma 4.3 we know that

Gx(Xι = y) = EJ{Xι=y_x]exV{-Γ^_x) S O(l)p(cl5l,y). (4.9)

Lemma 4.5. Let {x(l),...,x(2n ι~1)} be a given set. Suppose that there is a con-
stant M ^ 1 such that

-2((m /)V l ) 3 2 / e x p ( 2 / - / l 1 " 2^ Mm-2((m - / ) V l ) 3 2 / e x p ( - 2 / - / l 1 " 2 ) , z = 1,2,... .
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Then, there is a constant c\$ G (0, oo) such that

( — 1 — 1 \

Σ Σ) I{xj=x(k)-x(2"i-ι),x(k)ezϊt\{0}} = Km 2"1 I

^ c\gK~ιM, \/k ^ 1 .

Proof. As in the proof of Lemma 4.4, by (4.9) we can show that
2/1!-1 2nχ-\

Gχ(2n\-1) ^ ^ {X/=x(A:)-x(2Λl~"1), .K ' j=\ k=\ J

= Σ Σ

Σ

oo 2"i x

Σ
i=\ k=\

From this one easily obtains the desired result. D

We are now in a position to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. It is clear that

= Jexp(-J 1 2nι-i)exp(J

xexp -2Am22-i E ΣΣ

(
-2Am22"ni Σ Σ ^ x x YG72 x i

/exp ^-2Am22-«> g

"t g
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where

G'(A) = Jexp(— Jm

λ\nχ-
A

Let
oo

A(M) = Π {jrUni < M({n\ - ί) V 1)32

(2nχ-l 2nχ-\

f
B{M) = I Σ, I{*=o} <MnΛ,

Then, by Lemma 4.3 we can show that

2nι-\

G'(BC(M)) SM-ιn~ι Σ G{Xi = 0) ^ O(l)M~ι .

Similarly, by (4.9) we can show that

G^n^mM)) ^ O(l)M~ι .

Recalling the assumption: m22~nχ ^ 0(1 )«f2, by Lemma 4.4 and Lemma 4.5 we
can show that there is a constant C20 G (0,00) such that

G(Ω) ^ / dGxφ^dG'
A(M)ΠA(K)ΠB(M)nB(M)

^ C20 J (1 - O(l)M~ι - O(\)K~xM)dP
A(M)ΠB(M)

^ c20(l -O(l)M~ι -O(l)K-ιM)(l -O(\)M~X).

Hence, if M ^ 1 and K ^ M are chosen to be large enough, one obtains

G(Ω) ^ C2i

for some constant C2\ G (0, oo) which is independent of m and n = 2nχ. This com-
pletes the proof of Proposition 4.1. D

5. Proof of Theorem 2.1

By Proposition 4.1 and (4.2) we can easily show that {vmn,ntλ}n'z\ is tight for each
λ G [0, oo), provided l imsup^^^/Ti^logfl) 5 / 2 = 0. In fact, by Proposition 3.1 we
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also know that there is a constant λo G (0,oo) such that {vmn,n,λ}n^\ is tight for
each λ G [0,Λ0]> provided \\m^φn^oon~λm2

n{\ogn)512 < oo. Let

V(X) = {μλ : Vmkn,kn,λ converges weakly to μλ as n -> oo

/or some {kn}n^\ with lim^ooi,, = 00} .

By considering the expansion of moments of μχ in powers of λ one can see that
μχ is different from the original polymer measure vχ in two dimensions for all
μλ e r{λ)9 if lm^oo/f-XOog/i) 3 = 00. D

We shall now give another approach to the problem of showing that μχφvχ,
from which we can also see that μχ, λ > 0, should be singular with respect to the
Wiener measure μ.

We first prove two lemmas. In this section, we always set m = mn.

Lemma 5.1. For any given λ G [0,00) there is a constant c\ G (0,00) such that

£exp Uλ2n~2m2

Proof. By definition we know that y — O(l)(m2(logn)3 + 1). Without loss of
generality, we may assume \imn->oon~ιy = oo. For any given ε G (0,1) we set
ξ(n) — [εn2y~1]. It is easy to show that

m 2 % t 6 Z 2 } ύ O(\)(m2k-χ + 1), V i e Z 2 ,

and for some constant C2 G (0, oo),

( ξ(n) \ '

n '
which implies that

( -? ?ξ{n) \ °° ?

^ e x p I 8/1 n m ^ y/rχ e Z 2 | I ^ ^(8/ί ε ^ y < 1 + c^λ
Y A:=l * w y z=0

for some constant C3 G (0,00), if ε G (0,1) is small enough. By the Markov property
we have

n fγι y v J ? I — ip1 c x n
/_—/ / -Γyϊλ £ . Z £ ]• / -̂

Λr=l /

/ 9 7 9 w
λ 2«~ 2m 2

g (1 +c3 (
\ ifc=l /

^ O(l)(l H-cs/i2)1^?1 ^ O(l)exp(c4λ
2n-ιm2(\ognγ)

for some constant C4 G (0,00), if ε G (0,1) is chosen to be small enough. This
completes the proof of Lemma 5.1. •



492 S. Albeverio, X.Y. Zhou

Lemma 5.2. If limsvφn^ocn~ι m2 (log n)5/2 < oo, then

2

" ^ Σ ^ J - ι ^ O(l)n-'m2(logn).
k=\

Proof. In fact, we can show that (see e.g. Lemma 6.3 below)

E (n-'m2 t I { X k e Z 2 } - ή = n " 1 g (m2P(Xk = 0) - P(Xk € Sn

n n
_l_ „—l y^ y^ y^ (P(Xκ = χ\ — P(Xu = vΛΛ = O(l)n~ Y^ i

i—\ x£ZJ~j\{0} y^Sn{x) k=\

Moreover, we have

E n~ m > J Lv ^7ix — 1 = ,

k\=l

2n-2E ± m2l{ ^}{n - kx) - 2n~2 ± "^

ι ^2=^1 + !

Hence,

\ 2

^ T o I - 1

which implies the desired result. D

Note. It seems that the estimate given in Lemma 5.2 cannot be improved.
Lemma 5.1 and Lemma 5.2 will be used again in the proof of Theorem 2.2 in
Sect. 6.

For convenience, from now on we always assume in this section that λ > 0,
limw_,00«~1m2(log^)3 = oo and lim«^0 0«~1w2(log«)5 / 2 = 0.

For ω, ωr e C0([0, T] -> R2\ we define

p(ω,ωf)= max \x(t, ω) — x(t,α/)|,

where x(t,ω) is the position of ω in R2. Then Ωτ = C0([0, Γ] -> R2) is a Polish
space (i.e. a complete separable metric space). Using the embedding theorem (see
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e.g. [2, Theorem 2.1]), for any n ^ 1 we may assume that there are non-negative

random vectors τ\ ^ τ2 ^ in R2 on (Ωτ,&,μ) such that

(i) τi,τ 2 — τi,T3 — T2,... are independent, identically distributed and finite,
(ii) Eτ\ — (^, ̂ ) G R2, where E is the expectation with respect to μ,
(iii) the random vectors x(τ\, ),x(τ2, ) — x(τ\, ),. . . under the measure μ

are independent and identically distributed, and their distribution is the same as that
of n~χl2X\ under P, where x(u, ) = (x\(u\, ),X2(^2, )), provided u = {u\,U2)
and x = (x\,xi).

From (iii) we can see that {n~ι/2X\,...,n~ι^2Xk} and {x(τi),...,x(τ^)} have the
same distribution. We will prove that μχ^vχ for all μχ £ i^(λ). For this purpose,
we may assume

Vm,n,λ -> μλ, * —> OO .

Using the embedding theorem given before one can see that vm^χ can be thought
of as a probability measure on ΩT for T > 1. Thus, by [27, Theorem 1.1.1] we
know that

lim vm^λ(B) = μλ(B)

for any B e ^ with μχ(dB) = 0, where ^ is the Borel σ-field. We remark that v̂  is
equivalent to the Wiener measure μ. To get our desired result, it suffices to prove
that there is a sequence of sets {Dn}n^\ C Ωτ such that

lim μ(Dn) = 0; lim sup μλ(Dn) > 0 , (5.1)

or

We set

liminf μ(A,) > 0; liminf μλ(Dn) = 0 . (5.1 y
«—>oo n-^-oo

g

- » ι»

where n~ι/2S = {n~ι/2x : x e S}. We also set

ί ί l l A

5W = < ω e Ωλ, 1/4 : τπ ^ 1 + -777,1 + -777 , d ( « ) ^ rC2(«) r »

1
π = P [\-Sm,n ~ n

1

i=\
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By Lemma 5.2 we can show that

Pn S P
i=\

2: (logn)- 5 ' 4

+p

+ O(l)n2γ-2Var(Sm,n)

goes to zero as n —> oo, provided \imn^00n~ιm2(\ogn)3 = oo. Using the above
estimate we can show that

such that

μ(Bn) ^Pnύ O(l)(( log«Γ 1 / 4

goes to zero as n —> oo. Hence, there is a subsequence

A : = l

which implies that
lim μ(Aι) = 1 .

If we make the plausible assumption that this implies

lim μ(dAι) < 1 ,

where A\ = Π^B^, then we can proceed as follows. If

then (5.1 y holds by setting {D/} = {{dAι)c}. We now suppose li
< 1. Thus, for any given ε G (0,1) there is a constant /Q ^ 1 such that

= 1,

From the proof of [27, Theorem 1.1.1] we can see that

μλ(Aι) ^ liminf vmΛλ(A,) + 1 - ε, V/ ^ /0 .
n—> o o

(5.2)

It is easy to show that
E\τn-(hl)\2 ^

which implies

μ(τn ^ (

We remark that lim^^oo^'
properties we can show that

= 0 and lim^^oo^" 1)'= oo. Using these

and by Lemma 5.1

- 2 2 v ^ T P

n ym ι^IfYa72\ —> oo, n —» oo ,

l6λ2n-2ym2YJI{x.eZ2m} \ S Qxp(c5l
2n-ly) ^ 0(1)« 1/8
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for some constant c5 G (0, oo). Thus, by Proposition 4.1 and the Fatou lemma we
can show for / ^ n that

S vm^λ(τn ^ (1 +n~ι/\l +«- 1 / 4 ))

l / 2 ( n ) - Sλ2ζ2(n)) + O(l)Eexp(-2λ2ζ2(n))

^ O(l)n-V4Eι'4exp (l6λ2n-2γm2Σ^χiez^})

'-2λ2n-2γm2 '

goes to zero as n —> oo if λ > 0. From this and (5.2) we obtain that

Um^μλ(Aι) ^ 1 - ε .

This proves (5.1) by choosing {£>/} = {/4f}.

6. Proof of Theorem 2.2

In this section we first assume l imsup^^π^m^logft) 5 / 2 < oo and set m = mn.
We first prove the following proposition.

Proposition 6.1. There are constants XQ G (0, OO) α«J ci G (0, oo) such that

£exp ί-λm2βn-1 Σl{x.eZ2} + ^

^ ^ ) 3 ) , 2 G [ 0 , A o ] .

/π particular, if Hmsupλ 2^0 0«~1m2(log«)3 < oo, then for any given λ G [0, oo)
there is a constant c\ G (0,1) such that

cλ ^ Eexp (-λm2βn-1 t^ez^y + V) ^ f̂1

We will use the approach presented in the proof of [5, Proposition 3.4] to prove
Proposition 6.1. We set

i=k i=k

and q^λ = q™)λ. We will also drop m,λ from the above notations. We begin with
several lemmas.

Lemma 6.2. Suppose that 0 < l2 — l\ ^ m2 and l\ ^ [^(logw)"1]. Then

\EQxp(-IUι)(ξι -ξ2)\ ^ O(l)λqιιn-ιm2lognloglogn,
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where

ξ^λβm'n-1 Σ I{ 2 }, ξ2 = λn~ι £ β.
1 1 - L / C ίfl J i t t

k=lχ + \ k=lγ + l

Proof. Without loss of generality, we may assume n~ιm2 ^ O(l)(logn)~κ for
some constant K ^ 3. Clearly, we have

£exp(-/ U l K 2 g λβn-\l2 - h - l)£exp(-/ U l )

S O(\)λqhn~ιm2logn.

By definition we know that

qιx ύ qh-iθxp(λβn-ιi)

if i ^ (^(l^log^)" 1 . On the other hand, we have

^ 0(1), * ^

which implies that

Remark that

h
λβn~ι £

k=l\ + \

and

Px(dist(^ ,Zm

2) ^ m(log^Γ2)) g O(l)(log«Γ 2 .

We choose / = [n(logn)~ι/2]. We also remark that

λβn~ι hΣ EXim
2I{ 2} ^ O(\)λβn-χ Im2 ^ k~ι + l2 - i

S O(l)λn-ιm2(logn)2 .
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Thus, we can show that Eexp(— I\jx)ζ\ is less than

( h-h
m2qh-i + β Σ

k=l

( h h

^ 0{\)λn xqh-i [m2 + β Σ 9

m a x

 Ί

 Eχ-η(χ)m

\ k=\ dist(x,Z,2)^m(log«)-2 )

( [m2(log«)-8]

^ 0{\)λn-χqhλm2 + β Σ max m2Px^η{x){Xk £ Z2)
Y d i ( Z 2 ) ^ ( l ) 2

h-h

^ O{\)λqιλ-iH x(m2 -\-m2\ogn\oglogn)

^ O(\)λn~xm2qιχ\ogn\og\ogn,

which proves the desired result. D

Lemma 6.3. Suppose that there is a constant c2 G (0, oo) such that I ^ h ~ h ^
c2n(logn)~3/2 and l\ ^ [^(logw)"1]. Then, for any given λ G [0,oo) there is a
constant c3 G (0, oo) such that

|£exp(-/U l)(£i - ξi)\ S c3n~xm2qh log n log log n. (6.1)

Proof We will use the approach given in [5, Sect. 3] to prove (6.1). By Le-
mma 6.2 we know that (6.1) holds if h~ h ύ m2. We now assume h — l\ ^
m2 + 1. By the Markov property we have

(ξι-ξi) = λn-χβ
k=lx + \

h-h

' «^}

m2

k=\ h h X h

+ λn β Σ ^exP(~^i,/]
k=m2+\

= 0{λn~xm2qιχ log «log log «) + λn~x βEexp(-I\jχ)

h-ii

k=m2+l

= λn~ιβ *Σ Eexp(-Ihh)Ex (m2I{Xk€Z2} -
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By the symmetry property of {Xn} we know that

h,ιλ) Σ z

zesn(0)

which implies that

Σ

where Sn(x) was defined in Sect. 3, and w v = u\V\ + U2V2, provided u = («i,W2)
and 1; = (fi,^)-

It is easy to show that

m pk(-x) + Σ Pk(y - x)
\ yesn(θ) j

g O(l)qιχn m \og\ogn .

By [20, Prop. 1.2.5] we know that if α < 2/3, |JC| ̂  A:α and ^(-^) > 0

For convenience, when we estimate the diflference: Pt(x) — Pt(y), we always assume
Pt{x)Pt(y) > 0, or pt(x) = 0 and ^ ( 7 ) = 0. Otherwise, we may consider pt(x)
and pt+\(y), or pt+\(x) and j^^jμ). Thus, there is a constant (5 G (0,1) such that

h-h
n βEexp(-Ihh) Σ Exh(

m h 2 !)
2

h-h

Σ
k=m2 + \

k=m2 + \ J

n1 Σ Pk(y-Xιx)- Σ Pk(y-xh)

h-h
Σ

k=m2+\

'2 Σ Σ

2 h~h
O(n-ιm2logn\og\ogn)qiι+-n-ιβ Σ

7 1 A=m2 +

Σ
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+ 0
2z (y-Xh)+\z\

z£Sn(O) i=\

°° l(2z.(y-Xh)+\z\2γ

2 ^ - ' I

= 0(n 1m2log«loglog«)^/1 + -Λ /? Σ
π A:=m2+1

Γ I ~ U 2

:

V + Σ '
)̂ /j + C/i + U2

Using an argument for L[ given in the proof of [5, Lemma 3.3] we can show that
U\ is less than

O(l)n~ιβ
h-h m

K

Σ

^ 0{\)qιχn
 ! m2 log «log log « .

Using the argument for L'[ given in the proof of [5, Lemma 3.3], we can show that
there is a constant C4 G (0,00) such that Uι is less than

h-ιx

O(\)n-χβ Σ Σ Eexp(-Iιh)pk(y-Xh)

h-h
? Σ

k=m2 + \

x T e x p I

k=m2+\

if M ^ 1 is chosen to be large enough. Combining the above estimates, we obtain
the desired conclusion. D
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Lemma 6.4. Suppose that there is a constant c5 e (0,oo) such that 0 < h - h ^
c5n(\ogn)~3/2 and l\ ^ [^(logw)"1]. Then, for any given λ e [0,oo) there is a
constant cβ G (0, oo)

\qh-qh\ ύ c6qh((lognΓi/2+n-ιm2(lognγ'2).

Proof. We remark that

x2 x3 x2

\-x+---ύe~x^\-x+-, V J C ^ O ,
2 6 2

and e* = 1 +x + y + O(x3) if |x| ^ Λ/ for some constant M e (0,oo). Then, we
have

Ίh ~ Ίh = -£"exp(—/i,/, )(1 - exp(-|i + ^2))

l -cxp(ξ2) (l -ξi + | - I

We first consider £exp(—/i,/,)^. By the Markov property of {Xn} we can show
that £exp(— I\,ι{)ξi is less than

h
λβmn Σ £eχP(-4;,K{^ezi}

k=h+\ m

= λβm2n-χ Σ E&φ(-hM)PXh(Xk-h€Zl)

h Γ
Zλβnΐn-1 Σ Eexp(-Iι,lι)\PXlι-η(Xlι)(Xk-iι=O)

+ Σ ^+^,«ι=χ)l
0} 7l " '' ' J

m2

k-h

S O(l)λβn-ι(m2log(l2 -

^ O{l){n-ιm2{\ogn)2 +

where η(x) was defined in Sect. 3. By a similar argument as before we can show
that

: / / 2

9 / l, i = 2 , 3 . (6.2)

Remark that
ξ2 = O ( i μ ( l o g « Γ ' / 2 , ι = l,2,3.
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Thus, we know by (6.2) that q\χ — qι2 is less than

£ e x p ( - / U

Similarly, we can use (6.2) to show that q\χ — qι2 is greater than

x - ξ2)

By Lemma 6.3 we know that

|£exp(-/,,,,)(£, - & ) | ύ O{\)λqhn-λm2\ogn\og\ogn.

We remark that (see the proof of Lemma 5.2 above)

βn~ι 2Σ E(m2I{Xkez2} - 1) = O{n-
λm2{\ogn)2).

mk=\

Thus, by a similar argument as in the proof of Lemma 6.3 we can show that

| £ e x p ( - / U l ) ( ξ ? - £ ! ) | ^ O(l)λ2qhn-ιm\\ognγ/2 .

Using this and Lemma 6.3 again we can show that

£exp(-/Ul) (ξxξ2 - I - ψj I g OCiμ^i-^'αog «)3/2

Thus, we finally obtain that

k/, ~qι2\ύ O(l)qh(λ + A2 + A3)(tf-V(log «)3/2 + (log «)" 3 / 2 ) ,

which implies the desired result. D

We now use Lemma 6.4 to prove Proposition 6.1.

Proof of Proposition 6.1. By Lemma 6.4 we know that

qh ^ (1 +c6n-ιm2(\og nf1 + (log «)"3 / 2)^/1 ,

if 0 < /2 - Λ ^ 0(l)w(k>g «)" 3 / 2 and /i ^ [n(log n)~1]. We set AQ = [n(log n)~ι]
and choose A:o < k\ < < kUn-\ < kUn = n such that ι/Λ ^ 2[(log n)3^2] and

*/ " *«-i ^ [/ι(log «)~3/2], i = 1, . , un .

Without loss of generality, we may assume n~ιm2 ^ O(l)(log n)~3. Then, there
are constants cη,c% G (0, oc) such that

qn ^ (1 + c 7 « - V ( l o g nγl2)qUn-X ^ (1 + c7n~lm2(lognγ/2)u»qko

S O(l)exp(csn~ιm2),

which implies the desired result. D

We are now in a position to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. (i) Let
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We first remark that the condition \imn^00n~ιγ/\og\ogn — 0 is equivalent to the
condition \imn^00n~xm2(\ognγ/\og\ogn = 0. By Lemma 5.1, Proposition 4.1 and
the Holder inequality we can show that

δn
^ exp(c9λn~ιγ) S O(l)(log n)

for some constant c9 G (0,oo), where δn G (0, oo) satisfies li
Proposition 4.1, Lemma 5.1 and Lemma 5.2 we can show that

-Eexp(-Sm,n(λ))\

^ = 0. Thus, by

ί Eexp(-Sm,n(λ)) 1-exp

ί O(l)Eexp(-Sm,n(λ))(\ognγ/4 + (Eexp(-Sm,n(λ))

- i | g
S

S O(l)(log «

xP 1/2 - 1 ^ (log «)" 3 / 8

which goes to zero as n —> oo. Using this fact one can easily show that {vm,n,λ\n^\
and {vf^n λ}n^\ have the same asymptotic behaviour for each λ G [0,oo), provided
Iimsupn_^00«~1m2(log«)3/loglog« = 0.

(ii) Let

If l i m s u p ^ ^ n~ιm2(\ogn)3 < oo, by Lemma 5.2 we know that there is a constant
cio G (0, oo) such that

f Λ) ^ cl0 .

In this case, by Proposition 6.1 and Lemma 5.1 we know that Eexp(—Sf

mn(λ)) is
less than
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for some constant c\\ G (0,oo). Let εn = n~ιml(\og n)3, and

n

ηι(n) = λ2n-2ym2Σl{XieZ2}, η2(n) = λ2n~λy .
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Again by Lemma 5.2 we can show that

-Ecxp(-Sm,n(λ))\

^ Eexp{-Sm,n(λ))\\ - exp (-2ξ> +2ξ2+4ηι(n) - 4η2(n))\

^ O(l)Eexp(-Sm,n(λ))ει/Λ + (Eexp(-Sm,n(λ))

2 i | έ (
J

ί (log n)\

which goes to zero as n —• oo, if limw

[5, Theorem 1.3] one can show that

1/2

= 0. Using the above estimate and

and so

By (i) we also know that

Vm,n,λ

Vm,n,λ

//
Vm,n,λ

OO .

which proves the desired result. D
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Appendix

The φ\-field theory (see e.g. [1,3,17 and 18]) is formally described by the following
measure:

Π dφ(x)exp l-f
x£Rd V Rd

(A.I)

To give a sense to the above formal measure, it is natural to consider its lattice

approximations. Let aZd — {ax : x G Zd}. Heuristically, the quantities J \Vφ(x)\2dx,

J φ2(x)dx and / φ4(x)dx can be approximated respectively by Σ \x-.y\=a^yeazdcιd~2

(φx — φy)
2, a<iΣx^aZd φ2 and adΣxeaZd φ\. Thus, one can use the following
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probability measure to approximate (A.I):

N-* Π dφxexp[2λί Σ ad~2φxφy

-(λ2a
d+4dMad-2) Σ Φ\~had Σ Φi] ,

xeaZd J

where Na is the normalization constant. Let a' = a\a) satisfy \\ma_^Q+af(a) = 0.
For convenience, we assume a' ^ a and a'Zd c aZd. It is clear that J φ4(x)dx
can also be approximated by afdΣxea,zdφj. Thus, it is reasonable to guess that
(A.I) can also be approximated by the following probability measure vβ?fl/:

X~l> Π dφxex$[2λλ Σ ad~2φxφy
x<EaZd \ \x-y\=a,x, y d

d-2) Σ Φ2

x-λ3a'd Σ Φt] . ( A 2 )
xeaZd xea'Zd J

where NOtaf is the normalization constant. This can be thought of as a discrete φ4-
field theory associated to a new cutoff a1. It is interesting to find a condition on
a!(a) under which the probability measures {va,a} and {va,a'} n a v e different limits
(if they exist).

We now consider the correlation function of vfljfl/. Following [15] (see also
[3 and 12]), we first give a random walk representation for this system. For sim-
plicity, we assume λ\ — \. Let

f 4 ^ - 2 , \x~y\= a,
axy(a) = <̂  -{Mad~2 + 2λ2a

d\ x = y,
I 0, otherwise .

Then, there is a continuous time process {Xt} on aZd with the local characteristics
{axy(a)}. One can construct a discrete time Markov chain {Yn} with the one-step
transition probabilities:

axy(a)/ax(a), \x - y\ = a,

otherwise,

where ax(a) = — axx(a), and δ is a "cemetery" which is not included in aZd. Thus,
the sample path of {Xt} can be described by a diagram:

v σo v

 σι v °n v

 σn Λ

where 7o and 7̂  are respectively the initial and final states of {Xt}. Let ζ be the
time at which {Xt} jumps from the final state Yη to d. Let

C
τ z = Jl{Xt=z}dt,

o
and
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where {Qx} is the probability law of {Xj. Let

H(φ) = ~ Σ 4ad~2φxφy+
l-(2λ2a

d

1 \x-y\=a l

and set, for F say bounded and continuous on R,

(This is a heuristic notation for the expectation of F with respect to the well defined
centered Gaussian measure of covariance given by the operator a~x in l2(Zd)).
Using the random walk representation (see e.g. [3, 12, 15, 17]), one can obtain that

I φ φ ) - T Q ( Y

where Ex

ny is the expectation with respect to Px

n

y\ Let us now consider the "zero-
components φ4 - field" (for its definition, we refer to [10 or 17]). In this case, we
have

(ΦxΦy)vaa, = Σ Qχ(Yn = 7 ) 4 ? e*P ( ~ha
\

fV(-λ3a
fd Σ f f I{χt=χs=x}dtds) .

n=0 \ xea'Zd0 0 /

In this formula, the restricted intersection local time (i.e. the random variable

a'd ΣxeafZd Jo Jo I{χt=xs=χ}dtds) has appeared. This is one reason for our interests
in discrete Edwards models which are defined in terms of the restricted intersection
local times of the random walk. Based on Theorem 2.1 and Theorem 2.2 given in
the present paper, we hope to be able to show that the limit of {va,a

f} is t n e s a m e a s

that of {v^a} for d = 2 if lim^o+^llog a\3 = 0 and that the limit of {vα?fl/} is
different from that of {vαjfl} for d — 2 if a! is large enough compared to a (e.g.
lim^o+α'llog a\3 = oo). We also remark that using results of [15 and 3] (inspired
by [28]) expectation with respect to the φ\ - model measure itself can be expressed
in terms of intersection local time. Also in this case then our results on {vaa/} are
relevant.

Note added in proof: In recent work (S. Albererio, X.Y. Zhou, A new lattice approximation for
the (/>2"cluantuni fields, Bochum Preprint '95) we obtained a similar result about vαα/ = va,a in
Appendix for the φ\ model, under the condition limα_+0+ a'\ logα|2 < oo. We expect that these
measures are different if the latter limit is oo.
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