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Abstract: We show that sample paths of Brownian motion (and other stable pro-
cesses) intersect the same sets as certain random Cantor sets constructed by a
branching process. With this approach, the classical result that two independent
Brownian paths in four dimensions do not intersect reduces to the dying out of a
critical branching process, and estimates due to Lawler (1982) for the long-range
intersection probability of several random walk paths, reduce to Kolmogorov's 1938
law for the lifetime of a critical branching process. Extensions to random walks with
long jumps and applications to Hausdorff dimension are also derived.

1. Introduction

Random walk and percolation problems in regular trees (sometimes called "Bethe
lattices") are well known to be easier than the corresponding problems in Euclidean
space. In this paper we show that long-range intersection probabilities for random
walks, Brownian motion paths and Wiener sausages in Euclidean space, can be
estimated up to constant factors by survival probabilities of branching processes and
percolation processes on trees. The following "dictionary" illustrates the reduction.

Problem in Euclidean space Corresponding problem on trees

• How many (independent) Brown- Which branching processes
ian paths in Rd can intersect? can have an infinite line of

• What is the probability that sev- descent?
eral random walk paths, started at What is the probability that
random in a cube of side-length a branching process survives
2k, will intersect? for at least k generations?
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from the Regents of the University of California



418 Y. Peres

Fig. 1 Constructing Qd{p) for d = 2 and p = 0.83

• Which sets in R contain double
points of Brownian motion?

• What is the Hausdorff dimension
of the intersection of a fixed set
in R^ with one or two Brownian
paths?

Which trees percolate at a
fixed threshold pi
What is the dimension
of a percolation cluster
on a general tree?

A set-valued random variable will be called a random set. (See the last section for
measurability.) Interesting examples of random sets include the ranges of random
walks and Brownian motion, percolation clusters, and the random fractals described
below.

The following equivalence relation between random sets is crucial.

Definition 1. Two random {Borel) sets A and B in Rd are intersection-equivalent
in the open set U, if for any closed set A C U, we have1

(1)

In fact intersection-equivalence of A and B implies that (1) holds for all Borel sets
A, by the Choquet Capacitability Theorem (see Carleson (1967), p. 3, or Dellacherie
and Meyer (1978), 111.28.)

The following well-known random recursive construction, sometimes called
"fractal percolation," yields sets that are intersection-equivalent to sample paths.
Given d ^ 3 and 0 < p < 1, consider the natural tiling of the unit cube [0, l]d

by 2d closed cubes of side 1/2. Let Z\ be a random subcollection of these cubes,
where each cube has probability p of belonging to Z\, and these events are mutu-
ally independent. (Thus the cardinality \Z\\ of Z\ is a binomial random variable.)
In general, if Zk is a collection of cubes of side 2~k, tile each cube Q e Zk by 2d

closed subcubes of side 2~k~ι (with disjoint interiors) and include each of these
subcubes in Zk+\ with probability p (independently). Finally, define

ί l U δ
k=\ Q<EZk

1 The symbol x means that the ratio of both sides is bounded above and below by positive
constants which do not depend on A.
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In the construction of Qd(p), the cardinalities |Z*| of Zk form a Galton-Watson
Branching process. Alternatively, the successive subdivisions into binary subcubes
define a natural mapping from the regular tree of forward degree 2d, to the unit
cube; the construction of Qd(p) corresponds to performing independent percolation
with parameter p on this tree and considering the set of infinite paths emanating
from the root in its percolation cluster.

Theorem 1.1. Let Bd(t) denote d-dimensίonal Brownian motion, started according
to any fixed distribution with a bounded density for Bd(0).

(i) If d §; 3 then the range [Bd] = {Bd(t)\ t ^ 0} is intersection-equivalent
to Qd(22~d) in the unit cube.

(ii) More generally, let S(t) be the symmetric stable process of index a in R^,
started according to some fixed distribution with a bounded density. {See Kahane
(1985) for background.) If a < d then the range [S] is intersection-equivalent to
Qd(2a~d) in the unit cube.

(iii) In dimension d = 2, any Borel set A such that F(Q2(p) Π A) > 0 for
some p < 1, satisfies P([#2] Π A) = 1.

(Part (iii) is well known and is included for completeness).

Intersection-equivalence for random walks.

Definition 2. Let {Sn}n^o be a random walk on the lattice Zϊ*, i.e., the differ-
ences Sn — Sn-\ are independent and identically distributed. We shall say that this
random walk has Greenian index α if the Green function

n=0

satisfies G(x,y) x |x — y\<x~d for all distinct X J G Z,d. (That is, the ratio of the
two sides is bounded between positive finite constants which may depend on the
distribution of the random walk increments, but not on x and y.)

It is well known that random walks with bounded increments of mean zero have
Greenian index 2, provided that d ^ 3; for d = 3, the boundedness assumption may
be relaxed to finite variance (see Spitzer (1964)). Williamson (1968) shows that if
0 < α < mm{2,d}, then any random walk {Sn} in Zd with increments satisfying
P[Sn — Sn-\ = x] ~ \x\~d~Oί, has Greenian index α.

Next, write N = 2k and construct a random set of lattice points Qd(p k) by
mimicking the construction of Qd(p) Partition the lattice points in [0,N)d to 2d

cubes of side N/2. Each cube is independently retained with probability p. The
retained cubes are subdivided similarly, and then each subcube is retained with
probability p, etc. After k stages we obtain individual lattice points, that constitute
Qd(pik). This construction corresponds to percolation on a tree of depth k; the
cardinality of Qd(pi k) is the size of the kth generation in a branching process with
offspring distribution Binomial (2d, p).

Theorem 1.2. Denote N = 2k. Let {Sn}n^ be a random walk on Z? with Greenian
index a < d, where SQ is uniformly distributed on the lattice points in \§,N)d.
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Then for any k and any set of lattice points A c [0,N)d, we have

3n ^ 0 : Sn G A] <
C

where c\9C2 are positive finite constants that do not depend on k or A.

Theorem 1.3. Denote N = 2k. Let {Sn} and {S'm} be two independent random
walks on the lattice Z^, started at random points uniformly distributed in [0,N)d.
Assume that {Sn} and {S'm} have Greenian indices oc < d and β < d respectively.
Then

f β

n =S'me [0,7V/ for some n,m ^ 0] x I ^ if * + β = d

{
In the special case of two simple random walks, α = β = 2 and Theorem 1.3

is included in more precise results of Lawler (1982), see Comment 5 in the last
section. Felder and Frohlich (1985) raised the question of estimating the intersection
probability for random walks with long jumps, and solved a related model involving
"random walk in dimension (4 — ε)."

The rest of the paper is organized as follows. The next section contains ap-
plications of intersection-equivalence to Brownian paths and random walks. These
include the proof of Theorem 1.3 and an extension to multiple intersections.
The proof of intersection-equivalence relies on three ingredients:

• The classical potential theory for Brownian motion (recalled in Sect. 3);
• The equivalence of capacity and percolation on trees established by R. Lyons

(1992);
• The equivalence between capacities on a tree and in Euclidean space established

in Benjamini and Peres (1992) and in Pemantle and Peres (1993).

The last two ingredients are described in Sect. 4, where Theorems 1.1 and 1.2
are proved. Section 5 contains applications to Hausdorff dimension of sample-path
intersections and projections of random Cantor sets.

2. Applications to Sample Path Intersections

We shall need some basic facts about Galton-Watson branching processes (see, for
instance, Athreya and Ney (1972)). Generation k of the process has size |Z^|, where
\ZQ\ = 1 and \Z\\ takes non-negative integer values; in general, \Zk+\\ is a sum of
\Zk\ independent random variables with the same distribution as \Z\\. We always
assume that P[|Zi| = 1] < 1. If E|Zi| > 1 then the process is supercritical and
P[|Z*| > 0 for all k] > 0. If E|Zi| ^ 1, then the process dies out, i.e., P[|Z*| >
0] —> 0 as k —> oo. Next, we recall a quantitative version of this.

Lemma 2.1 [Kolmogorov (1938)]. Let {\Zk\} be a branching process with \Z\\
bounded.

(i) Critical case: IfE\Zι\ = 1, then P[|Z*| > 0] x \/k.
(ii) Subcritical case: IfΈ\Zλ\ < 1 then P[|Z*| > 0] x (E\Zλ\f .

In fact, Kolmogorov proved a more precise estimate under moment assumptions
on \Z\\. The moment assumptions were relaxed by later authors-see Athreya and
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Ney (1972), pp. 19 and 45. The classical proof of Lemma 2.1 is a calculation with
generating functions; a shorter proof for the case we need, in which \Z\ \ has a
binomial distribution, is given in Sect. 4.

The usefulness of Theorem 1.1 is due to the next two easy lemmas.

Lemma 2.2. Suppose that A\,...,Ak, F\,...,F^ are independent random Borel sets,
with At intersection-equivalent to Fj for 1 ^ / ^ k. Then A\ ΠA2Π ...ΠAk is
intersection-equivalent to F\ Π F2 Π ... Π F*.

Proof. By induction, reduce to the case k = 2. It clearly suffices to show that
A\ΠA2 is intersection-equivalent to F\ ΠA2, and this is done by conditioning on
A2:

ΠA2 ΓΊ

E[P(Fi nA2nΛ*Φ\A2)] = P(Fλ ΠA2ΠΛ^Φ). D

Lemma 2.3. For any 0 < p,q < 1, if Qd(p) and Q'd(q) are statistically indepen-
dent, then their intersection Qd(p) ΓΊ Q'd(q) has the same distribution as Qd(pq)-

Proof. This is immediate from the construction of Qd(p)). •

Now we can start reaping the corollaries.

Corollary 2.5 [Dvoretzky, Erdos, Kakutani, Taylor].
(i) For all d ^ 4, two independent Brownian paths in R^ are disjoint almost

surely (a.s.). (Except, of course, at their starting point if it is identical).
(ii) In R3, two independent Brownian paths intersect a.s., but three paths a.s.

have no points of mutual intersection.
(iii) In R2, any finite number of independent Brownian paths have nonempty

mutual intersection almost surely.

Remark. The proof of the corollary was completed in Dvoretzky, Erdδs, Kakutani
and Taylor (1957), following earlier work of Dvoretzky, Erdόs and Kakutani (1950).
A proof using the renormalization group method was given by Aizenman (1985).

Proof
(i) It suffices to consider d = 4 and show that two independent Brownian paths

[#4] and [Bf

4] a.s. have no points of intersection in the unit cube, since countably
many cubes cover R4. For any ε > 0, the distribution of ^ ( ε ) has a bounded
density, so by Theorem 1.1 and Lemma 2.2,

P({B4(t):t ^ ε}Γ){B'4(s):s ^ ε} Π [0,1]4Φ0) x

using Lemma 2.3 in the last equality. But 24(1/16) is a.s. empty because criti-
cal branching processes die out. Thus {B4(t): t ^ ε} and {B'4(s): s ^ ε} are a.s.
disjoint, and since ε > 0 is arbitrary, we are done.

(ii) Since [£3] is intersection-equivalent to 03(1/2) in the unit cube, the inter-
section of three independent Brownian paths is intersection-equivalent in the cube
to the random set Q3(l/2)ΓiQ'3(l/2)n(Q"3(l/2)9 which has the same distribution
as g3(l/8). Again, a critical branching process is obtained, and hence the triple
intersection is a.s. empty. On the other hand, {£3(0'• t = *o} Π {^(s): s g: t0} is
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intersection-equivalent to ζ?3(l/4) in the unit cube, for any positive to. Since Q3(l/4)
is defined by a supercritical branching process,

P[{B3(t):t ^ t0} ΓΊ {B'3(s): s ^ ί o}*0] > 0.

The scaling property of Brownian motion implies that this probability does not
depend on to; therefore, by the Hewitt-Savage zero-one law it is 1, and thus [£3] Π

(iii) This is quite similar to the above; to avoid repetition, we delay the proof
to Corollary 5.2, where a stronger assertion is established. D

Intersections of random walks: Proof of Theorem 1.3. By Theorem 1.2, the paths
{Sn} and {S'm} are intersection-equivalent to Qd(20C~d;k) and Q'd(2β~d;k), respec-
tively, in the cube [0,N)d. Therefore, using Lemma 2.2,

P(3/ι,w ^0:Sn=S'me [0,n)d) x P[Qd(2"-d;k) Π β i ( 2 ^

The cardinality of Qd(p k) is the size of the kth generation in a branching process
of mean 2d p, so that

( 1 if 2dp > 1

I if 2dp = 1
(2dp)k if 2dp < 1

by Lemma 2.1. Setting p = 2a+^~2d and recalling that N = 2k concludes the proof.

•
Remark. In dimension d ^ 3, the same argument applies to r independent random
walks {^1}},..., {Sir)}, started at uniform random points in [ O , ^ , where N = 2k

and the zth walk has Greenian index OQ. We obtain that
P (There exist «i,«2,...,Wr such that S^ = Sξ* = ... = S%} G [0,N)d)

if otot > d(r- 1)

if αtot =d(r- 1)

where αtot = Σ L i α ^
A continuous version of Theorem 1.3 was proved by Aizenman (1985) for

near-intersections of Brownian paths. The following theorem extends it to stable
processes. For any set A c R^, denote by A(ε) its ε-thickening in the Euclidean
norm: A(s) = {xeRd: \\x — y\\ < ε for some y G A}. (It is easily seen that the
choice of norm is immaterial for the next theorem.) When A is a Brownian path,
A(ε) is called a Wiener Sausage.

Theorem 2.6. Let 5 ( 1 ), S ( 2 ),..., S ( r ) be r independent symmetric stable processes in

R^, with corresponding indices oc\,α2,...,αr all less than d, and initial distributions
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with bounded densities. Then the probability that the corresponding ε-thickenings
intersect in the unit cube is estimated by.

1 if αtot >d{r-\)

^ ] ( e ) n [ O , l ] + 0 j x π ^ if octot = d(r-l)
{ α t o t - ^ - i ) i f α t o t < d { r - \ ) ,

where αtot — Σ/=iα/ flW^ 0 < ε < 1/2 « arbitrary.

Remark. In the case of two paths, their ε-thickenings intersect if and only if the
paths are within distance 2ε of each other; thus when r = 2 and (X\ — 0C2 = 2, the
above estimate is essentially contained in Proposition 5.2 of Aizenman (1985).
(There, instead of intersecting the paths with a cube, they are killed at an exponential
time.) The assumption on the initial distributions in the preceding theorem can be
changed, e.g. the same estimates hold when all r processes are started at distinct
points.

Proof of Theorem 2.6. The proof is similar to the proof of Theorem 1.3 on random
walks, after two preparatory steps.

Step 1. If A and F are intersection-equivalent random subsets of U cRd; then
their ε-thickenings A(ε) and F(ε) are intersection-equivalent in U, with the same
constants. This is immediate from the definitions, since A{ε) intersects A iff A
intersects Λ{ε).

Step 2. Recall the random collection of cubes Zk in the kth stage of the construction
of Qd(p)- Denote

Zk(p)= U β

Claim. If k = k(ε) is chosen to satisfy ε/2 g 2~k^dι/2 < ε, then Zm(p) is
intersection-equivalent to the ε-thickening of Qd(p) in the unit cube, and the implied
constants are uniform in ε, provided that E|Zi| = 2dp > 1.

One direction of this equivalence is obvious, since each cube in Zk(ε)(p) has
diameter ^ ε and it contains a point of Qd(p) in its interior with a fixed positive
probability (given Zk). For the converse, observe that the ε-thickening of Qd(p) is
covered by a constant c(d) number of translates of Zk(ε)(p)

Step 3. By the preceding steps and Lemma 2.2, the set Π L i ^ ( ί ) K ε ) ^s intersection-

equivalent to the kth stage Z* in the construction of Qd(p)l where p = Πr

i=ι2
ai~d =

2atot~rd and k = k(ε) = Iog 2 ( | ) + 0(1). This corresponds to the kth generation in

a branching process of mean 2dp = 2α t o t + ( 1~ r ) ί /, so the assertion of the theorem

follows from Lemma 2.1. D

3. Potential Theory Background

Definition 3. Let A be a metric space with the metric \x — y\. Let K : A x A -
[0,00) be a Borel function. The K-energy of a finite Borel measure μ on A is

ΛΛ
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The ^-capacity of A is

| - i

- |inf
μ

where the infimum is over probability measures μ on A and by convention,
oo" 1 = 0.

If K{x,y) = \x — y\~P then we write $ β for $κ and Capβ for Cap^.

The following classical theorem relates capacity to dimension.

Theorem 3.1 (Frostman (1935)). For any Borel set A in Euclidean space, the
critical parameter mί{β > 0\C®pβ{A) = 0} is exactly the Hausdorff dimension
of A.

In fact Frostman proved this only for closed A. For a proof, see Carleson (1967) or
Kahane (1985). At the critical parameter, the capacity of A can be either positive
or zero, but it vanishes if the Hausdorff measure in that dimension is σ-finite on A.

Kakutani (1944) discovered the connection of Brownian motion with capacity,
and proved a qualitative version of the next proposition. The quantitative version
given is a consequence of the probabilistic potential theory developed later by Hunt
and Doob.

Proposition 3.2. Let {St}t^o be a transient Markov chain on a countable state
space, or a transient symmetric stable process of index a < d in R^, with the
initial distribution π. If there are positive numbers M\ and M2 such that the
Green kernel G(x,y) for the process satisfies M\ ^ fG(x,y)dπ(x) tί M2 for all
y e A, then

Mi CapG(Λ) ^ Pπ[3ί ^ 0 : St e A] ^ M2 CapG(yl). (2)

More specifically:
(i) If {St] is a symmetric stable process of index oc < d in R , and the initial

distribution π has a bounded density on the unit cube, then

(3)

for any Borel set A C [0, l]d.
(ii) If {St} is a random walk on T? of Greenίan index cc < d, and for some

fixed C, the initial distribution π on the discrete cube {0,1,...,TV— \}d assigns
each point there at most mass C/Nd, then

Pπ[3t ^0:SteΛ]^ N«-dOiVd_a(A), (4)

where the implied constants do not depend on N or on A C {0,1,... ,N — 1}^.

Proof There exists a finite measure v on A (the "equilibrium measure") such that
for any initial point x,

Px[3t ^ 0 : St G A] = jG(x, y)dv(y) (5)
A

and
v(A) = CapG(Λ). (6)
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In the discrete case, v(y) can be identified as an escape probability:

v(y) = Py{St £Λ for all t ^ 1},

and then (5) follows by a last-exit decomposition; for a probabilistic interpretation
in the continuous case see Mckean (1965), Port and Stone (1971) or Chung (1973).
Averaging (5) yields

Pπ[3t ^0:SteΛ] = Jf G(x, y)dπ(x)dv(y). (7)
A

Now the hypothesis of the proposition implies that this is bounded above and be-
low by M2v(Λ) and M\v(Λ), respectively; invoking (6) concludes the proof of the
general assertion. Next, we pass to the specific cases:
(i) In this case G(x9y) = \x - y\a~d, so G(x,y) ^ d^~d^2 for all x,y in [0, l]d.

Denote Lebesgue measure in Rd by 5£d and let C be a bound for the density of
π. A straightforward integration yields

fG(x,y)dπ(x) ^ C J G(x, y) dJ?d(x) ^ CM2

for some M2 that depends only on d and α, and for all y e[0,l]d. The assertion
follows.

(ii) In this case G(x,y) x (1 + \x — y\Y~d, so clearly G(x,y) is bounded below
by a constant multiple of Na~d for all x9 y in a cube of side N. To obtain an upper
bound for the average of G( 9y), estimate the sum by an integral:

fG(x9y)dπ(x) ύ ^ Σ {G(x,y):x e {0,1,...,7V - 1}}

-JϊdS \v-y\«-ddv ^ C"N«-d ,
[0,N]d

where C and C" do not depend on N. This completes the proof. D

4. Proof of Intersection-Equivalence

The second ingredient in the proof of intersection-equivalence is a fundamental
result of R. Lyons concerning percolation on trees.

Notation. Let T be a finite or infinite, rooted tree (i.e., a connected acyclic graph
with a distinguished vertex p designated as the root.) Maximal self-avoiding paths
emanating from the root of T are called rays, and the set of all rays is the boundary
dT of T. Rays can be infinite or finite; a finite ray necessarily terminates in a vertex
of degree one, called a leaf of T. The number of edges that two rays ξ and η have
in common is denoted by \ζ A η\. The distance between two infinite rays ξ and η is
defined to be \ξ — η\ := 2~^Λί?L This motivates defining for any tree the β-energy
of a measure μ on its boundary by

Sβ{μ) := fj2^dμ(ξ)dμ(η) . (8)
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Fig.. 2 The first five levels of a tree

The constant 2 is convenient here because we use binary cubes in the application
to Euclidean space.

Let 0 < p < 1. Percolation with parameter p on T is obtained by removing
each edge of T with probability 1 — p and, retaining it with probability p, with
mutual independence among edges. Say that a ray ξ survives the percolation if all
the edges on ξ are retained, and say that the tree boundary dT survives if some ray
of T survives.
We can now state the result of Lyons that we need. An alternative proof, in which
the percolation probability is interpreted as a hitting probability for a certain Markov
chain, is given in Benjamini, Pemantle and Peres (1994).

Theorem 4.1 (Specialized from Theorem 2.1 of Lyons (1992)). Let β > 0. If
percolation at level p = 2~@ is performed on a rooted tree T, then

^ P[dT survives the percolation] S 2Cap/?(<3Γ).

Remarks, (i) The relation p = 2 P arises from the definition of the energy in (8).
(ii) For any vertex σ of T, denote by [σ] the set of rays going through σ, and by
|σ| the number of edges between σ and the root. Using summation by parts, the
energy of a probability measure μ on the boundary of a tree T can be rewritten as

(9)
σ€T

Example. A proof of Lemma 2.1 for a binomial offspring distribution. A branching
process {Zj} with a binomial offspring distribution may be obtained from the regular
b-ary tree Γ, by performing percolation at level p and considering the connected
component of the root. Denote by Γk the kth level of Γ. Writing p = 2~^, we have

P(|Zyt| > 0) = survives the percolation ] (10)
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For each j , the minimum of ^\σ\=J μ[σ]2 over probability measures μ on J\ is b~J\
and is attained only by the uniform distribution. The expression (9) for the energy
of measures implies that the uniform distribution on Γk minimizes energy, and

Considering separately the critical case pb = 1 and the subcritical case pb < 1
concludes the proof.

Remark. In the example above, the traditional method of generating functions yields
more precise estimates; the power of Theorem 4.1 lies in its applicability to general
trees.

The third ingredient in the proof of intersection-equivalence relates the capacity
on the tree boundary to capacity in Euclidean space. We employ the canonical
mapping M from the boundary of a 2^-ary tree f(2d^ (every vertex has 2d children)
to the cube [0,1]^. Formally, label the edges from each vertex to its children in a
one-to-one manner with the vectors in Ω — {0, \}d. Then the boundary δΓ(2</) is

identified with the sequence space Ωz and we define & : Ωz —• [0, 1]^ by

CO

%,, ω 2 , . . . )=E2~X (11)
n=\

Similarly, a vertex σ of Γ^2 ) is identified with a finite sequence ( ω i , . . . , ω ^ ) G Ωk

if there are exactly k edges between the root and σ, and we write @t{σ) for the
cube of side 2~k obtained as the image under 01 of all sequences in Ωz with
prefix ( ω i , . . . , ω * ) .

Theorem 4.2 (Benjamini and Peres (1992), Pemantle and Peres (1994)). With the

notation above, let T be a subtree of the regular 2d-ary tree Γ ( 2 \ so we may
identify dT with a subset of Ωz . Then for any finite measure μ on δT, and any
β > 0, we have

£β{μ)~£β{μ®-χ), (12)

where the implied constants depend only on the dimension d. It follows that

Sketch of Proof By (9), the energy of a measure μ on dT satisfies

W
k=0 \σ\=k

(using the notation in Remark (ii) above). In the inner sum, every vertex σ (that
corresponds via & to a binary cube) "interacts" only with itself. A similar expression
may be written for the energy of the measure μ&~1 in Euclidean space; here every
binary cube interacts with all binary cubes of the same size that touch it, so that

• &(σ) and dt{τ) touch} . (14)
k=0 |σ| = |τ|=t
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The obvious inequality μ[σ]μ[τ] ^ \(μ[σ]2 + μ[τ]2), together with the key ob-
servation

#{τ e T: \τ\ = \σ\ and 0t{τ) touches St{σ)} ^ 3d for all σ e T

imply that the two energies in (13) and (14) are comparable.
The capacity assertion of the theorem follows, since any measure v on M(dT) C

[0, 1]^ can be written as μM~λ for an appropriate measure μ on dT. D

Remark. We shall need a variant of Theorem 4.2 for finite trees, that has a similar
proof. Denote Ω = {0, 1}^. As above, we identify the kth level of the 2^-ary tree

Γ ( 2 ) with Ωk. Let N = 2k, and consider the natural mapping 0tk from Ωk to the
discrete cube {0, 1,...,JV — l}d, defined by

@k(ωu...,ωk) = Σ2k-Jωj. (15)

Then any subset F of Ωk can be viewed as the boundary of a finite subtree of Γ^2 )
and we have

CaP / r(F) x N

Corollary 4.3. Let β > 0 αnrf J ^ 1.
(i) For any closed set A in the cube [0, l]d we have

(ii) IfN = 2k then any subset A of the discrete cube {0, 1,... ,7V — l}d satisfies

Proof, (i) Any closed set A in the cube [0, Y\d can be written as the image ( )
of the boundary of some subtree T of the regular 2^-ary tree, where 0t is the
representation map (11). We perform percolation at level p — 2~^ on this tree.
Then by Theorem 4.1 and Theorem 4.2,

Ί*[Qd(p) intersects A] = P[dT survives the percolation]

(ii) This is proved in the same way, using the remark preceding the corollary.

Proof of Theorem 1.1. Part (i) is the special case α = 2 of part (ii), so we prove
the latter. Denote by π the distribution of SQ. Then by Proposition 3.2(i) and the
previous corollary,

Pπ[3t ^ 0 : St e A] x Csφd_a(Λ) x P[fi/(/0 intersects A] .

Part (iii) is more standard: If A intersects Qd(p) for some p < 1 with positive
probability, then A must have positive Hausdorff dimension (see Lemma 5.1 be-
low). Therefore A has positive logarithmic capacity and the conclusion follows, see
Kakutani (1944b) or Kahane (1985). D
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Proof of Theorem 1.2. The proof of Theorem 1.1 applies, using Proposition 3.2 (ii)
and Corollary 4.3 (ii). D

One direction of the following corollary was proved by Evans (1987) and
Tongring (1988); the full equivalence was proved in a more general setting by
Fitzsimmons and Salisbury (1989).

Corollary 4.4. Let B3 and B'3 be two independent Brownian motions in R3, started
according to distributions with bounded density in the unit cube. Then for any
closed set A in [0,1]3 we have

Proof By Theorem 1.1 and Lemma 2.2, the random set [B3] Π [£3] is intersection-
equivalent to g3(l/4). The assertion then follows from Corollary 4.3. D

5. Applications to Hausdorff Dimension

Lemma 5.1 (Hawkes 1981, Lyons 1990). Let p = 2~β < 1. For any set A C
[0, l]d we have

(i) 7/"dim(y4) < β then A Π Qd(p) is almost surely empty.
(ii) If dim(/ί) > β then A intersects Qd(p) with positive probability.

(iii) If dim(Λ) > β then \\άim(A Π Qd(p))\\oo = dim(A) - β, where the norm
is an essential supremum in the underlying probability space.

Proof Parts (i) and (ii) follow immediately from Corollary 4.3 and Frostman's
Theorem connecting dimension and capacity (Theorem 3.1). Part (iii) is a conse-
quence of the preceding parts and the fact that the intersection Qd(p) Π Q'd(q) has
the same distribution as Qd(pq) •

In conjunction with Theorem 1.1, the lemma above yields short proofs of di-
mension formulae first established by J. Hawkes using very different methods.

Corollary 5.2 (Hawkes 1971a, 1971b). Let A be a Borel set in R^, and let [Bd]
denote a Brownian path in R . Then

(i) In dimension d ^ 3: Ifάim(A) ^ d - 2 then \\ dim(Λ Π [^])||oo= dim(Λ)
+ 2 - d.

( i i ) Let [B2 ],[B 2 ],... be independent Brownian paths in the plane. Then

dim(/L Π [B{

2

1)] Π...Π [B(

2

k)]) = dim A a.s., for any finite k ^ 1.

Remark. Part (ii) obviously strengthens Corollary 2.5 (iii).

Proof We may assume that A is contained in [0, 1]^.
(i) Let Q'd(p) be a copy of Qd(p) that is independent of Bd. Then Theorem

1.1 implies

n [Bd] n Q'dip)*®) x P(A n Qd(22-d) n '

Now by Lemma 5.1, the last probability is positive if dim(yl) + Iog2(22~dp) > 0,
and vanishes if dim(τl) + \og2(22~dp) < 0. Applying Lemma 5.1 to AΠBd in
place of A completes part (i).
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(ii) By induction, it clearly suffices to prove the assertion for one planar Brow-
nian path [B2]. Given q > 2~d i m ( / 1\ choose p < 1 such that pq > 2~dhn(A\ Then

P(ΛΠQ2(q)nQ/

2(p)^) > 0,

and by Theorem 1.1, with positive probability A Π Q2(q) intersects almost all Brow-
nian paths. By Fubini's theorem,

so that by Lemma 5.1

άim(A Π [B2]) + Iog2(q) > 0 a.s.

Since this holds for any q > 2~d i m ( y l ), it follows that

άim(A (Ί [B2]) ^ άim(A) a.s. D

Remark. The same proof yields the following general result of Hawkes (1971b):

Let 5 ( 1 ) , 5r(2),...,iS
r(A:) be independent symmetric stable processes in Rd, where S^

has index αz < d for each ί ^ k. Then for any Borel set A C Rd,

\\άim(A Π [S(1)] Π ... Π [S^])^ = dim(^) - Σ(d - α7) ,
ΐ=z\

provided the right-hand side is positive.

The dimension of [S(1)] Π.. . Π [S{k)] was computed earlier by Taylor (1966)
and Fristedt (1967).

5.1. Projections of Random Cantor Sets. For certain random Cantor sets (more
general than the sets Qd(p)), Dekking and Grimmett (1988) found the Minkowski
(= box) dimension of their projections to the coordinate axes. The Hausdorff di-
mension of these projections was determined by Falconer (1988). The following
corollary applies only to the sets Qd(p), but covers projections in any direction.

Corollary 5.3. Let L be linear or affine map from Rd onto R ,̂ and let 0 < p < 1.
(i) If d + Iog2(/?) > k, then the image L(Qd(p)) has positive k-dimensional

Lebesgue measure a.s. on the event Qd(P)"¥$-
(ii) IfO< d + \og2(p) ύ K then the image L(Qd(p)) has Hausdorff dimen-

sion d -\-\og2(p) a.s. on the event Qd(p)^r 0.

Remarks.
• Denote by \Z\\ the number of cubes in the first generation of the construction

of Qd(p)> We shall need the standard observation that the only non-negative
fixed-points x of the generating function

f(x) := ΣPflZil = j)χj (16)

are 1 and the extinction probability of Qd(p)- This fact is an immediate conse-
quence of the convexity of / , and plays the role of a zero-one law.
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• Since dim[Qd(p)] = d + \og2(p) a.s. upon nonextinction, general results of
Marstrand (1954) and Mattila (1975) imply that the assertions of the corollary
hold for almost all orthogonal projections L onto A -dimensional linear subspaces
of R^ (with respect to the natural rotation-invariant measure on the Grassmann
manifold of ^-dimensional subspaces).

• The proof of the corollary is especially short when L is an orthogonal projection
and d + Iog2(p) ^ 2, since in this case Qd{p) is intersection-equivalent to the
range of a symmetric stable process in R^, and the projection of that range to
R^ is the range of a symmetric stable process in R*.

Proof. By composing L with a dilation and a translation if necessary, we may

assume that L maps [0,l]d into the unit cube of R*.
(i) For every point j ; G I((0, l)d), the preimage L~ι(y) has Hausdorff di-

mension d — k and thus intersects Qd(p) with positive probability by Lemma 5.1.
Fubini's Theorem implies that the expected ^-dimensional volume of L(Qd(p)) is
positive. By conditioning on \Z\\9 we see that P (the A -dimensional volume of
L(Qd(p)) vanishes) is a fixed point of the generating function / in (16), so this
probability must equal the extinction probability of Qd(p).

(ii) We only need to prove the lower bound on dimension. Let y < d + Iog2(p),
so that Qk{2~y) has dimension k — y a.s. upon nonextinction. Therefore the pre-
image L~l(Qk(2~7)) has dimension greater than log2(l//>), and hence intersects
Qd{p) with positive probability. In other words, L(Qd(p)) intersects (Qk(2~y)) with
positive probability, so its dimension must be at least γ with positive probability.
Since P[dim L(Qd(p)) ^ y] is a fixed-point of the generating function in (16), this
concludes the proof. D

6. Comments on the Literature

1. For random closed sets in Euclidean space, the easiest way to introduce the
needed measurability hypothesis is via the Hausdorff metric and the corresponding
Borel σ-field. For a more general random set A(ω) in Euclidean space, one requires
that the indicator of A is jointly measurable as a function of ω and the space
variable. Further measurability questions are then settled via the theory of Suslin
sets and Choquet capacities. (See Dellacherie and Meyer (1978), VL8 and VI.31.)

2. Aizenman (1985) suggested that intersections of Brownian paths, and per-
colation processes on trees, should be closely related. However, as pointed out in
Aizenman's paper, attempting a direct probabilistic link between the two settings
runs into delicate dependence problems. Here potential theory serves as a bridge.

3. The random fractals Qd(p) were described by Mandelbrot (1974), and nat-
ural measures on them were analyzed by Kahane and Peyriere (1976). The Haus-
dorff dimension of "branching sets" that include Qd(p) was determined by Hawkes
(1981), and the exact Hausdorff measure in more general random constructions was
found by Graf, Mauldin and Williams (1988). Chayes, Chayes and Durrett (1988)
noted that the dimension of Qd(p) is easily inferred from the results of Kahane and
Peyriere, and proved the remarkable fact that Qd(p) has large connected compo-
nents if p is sufficiently close to 1. Further results in this direction were obtained
by Dekking and Meester (1990)

4. In one dimension, the ranges of certain subordinators can be constructed by
removing from the line random cutouts, that are determined by a Poisson point
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process in the plane. This was used by Mandelbrot (1972) and Hawkes (1977) to
determine the intersection properties of these ranges.

5. The problem of estimating intersection probabilities for paths of simple ran-
dom walk was raised by Erdδs and Taylor (1960). The first solution was found by
Lawler (1982), and alternative approaches were given later by Felder and Frόhlich
(1985) and by Park (1989). The advantage of Lawler's method is that it yields
much more precise asymptotics for the "long-range" intersection probabilities. These
asymptotics are crucial in obtaining estimates of non-intersection probabilities for
two independent simple random walks started at the same point ("short-range in-
tersections"); see Lawler (1985,1991) for a complete account. In our Theorem
1.3, the intersection probabilities are only estimated up to constant factors, so the
intersection-equivalence method does not seem useful for estimating non-intersection
probabilities when they are small. Precise asymptotics for intersection and non-
intersection probabilities of Wiener Sausages in R4 were recently obtained by
Albeverio and Zhou (1993).

6. For concreteness, we have stated our continuous-time results for symmetric
stable processes only, but they apply to any process {St} that satisfies (3) for all
closed sets A in the cube - See Port and Stone (1971) and Hawkes (1979) for the
potential theory of general Levy processes.

7. The idea of determining the dimension of a set from its intersection prop-
erties with other random sets was first used by Taylor (1966) to study multiple
points of stable processes. The random sets used there were ranges of other stable
processes. See Taylor (1986) for an insightful survey of the dimension theory of
Levy processes.

8. A more precise version of Theorem 1.1 for planar Brownian motion is given
in Peres (1994). The range of planar Brownian motion (started uniformly in [0,1]2

and run for unit time) is intersection-equivalent in the unit square to a random set
Q% that is constructed just like the sets Qi{p) but with scale-dependent retention
probabilities: a binary square of side 2~k is retained with probability k/(k + 1),
given that its parent square of side 2x~k was retained.
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