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Abstract: We study the well-known problem of 1-d quantum scattering by a poten-
tial barrier in the semiclassical limit. Using the so-called exact WKB method and
semiclassical microlocal analysis techniques, we get a very precise and complete de-
scription of the scattering matrix, in particular when the energy is very close to a
unique, quadratic maximum of the potential. In our one-dimensional setting, we also
recover the Bohr-Sommerfeld quantization condition for the resonances generated by
such a maximum.

1. Introduction

This paper is devoted to the semiclassical study of quantum scattering by a potential
barrier in dimension 1, in particular in the transition regime where the energy is
very close to the top of the barrier. Many articles have been written since the 30’s
dealing with the computation of the transmission coefficient through a barrier, and this
problem is one of the starting points for the development of what is nowadays called
JWKB method. The exponential decay of the transmission coefficient (cf. Theorem
1 below) has been known since the first papers by R.E.Langer and H.Jeffreys (see
e.g. [La] and [Je]), by the use of the famous connection formulae. Other techniques
have been developed during the 60’s, in particular by N.Froman and P.O.Froman (see
[Fr-Fr]), M.V.Fedoryuk (see [Fe]) and F.W.J.Olver (see [Ol1]). Their works were
based on a JWKB-like approximation method for the solutions of a 1-dimensional
Schrodinger equation in the complex plane, often known as phase integral method,
which has been recently improved by J.Ecalle and A.Voros (cf. [Ec, Vo]) and used
in a new formalism by A.Grigis for the study of Hill’s equation (cf. [Gr]). The new
fact in what is now usually called exact-WKB analysis is that it provides, rather than
approximate solutions with error bounds, exact solutions with a complete asymptotic
expansion with respect to the semiclassical parameter h for example, with a priori
estimates on the coefficients. A huge amount of papers has been written on this
subject, and it is a difficult job to identify even the main contributions. We think that
we have not forgoten too many important names, but the reader should refer to the
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books [Hd, Fr-Fr, O12], where he would find many references as well as detailed and
interesting historical discussions.

We have written in the first part of this article the exact-WKB analysis for the
1-dimensional scattering Schrodinger operator, and obtained results which, at least in
the barrier-penetration case, are very familiar (see for example Eq. (10.17) in [O12],
Eq. (9.12) in [Fr-Fr] or Eq. (1.15) in [Fe]). The method also looks very much like the
one developed in Chap. 13, Part 15 of [O12] or the general theory developed in [Ev-
Fe], but there is something new in our results even in that case: we show a complete
asymptotic expansion with a priori estimates on the coefficients. In the second part
we have studied the semiclassical behavior of the scattering matrix for energies which
are very near (in the semiclassical sense) to the critical value of a unique quadratic
maximum of the potential. It has been already noticed that the exact-WKB method
does not give good enough estimates to treat the case where two simple turning points
coalesce as h goes to O (see [Ge-Gr]). We used here, together with the exact-WKB
constructions, microlocal techniques which have been introduced by B.Helffer and
J.Sjostrand for the study of Harper’s equation (see in particular [He-Sj]). In particular
we performed as in [Mé] and [Ra] a microlocal reduction to a branching operator
which is closely related to Weber’s equation. Such techniques have also been used
in a & setting in [Sj3], and also in [Co-Pa] where a more geometrical discussion
can be found. As also noticed in [As-Du] or [Na], the point is that a tunnel effect in
the phase-space occurs, which can be described analytically for the branching model.
We have obtained that way a very precise description of the scattering matrix at the
critical energy level which is new as far as we know. Thanks to its sharpness, we also
recover a result about quantization of the resonances lying near a quadratic maximum
which have been proven independently in the n-dimensional case by J.Sjostrand (see
[Sj1]) and P.Briet, J.-M.Combes and P.Duclos (see [Br-Co-Du]). We shall come back
in forthcoming papers with S.Fujiie to a more global study of resonances in these
settings.

Let us describe now the scattering problem briefly. We denote by P(x,hD) =
h?D? + V() the 1-dimensional Schrodinger operator (with D = —id,), where the
potential V' (z) is smooth and goes to O sufficiently fast as z goes to infinity. Because
of this fall-off at infinity, the solutions of the Schrodinger equation

Pu = Fu,
where F is a real parameter, should behave as z — +oo like
ab" (B, hyeVEE/h 4 b (B, h)e Y Ee/h

where [ and r stand for left and right and correspond respectively to x — —oo
and x — +oo. The four Jost solutions f:lt’r are the solutions which behave exactly
as e?VEz/h or e=iVEz/h a5 1 5 Loo. The reflection or scattering problem is the
following: what are the components of a solution u of the Schrédinger equation in
the basis (f7, f.) of the outgoing Jost solutions, knowing its components in the basis
(f%, f7) of the incoming Jost solutions. The 2 by 2 matrix relating these coefficients
is called the scattering matrix and we will denote it by

S(E, h) = ( s )

S21 S22
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The reflection and transmission coefficients R(E, h) and T'(F, h) are by definition the
square of the modulus of the coefficients s;; and s;; respectively. They correspond
to the probability for a purely incoming-from-the-left particle (1. fi +0.fT...) to be
reflected to the left or transmitted to the right (= sy fX + sq; f1). We shall study the
behavior of these quantities in different regions of the (h, F)-plane as h — 0, under
the following general hypothesis on the potential V:

(A) The function V is real on the real axis, analytic in the sector
& ={z € C,|Imz| < §|Rez|+n}

for some 6,m > 0, and satisfies the following estimates:

Vi) = O(—

|["

)

for some v > 1 as |x| goes to infinity in .

We will show that under this assumption the Jost solutions exist (see discussion at the
end of Sect. 3 for the long-range case, that is when r €]0, 1]). Because V is real on
the real axis, we have (f'")* = f-", where u*(z) = u(Z), and the scattering matrix
S(E, h) is unitary. We also have the following relations between the coefficients of

S(F, h):
s1(E, h)
5u(E,h)’

so that s;; and s;; determine completely the scattering matrix. We also have the
well-known relation R(F,h)+T(E,h) = 1.

si(E, h) = s3(E, h) and s12(E, h) = —531(E, h)

We have first studied the case where the energy level E is far below the extrema
of V on the real axis, that is the distance between E and any extrema does not vanish
as h does. We have obtained the following

Theorem 1. Transmission through a barrier. Suppose the potential V satisfies as-
sumptions (A). Let V,, be the lowest local extremum of V on the real axis. Suppose
C < E <V, —C for some constant C > 0 independent of h, and let a(E) < b(E) be
the only two real zeros of V(x) — E (see Fig. 1). If these zeros are simple, there exists
two classical analytic symbols ¢1(h) and ¢,(h) of non-negative order (see Definition
1 below) such that

S(E TE
=i )

521(E7 h) = ’L(l + h¢2(h)) exp {%(\/Ea + /a Q(ta E) dt)} 9

where S(F) is the classical action between the two turning points a(F) and b(E)

b(E)
S(E) = VV(z)— Edz.
a(F)
We have also written Q(t, E) = /E — V() — VE for t < a(E) and

+00 a(E)
T(E)= —VEME)—aE)+ | Q¢ E)dt+ | Q, FE)dt.
b(E) —o0
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a(E) b(E) a(E) b(E)

Fig. 1. Transmission through a barrier

We have studied more closely what happens in the neighborhood of a maximum
of the potential under the following assumption on V:

(B) The function V' has a unique maximum on the real axis at x = 0 with V(0) = 1
and V" (0) = —k? for a real strictly positive k.

When V satisfies assumptions (A) and (B), and for energies E close enough to
W, there exist in a complex neighborhood of 0 exactly two simple turning points
which are real and of opposite sign for £ < V), close to :l:%\/2(Vb — E). They are
complex-conjugate for E > Vp, close to - +/2|Vy — E|. We define then the classical
action S(E) by

1
S(B) =5 %(V(m) — B)'/* dz, (1)
Y
where ~ is the boundary (oriented counterclockwise) of a disk in .% which contains

the turning points. The determination of the square root is fixed so that (V(z) — E)!/2
belongs to iR* for the real positive x on 7. Notice that we have

b(E)
/ VV(R)— Edt when F <V
S(E) = “

(E)

b(E)
z/ VIV(@)— E|dt when E >V}
a(E)

and that S(F) is real, positive when F < Vj and negative for ¥ > V{. We shall also
use the following notations:

a(F) +00
VE(a(E) — b(E)) + / (Q(t, E)dt+ [ Qt,E)dt for E <V,
T(E)=14 o b(E) oE)
/ Q¢ Eydt+i | (Vit)— E)\/?dt for E >V,
—0o0 a(E)
and
a(E)
VEa(E) + Q(t, E)dt for E <V}
T_(E) = -

0 a(E)
/ Q(t, B)dt — z/ (V) — E)\?dt  for E >V
—00 0

with Q(t, E) = VE — V(t) — VE for real, large enough t. We can state now our main
result:
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Theorem 2. Scattering at the top of a barrier. There exist a constant C > 0 in-
dependent of h, three classical analytic symbols m(E,h), my(E, h), m3(F,h) of
non-negative order, and a strictly positive real number € such that for any E €
Wo — C, Vy + C[, we have

1 S(E) .T(E 1 S(E
si(&,h) = Eexp _T(h—) ( )}F(— ( )(1 + h2mi(h)))
exp{— ZS(E) (In l—S@l- — D} + hmy(h)) + O™ ")
s1(B, ) = \/2_ exp( (E) 21 (E)}nl B4 i)
xp{— ZS(E)(l IS(E)' — D} + hms(h)) + O™ </").

It is interesting to compare this theorem with the first one. We show below that
for Vp — E small enough

s
— W —-F
\/Qk(o )7

so that |S(E)/h| — oo provided |V — E|/h — oo. Thus we shall use Stirling’s
formula in the complex plane (see [O12] Chap. 8, Part 4), which can be written as

f (Z)

S(E) ~

I'(z) = V2rexp{—z + (z — 1/2) In(2) + —= )

where f(z) is analytic and bounded function in the domain {z €C,|z| > R,|argz| <
m — &} for any large enough R and any 6 > 0. If we notice that for any real M,

1 ;
In(5 +1M) = In(|M]) + zg sgn(M) — 2_]\7 + (M)zg(l/M)’

where g is analytic near the origin, Eq. (2) gives, for some analytic and bounded
function k,

F(% +iM) = mexp{—wlé‘/jl +iM(n|M] ~ 1)+ %k(l/M)}. 3)

Under assumption (B) and for energies E such that C' < E < Vp and (Vp — E)/h —
+00 as h — 0, Theorem 2 and Eq. (3) with M = S(E)/wh give exactly the formulas
of Theorem 1.

Equation (3) and Theorem 2 give also an interesting result in the case where
C>FE >Vyand (Vh — E)/h — +00 as h — 0. Then S(F) is negative and we have

Theorem 3. Reflection over a potential barrier. We suppose the potential V satisfies
assumptions (A) and (B). We also suppose that Vo + C) < E < C for some constant
C| > 0 independent of h. Then there exists two classical analytic symbols ¢1(h) and
¢2(h) of non-negative order (see Definition 1 below) such that

S0, ) = (1 + hér(R)exp{ - / Qt, E)dt)

2i 0 2 [UB
s21(E, b) = i(1 + héy () exp{ < f QU BYdt++ | (V(t) - E)'/2 dt},
—00 0

where we have written again Q(t,E) =/ E — V(t) — VE.
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Fig. 2. Reflection over a barrier

Notice that we have not written here the exponentially small error term which
should come from Theorem 2. In fact we have proven this more precise result in
Sect. 4 by the mean of the exact WKB approach, and we have shown there that this
theorem is still true under a more general hypothesis: the important point is that the
geometrical configuration of the Stokes lines for the £ we consider should be the
same as in the case where assumption (B) holds (see Proposition 7).

Concerning the resonances generated by a quadratic maximum, our microlocal
constructions give also

Theorem 4. Bohr-Sommerfeld quantization condition for the resonances generated
by a quadratic maximum. Suppose V satisfies assumptions (A) and (B). There exists
a constant C' > 0 depending only on the potential such that we have the following
quantization condition for the resonant energies lying in the half-disk {|Vp — E| <
Ch}N{ImE < 0}:

S(F) =ik + 1)1;2 +0O(h?),k €N,

where S(E) is the analytic continuation of the classical action defined by Eq. (1) to
this half disk.

This paper is organized as follows: Part 1 is this introduction. We recall in the
Second part how the exact-WKB method permits to construct exact solutions of the
Schrodinger equation and give their asymptotic expansions in bounded domains of
.. In the Third part we adapt this method in order to obtain the Jost solutions and
their asymptotic expansions as h — 0. Part 4 is devoted to the proof of the first
theorem using the constructions of Part 3. We also mention other results concerning
the over-barrier case. In Part 5 we construct microlocal solutions near a quadratic
maximum of the potential, recalling first the reduction theorem and studying precisely
the branching model. The Sixth part ends the proof of the last results, connecting the
Jost solutions of Part 2 and the microlocal solutions of Part 5. At last we have put
together in a brief Appendix the minimal set of notions in semiclassical microlocal
analysis that we hope makes this text understandable (one may find more details in
[Sj2], [He-Sj], or [De]).

Acknowledgement. 1t is a real pleasure for the author to have the opportunity to thank A.Grigis, A Martinez
and S.Fujiie for the many fruitful discussions we had about this work.
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2. Exact WKB Constructions

We construct here solutions of the Schrodinger equation
— W2 +V(z)u = Eu “4)

in bounded domains of the sector .%” using the exact WKB method. First of all we
make the change of variables x — z given by
x— z2(x,z0, F) = / W@ - E)l/zdt.
v(Zo,x)

One of our tasks will be of course to study the subsets of . where this function is
well-defined, but let’s work formally for a while. Writing a solution u(z, F, h) as

u(z, B, h) = (V(z) — B)"*g(2(z, z0, E), B, h),

we obtain the following equation for g(z):

1
—g" +(H* ~ H'+ 5)g=0,

where H(z) is given by

1 V'@ E)
4 (V(a(z, E) — Ey/2

H(z) = =(V(z) - By V40,(V(x) - E)y"'/*  (5)

as soon as z(z, E) is well-defined in {2(E). Now we put
9+(z, B, h) = /" Wi(z, E, h)

and obtain

2

h

One then sees easily that the series Wi =3 oo Wy 1, given by

(H? - H)YWy=+-Wi +W/. ©6)

Wo+ = 1
02 £ 2Wapn,e = —HWyps O
OWyp+ = —HWyp 1+

is a formal solution of Eq. (6). So we investigate the solutions of this system. Suppose
{2 is an open simply-connected domain of the z-plane, where z — H(z) is well-
defined and analytic. Then Eq. (7) defines a sequence (W, +) of analytic functions in

2 which is unique up to some arbitrary constants. We fix these constants choosing a
base point Z in {2 and consider the sequence (W, +(z, h, 2)) satisfying Eq. (7) and

Wi (2,h,5)=0,n> 1.

One immediately gets the corresponding integral equations
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WO,:I:(zv h’ 2) 1
B / eF =AM H(OYW)p +(O)dC
I'(z,z)

WZp,:i:(za hv 2) = - fIo H(C)WZP—I,:I:(C)dC’

W2p+l,:i:(z, ha 2)

where I'(Z, z) is any path in {2 beginning at Z and ending at z. The solutions of this
system can be written as (for p > 1)

WZp—l(Za h,2) =

- / e* Xt i AME () H(Gop )G - - dap ®)

rE_ 2

and
sz(Z, h7 Z) =

/ | RTer e GO  H GG - dGap, ©

I’zp(i,z)
where Fff (%, z) is the set of n-tuples of points ((i, ..., (,) put in increasing order on

the path I'*(Z, z). The corresponding series

Wiz, h,2)= > Wy s(2,h,2)
n>0

will converge in §2 provided for example that for all z € §2 there exits a path I'*(z, 2)
of finite length L and a constant A*(h) > 0 such that

sup [eX/MH(()| < A%(h) and  sup |e”X/PH(Q)| < AT(h)
¢ert CeFi

because the Volterra equations above will then give, for n > 1,

+ n
|Wn,:|:(z)| < %‘%&

In particular one sees that the convergence is uniform in §2 when this set is bounded.
In that case we can obtain asymptotic expansions in h for the functions W, 1 inside

2. We recall first the following

Definition 1. A function f(z,h) defined in U x]0, ho[, where U is an open set in C
and hg a real strictly positive number, is called a classical analytic symbol (CAS) of
order m € N in h if f is an analytic function of z in U and if there exists a sequence
(aj(2)) of analytic functions in U such that

— For all compact set K C U, there exists C > 0 such that, for all z in K, one has
laj(z)| < G757,

- Forall z € U, f(z, h) admits the series 3, a;j(2)h™* as asymptotic expansion
as h goes to zero. B
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We reproduce now without proof a result that can be found in [Ge-Gr] (see Prop.
1.2 there). The reader should also look at Proposition 2 below where the same kind
of result is proven in the case of a particular choice of base points.

Proposition 1. Let 2 be an open simply-connected bounded domain in C where the
function H(z) is analytic, Z a fixed point of 2 and 2*(2) = {2 N {Rez > ReZ},
27(2) = 2N {Rez < Re z}. The functions W, ,(z, h, Z) and W,, _(z, h, ) are clas-
sical analytic symbols of order ["T”] in 2*(2) and 2~ (3) respectively. Moreover the
Sfunctions W (2, h, ) and W (2, h, %) given by

W™ (2,h,2) = Y Win(z,h,2)  and W (z,h,2) =Y Wit (2,h, %)
n>0 n>0

are classical analytic symbols of order 0 and 1 in £2*(Z) and 2~ () respectively.

We go back to the z-plane and use the discussion above to construct solutions of
our equation in bounded domains of the sector .. Let {2(E¥) be an open, simply-
connected set of . with no turning point. We fix a determination of ¢t — (V' (t)— E)'/*
in that set and define the function z(z, zy, F’) as

T — 2(z, 70, E) = / (V(t) — E)'/2dt,
o

where x( is some point of 2(£) and the integration is performed along any curve
in 2(E) going from x( to . We introduce now the notions of canonical path and
canonical set for the function x — z:

Definition 2. Let  and x be points in 2(E). We say that a path v(Z,z) in 2(F),
starting at & and finishing at x is a canonical path of type = if the function t +—
+Re z(t, xo, F) is strictly increasing along y(Z,x). We also define the canonical set
0% (%) of type + as the subset of 2(E) for all points of which there exists a canonical
path of type + going from % to it.

It seems useful to mention here that the notion of canonical path, that we have
borrowed in [Ev-Fe] and [Fe], corresponds to the one of progressive path used by
most of the authors. Our canonical set is the complementary of what is sometimes
called a shadow zone (see [O12], Chap. 6, Part 11.4).

Let # be a point in £2(E). For all z in the corresponding canonical set 2% (%) one
can find a canonical path v(Z, z) and consider its image I'(Z, z) by = +— z. Denoting
by 2% (%) the image of 2%(%) by x — 2, we see that we can perfectly define the
sequence of function (W, 1) in that set using Eq. (8) and Eq. (9), where the integrals
are performed along I'(Z, z). Using these notations, we state the main result of this
section:

Proposition 2. The function w defined in (%) by

w:l:(x7 E7 h, xo, :i) =
(V(z) — B)y~/4etz@enB/h 37 (W, 1 (2(x, To, E), b, 2(Z, 70, E))

is the solution of the following Cauchy problem:
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—R2" +V(z)u= Eu
wi(, B, by 20, 7) = (V(F) — E)~!/fex=@e0.B)/h
O wi(E, E, h; 3o, &) = £4(V(&) — E)/4et=@20.B)/h,
Moreover the functions
Wiven = Z W2n,:|:(z(m) Zo, E)7 h> Z(j’ Zo, E))
n>0

and
W9 = " Wana +(2(x, 20, E), h, 2(&, 20, E))

n>0
are classical analytic symbols in 2%(Z) of order 0 and 1 respectively.

Proof. This result is almost a direct consequence of Proposition 1, noticing that the
function H(z) is well-defined and analytic in £2*(Z). The only remaining thing to do
is to compute the value of d; w4 at Z. Using logarithmic derivatives, one can easily
see that

’LU;:($, E’ h) Zo, 5:) =
+1(V(z) — B)/4eEo@/M{Weven(z(z), h, 2) — W (z(2), b, 2)},  (10)
where zo(x) stands for z(z, ¢, F) and Z for z(Z, zg, ), and this ends the proof.

One of the main features of this construction is that the wronskians of two solutions
can be easily calculated. We just recall that the wronskian 77" (u, v)(z) = u/(z)v(x) —
w(z)v'(z) of two solutions u and v of Eq. (4) doesn’t depend on z and is zero if and
only if v and v are proportional. An obvious computation using Eq. (10) gives, with
the same notations

Proposition 3. Let ©y and z, be two points in (2(E). If, for given x, and x_ the
canonical sets (2*(x,) and 27 (x_) have a non-empty intersection, then for any x €
2" (x )N 2~ (x_) one has

W(w+(~a h> E, Zo, CI?+), U)_(., h> E; th—))(x) =

2
e EIW O (20(3), by 2)WE (21(2), by 2) =

W2 (z0(2), b, )W (21 (), b, 22} (11)

If, for given x, and %, the canonical sets 2*(x,) and 27 (Z,) have a non-empty
intersection, then for any x € 2" (x;) N §27(Z,) one has

W(w+(') h7 E’ an Zl7+), w+(" h? E» :I:l 3 Ii’.,.))(ﬂf) =
2
Ee‘z‘)‘m”z'“”/ MW Ee (20(2), hy 20) W (21 (), by 24) —

W% (20(x), b, 2 ) WE™(21(2), b, 54) }- (12)
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Notice that this proposition gives an equivalent for the wronskian of two solutions
of different type (a w, and a w_) which is of the form e4/*(1 + O(h)). In the case
of two solutions of the same type (a w, and a 10,), we only have an upper bound for
their wronskians, which reads O(he*/") for some constant A.

We end this section with a remark concerning the case where E depends on h.
Our constructions for the solutions are still valid, but the functions W °% and WWever
may not be CAS in h anymore. In particular one may have (see [Ge-Gr], Prop. 2.4)

Y (wy,w_) =1+0(Mh/(E - Vp))

so that Proposition 3 above is worthless when E — V = O(h).

3. Jost Solutions and Their Asymptotic Expansion as h — 0

We construct here the Jost solutions copying the procedure described in Sect. 2, the
new point here being that the solutions we seek are normalized at infinity. In all this
section we will work in two unbounded, simply-connected domains £2'(F) and 27(E),
where |V (z)| < E and which coincide with .7 for — Re z and Re z sufficiently large
respectively. The existence of such domains is of course an easy consequence of the
behavior of V' at infinity in . (see assumption (A)). In these two sets we choose
the determination of ¢ — (V(t) — E)!/* which belongs to e*™/*R* for real ¢ so that
t— (V(t) — E)V/? belongs to iR* for real ¢. To obtain the correct behavior for the
phase we will use the obvious identity

V() — B)/2 — i = V()

T (V@) — BE)/2+iE1/? (13)

and define, with the determination chosen above

il 5 E = E / ‘, E E ‘

For real z in 274(E), we shall also write this definition as
2"z, E)=iVEz + z/ {VIVt) — E| - VE} dt, (15)
+oo

which shows that z™!(z, E) is then purely imaginary. Notice that z"!(z, F) is a
primitive of (V(t) — E)'/? and that we have for any xg’l € NMYE),

2"z, E) = 2(z, xg’l, E)+ zr’l(:cg’l, B). (16)
To make the coming ideas clearer, we also introduce the following

Definition 3. Let = be a point in 27(E). The set of points y in 25"(E) for which
Re 27 (x, E) = Re 24" (y, E) is called the Stokes line passing through x.

The point is that the condition for a path to be canonical (see Definition 2) is of
course that it intersects transversally the Stokes line it meets. Thanks to the absence
of turning point or singularity of V, the local structure of the Stokes line in 27 (E)
is particularly simple as shown by the
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Lemma 1. Let D be a bounded, simply-connected domain in 2" (E). The function
x +— 257 is an analytic diffeomorphism from D to z(D) that maps the Stokes lines in
D onto the vertical lines Re £ = C*L.

Proof. The only non-trivial part is to show injectivity of the functions z»". For z # y
one has with Eq. (14), using |V ()| < E in 2'"(E),

|27 (2, B) = 2" (y, B) — iVE(@ — y)| < VE|z — y,
which shows that z(x) = z(y) only for x = y.

We consider now the global situation. With our choice for 2" and the behavior
of V at infinity in . we have immediately the following

Lemma 2. The Stokes lines in 27 (E) are asymptotic to the horizontal lines Imx =
C*t. Moreover for |z| big enough, the function Re 2(x) is increasing as Im z decreases,
and Im z(x) increases as Re x does.

A
\8}_1(7&) Im x
>\\ Im z’
Rez /
 / S
1
RALY .
>
Re x

Fig. 3. Integration paths in the z-plane

With these two lemmas, one sees that for all z in £2*(E), there exists an infinite
path ending at z, v} (z), parameterized on ¢ € [0, +ool, asymptotic to the line Im¢ =
FORe& as Re§ — —oo and such that € — £ Rez(§) is strictly increasing along
it (see Fig.3). For x in {2"(E) we define the same way the paths 7 (x) which are
asymptotic to the lines Im¢ = £§Re & as Re € — +oo.

We also denote by Ff_cr(z) the infinite oriented paths zl’r(’ys’:r(:r)) ending at
247 (z, E), and remark that I'/(z) and I'" (z) are asymptotic to the line Im{ = 3 Re ¢
as Re( — Foo respectively, and that I" (z) and I'7(z) are asymptotic to the line
Im¢ = —% Re ¢ as Re { — £o0 respectively.

We define now four particular WKB solutions of the Schrodinger equation in
27(E) and 2Y(F). We will use Eq. (8) and Eq. (9) where the integrals are now
performed along the paths I (z).

Proposition 4. Let Fi”"(z) be the path defined above. The system of recurrence equa-
tions
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Weli(z,h) = 1

Wap (2 = = fp 5 )eﬂ“—z)/hH(oW;;:i(c)dc
Wi = = [ HOW, 10
Al E))

define a sequence of classical analytic symbols of order [”T“] in Q57 (E). Their sum

Wi (@, h, B) =Y Wy (Z"(x, B), )
n>0

is an analytic function in this set. Moreover the functions

evren :i:(x h E)= Z W 2n, :t(Zl T(.Z‘ E) h)
n>0

and
odd +@ h E)= Z W2l7:+1 LG (@, E), h)
n>0

are classical analytic symbols in 2" (E) of order 0 and 1 respectively.

Proof. We write the proof only for T/, the other cases could be treated along the
same lines. We first prove convergence of the integrals above by induction. Suppose
Wzln , is bounded and analytic in £2'(E). Using Cauchy’s formula and the direction

of the path I'!(z) at infinity we get
Whya sy == [ ECIMHOW, (O,
+(2)

where the integration is now performed along the straight line Al(z) ending at z
given by Im(¢ — z) = § Re({ — z). We obtain

- +00 _ 1y - Z i
Wiyt (2, h) = — / e 2 /MEW) Mz — (1 + P+ 2)du, (17
0

where u = — Re(¢ — 2), and this shows uniform convergence of the 1ntegra1 deﬁmng
Wle +1,+ using the definition of H and the behavior of V' at infinity in .% given by

assumption (A) and Cauchy’s inequalities. This expression also shows that sz o+
is a bounded and analytic function in £2!(F). Now we have

Wiz 4(2,h) = — . )H(<>W5p+l,+<<>d<, (18)

where H is obviously in Ll([‘f(z)) and this answers the question of convergence of
the above integrals and definition of the W,ll, + We look now for asymptotic expansions

of these functions. We perform the change of variables s = u/h in Eq. (17) and get

N +00 B Y B i i
Wi, (2, h) = — / e 2D HW,, )z — (1+ 5)hs)(l + )hds.
0
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Using Taylor expansion for H Wzln , at z we obtain, for any N € N,

N j $74)
. OL(HW;, )(2)
W2lp+1,+(zv h) = Z e

+00 .
i /0 e~ 20+Hs[(] 4 %)h]j+lsjds + OV,
3=0 ‘

and a direct computation gives
N 1.
Wipet +(z,h) = 20: 8;(HW2lp’+)(z)(—§)]“hf” + O(hV*%). (19)
J=
This shows immediately that Wzlp +1,+(2, h) is a classical analytic symbol of order p+1
when sz + is a classical analytic symbol of order p. Using Eq. (18), we see that
2p 1+2.+(2, h) is then also a CAS of order p + 1.
The last thing to prove is the convergence of the sum Zn>0 W . We recall the
following easy result (see [Gr], Lemma 3.2)

Lemma 3. Suppose f is a function in L*(]0, +oo[) and define, for all n > 1,
Dn(fy= Je”20r/Dimortmsml/R f(51) f(s) ... f(s2n)ds1dss ... dsan
+00>81>82,>...> 827, >0
and
L 1(f)= fem 203/ Be1menttom0/h (51 . f(son_1)dsidsy ... dson_1.
+00>81>82>...> 82, —1>0

Then we have

h
(D] < DIV £

This lemma and the expressions Eq. (9) and Eq. (8) for the W,ll +» where the path

of integration is now I"(z), gives uniform convergence of the series, noticing that H
is in L?(I'"(z)) thanks to the hypothesis (A) on V.

We write now the corresponding WKB solutions as
Y (z, B, h) = (V(z) — B~ /4eE " @BIML @ b B, (20)
and we see immediately, using uniform convergence of the integral in Eq. (17) and

Eq. (18), that for n # 0,
lim W, (2, h, E) =0, @

so that we have immediately the

Proposition 5. The functions wli are solutions of the Schrédinger equation Eq. (4)
in 2Y7(E) respectively, and we have

lim e:F'i\/Em/h ~1 (x) = (_E)—1/4

T——00

lim e:Fz\/—z/h ~T (.’L’) _ ( E) 1/4

T—+00

Moreover (W', ") (resp. (W, wr)) is a basis of the space of solutions of Eq. (4) in
YE) (resp. $27(E)).



Semiclassical Study of Quantum Scattering on the Line 235
This last proposition shows that the @ "l " are proportional (with the same coefficient

(—E)~ /%) to the Jost solutions and that the scattering matrix S(¥, h) can be computed
in the corresponding two basis, provided these solutions are defined in a shared
domain. However it will be convenient in the sequel to work with other choices for
the normalization of the phase. All we have written in Sect. 3 can still be read with

2(z, x5, E) = / (V(t) - B)/?dt

instead of 25", where :c(l)’r are fixed points in £2°7(E). We shall write the corresponding
solutions as

WY (z, B, by zh") = (V) — By Aet2@a B/hwlrg b B ab™y  (22)
and we have the

Proposition 6. The functions ’wli’r are solutions of the Schridinger equation (4) in
Y7 (E) respectively, and we have

Lre b,
@y (x, B, h) = e @ Bk B by b,

Proof. We compute the wronskian of w! and @w! at x in 2}(E) using Eq. (10). Then
letting z — —oo and considering Eq. (21) Wthh is true both for w and W, we see
that this wronskian is 0, so that these solutions are proportional. But we have

lim 'I.U+(£E, E7 h)

it a St Bk MNP -l VL
r——00 e’L\/E$/h _( E)

and, with Eq. (16),

l 1
lim e* @Byl (z, B, h;zh)

(14
T——00 ei\/ﬁm/h =E) ’

The same arguments lead to the three other equalities.

We end this section with a remark concerning the so-called long range case, where
V' goes to zero at infinity like |z|~" with O < r < 1. Then, as shown by Eq. (14)
the primitives of (V — E)'/2 do no longer behave at infinity like iv/Ex +C*, so one
has to define Jost solutions another way. The good one (see for instance [Ag-Kl]) is
to consider the solutions which behave at infinity like e*#@ %0/ for some natural
choice of xy, and there is no problem to adapt what we are doing in Sect. 4 below
and obtain the corresponding results in the long range case.

4. Scattering for Energies Far Away From the Extrema of the Potential

We shall use in this section the notations introduced in Part 3 and compute some of
the elements of the scattering matrix S(F, h) that we may write as

w (W, o)
W (wr,wh)

" (w+, wy)

Sl](Eyh) W( o )

and s21(E,h) =
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As mentioned at the end of Sect. 3 it will be more convenient to work with other
solutions than the . Denoting by wli’r(:v, E, h; w(l)”") the ones defined by Eq. (22), we
get easily with Proposition 6 the following useful formulas:

ror W (i, wh)
E.h) = H@d, B)—2"(a B /h 27\ ) 23
su(E,h)=e W (wr,wh) 23)
and .
321(E7 h) - _ezzl(ié,E)/hM (24)

W (wy, wh)

These expressions are of course formal in the sense that they may involve solutions
which are not defined in a shared domain. We shall now extend these functions in
order that Eq. (23) and Eq. (24) make sense.

4.1. Transmission through a barrier

We suppose here that V' satisfies assumption (A) and that V,,, — C > E > C for a
constant C' > 0 independent of h, where V,,, is the lowest local extremum of V' on
the real axis (see Fig. 1). There exists then only two real turning points a(EF) < b(E),
and we suppose that they are simple. In that case the Stokes lines are as shown in
Fig. 4.

Fig. 4. Continuations of the solutions in .%": real turning points

We first compute s11(F, h) using Eq. (23). We recall that

2

W(?I)j_, wl—) = Ea

so the only remaining quantity is the wronskian of @} and @' or equivalently
W(wT, w! ). We have to extend the function w7, which is defined in 27(E), into
02Y(E). We recall that we have chosen the determination of ¢ — (V(t) — E)!/* which
belongs to e!™/4R* for real ¢ in £27(E). Then we define the function z in 27(E), by

2z, b(E), E) = (V) — E)/2dt.
b(E)
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Thanks to the structure of the Stokes lines between a(E) and b(E), we can find a path
~1 from +o00(1 +16) to —oo(1 +16) transverse to the Stokes lines, cutting the real axis
at z = 0 and along which we can propagate this determination for (V (t) — E)!/* (see
Fig.4). The determination we obtain that way in §2!(E) is such that (V(t) — E)l/4
belongs again to ei"/4R* for real ¢. Notice that between a(FE) and b(E) on the real
axis, where V(t) > FE, we have

V() — E)/?=—\/V(t) - E. (25)
We shall denote by lwi the extension of w}(x, F, h; b(E)) along «; and compute the
wronskian of the solutions 'w? and w' = w! (z, E, h; a(E)) at y. With Eq. (11) we
get

2
7wl wh )(y) = 5O HEEH BRIV + hp(h)

and with Eq. (25)
W (wi,wh) = %eSW "1+ hy(h)), (26)

where 1(h) is a classical analytic symbol of positive order. Equation (23) gives

sll(E,h)=(1+h¢1(h))exp{ ()} P{ oo(E)}

where ¢; again is a CAS of non-negative order, and where we have written
Soo(B) = 2/(a(E), B) — 2" (WE), E)

that is precisely
+00 a(E)

Soo(E)= —VEME) —a(E)+ | Q@ E)dt+ Qt, E)dt
b(E)

—00

with Q(t, E) = vVE — V(t) — VE.

Let’s compute now sp; with Eq. (24), where only %~ (wi, w}) is not known. If
we used the same extension of w] into '(E) as for the computation of s;, we would
only obtain an upper bound for s;; (see discussion after Proposition 3). Instead we
choose a point y € 2(F) and a canonical path v,(y) going from +oo(1 + i) to ¥,
which stays above the turning points (see Fig. 4), and we extend the solution w] along
2. If we denote this extension by 2w, we obtain in £2!(E):

w(y, B, h; b(E)) = —ie" PNV (y) — B)~ /e 2w B B/RN "2y (),
n>0

where the determination of (V(y) — E)'/* is the one we have fixed at the beginning
of this section, and we see that 2w is of the type —ieS"/ w_ for a solution w_
defined in 24E) .

Now we compute 7 (w! s 2wT) at y and obtain, for a CAS x(h) of non-negative
order

.
7 (i, wi)(y) = —ie® P (wl, wo)(y) = =TSP M1+ x(h)
so that, with Eq. (26),

s1(E, h) = e P DI 4 hoy(h)).
This ends the proof of Theorem 1.
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4.2. Over-barrier reflection

We suppose now that the energy level E is above the maximum value Vj of the
potential V' on the real axis. More precisely we have to suppose here that £ — Vj >
C > 0 for a constant C' independent of 4. If we did not make any further assumption
on V, we could take the same domain for 2'(E) and £2"(E) and compute the different
wronskians in that set. As we have already noticed above, we would obtain that way
an upper bound for the reflection coefficient. Because we want to compare the results
of this section with the one of Sect. 6, we prefer to suppose that for these E, the
domain .¥” contains two complex-conjugate simple turning points and we denote them
by a(F) and b(F) with Ima(F) < 0 < Imb(E). We also have to state a geometrical
hypothesis on the structure of the Stokes lines, which should be as in Fig.5. Notice
first that  — 2(z,0) is an analytical diffeomorphism from the real x-axis to the
imaginary z-axis. The function z~! extends to a strip in the z-plane whose image by
2~ ! is bounded by two Stokes lines. Our assumption is that each of these Stokes lines
contains no turning points but exactly one among a(F) and b(E). Notice that this is
true when E is close enough to a quadratic maximum of V.

% b(E)

a(E)

Fig. 5. Continuations of the solutions in .#”: two complex turning points

In 2'(E), which is also £2"(E), we choose the determination of (V(z) — E)Y/*
which belongs to e“™/*R* for real = and we define as in Sect. 3 the two solutions
w! (z) = w' (z, E, h; a(E)) and wl(z) = wl(z, E, h; b(E)). Notice that, with the same
notations as in Sect. 4.1, w”(z) can be written as 'w7(x) for a path ; which stays in
Y(E) (see Fig.5). Equation (11) gives first

ol 2 { 1o 1/2 } 2
W (wi,w_)= —exp ——/ V(@) — E) /= dt p (1 +h™i(h)),
h h a(E)

where 1)1 (h) is a CAS of non-negative order. We use then Eq. (23) and get, for another
CAS ¢,

b(E)
s = (1 +h*¢1(h)) exp {%(z%a(Ex E)— 2"(W(E), E) + (E)(V(t) — E)l/? dt)}

that is finally, with Q(¢t, E) =i/ E — V(t) — iVE for real t,

1 +00
sip=(1+ h2¢1(h))exp{E / Q,E) dt} .
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Next we have to compute 77 (w!,wT). We use the same idea as in Sect. 4.1 and
extend the solution w] along a path v, which comes from +oo(1+%6) and stays above
the turning points (see Fig. 5). The corresponding solution is denoted by 2w” and we
have

2w(y) = —i(V(y) — B)~ /e " wbEB/AN 1y (),

n>0

where the determination of (V(y) — E)'/# is the one we have chosen above. Again
with Eq. (11) we get

b(E)

(V(t) — E)'/? dt} :

(E)

W (W, w)) = —%(1 + h9a(h) exp { % /
and with Eq. (24)
2 b(E)
so1 = i(1+ K> ¢a(h)) exp 7 / (V@) — B)'\dt + 2/ (a(B), E))
a(FE)
so that at last
) 0 WE)
sp1 = 3(1 + K2 (h)) exp {E(/ Q(t, E)dt +/ (V(t) — B)/? dt} )
—00 0

We have proven the following

Proposition 7. Suppose that V satisfies assumption (A). We also suppose that E >V
is fixed and that the hypothesis at the beginning of this section are satisfied for this E.
Then we have

1 +00
511 =(1+h2¢1(h))exp{g/ Q(t,E)dt}
2 _08 b(E)
o1 = i(1 + h2¢,(h)) exp { E(/ Q(t, E)dt +/ V) — E)l/2 dt} .
—00 0

The reader may notice that these formula are precisely those of Theorem 3.

5. Microlocal Study Near a Quadratic Maximum

In this section we study precisely what happens when the energy E is very close
to the maximum V; of the potential V' on the real axis, under the assumption that
this maximum is of quadratic type. We suppose V' satisfies assumptions (A) and (B),
which permits us to control the location and the nature of the turning points. We recall
that there exists a constant C' > 0 depending only on the potential V' such that if
|Vo — E| < C, there exist in a complex neighborhood of 0 exactly two simple turning
points which are real and of opposite sign for £ < V, and complex-conjugate for
E >V, close to :I:%\/Z(Vo — F). The difficulties come from the fact that these two
turning points coalesce when E goes to V) as h vanishes.
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5.1. Reduction to a normal form

We use here as in [Md] and [Ra] some techniques which have been introduced by
J.Sjostrand and B.Helffer (see [He-Sj]) and that we have briefly described in the
appendix. The initial remark is that the Schrodinger equation (4) may be written as

P(z,hiD)u = pu 27
hZ
with P(z, kD) = 7172 +Vo(@), Vo(z) = YO and =
the A-symbol of this operator is close to the symbol assoaated to Weber’s equation
(€2 — 22)/2 for z close to 0, and is mapped into a symbol close to ¢(z,&) = z€ by
the rotation by /4. The following theorem (see [He-Sj] App. b) allows us to work
microlocally in that direction:

Proposition 8. (B.Helffer, J.Sjostrand) There exists a real-analytic canonical trans-
formation k, defined in a neighborhood of (0,0) with values in a real neighborhood of
(0,0) and a real-analytic function fy defined near 0 such that:

1. fo(0)=0, fi(0)=1.

2. (0,0) = (0,0), dx(0,0) = fir/a, where kx4 is the rotation by 7 /4 around (0,0) in
T*R.

3. foopor=gq

Moreover there exists a unitary Fourier Integral Operator U, with canonical transfor-

mation k and a real-valued classical analytic symbol F(t, h) of order 0 whose principal
symbol is fy such that:

4. U*F(P, WU = @ microlocally near (0,0), where Q = %(th + hDz).
5. I'U = UA, where I is the complex conjugation operator and A = T .7;.1_1 =%I.

In particular the point (4) of this proposition gives

Corollary 1. Let i be a small enough real number. The equation Qu = p'u is mi-
crolocally in a neighborhood of (0,0) equivalent to the equation PUu = pUu with

w = F(u, h).

In the sequel of this section, we will study more closely the F.I.O. U and the
symbol F' (see also [Mé]). Most of the following results are consequences of the
symmetry imposed to U by the identity (5) above. Because we are interested only on
its principal symbol we write formally U as

) dy
Uu(:c)=e’c/h/ew(x’y)/ha z,y, hHu(y) —,
(z,y, Hyuy) N
where a(z,y, h) = ap(z,y) + hay(z,y) +. .. is a CAS, and (z, y) the phase function
defined in a neighborhood of (0,0) by

Ky, =0y (@, y) = (@, O h(x, 1)) (28)

In fact we should have written

) do
Uu(z, h) = // e @O/t oz, y, 0, Byu(y, h) ———=d
(z,h) (z,y,0, Hu(y T
where the integration is performed along a good contour y(y,¥) (cf. [Sj2], Chap.4 or
[De], Chap.1), and the expression above is obtained with a stationary phase expansion.
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Proposition 9. For any (x,y) near (0,0) one has

1. P(x,y) = PYo(z, y) + O((x,y)?), where o(x,y) = —z—z +V2zy — & is the phase
assoczated to the canonical transformation K z.
= Oy (x, By (x, y)) and By, y) = — Oz, Byih(x, y).
3 We can choose C = 0 and then og(0,0) = 2'/4¢?™/8. Defining the CAS o = o +

hoi+...by o(z,y,h) = “Cif(’(%;), we get 0¢(0,0) = 1 and

00(% y) — 0'0(:1", ay¢(a7a Z/))
0%, y)|'/* (0%, Oytp(, y))| /4
Proof. (1) is a direct consequence of relation (2) in Proposition 8, and computing

o(x, y) is straightforward. We examine now the second point. Point (5) of Proposition
8 gives

KOKA =K ORK,

where ka(z,§&) = (€, —x) and kp(z,€) = (z, —£) are the canonical transformations
for the F.L.O. A and I' respectively. Thus for (y, —n) close enough to (0,0) and
defining (z, &) = k(—n,y), we have (z, —&) = k(y, —n). With Eq. (28), we then get

& =0,9(x,n) = —09(x,y)
y= ayw(x) )
n = 0y (x,y)

and this gives the two identities of (2). For the last point one notices that for a(z, h) =

e~2"/2" we have Aa = a, and again with relation (5) of Proposition 8 we obtain
I'Ua =Ua that is

_dy
V2rh

In particular for z = 0, there exists a real number &g such that

e'C/n /e“"(”y)/ha(x,y,h)e_yz/z"‘ € R.

eiC/h/e—(1+i)y2+0(y3)/2ﬁa(07yﬁ) dy = Qyp.
27h

With a stationary phase expansion this gives

ao(o’ 0) = 21/4e—iC/he’L7T/85[O.

Last, thanks to the unitarity of U, we have |Ua(0)| = |a(0)] = 1 and & = +1. We
can choose @&y = 1 without loss of generality, and this proves the first part of (3).
Let’s work now with o(z,y, h) = oo(x,y) + hoi(z,y) + ... defined by o(z,y,h) =
2~ V4e=m/8(x, y, h). We do have ¢o(0,0) = 1, and relation (5) of Proposition 8
gives

21/4e—z7r/8 ) o
e | ¢ oy My = MU =
21/4ei7r/8 )
UAu(z) = eV @V ho(z,y, k) Au(y)dy, (29)

V2rh

where Au(y) =.%,I"u(y). So we have
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et/ / e Ve Rz, y, Ruly)dy = / / e VeI oz, y, h)u’(vﬁd—i’}rﬁdy.

One performs now stationary phase expansion to get rid of integration with respect
to y. Critical points y.(z,n) of y — ¥(z,y) — yn are given by n = 0,(z, y.(z,n)) and
with (2)

Yelx,m) = 87,1/)(13, n).
The corresponding critical value of the phase happens to be f.(z,n) = —¥(x,n)
because f.(0,0) =0 and, using again (2), one has

Oz felx,n) = —=0xp(x,n) and anfc(x’ n) = —0py(x,n).
Thus Eq. (5.1) gives

—iP(@, Y/ B o PN — | a—t(@,m)/h ao(z, 87,1/1(% n) + O(h) ——
Jerrvev ot gy = [ R O

and changing notations

0'0(.'13, 3y¢(93a y))
|02, (x, Oytp(x, y)[/?

The last part of (3) is then obtained differentiating (2), that is
1= 8, (=, 0y(z, )0, (=, y).
For the symbol F'(t,h) we have

(30)

oo(z,y) =

Proposition 10. There exists a real neighborhood w of 0 such that, for all p in w

1
fo(p) = —;S(M) and  fi(u) =0,

where S(u) is the classical action between the corresponding two turning points a(jL)
b(p)

and b(u):
v/ Vo(t) — pdt for p <0
S(u) = a('ub)(m .
VIV(@)— uldt for >0

Proof. Thanks to the definition of the functional calculus we use (see [He-Sj], App.
a.3) and in particular because the symbol of (z — P)~ ! is (z — p(z, £)) ™' + O(h?), it is
clear that denoting by s the symbol of F(P, 1), we have s(z, £) = F(p(z, £)) + O(h?).
On the other hand, noticing that one can consider many phases for a A-F.I.O., the
difference of two of them being of order 7, it is easy to see that there exits an h-
dependent canonical transformation % associated to the F.1.O. U such that identity (4)
of Proposition 8 gives s o & = ¢ + O(h%). So we get

a(u)

Fopok(z, €)= z€ + O(h%). (31)

But we also have
foopok=q(z,§) =z€. (32)



Semiclassical Study of Quantum Scattering on the Line 243

Using these two relations and the fact that the canonical transformations < and &
preserve oriented area, we compute in two different ways the following action integral

L, = ?f ¢de, (33)
vy

where the integration path is a closed complex curve v inside p~!(u). With Eq. (31)
and denoting by § the right-hand side of this identity, recalling also that u' = F(u, h),
we get

Ip”u = Iq,#/ = f fdl’,
,-yl

where the integration path ' of I, is such that its image under & is +. On the other
hand Eq. (32) gives
=Igu = ?{ &dz,

where pj = fo(u) and the image by « of v, has to be y. Let’s compute first the last of

these integrals. We choose 7}, to be the path {(z(t),£(t)), z(t) = re', £(t) = z‘z‘t’),t €
[0,27]} with r a fixed positive real number such that the turning points a(u) and b(u)
are inside the closed curve 7} for any x small enough. Then we have
Ig,y = 20,

When y is small enough so is 4, and the loop + is close to the circle {(re’,0),t €
[0,27]}; its image v under £ is thus close to {(roe®, roe®), ¢t € [0,2n]} with rq =
r/ v/2. On v we have of course &£(t) = [2(u — Vo(z(t))]'/2, where we have chosen the
determination of = +— (u — Vo(z))'/? which is real and positive for = r. Deforming
the path +, and being a little careful with the determinations of the square root as in
Sect. 4, we get

b(p)

-2 V2(Vo(x) — wydx  for p <0

— a(p)
Ip‘u = b(u) )

\/2|V0(ac) [)dx for u >0

and this gives the value of .

We compute now I, on a path §(h) which has to be close to {(re*,0),t €
[0,27]}. Thanks to the fact that § = ¢ + O(h?*) and using analyticity in Eq. (31), we
get

I = 2imp + O(h?%)

and because qu% = LM/
2im fo(w) = 2im F(u, k) + O(h*)

so f} is identically O.
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5.2. The branching model

We study here equation Qu = p'u for some real p'. It is easy to get two maximal
solutions for this order one ordinary differential equation and we can consider them
as distributions in ./ (R):

ul.(x, 1!, h) = H(dx)|z|~1/2ew e lal/h

where H(x) is the Heav131de function. Thanks to the symmetry of ) with respect to
x and £ we have [Q,. 7~ I = 0 and we obtain two other solutions in .%”,

Vi@, i by = T U i By = T (H G,
These four solutions are not linearly independent as proven by the

Proposition 11. Let i’ be a real number. If uin &’ is a solution of equation Qu = ui'u,
then u is in .’ and there exist four complex numbers o, a_, 8, and B_ such that

u= a+u +a_u’ —ﬁw +0_"

[e7% B+
(&) =mam (5 ),

where the branching matrix B, (k) is unitary and given by

and

B#'(ﬁ') = —.\/2—_71'['(5 - ZE) e—7r,u,'/2h—i7r/4 ek [2h+im /4

Proof. Let u € Z'(R) be a solution of equation Qu = p'u, u has to be &' on R*

and R* (see for instance [H6], Corollary 3.1.5). So there exists two complex numbers

a, and a_ such that the support of u — a,u? — a_u® is {O} and one sees easily

that no finite combination of derivatives of Dirac mass at O is a solution of Eq. (27).
Writing v{ as the boundary value of an analytic function in the upper half-plane,

namely

h—iu'/h 1 % ( e7\';1.'/2ﬁ+i7r/4 e~ K [2h—im /4 )

+oo o dE
UE(ZE,,U,I,FL) = lim / ez(m+zy)§/ﬁ€—l/2—w. /h ,
y—0* Jo 27h
and with z = (y — 1x)€/h as a new variable, we get
~ip' /R

V2T

where ~y(y) is the image of [0, +oo[ under ¢ — (y — iz)t/h. Using Cauchy’s formula
we obtain

Iy(l') = (y _ ,L,B)—-l/2+ip'/h / e—zz—-l/Z-—zy.//hdZ,
Y®)

B "Ik
V2
where E(y/, h) = ev™/4+1'7/2h,

We can also write in a similar way v° as a boundary value of an analytic function
in the lower half-plan and get

0
O

vz, W h) = F(— —z—)(Ew hyul +
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Bin "/h
- rG - ?(E( e

and this gives B(y/, k). That this matrix is unitary is a direct consequence of the
complement formula

ul + B/, hyu?),

v (z, i k) =

| VAN 74 v 2im
iz —i"re +it = =
G TG )= skt B = B2

and this ends the proof.

We shall need below some knowledge about the microsupport of these distri-
butions. Looking at the examples given in Appendlx A.1 and using the fact that the
canonical transformation associated to the F.1.0..%7 ~ I is the rotation by /2 around
(0,0), the reader would easily prove this last

Proposition 12. Let 0y, ,, 4 be the half-lines in T*R given by o; = R~ x {0}, 0, =
R* x {0}, 0, = {0} x R, and o4 = {0} x R™.Then

MS(u) is a subset of a neighborhood of o, U 0, U 0¢g

MS(uy) is a subset of a neighborhood of o1 U 0, U 04

MS(vg) is a subset of a neighborhood of 0, U 07 U 0.

MS(vy ) is a subset of a neighborhood of 04U o1 U o,

5.3. Microlocal solutions

Using the solutions for the model and the reduction theorem (Prop. 8), we define
here microlocal solutions of Eq. (27) and study their asymptotic expansion as i — 0.
Because the F.I.O. U only acts on microlocal distributions defined near (0,0) in T*R,
we have first to microlocalize the four solutions u%. and vJ. near (0,0) that is to truncate
them outside a neighborhood of (0,0) and then to consider them as an equivalence
class for the relation M S(u—v)NV =0, where V = D(0, €) is the neighborhood of
(0,0) in T*R where the point (4) of Proposition 8 holds. For the sake of simplicity
we will use the same notations for these microlocal distributions. Now the microlocal
distributions 4+ and v+ given by

Ug = ngE and vy = U'uojE

are microlocal solutions of Eq. (27) in D(0, ¢p). Using the symmetries of operator U,
we see that we have v_ = ['u, and v, = ['u_ because for example

vo=U =UI'HW =UTZ, " Z2u® =TUW = Tu,

so that we can study only w, and u_. Their microsupports are given by Proposition 12
and relation (2) of Proposition 8 concerning the canonical transformation associated
to U. Denoting by air the segments in p~'(0) NV given by o = {(z,£) € p~'(0)N
V,z < 0,£€ >0} and 07} = {(z,£) € p~'(0) N V,z > 0,+£ > 0}, one sees that for
w small enough M S(u,) stays in a neighborhood of ol Uo7 Uo” and that MS(u_)

stays in a neighborhood of ! Uo! Uo”.
We are interested here in the (leading term of the) asymptotic expansion of wu,
and u_. We first recall that for ;1 small enough (independently of 7) there exists two
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turning points near 0, which are real and of opposite sign for x4 < 0, and complex
conjugate for u > 0. We denote by a(u) and b(p) these turning points, b(u) being
the one which is positive when p < 0 and with positive imaginary part when p > 0.
We will suppose that p is small enough (still independently of #) so that there exists
€1 €]0, €[ such that there are no turning points for €, < |z| < €y, and that the
components of p~'(x) are not connected in the annulus €; < |(z,8)| < €y (see Fig.6
below).

Fig. 6. The critical energy curves

Microlocally in D(0, €p), and at the level of principal symbols we have
2l /4ei7r/ 8 ptoo
V2rh Jo

Recalling that 1 — py = O(h*) we have, again at the level of principal symbols,

uy(z, ) = e @V/M0(y, Wo(z,y, h) dy.

1/4 o /8 (e S]
2! /4erm/ ’ eﬂ(z,y,#)/ﬁd_y,
V2rh Jo N

where ¥(x,y, pu) = y(z,y) + 11y logy. We will perform a stationary phase expansion
for this integral. We have first the

us(z, h) =

Proposition 13. For x €ley, €[, the function ¥(z,y, ) has only one critical point
Ye(x, 1) with respect to y satisfying

Ye(x,0) = V2 + o).

The corresponding critical value ¢(x, 1) = U(x, y.(z, ), p) is given by

x

bz, 1) = i Qu — VoON'/? dt + ¢ (b(w), ),
()

where L ,
stodoguy — 1 +4m) for p >0

B4 (b, 1) = { e
ako(log [up) — 1) for p <0
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Proof. Let x be inside ]ej, eg[. The critical points of the phase are given by

For ;1 = 0 one has ¢/ = 0 and with point (/) of Proposition 9 we see that there
is only one critical point y.(x) satisfying y.(x) = V2z + O(z%). Then we apply the
implicit function theorem to the equation 0,¥(x, y, 1) = 0 near ;1 = 0 and get a unique
function y.(z, ) satisfying y.(z,0) = y.(x) and

_yc(xa u)8y1/}(x7 yc(xa /'L)) = /J6,

that is
qye(@, 1), =0y th(x, ye(x, 1)) = fo-

Now we have

Ay(z, ye(z,0)) = O(z?),

so defining = =0y (x, y.(x, 1)), we see that (y,n) stays in D(0, €p), and also that
this point is close to the line 7 = 0 in 7*R. Thanks to the relation (3) of Proposition
8, we have

(T, 0¥ (T, ye(T, ), 1)) = py

so that the critical value ¢.(z,u) = ¥(z,y.(x, 1), 1) satisfies the eikonal equation
p(x, Op P, 1)) = p. Moreover € = 0, ¢ (x, ) is positive because (z, £) is the image
under & of (y,7), and & is close to the rotation by /4 around (0,0). So we can write

bz, ) = /b Q2 — Vo())'/? dt + ¢ (b(u), ).
(1)
We compute now ¢.(b(w), ). Because b(u) is a turning point we have of course
Oz (b(w), 1) = 0 and, with ne(u) = =0y ¥ (b(1), Ye(b(w), 1), p),

Ye (1), WNe(1) = qe(b(w), 1), () = g o £~ (b(w), 0) = fo o p(b(p), 0) = g

On the other hand we have xp(b(1),0) = (b(u),0) and, using again relation (5) of
Proposition 8,

EWesNe) = K © K(Ye, NMe) = K © KAWe, Ne) = K(—Ne, —Ye),

so we get y. = —1n. and finally
[ye(b(w), WI* = 135
For p < 0 this gives yc(b(w), 1) = \/|1pl, and ye(b(w), ) = i/ g for p > 0.

At last we have
Oy p(b(w), 1) = 10g Ye(b(), 1))

because O0y¥(z,y.(z, 1), u) = O by definition of the critical point y., and because
O U (b(1), ye(b(w), 1), ) = 0 by definition of the turning point b(u). Together with
the initial condition ¥(b(0), y.(0), 0) = 1(0, 0) = 0 one gets the value of ¢(b(w), 1) we
have announced.

From this proposition, and also with relation (3) of Proposition 9, we immediately
get the microlocal value of u.(x, &) near of:
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Corollary 2. At the level of principal symbols, and microlocally near o7, we have for
€ < x <€,

24 peporn 0@ Yo )
lye(z, w)|'/2 020 (z, ye(z, 1), )]/

uy(z, h) =

We can study the case of
91/4gim/8 10
V2rh J-w
along the same lines. We have again one negative critical point y.(x, u) satisfy-
ing ye(z, ) = v2z + O(z?) and using the same notations we see that (z,£) =

k(ye(z, 1), ne(x, 1)) is near ol , so that we can write for the corresponding critical
value

u_(z,h) = i W (@,y)—pglog Iyl)/h|y|—1/200(x’ y)dy

T

¢—(z, 1) = — ”0w~wwwﬂﬁ+¢mwmn
a(p

when —e; > x > —ep. We also reproduce the same discussion for the computation
of ¢_(a(u), 1) and get that

d—(a(w), p) = P+ (b(1), 1) (34)
Then, for any x €] — €o, —¢1[, at the level of principal symbols and microlocally near
o, we have
U_(a)’ h) = 21/46_“"/8 ip_(z,u)/h 0'0(1', yC(:E) IJ/))

——;€ .
|ye(z, w)|/? 020 (z, yo(, p), )| /2

6. Microlocal Connection Formulas

The last step of the proof consists in connecting microlocally near (0,0) the microlocal
~lr

solutions v+ and v4 on one hand, and the complex WKB solutions @} on the other.
In fact, as in Sect. 4, we will use the four solutions w’” = w}"(z, E, h; z5") defined
by Eq. (22) for suitable choices of xé". In order to perform this we only have to

remark that the functions wir, though they are defined in £257(F) can be extended in
% as analytic functions, solutions of the Schrodinger equation. The microsupport of
these solutions is given by Propositions 15 and 17 and we see that M S(w') lies in a
neighborhood of ¢! UaTUo™ , as M S(w?) lies in a neighborhood of ¢! Us! UoT. The
microsupports of w'. and w” are also given by the relations w"" = (wt")* = I'wk".

Microlocally near o’ the solutions w! and u_ are “proportional” because these
two functions are WKB solutions of the same equation near a simple characteristic

(see Proposition 18). More precisely we have

Lemma 4. Letw' (z, E) = w' (z, E, h, a(E)) be the solution of the Schridinger equa-
tion constructed in Part 3 with xo = a(E) as origin for the phase. Then, microlocally
near o', and for —ey < x < —e; we have,

w' (z,E) = o' (4, hyu_(z, i, b)
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with
l —1p— )
ab (s, h) = A, hye™*#=(m/h,

where A.(u, h) is a classical analytic symbol of order 0 whose principal symbol is

21/4ei7'r/8/\/E.
Proof. We only recall that
wl(z, E) = (V(z) — B)”/fe™#@Batd/h(1 4 O(h))

and that, microlocally near o,
21/4e””/8 eilb—(l,ll«)/h( 0'0(.%‘,2/6(117,/1,))

T (m 172 +O(h
lye(e, )|/ 20, yet, ), ) 72 T O

u_(z, ) =

so the lemma is obvious concerning the phase of o (u, k), and its principal symbol
is given letting pu — 0.

The same arguments lead to the

Lemma 5. Let w}(z, E) = wi(x, E, h, b(E)) be the solution of the Schrodinger equa-
tion constructed in Part 3 with xy = b(E) as origin for the phase. Then, microlocally
near o}, and for €, < x < €y we have,

w:(x7 E) = a:(u‘ﬂ h)U+(ZE, /L, h)

with 4
(1, h) = pu(p, e - CUIIM,

where p,(u, h) is a classical analytic symbol of order 0 whose principal symbol is
21/4ez7r/8/\/E'

We have now in hands all the bricks that make the computation of the scattering
matrix (up to an exponentially small error) an elementary algebraic calculation. In
fact we can write our three WKB solutions w!, w! and w?” (defined at the end of
Sect. 3) in the basis (u,,u_), and then use Proposition 6 to translate the results in
terms of the Jost solutions @', ' and 7.

To make the ideas clearer we will write the branching matrix as

_( Bu Bn
Blu, h) = ( By Bxn >

First we have microlocally near (0,0)

wh = aiu+ +aolu_ = ﬁim +8 o . (35)

In this equality we know o' by Lemma 4 and, because w' and v_ have no micro-

support near o, we also have 8. = 0. Proposition 11 gives then

oh ) _ s,
(o )=ma(st)

—~

so that
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L= —a and a, = —a’_, (36)

and finally

B
! = —lgal_uJ, +alu_. 37

22

We also have w! = I'w' and Eq. (35) gives, microlocally near (0,0)
wh = ﬁ_ﬂ“m + ﬁ—‘_Fv_

= Blu,+Blu_

= Bu,+0u_

and, at last

1
wi = =al_u+ +0u_. (38)

12
On the other hand, we have microlocally near (0,0)

T T T T 7
w, =ajus+a’u_=Flv,+ 0 v,

where o] is given in Lemma 5 and 57 = 0 because w] and v, have no microsupport
near o” . We compute the two other coefficients by use of the branching matrix and
get

1 By,
87 = —a and al = —=—af
* By " By "
so that B
wh = afuy + la:u_ 39)
By

Noticing that By = By, Bjy = By and det B = gﬂ, Eq. (37) (38) and (39) together
11

give after an easy computation and modulo an exponentially small error,

7 7
o
! ~ -
w, = By o w, — By T (40)
T =

Now with Proposition 6 we obtain
P

r i al
81y = e (b(E),E)—= (a(E),E))/hB“a_:

2t ol
= e @B/, o

S21

and the two Lemmas 4 and 5 give modulo exponentially small errors

;

1 1
sn= —U0+hmh)(= —i—
1 m( (h)) (2 h)
e™H /2h g% 2Re Gu(b(p), 1)~ log h) o (2! (a(E), )~z (b(E), E))/ h
(41)

. L
o1 = #(1 + b (W)L — i%)

e~ K /2h g% 2Re Gu(b(k),p)—p' log h) 22! (a(E), E)/ h
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where m(h) and m/(h) are CAS of non-negative order. For shorter notations, we shall
write

Ma(B), E) — 2"(WE),E)=iT(E) and zYa(E),E)=iT_(E),

and we have as in Sect. 4,

a(F) +00
VE(WE) — bE)) + / Qt,E)ydt+ | Qt,E)dt forE <V,
T(E)=1{ oo i o)
/ Q@ E)dt +i V@) — B/ dt for E > Vj
—o00 a(E)
and that
a(F)
VEa(E) + / Q(t, E) dt for E <V,
T (E)= -

0 a(E)
/ Q(t, E) dt —i/ V)= B)?dt  for E >V,
—00 0

with Q(t, E) = /E = V(t) — V'E for real, large enough ¢. It is also necessary to
recall here that y' = pf), + O(h?) and

Ty S S(E)
— =l = 42

- P o (42)
where S(u) is defined in Proposition 10 and S(E) in Eq. (1). We also recall that S(F)
is real for any (small enough) real value of E — Vj, positive for E < V; and negative
when E > V. We obtain then Theorem 2 using Prop. 10, 13, Eq. (34) and Eq. (41).

We are now interested in resonances for our equation, that we may define here as
poles of the meromorphic continuation of the scattering matrix for complex E. The
first remark is that if one allows F to have a small imaginary part, that is precisely
|Im E| < Ch, the solutions for the model operator are still distributions of temperate
growth with respect to h as h — 0, and all we have done in Sect. 5 and Sect. 6 can
still be read with no change in that case. To get the remaining theorem we only have
to notice that the scattering matrix may be written as

S(E, h) = F(% + i%(l + WAmy(W)A(E, h) + Oe= /M),

where the matrix A(FE, h) is analytic with respect to E and the error term is uniform
with respect to E in a complex neighborhood of Vj. This shows that the poles of the
meromorphic extension of S are exactly the poles of the gamma function in the first
term of the above sum, and this is what we claimed in Theorem 4.
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A. Elements of Semiclassical Microlocal Analysis
A.l. Sjostrand spaces

Definition 4. Let (2 be an open set in C and ® a continuous function on (2. The
Sjostrand space Hg(§2) is the space of functions f(z, h) analytic with respect to z in
{2 and such that, for any compact subset of (2, there exists C, € > 0 such that

sup{|f(z,h)|,z € K} < Ce@@*o/h,

Definition 5. Let f(z, h) and g(z, h) be two functions in Hg(§2) and w a subset of §2.
We say that f = g in w if, for any compact subset K of w, there exists C,e > 0 such
that

sup{|f(z, h) — g(z,h)|, z € K} < Ce@@~9/h,

We denote by Fs(S2) the corresponding quotient space.

Definition 6. Let (up,)0 k) be a family of compactly supported distributions in U C R
whose semi-norms are of order O(h~V) as h — 0. The analytic function of z defined
by

T w(z,h) = /e_(z_m)z/%uh(x)dx

is called the FBI-transformed of (uy) and is an element of Hy, .y /2-

A.2. Microsupport

Definition 7. Let (up)0,1,) be a family of distributions whose semi-norms are of tem-
perate growth with respect to h as h — 0. We say that (x9,&o) in T*R is not in the
microsupport of uy, if there exists a complex neighborhood w of zy = xo — 1€y such
that 7 u(z, h) is 0 in Fm .y 2(w). We denote by M S(up) the microsupport of up, .

Proposition 14. Let u be a distribution independent of h. Then the microsupport of u
is

MS(u) = (suppu x {0}) U W F,(u),
where W F,(u) is the analytic wavefront set of u.

Example 1. Let H(x) be the Heaviside function given by H(z) = 0 for x < 0 and
H(z)=1 for z > 0. One has M S(H) = {0} x RUR* x {0}.

Proposition 15. Let a(x,h) be a classical analytic symbol on R, whose principal
symbol does not vanish, and s(x) a real-analytic function with s"(x) # 0 whenever
s'(x) = 0. Then

MS(a(z, h)e* @) = {(x,£);€ = §'(z)}.

Definition 8. We say that two distributions wy, and vy, are microlocally equal near
(o, &o) if there exists a neighborhood V' of (x, &) in T*R such that

MSwu—-v)NV =0.
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Definition 9. A microlocal distribution defined near (xy, &) is an equivalence class of
compactly supported near x distribution for the microlocal equality near (xg, &y). We
denote by .#(x, &) the corresponding quotient space, and the notion of microsupport
is still relevant in that space.

Proposition 16. Let P(x, hD) be an h-differential operator with analytic coefficients.
If MS(Pu) =, then M S(u) C CharP, where CharP is the set where the principal
symbol of P vanishes.

A.3. Microlocal F.1.O

We will not develop here all the theory of microlocal F.I.O. and the reader should refer
to [Sj2] or [De] for a complete description, and to [He-Sj] or [Mi] for an overview.
The only few things the reader has to know is that one can define operators of the
form

Au(z, h) = / / ' C@ v/ ha(z,y, 0, hyu(y, h)dyds,

where a(x,y,0,h) is a classical analytic symbol and the integration is performed
along a suitable contour, acting continuously from one Sjostrand space .75 to another
one. An operator of this kind is often called a quantized canonical transformation or
here a microlocal F.I1.O. because we regard them as operators acting on microlocal
distributions. In fact the FBI transformation .7 above is 1 to 1 between .74 and
the corresponding .74, so possesses a left-inverse ., and one identify the quantized
canonical transformation A with . # A7

Definition 10. We say that two microlocal F.1.0. P and Q) defined in a neighborhood
V' of (x0, &) are microlocally equal if for any microlocal distribution v defined in V
one has Pu= Qu in AE(V).

Proposition 17. Let A be a microlocal F.I.O. and k its canonical transformation. If
u is a microlocal distribution, the microsupport of Au is the image under r of the
microsupport of u.

Using the well-known fact that an analytic h-differential operator of principal type
is microlocally equal to hD, we have finally

Proposition 18. Let P be an analytic h-differential operator and v a simple charac-
teristic for P. Let uy and vy, be two microlocal distributions defined near ~y such that
MS(Pu) =0, MS(Pv) =0 and MS(u)N~v % 0. Then there exists a classical analytic
symbol a(h) and a real constant ¢ such that microlocally near v, v = e/ My,
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