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Abstract: A system of a large number of classical particles moving on a one-
dimensional segment with virtually reflecting boundaries is studied. The particles
interact with one another through repulsive pair-potential forces and are subjected
to resistance proportional to their velocities. Because of the latter it is only the
number of particles that is conserved under the evolution of the system. It is proved
that in the hydrodynamic limit of diffusion type scaling the normalized counting
measure of particle locations converges and its limiting density is governed by a
non-linear diffusion equation which in typical cases is of porous media equation
type.

0. Introduction

This paper concerns the problem of a hydrodynamic limit for a system of a large
number of particles that move on a one-dimensional segment according to a classical
equation of motion. Particles interact by exerting upon each other repulsive potential
forces given by a common pair-potential function that is unbounded at zero and
may have an infinite range of influence. Also at both ends of the segment there
act potential forces that repel particles approaching one of the endpoints and keep
them in between. In addition the medium exerts on each particle a damping force,
"resistance," whose magnitude is proportional to the velocity of the particle, so
that nothing except the number of particles is conserved under the evolution of
the system. We take the hydrodynamic scaling limit for the normalized counting
measure of particle locations in the system and prove that its limiting density is
governed by a non-linear diffusion equation that in typical cases is of porous media
equation type.

An approach that has been recently developed for studying the hydrodynamic
limits of stochastic systems is applied to the present model. Although our system is
deterministic, the application goes well owing to the dissipative effect of resistance
and the fact that our system is essentially of gradient type. The idea for the general
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framework of the proof comes from Guo-Papanicolaou-Varadhan [GPV] and those
for technical devices from Varadhan [V], both of them dealing with stochastic sys-
tems. [V] as well as [GPV] employs a method that is based on an entropy bound
extensively, a method not available for deterministic models. However, on the one
hand, once it is established that the local states of the system converges in space-
time average to an equilibrium state, the entropy bound can be dispensed with for
the rest, especially for strong convergence of local density fields (the two-blocks
estimate), if the system is of gradient type and the spin values are non-negative, as
noted by Suzuki-Uchiyama [SU] and Uchiyama [U]. On the other hand, the equilib-
rium states assume a rather simple structure because of the existence of resistance:
in fact, every translation invariant equilibrium state for the infinite system to the
present model is degenerate at a steady state that is made up of phases such that
particles stand still with equal successive spacings. This result is established by
Lang [L] under a certain moment condition on the spacing. That condition however
is difficult to check in our case, and we shall show it is dispensable.

We shall verify the local equilibrium (in the sense mentioned above) by
computing the limit, under the hydrodynamic time scaling, of the time deriva-
tive of a certain functional of phases of the system. The rest of the proof is
similar to that of [SU] and [U] except for some technical details: at several
points nontrivial modifications must be done, necessitated for dealing with the un-
bounded potential function having a long tail and, in addition, with the boundary
term.

A stochastic version of the present system has been investigated by Olla-
Varadhan [OV] in which independent white noises are added as random forces
acting on particles. Their pair potential is smooth and has compact support. Some
of our key estimates (especially the two-blocks estimate) technically may be viewed
as an extension of theirs to unbounded potentials.

For systems of Newtonian particles (without damping term) the hydrodynamic
limit is obtained in [BDS] in the case of hard rods (moving on the line) and
discussed in [S] in the case when only nearest neighbour particles (moving on a
circle) interact by a hard core potential of finite range.

Mύrmann [M] also investigates the hydrodynamic limit of a model closely related
to the present one: it deals with a nearest neighbour interaction model of determinis-
tic dynamics in which the velocity, instead of the acceleration, of a particle is given
as the gradient of a potential, with the potential function similar to ours. For such
a model there are two Lyapunov functionals, i.e., the kinetic and the potential ener-
gies taken separately, which are the main tools for the study of the hydrodynamic
limit in [M], whereas for ours there is only one Lyapunov functional, the total en-
ergy. An infinite particle system of similar nearest-neighbour interaction is studied in
[F, PS].

1. The Model and Main Result

Consider a system of N Newtonian particles of unit mass moving on the one di-
mensional open segment (0,N) such that each particle is subjected to the resistance
equal in value to its momentum, interacts with the other particles through a pair
potential and is repelled with potential forces exerted by the two "walls" at 0 and
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N. The equation of motion for the system is written as follows:

jtqi{t) = Pi{t), (1.1a)

-WUqi(t))-Wi(gi(t)-N)9 (Lib)

where qi(t) and pt{t) denote, respectively, the location and the momentum for the
/th particle at time t ^ 0 and U', W± the derivatives of functions U, W±. The pair
potential function U(x), defined for x e R — {0}, is supposed to be continuously
differentiable and satisfy

U(x)=U(-x); U(x)^0; ί/(0+) = oo; ί/(oo) = 0 (1.2)

U(x) is strictly convex on 0 < x < R ,

where R := sup{x > 0 | U(x) > 0} ^ oo (1.3)

fU(x)dx <oo; (1.4)
1

liminf -j- inf ψ(χ) > 0, (1.5)
îo ψ(δ) o<x<δ

where
φ(x)\= -xUf(x), xφO.

From (1.2) and (1.3) it follows that ψ(x) ^ 0, i.e., the pair interaction is repulsive.
The assumptions (1.2) through (1.4) are fairly natural for our main result to hold
((1.3) is needed for showing ergodicity of the equilibrium states: see Theorem 3
below), while the assumption (1.5) may be technical although hardly restrictive; it
implies in particular that ψ(x) either diverges to infinity or is bounded off both zero
and infinity as x —> 0.

For the wall potentials W(x) = W-(x) or W+{— x\x > 0, we suppose

^(0-f) = oo, (1.6a)

W'(x) g 0, lim xW\x) = 0. (1.6b)
JC—>oo

The initial configuration qt = #z (0), i— 1,2,... ,7V, is always supposed to be such
that qi+qj if iή=j and 0 < qι < N for every /. The assumption £/(0+) = oo to-
gether with (1.6a) guarantees that this condition for the initial configuration is pre-
served for all later times. The conditions (1.2) through (1.6) are assumed throughout
the paper except in Theorem 4 of Sect. 4.

We are interested in a macroscopic picture for the particle configuration ( ^
which is to be viewed under diffusion scaling. Let us introduce the macroscopic po-
sition variables

Xi{t)=ψt{N2t) (1.7)



106 K. Uchiyama

and the normalized counting measure

j
for an open subset A C (0,1) it takes the value ocf(A) = N~ι${i\xi(t) eA}. Our
main theorem that follows asserts that the limiting density for αf as TV —> oo is
characterized by the following evolution equation:

^ ) ) , 0<θ<l,t>0, (1.8a)

^ p ( O , t ) = - ^ p ( l , t ) = O, t > 0 , (1.8b)

where P is a function of one variable u Sϊ 0 defined by

oo

P(u):=-Σ,kUf(k/u)9 u > 0
k=\

and P(0) = 0. The infinite sum here converges due to the assumption (1.4), which
is equivalent to J^°ιl/(x)dx < oo. The function P may be naturally interpreted as
pressure (see Remark 1 in Sect. 6); clearly P is continuous and non-decreasing.

To state the theorem we need the following bound for the total energy of the
initial phase (Pi,qi)f=\'- as N —> oo,

\ \ Σ 3

where the second sum extends to all ordered pairs (ij) with iή=j\ 1 5Ξ ij ^N. This
condition, allowing the initial energy per particle to become large up to o(N2),
may appear very weak, but actually it turns out to be the right one for the present
issue (cf. Remark 2 in Sect. 6). We will regard αf as an element of the space
of all probability measures on the closed interval [0,1], which space we endow
with the topology of weak convergence: according to it a sequence (V,N)N in this
space converges to an element α if and only if ocN(J) —> oc(J) as N —> oo for every
continuous function J on [0,1], where a(J) stands for the integral of J by α.

Theorem 1. Suppose the sequence of initial phases (pi,qi)?=x = (Pi(0),qi(0))f=l,
N = 1,2,..., satisfies (1.9). If 0$ converges to a probability measure α0 on [0,1],
then ocf converges uniformly for t < T for each T < oo, the limit measure is
absolutely continuous relative to the Lebesgue measure dθ9 and the density, p(β9t)
say, is a unique weak solution of the non-linear boundary value problem (1.8) with
the initial condition

p(θ,t)dθ converges to α0 as t [0 . (1.10)

The behaviour of P(p) near p = 0 is determined by that of U(x) at x = oo. In
particular if U'(x) - Cx~m (m > 2) as x -> oo, then P(p) - [ Σ ^ ^ i ^ 1 " m ] c P m a s

p I 0, so that Eq. (1.8) assumes virtually the same form as the equation of porous
medium flow; according to that theory (cf. [A], e.g.) and in view of Theorem 1, the
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macroscopic density for the system (1.1) therefore has a finite speed of propagation.
By the way P(p) behaves roughly like pf™ψ(x)dx as p —> oo.

A heuristic argument for the derivation of (1.8) may proceed as follows. A direct
computation together with some formal manipulation will deduce from (1.1)

*?(J) ~ <$(J) = J^ΓTΣ ΈΨW(xt(s)-Xj(s))V"(Xi(s))ds + 0(1), (1.11)

where J is a smooth test function that is constant near each of the boundary points
0 and 1 (because of this boundary condition the wall-potential terms disappear). For
the identification of the inner sum on the right side we turn back to the microscopic
variables qt{N2s) = Nxi(s). Equilibrium states for the infinite system corresponding
to (1.1) are steady states in which each particle stands still in complete balance
of forces exerted on it by the other particles; and any steady state must be a con-
figuration of equal spacing, of which the common span is necessarily equal to the
reciprocal of its density. By the damping effect due to the resistance working in (1.1)
velocities would get very small after such long time as of order TV2, so that the equi-
librium state must be locally built up in the limit under our scaling. If there exists
a limiting density ρ(θ,s), this would allow one to replace Y^Jz¥iil/(N(xi(s) — xj(s)))
by 2^2k^ι\l/(k/p(xi(s),s)), which, by passing to the limit in (1.11) and noticing
P(p) = pΣk>\ΨWP)> immediately yields the weak form of (1.8).

For this sfory to be justified, the following theorem (an extension of correspond-
ing results in [OV, V and U] essentially to an unbounded potential) is fundamental
at least in the present approach.

Theorem 2. Under the same assumption as in Theorem 1 there exists a continuous
even function ω(x), x e R — {0} such that ω ^ 0; ω(x) approaches, as x —» 0, a
positive number or infinity according to whether φ is bounded or unbounded (near
zero); and

I Σ Σ ΣΨ(N(Xi(t) -Xj(t)))aKN(Xi(t) -xk(t)))dt < CN ,
0 i=\j=tikή=i

where the constant C depends on T but not on N.

Theorem 2 will show that (1.11) is valid and ocf,N = 1,2,..., regarded as
continuous measure-valued functions of t ^ Γ, constitute a relatively compact set;
moreover any limiting measure is absolutely continuous relative to the Lebesgue
measure (see Corollary 1 of Sect. 3). Another, more essential application of Theorem
2 will be made, via Corollary 2 of Sect. 3, for deriving strong convergence of α^
(the two-blocks estimate) in Sect. 5.

What we need as the local equilibrium statement as mentioned in the second
half of the heuristic argument given above is formulated in the next theorem. Let
μN(dq) be the probability measure on the space of configurations q = (qOf^i on R
defined by

μN(H) = 1 JdsfH(Nxθ(s))dθ , (1.12)
1 o o

where x^ stands for the configuration x = (x/)/li viewed from θ : xθ = (JC, — θ)^=ι

and H = H(q) ranges over bounded, continuous local functions of locally finite
configurations on R.
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Theorem 3. Suppose that the same assumption as in Theorem 1 is fulfilled. Then
any limit point μ of μN as N —> oo must be of the form

R VP

μ = μ° + f Φpλ(dp) , Φp(dq) := p J δe(ι/pβ)(dq)dθ .
o o

Here μ° = 0 if R = oo and μ° is a measure relative to which no particle is located
within a range of potentials of the other particles a.e. if R < oo; λ is a measure
on [0,R) such that Jρλ(dp) ^ 1; e(r, θ), r > 0, stands for (..., -r + 0,0, r + 0,2r +
0,...), //ze configuration of particles on R vwϊλ egwα/ successive spacings of common
span r and having a particle at θ; and ΦQ is understood to concentrate on the empty
configuration.

The proof of Theorem 3 is based on a strengthening of a result by Lang [L].
Theorems 2 and 3 are proved in Sect. 3 and 4, respectively. The proof of

Theorem 1 is given in Sect. 5. In Sect. 6 we present three remarks: the first one
explains why P(p) is pressure; the other two answer the illuminative question of
what happens when the integrability condition (1.4) or the initial energy bound (1.9)
is violated.

2. A Bound of the Kinetic Energy

We isolate this short section in which we note that for the system (1.1) the kinetic
energy per particle approaches zero in the time average as N —• oo on account of
assumption (1.9), the result being basic in all the later sections. Put vt(t) = pi(N2t).
Then the equation of motion (1.1) becomes

jXi{t)=NVi{t)9 (2.1a)

dt ι

-N2W'_{Nxi(t)) - N2W'+(N(Xi{t) - 1))). (2.1b)

For the total energy

A O : = \ Σ>'(0 + \ Σ U(N(Xi(t)-Xj(t)))

+Σ,[W-(Nxi(t)) + W+(N(Xi(t) - 1)))] ,

we calculate its derivative to obtain

γ/N(t) = -N2JTv2{t) ^ 0
at / = 1

in particular δN(t) ^ SNφ) and

J^ΣvHWtύ 7^(0), (2.2)
0 Iy ι=l i V

of which the right side goes to zero as TV —> oo under (1.9).
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3. Estimation of Σψ(N(xi - xj))

This section is divided into four parts. The first three parts are devoted to the proof
of Theorem 2, while in the last one we state three corollaries of Theorem 2 and its
proof. The idea of the proof is essentially the same as that for the corresponding one
in [V]. Our potential function, however, is not bounded, nor necessarily of compact
support as in [V], and this necessitates a significant modification of the proof.

3.1. Let g = g(x\ xφO, be an even, continuous function such that g is non-
increasing on (0, oo) ,

β(x) = - 4 = , 0 < |χ| < -

W 2

= 0, |x| > 1 ,

where a is a positive constant (the precise form of g as given above is unimportant)
and

oo

/ g(x)dx = 1 .
— OO

Let h(x),x e R be a smooth non-negative even function such that Jh(x)dx = 1 and
h{χ) = 0 for |x| > 1. We write gχ(pc) = Ng(Nx) and define a function G(#) on R by

G(N)(x) = J dy f (gN(u) - h(u))du
— oo —oo

so that

G"N)(x) = QN(X) - h(x) .

Both |G(A^)| and \G^\ are bounded by 1, and vanish for |x| > 1. Put

BN(x) := NW'_(Nx) + NW'+(N(x - 1)), |x| < 1 .

Then for G = G(N), Eq. (2.1) yields

-NΣΣG'(Xi-Xk)\
i kΦi LyΦί

Here (and below) the time variable is suppressed from functions Xi(t),Vi(t), etc.

for the sake of brevity. In the third term on the right side above we may replace

G'(xi—Xk) by \\G'(Xi—Xk) — Gf(xj—Xk)\ if j=\=k9 since Ur is odd. Noticing G ^ is

also odd, we see that the first term on the right side equals \N Σ(υi~vj)2G"(xi—Xj)

and the second —\N(d/dt)Σ^(χi~xj) Integrating both sides of the resulting
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equality on [0, T] and then dividing them by N3, we obtain after rearrangement of
terms

1 / Σ [-NU'(N(xl-Xj))][G>(x,-xk)-G'(xJ-xk)]dt

1 Tr ^
— J Σ [-NU'iNixί-xΛ^G'ixi-xΛdt

i V 0 /,y(

= T7J Σ VtG'(Xt-Xj)
N

W ΣG(Xi-xj)
ί=o ^ J V ϊ,y(Φ) ί=o

i τ

I Σ
o ί,y

4 / Σ BjtMGXxi-xjyit, (3.1)
^ 0

where the triple sum on the left side extends over all ordered triplets with three
components different from one another. In view of (2.2) and the inequality

1 Γ 1 1 / 2

jp supΣXOl ύ suppV-3Σ>2(θj ύ [N-3£N(0)]ι/2 , (3.2)

the sum of the first two terms on the right side of (3.1) may be estimated from
above by 2^/<$N(0)/N3 + ||G||oo. Since -G{N)(x) g h(x), the third term is bounded
above by 2||/z||oo<f7V(0)/ΛA3. For estimating the boundary term we make use of the
relation (5.3) given in Sect. 5 ( clearly its verification is made independently of any
result obtained in this section). Taking J(x) = (x — ̂ )2 in (5.3) and applying (2.2)
and the assumption (1.6b) we see

T N £N(0) τ

y 2/ Σ Φ(N(Xi - Xj))dt. (3.3)
()

0 / = 1 7 V 0 U

Thus from condition (1.9) or, what is the right one here, δN{Q) = O(N3) it follows
that

ί Σ [-NU'(N(Xi -xj))][G'(Xi -xk) ~ G'ixj -xk)]dt
0 ,-,_/,*

^2 / Σ [-NU'(N(Xi - Xj))]G'(xi - Xj)dt
N 0 i,y

^ Ci + lτ f Σ Ψ(N(Xi - xj))dt. (3.4)
" 0 /J(

The remainder of the proof of Theorem 2 concerns inequalities that are valid for an
arbitrary configuration (JCI , X2,...,XN) and have nothing to do with the dynamics (1.1).
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3.2. Let us estimate the left side of (3.4) from below. For simplifying the arguments
that follow we assume R > 1. To begin with we notice the following two trivial
inequalities:

= /[QN ~ h](y - xk)dy
γ. V •γ.

(3.5a)

G'(Xi-Xj) Zgvte-xΛ-WhWoo. (3.5b)
Xi Xj

It is here in the proof of the next lemma that we need assumption (1.5). We put

φ*(x) = φ(χ)χ{\χ\ S 1/4} ,

where χ{\x\ ^ a} = 1 or 0 according as |JC| ̂  a or |x| > a.

Lemma 1. There exists an even function ω(x), JC G R — {0} such that ω ^ 0; ω(x)
is positive and continuous for 0 < |x| < 1/4; ω(x) converges to a positive number
or diverges to infinity as x —> 0 according as ψ* is bounded or unbounded', and

^ J i - xj)) ω(N(Xi - xk)).

Proof Since (y — x)~ι f*'g^{u — z)du ^ min{^(^ — z),9N(y — z)}, the inequality
required in the lemma is implied by

[Ά(̂ π(/) - qπU))mm{g(qπ(i) - qπ(k)),g(qπ(j) ~ qπ(k))}]
πEb (3)

= 6 m ^ JΆ*(^(O - <lπU))ω(<lπ(i) ~ qπ(k))] , (3.6)
πEo (3)

where 6 ( 3 ) is the permutation group of three letters ij,k and quqj and qk are
arbitrary three real numbers different from one another. If we define ώ(x), 0 < x ^
1/2, by

ώ(x)= inf ^(M), g(χ) = ιl/(χ) inf ^inf ^

(recall we have supposed R > 1), then ώ is non-increasing; ώ(x) approaches infinity
or a positive number as x j 0 according as ψ* is unbounded or bounded by virtue
of assumption (1.5); moreover if 0 < s ^ t ^ 1/4,

ιA(^)^ + /) ^ — m a x { ^ + Oώ(j), Ψ(t)ώ(s\ φ(s)ώ(t)} . (3.7)
v2

Finally define ω(x) = (6v/2)~1ώ(|x|)χ{|x| < 1/4}. A little reflection then shows
that (3.6) follows from (3.7), finishing the proof of Lemma 1.
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Substituting the inequality (3.5) and that given in Lemma 1 into (3.4) we con-
clude:

AT" J Z ^
i V 0 ί,y(Φ)

N o ,
ψ(N(Xi-xj))dt. (3.8)

3 J . We wish to dominate the integral on the right side of (3.8) by a small fraction
of that on the left side. We continue to assume R > 1 and choose the function ω
in Lemma 1 so that ω ^ g as in the proof of it.

Lemma 2. There are constants C\ and C2 that depend only on φ such that

Σ ψ(N(Xi-Xj)) S C{N + C2 £ ψ*(N(Xi-xj)).
( )

Proof. For < > 0 put

n*(θ) = nN,,(θ;x) :=

Then, by noticing that supa<x<6i/'(x) ^ (b/a)ψ(a) if 0 < a < b,

ΨΓ •= ΣΨ(N(Xi -Xj))χ{N\Xi-Xj\ > 1/4}

But for every integer k,

m

Thus

On the other hand, by putting

ψ* : = ̂ ( ^ f e - ^ ))χ{7V|xz -Xj\ S 1/4}

We can therefore find two constants C\ and C2 for the inequality of the lemma to
hold.
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Lemma 3. For every δ > 0 there can be found a constant M so that

Σ Ψ(N(Xi - xj)) ^ NM + δ Σ \ψ*(N(xi-Xj))Σ<**N(Xi-Xk))]
z,y(Φ) ίJ(Φ)L kΦi J

Proof. Put

Co, = Σω(N(χi -*/))>

(«) = inf
k

of real numbers such that
k

Then y(w) f oo as M t OO, and, since y(^*) ^ ωi9

is a finite sequence

sk) ^ u \ .

^u}^ ^ j ^ > ( 3 1 3 )

hence X]^* ^ Âw + ΣΨΐxiΨΐ ^ u} ύNu + (l/γ(u))ΣΨ*cθi. Substituting the last
inequality into Lemma 2 and choosing u so large that Ci/yiμ) < δ, we obtain the
estimate claimed in the lemma.

Lemma 4. Let ψf* be as in (3.9). Then there are constants C\ and C2 such that

Proof Denote by SN the sum on the right side. As in the proof of Lemma 2 we
see

SN Z I inf ψ(u)ω(u)) Σininixi) ~ I)
\|w|̂ l/8 / i

The second term within the square bracket on the last line being dominated by
a constant multiple of SN +N according to (3.12) and Lemma 3, this inequality
yields

\ ( ) ύClN + C ^ . (3.14)

On the other hand applying the Schwarz inequality to the right side of (3.9) and
then making the same argument as in (3.10) we see
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of which, owing to (3.14), the last member is dominated by C\N + CιSN as re-
quired.

The proof of Theorem 2 is now completed in a few lines. By applying the
Schwarz inequality and Lemma 4 in turn we see

Σ liKNίxi-xjmiNlxi-xjl >
ι , y ( Φ ) L * * /

The asserted estimate is obtained by applying this one after substituting that of
Lemma 3 into (3.8).

3.4. We state three corollaries of Theorem 2 for convenience of later citations.

Corollary 1. For each T > 0,

t 1

lim sup s u p / - Σ Φ(N(xi(u) - xj(u)))du = 0 .
<U0 o ^ < / g r N s M ϊ , / ( φ )

| ί — s | <(5

Proof. Immediate from Lemma 3 and Theorem 2.

Corollary 2. The functions ΨN(t,i) := Σj^iΦi^MO - * / ( 0 ) ) , # = 1,2,..., are

uniformly integrable relative to the respective product measures N~ιγ^J=ιδj( ) x

{ }

Proof In the decomposition *F^( , i) = ι/f* + i/̂ f* (where 1/̂ ** is defined in the
proof of Lemma 2), the uniform integrability of the first term, ψ*9 follows from
(3.13) and Theorem 2. As for the second term Lemma 4 and Theorem 2 together
verify that its second moment is bounded; it is in particular uniformly integrable.

By making the same argument as leading to (3.11) we deduce from Theorem 2,
Lemma 3 and (3.11) the following

Corollary 3. Let φ be a continuous, integrable positive function on R and suppose
φ(y)/φ(x) is bounded on {\x\ < \y\} . Then there exists a constant C such that
for all N = 1,2,... and all M ^ 0,

/ Σ (piNixiiO-xjit^xlNlxM-Xjit)] ^Mjdt^CN Σ <K*)
0 U(Φ) \k\ZM

4. Local Equilibrium

Recall μ^ denotes the probability measure on the set of Λ^-particle configurations
determined by (1.12). Since the expectation of the density of configurations under
μN is (uniformly) bounded, the family (μ^V^i is relatively compact in the space of
probability measures on the set of locally finite configurations on R under the usual
topology determined by the convergence of the integral of bounded, continuous local
functions. In this section we prove Theorem 3, namely that any limit point of μN,
which is necessarily translation invariant, concentrates on configurations of equal
spacing. We note that if μ is a limit point of μN

9 then μ{q|<7ι+#/ if z'+y'} = 1,
as is verified by Theorem 2.
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Lemma 5. For every limit point μ of μN,

= to)ΣC'ta " «/) = Ofor all /} = 1 .

115

(4.1)

Proof. In a formal level the result of Lemma 5 is inferred from an identity (set
g = 1 below) obtained by calculating the right side of

N~
ί = 0

dt

according to (2.1) and then passing to the limit as N —• oo. In the identity however
there arise singular terms that should be avoided for the latter procedure of taking
the limit. In this proof we truncate them by means of two functions g and φ whose
introduction we start with.

For each K > 3, let g(u) = g(u,K) be a smooth function on R such that

g{u) = 0 if \u\ > K; - 1 if \u\ ^ K - 2; and \g\, \g'\ S 1

Let φ be a smooth function on R — {0} that satisfies the following conditions:

\U'(x)\ ^ φ(x) and - xψ\x) > 0 for xφO; / φ(x)dx < oo ,

\φ\x)\ S φ(x) for W > 1; and g 2\φ'(x)\ if > |JC| > 0 .

Such a function φ may be constructed by modifying U as follows. The problem is
how to define it for large x. Clearly we can suppose R = oo. Put f(x)= —U'(x—\)/
U(x — 1), x ^ 2. If sup/ ^ 1, we can take φ(x) = const £/(x — 1) for x ^ 2, since
C/(JC - 1) ^ -£/'(*), x ^ 2. If sup/ > 1, putting x0 = inf{x ^ 2 | f(x) > 1},
we define φ(x) = U(x — 1) for 2 ^ x ^ x0 and

= C/(JC0 - l)exp{-(* - xo)/2} for x ^

where x\ is the least value of x ^ x0 at which U(x0 — l)exp{—(x — x0)} coincides
with U(x — 1). Necessarily f(x\) ^ 1/2 if x\ < oo. Now starting from x\ instead
of 2 we continue the same procedure as above to define φ on [2,K] for every K
and hence on [2, oo). The function φ thus defined fulfills all the requirements as is
easily checked.

Let ί/(β)(x) be a smooth approximation of U'(x) such that |C/(6)(*)| ίk 2φ(x),

| ^ ;

ε ) (x) | ^ Cε\φ'(x)\ and ί/(ε)(x) -> t/7(x) (ε | 0) for each xφO. Now, putting
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we see

WΊΪ [f
1 1 -/

-779 ΣBN(Xi)Fig((pi) - 77 Σ ViiΌi - Vj)U
M i M

+ 7̂ ΣviFiβf(φi)Σφf(N(xi-Xj))(υi - vj).

Here the argument t and the parameter ε are suppressed on the right side. We
integrate both sides of this identity with respect to t e [0, T] and take the limit as
N —> oo. We are to show that the contribution of every term except the second one
on the right side vanishes in the limit to have

ΣF(t)FA)((t)K)d = O (4.2)

for every K > 0 (with ε fixed). By noticing that \Fig{ψi)\ ^ 2K and by making use
of (2.2), (3.2), (3.3), Lemma 3 and Theorem 2, the left side as well as the first and
third terms on the right side are readily disposed of to this end. For dealing with the
rest, i.e., the last two terms on the right side we choose, for each K, δ = δ(K) > 0
so that φ(2δ) > K, which is possible since φ(x) —•> oo as x —•> 0. Then

g{ψi) = g\ψi) = 0 if min{xi - x, _i, xi+\ - Xί} ^ — , (4.3)

where xt are numbered in the increasing order: x\ < x2 < - - < XN and xo — — oo
and XN+I = oo. It would be clear from the properties imposed on φ that our task
for the proof of (4.2) is reduced to showing

/ ΣviθiφύΣU\N{xi - XJ))VJ = o(N), (4.4a)
0 i ΦΪ

fΣvM<Pi)Σ<P'W(xi-Xj))Vj = o(N). (4.4b)
0 / yφ/

(These estimates are ready to verify if we assume ^N(0) = o(N2); see also (6.1).)
We prove (4.4b) first. Put

lUm = X{(m - l)δ ̂  Nxi < mδ} .

Then

Xi-xjVυjl. (4.5)
7=M

If χ^m — l? i.e., (m — l)δ ̂  Nxf < mδ, then by the last condition imposed on φ,

Xi —Xj))Vj\ ^ 2^2\φr{mδ - NXJ)VJ\ +2^2\φf((m — l)δ — NXJ))VJ\ .
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Thus the contribution of the sum over j > ί to the right side of (4.5) is at most

j>ι

\ f \ Σ • ( 4 6 )
k^\ i m j

Here we have applied (4.3) again. Observe that

Xumg'iψi) = 0 if ΣXj,m+k+ι > f n , ^... for some k ^ 1 .
y ^((^ ~t~ 2)d)

Then by applying the Schwarz inequality both to the double sum over i,m and to
the sum over j we can further dominate the sum on the right side of (4.6) by

_ \φ'(kδ)\VK

2)5) V

φ>m Σ
)

We can suppose δ is chosen small enough that φ(y + 2δ) > \φ(y — δ) for y > 2,

which implies -φ\kδ)lλ/φ{{k + 2)δ) < -4φ /(x(5)/Λ/φ(^) for xe[k-l9k],
k > 2/5, and hence that the infinite sum over k above converges. We have the
same bound for the contribution of the sum over j < ί in (4.5). In view of (2.2)
this proves (4.4b). Since U (x) < Cε\φ'(x)\, the same proof works for (4.4a). Thus
the proof of (4.2) is finished.

From (4.2) it clearly follows that

J Σ^(θΛ(O((O^)/^fe(O - θ)dθdt = o,

where hχ(x) = Nh(Nx) as before. The integral under the limit may be written

T$ Σ ΈU'iqi - q^ΣO'φi - qj)g(Σ<K9i - qj);κ)h(qi)μN(dq).

Hence an application of Corollary 3 shows that for each limit point μ,

i j+i V

Finally, noticing J ^2ιh{qί)μ{d{[) < oc, we let ε [ 0 to conclude

/Σ
2

Since Σ y φ ϊ ^ t e ~~ #/) < °° f° r a ^ z a.s.(μ) (this simply follows from the fact that
μ is a translation invariant probability on the space of locally finite configurations),
letting K —• oc in this relation proves ΣjΦiU'(qi — #/) = 0 for all / a.s.(μ). The
proof of Lemma 5 is complete.

Theorem 3 immediately follows from Lemma 5 if we prove the next theorem,
where neither (1.4) nor (1.5) is needed.
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Theorem 4. Let ((qOiez)', μ) be a translation invariant point process on R. If (4A)
holds with U satisfying (1.2) and (1.3), then with μ-probability one either (^ ) has
equal successive spacίngs of a common span less than R or all the spans between
nearest-neighbour particles are greater or equal to R.

For the proof of Theorem 4 we suppose (qi)iez is numbered in an increasing
order, i.e., qt < qι+\ for all / E Z, and put z/ = qι — qi-\. Let η(z),z > 0, be a
non-increasing function such that 0 < η(x) < R and

F(f/(z)) ^ 3F(z), where F(x) := \U'(x)\ . (4.7)

Clearly such a function η exists. We prepare a simple lemma.

Lemma 6. Suppose U satisfies (1.2) and (1.3) α/zrf to η and zt be as above. If

Σj*ίU'(qi - 4j) = ° f°γ alί U then min{zi+i,Zf_i} ^ η(zt) for all i.

Proof By applying Σj*iU'(qi — qf) = 0 first for i — 0 and then for i = 1 together

with the monotonicity of F(x) — \U'(x)\,x > 0, we see

- qj) + F(z0) = F{zx) + Y,F[qj - q0)
]=-2 y=2

oo

J=2 j=-\

— oo

hence F(z0) ̂  3F(zi), showing z0 ^ η(z\) as desired.

Proof of Theorem 4. Let δ be an arbitrary positive number. Let g(x),x ^ 0 be a
bounded continuous function such that g(x) = 0 for x ^ δ and strictly increasing
for x > δ. Then the condition (4.1) implies, in view of Lemma 6, that with μ-
probability one

min{zo,zi,z2} ^ η(δ) if g(zx) > 0 (4.8)

and, by symmetry of F = \U'\, that with μ-probability one

o = g(z\) Συ\q\ -qn)- Σu'(qo - qn)\
U Φ I «ΦO J

oo

Ίn-q\)-F{qn-λ -qo)]
n=2

oo

)ΣίF(q\-q-n+2)-F(q0-q-n+ι)] . (4.9)
Λ=2

From (4.8) it follows that

Λφl
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with φ a bounded even function having a monotone integrable tail. Since the den-
sity p := lim^+z-ίoo^z^o (K+L)~ι${i \ -L ^ qt ^ K} exists a.s.(μ), we may
suppose fpdμ < oo (otherwise one has only to restrict μ on the set {p < M} and
afterwards let M —> oo). This makes the right side of the inequality above (and
hence the left side) integrable relative to μ, so that we can change the order of the
summation in (4.9) even under the integration by μ, which we now carry out. The
translation invariance of μ then shows that

n=2

-g(zn)(F(qn - ί i ) - F( ? Λ _i - q0))] μ(dq)

qn-λ -qo)]μ(dq).
n=2

Since {qn — q\) — (qn-\ — #0) = ^ — z\, and since both g and F are monotone,
all the integrands have the same sign and hence must vanish a.s.(μ); in particular
[#(z2) — g(z\)][F(z2) — F(z\)] = 0 a.s. (μ). Finally letting the constant δ, on which
the support of g depends, tend to zero, we arrive at the conclusion of Theorem 4.

Remark. The same result as Theorem 4 is obtained by Lang [L] under the additional
assumption that f\U'(zo)\dμ < 00. The proof given above is essentially the same
as his except for the use of Lemma 6 in place of the integrability of Uf(z0).

5. Proof of Theorem 1

This section is divided into four subsections. In the last one we show that the weak
convergence of αf implies the strong convergence of its mollified local density
off (hNμ( • — θ)) as N -^ 00 and £ —> 00 in this order. Taking this result for granted
we deduce Theorem 1 from Theorems 2 and 3 in the first three subsections.

5.7. First we carry out some calculation to see that our system is essentially of
gradient type. This part of the proof is very similar to the corresponding one in
[OV]. Let J be a smooth function on the closed interval [0,1]. By (2.1) we obtain

t) (5.1)

and

d

(5.2)

as well, where, as before, BN(x) = N[WL(Nx) + ^ ( ^ ( J C - 1))] and the time pa-
rameter is suppressed. Since Ur is odd, the last term in (5.2) may be rewritten
as

- W Σ (•/'(*/) " J'(XJ))U'(N(X, - xj)).
1



120 K. Uchiyama

Notice that N2 times the right side of (5.1) appears as the second term on the
right side of (5.2), substitute its expression accordingly obtained into (5.1) and then
integrate both sides of the resulting equality on a time interval [0, t] and you see

1 ' 2 1
αί w ) " ^ ! " ' ) = 77 J LJJ \Xi )Vi ™S — "772

7 V 0 i V s=0

1 '

o
( 1 T'(γ.Λ — T'ίx.Λ

— x))ds. (5.3)

By (2.2) and (3.2) the first and the second terms on the right side converge to zero
as N —> oo. Suppose that Jf(0) =J'{\) = 0. Then the third term also converges
to zero due to the assumption (1.6b) (see the estimate (3.3) that is an immedi-
ate consequence of (5.3)). If ψ decays for large x sufficiently fast, then the ratio
(Jf(xi) — J'(xj))/(xi — Xj) in the last term might be replaced by J"(xi). Corollary 3
in Sect. 3 ensures such replacement is valid under the assumption (1.4), so that

αf (J) - o#(J) = /-ί- E Ψ(N(Xi(s) - XjίsW'MsMs + o(l) , (5.4)

where o(l) is locally uniform in t.

5.2. For each smooth J satisfying / ; (0) = J'{\) = 0 the family of continuous func-
tions (ocf(J),0 ^ t ^ T\N — 1,2,..., is equi-continuous according to Corollary 1
and (5.4). Clearly it is uniformly bounded. Hence it is relatively compact in the space
of continuous functions under the topology of uniform convergence. This shows the
family of continuous measure-valued functions (αf,0 ^ t ^ T)9N — 1,2,..., also
is relatively compact; by Corollary 3 any limit point of it is absolutely continuous
for each t. We can identify the limiting density, p(θ,t) say, and thereby complete
the proof of Theorem 1, if we show that the integral on the right side of (5.4)
converges to

ffP(p(θ,s))J"(θ)dθds, (5.5)
0 0

since p(θ,t) is then revealed to be a weak solution of the Cauchy problem (1.8)
and (1.10) that is unique by virtue of the following theorem. (See also Lemma 8
below.)

Theorem 5. Let αo be a finite Borel measure on [0,1]. Then for every T > 0
there is at most one non-negative weak solution p = p(θ,t) to the problem (1.8)
on (0, T] that satisfies the ίntegrability condition Jo dtf0P(p(θ,t))dθ < oo and the
initial condition (1.10), as well

Proof. Theorem 6 in [U] asserts a similar uniqueness for the nonlinear diffusion
equation (1.8a) with the periodic boundary condition. Its proof given there is avail-
able also for the case of the reflecting boundary condition (1.8b) without any alter-
ation except that we here use the fundamental solution of the heat equation (that
plays as a test function in the proof) with the reflecting boundary condition instead
of the periodic boundary condition.
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5.3. Let h be the same smooth even function as introduced in Sect. 3. Write hκ(θ) :=
Kh(Kθ) for K > 0 as before. Then for ( > 0,

f^Γr Σ
0 2 7 V

0 L -S/N ^

where J" is smoothly extended outside [0,1]. Introducing the function

#*(q) = i Σ

we can rewrite the inner integral on the right side above in a concise form:

\+ί/N

-ίjN

The contribution from the boundary region [—£/N,0) U (1,1 + //N] to this integral
is negligible since ΨN(tJ) :=J2jήziψ(N(xi(t) — Xj(t))) is uniformly integrable as
asserted in Corollary 2 of Sect. 3. For the proof of Theorem 1 it therefore suffices
to show

T 1

lim lim sup f ds f\H^(Nmxθ(s)) - P(p(θ,s))\dθ = 0 , (5.6)

where Nm is an arbitrary subsequence of {TV} along which αf converges to p(θ,t)dθ.
Again by virtue of the uniform integrability of ΨN(t, i) we can replace HUq) in
(5.6) by

λ i VLyΦi

On the other hand, since p(θ,s)P(p(θ,s)) is integrable with respect to dθds on
[0,1] x [0, T] as we will see in Lemma 7 at the end of this section, we can also
replace P(p) in (5.6) by

PM(P) :=

Put

Then PM(p(θ,s)), in turn, can be replaced by PM(ρNε(Nxθ(s))) since p^(TVx^)) =
o^(h\/ε( — θ))/2ε well approximates the limiting density p(θ,s) as TV —» oo along
iVm and ε I 0 in this order. According to Theorem 6 below we can further replace
PM(pm(Nxθ(s))) by PM(P\NXΘ(S))). AS a consequence of these replacements of
functions the problem is reduced to showing that for all M ^ 1,

lim limsup fdsf\MM(Nxθ(s))-PM(p'(Nxθ(s)))\dθ = 0 ,
Λ-κx> w->oo 0 0
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or by rewriting it by means of μN,

lim lim sup J\H^M(q) - /V(p'(<l))| l^idq) = 0 . (5.7)

But this follows from the local equilibrium assertion Theorem 3. (Noticing that
both HψM(q) and PM(P^(A)) are the same order as //(q) with M fixed, one should
accordingly make a truncation argument that may be based on Corollary 3.)

Thus the proof of Theorem 1 is complete if we prove the following

Theorem 6.

T 1

lim lim sup lim sup/ ds f\pNε(Nxθ(s)) - p*(Nxθ(s))\dθ = 0 .
Λ->oo ε | o N-+O0 0 0

5.4. The proof of Theorem 6 is done by means of the Young measure. Define a
finite measure πΉJ on [0,Γ] x [0,1] x [0,oo) by

^(dtdθdu) = dtdθδps{Nχθ{t))(du).

Then the family (πN^(dtdθdu);N = 1,2,...,/ = 1,2,...) constitutes a relatively
compact set of measures. Our task was to identify every limit point of af. For
any subsequence of N along which αf converges, we can choose its subsequence
N* such that πN^ converges along N* for all /. Hence it would suffice to study
limit points of πN^ along such a subsequence N*. Recall that any limit point of

f possesses a density.

Theorem 7. Let N* be a subsequence of N along which πN^ converges for all / =
1,2,.... Let p(θ,t)dθ and π(dtdθdu) be limit points ofoc?(dθ) and πN^(dtdθdu\
respectively, as first N —> oo along N* and then / —» oo. Then the Young measure
π(dtdθdu) is degenerate at p(θ,t\ namely π(dtdθdu) = dtdθδp^t)(du).

The deduction of Theorem 6 from Theorem 7 is straightforward, since the
second moment Ju2πN^(dtdθdu) is uniformly bounded according to Corollary
3. (Cf. Eq. (4.5) in [U].) The proof of Theorem 7 is similar to that given in
[V] for its Theorem 7.6. The proof given there is modified according to [SU]
and [U] so that we can dispense with the entropy technique as applied in [V].
In both [U] and [SU] the fundamental solution on the torus is used in place
of a function gN,ε,λ = hχε — hχ that is used in [V], for simplicity in [U] and
since the model is multidimensional in [SU]. This time we use the fundamen-
tal solution for the heat equation on the unit interval with reflecting bound-
ary condition not for simplicity but for necessity for dealing with the boundary
term.

Proof of Theorem 7. Let pt(x, y\ 0 ^ JC, y ^ l9t > 0, be the fundamental solu-
tion for the heat equation dtu — {d2ldx2)u on [0,1] with the reflecting boundary
condition. We will apply the following representation of it:

oo

Pt(x,y)= Σ [gt(-x + y + 2n) + gt(x + y + 2n)], (5.8)
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where gt(x) = (4πί)~^2exp (— x2/(4t)). We carry out the same calculation as that
leading to (3.1). This time however we compute, instead of (d/dt)Y^. . '

Xj)vi9

"77 Σ dxpτ(xhXj)Vi
ά t i ,y( )

with τ fixed. Here dx denotes the partial differentiation with respect to the first
argument of pτ. Since pτ is symmetric (with respect to x and y),

N Σ dxpτ(xi9Xj)Vi= -— Σ Pτ(Xi,Xj).
z a t

In place of (3.1) we accordingly obtain

_ L J Σ [-NU'(N(Xi - Xj)WχPτ(xi,Xk) ~ dxpτ(xj9xk)]dt
2NZ 0 i,y,* )

^2/ Σ [-

= T73 Σ Vidxpτ(xi9Xj)
Uj (=1=) t=0

1 T

I Σ [ft
0 Uj{

^ Λ jΊ £-~J

1 Γ

772/ Σ BN(xi)dxpτ(Xi,Xj)dt.
^ 0 ij( + )

Integrate both sides of this identity with respect to τ on an interval [K2/N2,b],
where b and K are constants. Since

b Xj

f[δχPτ(xi,Xk) ~ dxpτ(xj9xk)]dτ = f[pb(u,xk) - pa(u,xk)]du ,
a

two times the first term on the left side then becomes

4 / Σ Ψ(N(xi-Xj)):r^rJ[pb(u,xk)-pκ>/Ni(u,xk)]du. (5.9)
7 V 0 i,y,A

We are to see that this is essentially non-negative in the limit as first N -^ 00 and
then b { 0,K —> 00, by examining the other terms one by one in the following items
0) through iv).

0) Since δxpτ(xi9Xj) has the same sign as U'{N{xiy—Xj)), the second term on
the left side is non-positive.

1) \fa δxpτ(x,y)dτ\ is bounded whenever 0 < a < b < 1.

ii) supjy, Jo pτ(x, y)dτ ^ 0 as b | 0.
iii) Since dxdy pτ(x, y) = (d/dτ) p°(x,y)9 where p° is the fundamental solution

of the heat equation with the absorbing boundary condition (as being clear from the
Fourier expansion of pτ(x, y))9 the contribution of the third term on the right side
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is bounded below by
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N 0 i 0 i,.
Σ

The first term vanishes as TV —> oo and the second term is non-negative since pa ^
p°a and p°a(x,y) = p°a(y,x).

iv) The boundary term vanishes in the limit as N —> oo and b j 0 in this order
as is verified as follows. By symmetry we have only to look at the contribution of
%i S V^ For every ε > 0 this part is bounded by

K2/N2

/ dxpτ(xuxj)dτ

f dxpτ(xi9xj)dτ
K2/N2

dt

dt

at least for large N. For each ε the second term is dominated by a constant multiple
of

T 1

/ J[p\Nxθ(t))]2dθdt x sup sup /
0 0 x a:Q<a<b Q

fdxpτ(x,y)dτ dy

as is easily shown as in the proof of Lemma 2 in Sect. 3. The first factor is uniformly
bounded and the second one converges to zero as b [ 0. In view of (3.3) it therefore
suffices for our purpose at present to show the following

Lemma 7.

lim sup sup sup sup sup
0<x<ε/N

f dxpτ(x,y)dτ
K2/N2

= 0.

Proof. The contribution to dxpτ of the sum over « φ θ in the representation (5.8)
causes no problem so that we have only to compute the one coming from n = 0,
i.e.,

b

Observing

fg'τ(z)dτ =

K2/N2

Λ b 7

= J-e~z

2τ

z/y/a

= J gλ{u)du ,
/4πτ J

a2τ

we see that if y > x and JC < ε/N9 then

Ny/K+ε/K y/Vb+ε/VbN

Sb,κMx>y) = 2 J gι(u)du+ J gι(u)du,
Ny/K-ε/K y/Vb-ε/VbN

which with N > K/y/b clearly converges to zero as ε —> 0 uniformly in y as well
as in the other variables. The case y < x is easier, since then |JC ± y\/y/a S 2ε/K.
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We have observed that the limit supremum of the formula in (5.9) as N —> oo
and then b [ 0, K —» oo is non-negative, which implies

τ 1 1 Xj

Iλ := liminf lim inf * / — Σ ψ(N(xi - xj)) f pK2/N2(u,xk)dudt

r 1 1 *•>
^ lim sup lim sup * / —j Σ ^(7V(JC/ - xy )) /pb(u,xk)dudt =: /2 ,

6|0 N->oo 0 7 V Xi XJ

where * indicates that the limit is taken along the subsequence N* specified in
Theorem 7. From now on we can proceed as in [U] or [SU]. Here is given an
outline. The integrand on the left side is very singular, but we need only a lower
bound for it and can apply Fatou's lemma to deduce from Theorem 3,

T 1 oo

Jdtjdθ JuP(u)πtβ(du) ^ Iλ < oo , (5.10)
0 0 0

where we have applied also the fact that π(dtdθdu) can be written dtdθπtβ(du).
As for the right side we first replace the integral under the double limit supremum

by fdtfH*(Nxθ(t))N-ιΣpb(θ,xk)dθ, which readily justified by Corollary 3 and
the smoothness of pb. Since pb(θ,&) can be uniformly approximated by a finite
sum of products ak(θ)bk(θ') of smooth functions and by Theorem 3 together with
the same truncation argument based on Corollary 2 as made just after (5.6) we can
further replace the latter by

fdtfPM(p'(Nx°(t)))a?(pb(θ, ))dθ = fffPM(u)a?(pb(θ9 ))πN^dtdθdu)
0 0

if we let i —>• oo and M —> oo in this order after letting N* —> oo. Noticing that
<x?(Pb(θ, - )) approaches /pb(θ,θ')p(θ'\t)dθf uniformly in (θ,t) (with b fixed) and
that p(θ9t) — Juπtβ(du) we accordingly conclude

T

h = \imsvφffdtdθfpb(θ,θ')fu'πίίθ/(du')dθffP(u)πtβ(du).
blO 0

We can take the limit within the outer double integral sign ffdtdθ. In fact by
applying both the semi-group property and symmetry of pτ with the help of Fubini's
theorem we see that its integrand may be replaced with

Fb(t,θ) := Jufπ^\duf)JP(u)π%\du),

where πt0(du) = Jo dηπίίη(du)pb/2(θ,η), and that Fb(t,θ) is uniformly integrable by
dtdθ owing to the integrability result in (5.10) (see [SU]: the argument leading to
(7.8) of it). Therefore

h = JdtfdθJu\θ(du')JP(u)πttθ(du). (5.11)
o

It would be standard to deduce ntβ{dύ) = δpφ,t)(du) from (5.10), (5.11) and the
monotonicity of P. The proof of Theorem 6 is finished.

By (5.10) and Theorem 6 we incidentally obtain
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Lemma 8. If p(θ,t)dθ is a limit point ofoc?(dθ), then

fdtfp(θ,t)P(p(θ,t))dθ<oo.
0 0

6. Concluding Remarks

Remark 1. The function P(p) is, at least formally, identified with the pressure in a
standard manner based on the virial theorem: indeed \ ^2Φ(N(xi — Xj)) is nothing
but the interior virial —ΣqiUr(qi — qf) that, since the kinetic energy is negligible,
should be balanced with the boundary virial, which in turn must equal the pressure
times the volume. This argument however is legitimate only in an equilibrium situa-
tion (or in the time average). The following reasoning, though the underlying idea is
the same as above, applies to non-equilibrium states. Namely, under the assumption
of Theorem 1.1, we deduce from (5.3) that there exist weak limits

p_{t) = Jfa^ £ - W'_{NXi{t)) and p+{t) = ^ fχ(Λfr,(O - N)

(the pressure at θ = 0 and θ = 1, respectively) and that for every smooth function
J on [0,1],

1 t t

fp(t,θ)J(θ)dθ-ao(J) = J'(Q)fp-(s)ds -J'(l)Jp+(s)ds
0 0 0

+ffp(p(θ,s)y"(θ)dθds.
0 0

This identity with / suitably taken and varied verifies that p~(t) = P(p(0,/)) and
p+(t) = P(p(l,t)) a.s., where the version of the weak solution p(θ,t) should be
properly chosen.

Remark 2. The initial energy bound (1.9), ^ ( 0 ) = o(N3), is natural and indis-
pensable for the conclusion of Theorem 1 to hold. If it is violated, then the so-
called initial layer appears in general, i.e., the limiting density of αf, even if it
exists and satisfies the non-linear diffusion equation (1.8), can assume an initial
trace lim^o p(#? 0^# different from α0 '-= lim %o ^ o r e x a m p l e consider the initial
phases #/(0) = i/2; Pi(0) = N/2, i = 1,...,N. Then within a macroscopically negli-
gible time, e.g., t = N, each particle qi(t) travels a distance of about N/2, a macro-
scopically significant distance of 1/2, which results in the initial discontinuity of the
macroscopic mass distribution.

Even if (1.9) does not hold, αf can still converge uniformly for t e [l/T, T] for
each T < oo along suitable subsequences and any limit point may admit a density
p(θ,t) that solves (1.8) (though it is then impossible to determine the initial trace
from the given datum αo only), which is always the case if

U(x) ^ cφ(x) for |JC| < 1 and δN(ϋ) = O(Ny)

with some constants c and y ( ^ 3). To see this we observe that, in view of (2.2),
(3.1), Lemma 3 and Theorem 2, the supplementary assumption on U made above
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implies

for some constants A and B. Since SN{t) is decreasing in t, the substitution of
T = N~λτ gives τSN(N~λτ) ^ ANι+λ ^BN~2+λSNφ). Applying this inequality,
repeatedly according to the magnitude of γ, we deduce from $N(0) = O(Ny) that

iN{N~λ) = O(Nx+λ) for 0 < λ < 2 . (6.1)

Taking λ = 1 , e.g., and applying Theorem 1.1 to the system (2.1) started at t =
N~ι, we obtain the asserted convergence of αf with a limiting density satisfying
(1.8).

Remark 3. If the condition (1.4) fails to hold or equivalently J°°ψ(x)dx = oo, then
the inner sum on the right side of (1.11) diverges to infinity in the hydrodynamic
limit and we need to scale the time by a factor smaller than N2 for obtaining
a non-trivial limit. A heuristic argument suggests that instead of (1.7) we should
define

Xi(t) = N-ιqi((N~ι logΛOO if φ(x) ~ x~X as x -> oo,

Xi(t) = N-ιqi(N-ι+yt) if φ(x) ~ x~ι+y as x -> oo ,

where 0 < γ < 1: in the former case we would have Eq. (1.8) with P(p) — p2 for
the limiting density field, while in the latter case (1.8) must be replaced by

u

u,t)-p(θ-u,t) iA_γ

u
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