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Abstract: We study resonances (scattering poles) associated to the elasticity operator
in the exterior of an arbitrary obstacle in R3 with Neumann boundary conditions.
We prove that there exists a sequence of resonances tending rapidly to the real axis.

1. Introduction

Let $eR3 be a compact set with C°° -smooth boundary Γ and connected complement
Ω — R3\0. Denote by Δe the elasticity operator

Aev = μQAv + (λo + μo)V(V ι;) ,

— t ( v \ , V 2 9 v i ) . Here ΛO, μo are the Lame constants and we assume that

μo > 0, 3 Λ o + 2 μ o > 0 . (1)

Consider Δe in Ω with Neumann boundary conditions on Γ,

3

Σ / \
(J/, ( V )IJ \ /

J=λ r
= 0, / = 1,2,3, (2)

where σz/ (ι;) = /10V vδij + μo ^ + ̂  is the stress tensor, v is the outer normal

to Γ. Denote by L the self-adjoint realization of — Δe in Ω with Neumann boundary
conditions on Γ. As usual we define resonances as the poles of the meromorphic
continuation of the cut-off resolvent Rχ(λ) = χ(L — λ2)~lχ from Imλ < 0 to the
whole complex plane C, χ G CQ° being a cut-off function equal to 1 near Γ. So we
accept the convention that the resonances lie in the upper half-plane.

If one considers the Laplacίan with Dirichlet or Neumann boundary conditions,
then it is well known that for convex or more generally for non-trapping obstacles
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the resonances lie above logarithmic curves of the type \mλ = C\ In Re/1. — €2,
C\ > 0. There are several special examples of trapping obstacles [II, 12,13, G] with
resonances tending to the real axis or with a strip of the kind 0 < IIΪIΛ < CQ
containing infinitely many resonances. An important open problem in this direction
is to prove or reject the Modified Lax and Phillips Conjecture-for any trapping
obstacle there is a strip 0 < Imλ < CQ containing infinitely many resonances.

In [SV2] the authors proved that for the elasticity operator L with Neumann
boundary conditions there exists a sequence of resonances tending rapidly to the real
axis provided that the obstacle (9 is strictly convex. Moreover, below any logarithmic
curve Im λ = C\ In λ — €2 there are no other resonances except possibly a finite
number. The reason for the existence of almost real resonances are the Rayleigh
waves which is a typical phenomenon for the elasticity operator with Neumann
boundary conditions. As proven by Taylor [T] (see also [Y]) there are three types
of rays for L that carry singularities. The first two types are classical rays reflecting
at the boundary according to the laws of geometrical optics and the singularities
propagate along them with speeds c\ = -^/μo, ^2 = γ//o + 2μo The third type of
trajectories lie on the boundary and singularities propagate along them with a slower
propagation speed CR > 0 (the Rayleigh speed). Thus any obstacle is trapping for
L from the point of view of propagation of singularities and one might expect
resonances close to the real axis. The proof in [SV2] is based on a construction of
a microlocal parametrix of the corresponding Neumann operator in all of the 5 zones
(hyperbolic, mixed, elliptic and two glancing ones) using the calculus of ΨΌO-s
and FIO-s with large parameter (see e.g. [G]). It turns out that the parametrix is
elliptic in the first two zones, can be represented microlocally as a hypoelliptic
operator in L2',3 0 conjugated with an elliptic FIO in the glancing zone while in the

elliptic zone has a characteristic variety of the form Σ = {ζ G Γ*Γ; CR\\ζ\\ = I}.
Therefore, the parametrix is microlocally invertible outside Σ, which is essential for
the proof of the pole-free domain, while the proof of the existence of almost real
resonances is based on an application of the Phragmen-Lindelόf principle.

In this paper we show the existence of a sequence of resonances of L tending
to the real axis for an arbitrary obstacle (9. Of course, one can no longer expect a
pole-free logarithmic zone as in the case of a strictly convex obstacle [SV2] because
there might be resonances near the real axis or more generally in any logarithmic
region generated by classical trapped rays. Our main result is the following theorem.

Theorem 1. There exist two infinite sequences {//}, {-//} of distinct resonances
of the elasticity operator L, such that

0 < Imλj ^ CN\λj\~N for any N > 0.

The proof of Theorem 1 suggests that the reason for the existence of these
resonances are the Rayleigh waves. In particular, it provides another proof of
Kawashita's result [K] that the elastic wave equation with Neumann boundary
conditions does not possess the exponential local energy decay property.

To prove Theorem 1 it suffices to show that for any integer N ^ I there are
infinitely many resonances in {λ G C : Imλ ^ \λ ~N, |Re/l| ^ 1}. Then, the
assumption that there are finitely many resonances in this region would lead to
polynomial a priori estimates on JV~λ{λ\ ,Λr(λ) being the Neumann operator on
Γ, in a smaller region near the real axis. The final step is to show that these a
priori estimates cannot hold because the parametrix of the Neumann operator fails
to be elliptic at Σ. To do so, we use the calculus of ΨΌO-s and FIO-s with large
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parameter as presented in [G] to construct a parametrix of the Neumann operator in
the elliptic zone. Note that this is possible despite the fact that (9 is not necessarily
convex. In fact, it is sufficient to construct the parametrix in a neighborhood of the
characteristic variety Σ. We take a finite number 2m + 1 of terms in the asymptotic
expansion of the corresponding amplitude in order to get a parametrix N2m-ι(λ),
such that λ2m~lN2m-\(λ) is analytic in λ. Then we extend λ2m~lN2m-\(λ) as an
elliptic ΨΌO with large parameter λ\ = Re/t globally, thus obtaining a ΨΌO P(λ)
which is an entire function of λ. Applying the Phragmen-Lindelόf principle, we
show that P(λ) has "zeros," i.e. we have P(λj)fj — 0 with some λ/ in a logarith-
mic domain and \\fj\\ = 1. Next we show that λj are asymptotic zeros of 7V2w_ι(/0,
i.e. N2m-ι(λJ)f/ = 0(\λj -°°), as well as Imλj = O(\λ} -2wι+2). Since N2m-ι is a
parametrix of the Neumann operator J\ί, for m sufficiently large this turns out to be
enough to get the desired contradiction.

2. Some A Priori Estimates on the Resolvent

The puφose of this section is to prove the following a priori estimate of the cut-off
resolvent which is crucial for our proof of Theorem 1.

Proposition 1. Assume that Rγ(λ) is analytic in {λ e C; Imλ ^ \λ\~N, |Re/.| ^ C]
with some C > 0 and integer N > 0. Then

\\RyW\\C(L^)^C,\λN^ for \lmλ\^\λ\-N~\ | R e Λ ^ C 2 ,

with some constants Cι,C2 > 0.

Remark 1. It is easy to see from the proof that a similar statement holds in any
odd-dimensional space as well and for compactly supported perturbations of the
Laplacian. The proof however does not work if the space dimension is even.

Remark 2. As an immediate consequence of Proposition 1 we get that the exis-
tence of real quasimodes implies the existence of resonances {λj}^ with Im/,7 =

O(\λj ~°°). The advantage of this conclusion is that, as shown in [P] (see also
[CP,L]), if there exists an elliptic broken periodic ray (with Poincare map satisfy-
ing some technical conditions), one can construct real quasimodes kj —> +00 of the
Dirichlet Laplacian in an exterior domain Ω C R'7, n ^ 3 odd, with C°° boundary
Γ, i.e. there exist uniformly compactly supported functions Uj, | | w / | | / 2 = 1, such that

°) i n Ω ,
(3)

on Γ.

The proof of Proposition 1 is based on the next two lemmae.

Lemma 1. Assume that /(z) is analytic in {zeC; Imz < C^zl"^, |Rez| > C2}

and |/(z)| ^ C^ec^ with some positive constants CΊ, C2, Cs, and integers n,N ^
0. Assume moreover that |/(z)| ^C 4 z| m / |Imz for -1 <Imz < 0, z| > 1 with
some €4 > 0 and integer m ^ 0. Then

|/(z)| ^ C,\zm+n+N+2 for |Imz g z\~n~N-\ |Rez| ^ C5 ,

with some constant C$ > 0.
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Proof. Without loss of generality we can assume that Rez ^ €2. Set

u(z) = Qxp{izs} = exp{/(Rez)5 - s(RGz)s~llmz + • • • } ,

s being an integer to be chosen later on. On y+ := {z G C;
Rez ^ €2} we have for g := fu,

= C\z

\g(z)\ ^ exp

= C3£?C3|z|"exp - r
(Rez/-3

\1N

(Rez/

for |z sufficiently large. Therefore, if s > « + TV + 1, we have

|0(z)| ^ C for z G y+ .

Set 7_ = {z G C; -Imz = |z ~~s, Rez ^ C2}. On y_ we have

Γ^lz m

^4K

(4)

I0GOI ^ I Imz
- CXRezr^Imz 3 + •} g C|z|m+-s. (5)

We get from (4), (5) that z m sg(z) is uniformly bounded on the boundary of
the domain between the curves y+, y_ and Rez = C'2 with C'2 > C2 sufficiently
large. Moreover z~m~^g(z) satisfies an a priori exponential estimate in the inte-
rior. An application of the Phragmen-Lindelόf principle implies that z~m~sg(z) is
uniformly bounded in the interior of that domain as well and therefore

C,(Rez/-3(Imz)3 + ..} g C5\z m+s

 9

provided that |Imz| ^ l/(Rez)5. Now it suffices to pick ^ = ̂  + # + 2 in order to
complete the proof of the lemma. D

We would like to apply this lemma to the operator-valued function Rγ(λ\ To this
end we need the following a priori estimate (compare with [SV2, Proposition 5.2]).

Lemma 2. Assume that Rγ(λ) is analytic in DCl,c2 — {^ £ C; \lmλ\ < Cil^l"^,
|Re/.| > C2} with some C\ > 0, C2 > 0, TV > 0. Then for any C( < Q, C'2 > C2

we have
(6)

with some C > 0 in Dc, c, = {λ e C; \lmλ\ < C[\λ\~N, |Re/| > C2}.

Proof. This is a refinement of Proposition 5.2 in [SV2] (see also Lemma 3 in the
present paper) and we refer to [SV2] for more details. As in the above cited paper
we can find an entire function h(λ) of order 3, such that in

; \λ-z,\
we have

(7)
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where {zj}^ are the zeros of h(λ). Let us observe that C\V = Ui£ι^4> where
Uk are disjoint connected sets and each Uk is a union of a finite number of disks,
because the series Σ°^ \Zj\~4 converges and hence so does Σj^\ \zj ~5~N . Clearly,

for each k, diam Uk < 2M, where M := ̂  |zy ~4, which implies

j

Therefore,

diamC4 < 2M[min{|/|; λ G ί/J]"^"1 ^ 2M(|A -2M)-jV-1 (8)

for each λeUk, and A: sufficiently large. Fix C{ < C\,C'2 > €2 and set AT =
Dcι cι Π C4 Φ0}. For large k G ̂  we have C4 C A:ι,c2 because of (8). Since (7)

holds on dUk we can apply the maximum principle to conclude that (7) holds in Uk
as well with some other constant C > 0 for large k. Thus (7) holds in the entire
Dcr Cf except perhaps in a bounded set. D

Proof of Proposition L We have by the above lemma that the operator- valued
function R/(λ} : L2 -* H2 satisfies the first assumption of Lemma 1 with n = 4. On
the other hand, it is clear that in the lower half-plane Rχ satisfies the estimate

which easily yields

Thus Rχ(λ) : L2 —> H2 satisfies the second assumption of Lemma 1 as well with
m = 1. Now Proposition 1 follows from Lemma 1 at once. D

Let us define the Neumann operator yK(/) by the formula

3
/ί/Y 2 \ Usf Γ\ -^ f i ^ V^Λ / ( Λ ) . H (1 ) 3 J ^ 2^<

2 '

where σ7 — ^(σi/, σ^j, σsy), σ// is the stress tensor (see (2)) and υ solves the follow-
ing problem:

(Ae + λ2)v = Q in Ώ ,

r = / o n Γ , (9)

i; - outgoing .

As ^~l(λ) can be easily expressed in terms of Rχ(λ) (see [SV1]), the assump-
tion that Rγ(λ) is holomorphic in {λ E C: Im/ί ^ |/ί ~^, |Re/| ^ C} implies that
so is J\r~l(λ) and moreover, by Proposition 1,

for |Im/l| ^ lAI"^"6, |ReA| ^ C ;. (10)

In the rest of the paper we will find a contradiction to (10).

3. Parametrix for the Neumann Operator

We will recall briefly the construction of the parametrix of (9) in the elliptic zone
(see [SV2, CP]). We will use the calculus of ΨΌO-s and FIO-s with large parameter



650 P. Stefanov, G. Vodev

as developed in [G]. We choose λ to be the large parameter and we suppose that

λ G ΛCl,c2 '•= [λ G C; |A2 < Ci ln^, Λ! > C2}, (11)

where λ\ = Re λ, λ2 = Im /, C\ > 0, C2 > 0.
Given an open set X in R" denote by C (X) the space of all functions u(x9λ)9

λeΛ such that u( ,/) G C°°(X) and /?(w( ,/)) = O(\λ ~°°) for all seminorms

p in C°°(*). In a similar way we define C°° (K\ K being a compact, C^(X) and

x

.
Given two open sets X9Y in R", for m9k G R, p, δ G [0, 1) we define (see

[G, Def. A.I.2]) the class S$(X x 7) to be the set of all a(x,y,η,λ) G C°°(X x

Y x R"), such that for any compact K CC X x 7, all α, β,y G Z", / G /I we have

l^l(l + Mr-M . (12)

= 7, we set S$(X) = S$(X x *). Given a G S (̂* x Ύ\ denote by Op(α)
(or Op;(0)) the operator

/ "' \ n

(Op(a)u)(X,λ)= ί^J J/e'^-^X^^^/X^/O^φ. (13)

We have well-defined operators in the case where a has bounded support in η
and λ G /I or if η is unbounded on supp α, but A is real. We refer to [G] (see also
[SV2]) for more details, as well as for a definition and properties of elliptic ΨΌO-s

with large parameter, wave front set WF(/), etc.
Let us recall [SV2] that operators of the form Op;(0) can be represented as

ΨΌO-s with large parameter λ\ — Re λ, provided that \η\ is bounded on suppα. In
other words, Opλ(a) = Opλ{(ά)9 where

a(x, y, η,λ) = (l+ iλ2/λι )ne~^(x-y} ' ηa(x, y, η, λ) .

One can regard here λ^lλ\ G [—C\,C\] as an additional parameter. Assuming

λ £ ΛCl,c2, we get that a G S^ implies a G S^^+ε for any ε > 0. This follows

from the fact that \e~^x~y^ ' *ι\ ^ \λ\N with a fixed TV > 0 and \λ2 ^ CB\λ\ε for
any ε > 0. Therefore, a is an amplitude. Using [G, Pr. A.I. 4, Pr. A.I. 5] we can
calculate the symbol of a (depending only on x, η, λ) and we find that actually

a G S®'kό and the principal symbol is a\y=x - i(λ2/λ\)η Vηa\y==x. Thus if a G SQ'Q,
we have Op/:(a) = Op; (α) with

a = a - i^- η Vηa mod^'o"1 (14)
λ\

Let us now recall the construction of the parametrix in the elliptic zone. Recall
(see e.g. [SV2]) that the operator — Δe has two sound speeds c\, c2 and the variety
Σ = {C G FT; cR\\ζ\\ = 1} lies in the elliptic zone {C G ΓT; | | C | | > cf 1}, || ||
being the norm in Γ*Γ. Let ζ° G Γ*Γ with ||£°|| > c^1 and from now on we as-
sume that the space dimension is n = 3. Let us pick local coordinates such that
C° = (0, 77°), the boundary is given locally by ci = 0 and the normal derivative
at x — 0 is given by d/dx\. Then x' = (^2,^3) are local coordinates on Γ. Let
Xζθ(xf,η) G C^°(Γ*Γ) be a cut-off function equal to 1 near £°. If suppχ^o is suffi-

ciently small, one can construct a local FIO H^ with large parameter λ G ̂ cbc2
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such that
\(Δe + λ2)H?f = K f ,
1 o (15)
{frf\r = 0pλ(χp)f,

where K has kernel in C°°. The operator H^ is of the form

//*'A(^}~''^ (16)

The phase function φ solves the eikonal equation (Vφ)2 = 1, φ\r = x η to
infinite order at Γ and Im φ ^ cx\ on supp χ^o with some c > 0. This implies that

Hζ f = <9(e~c/lTl). The matrix-valued amplitude /z is a solution of the correspond-
ing transport equations and has the form h = Z 0̂ hj(x,η)λ~] , with h} formal series
in x\. Set

and consider the operator //£ associated with Mw). Then H^ solves a problem

similar to (15) with ^ replaced by AT plus a FIO of order — m. Denote

Σ; =1 βyC^w /)vy r, where σy = ?(σι7 ,σ2/,σ37), σ/7 is the stress tensor. Then yV^ is
with large parameter λ and symbol

The principal symbol is λn\(x, η) = λχζθ(x,η)nι(x,η), n\(x,η) being a Hermitian
matrix with three distinct eigenvalues near Σ. One of the eigenvalues has simple
zero at Σ, the other two are elliptic. Moreover, n\ is elliptic everywhere in the
elliptic zone outside Σ (see also [CP, K]).

Thus for any ζ in a neighborhood of Σ in the elliptic zone we constructed an
operator H^ solving (15) provided that suppχ^ is contained in a small neighborhood
Uζ of ζ. Let W\ be a bounded neighborhood of Σ in the elliptic zone and let us
pick a partition of unity {χ^/} associated with {Uζ} covering W\ and supported
in a slightly larger domain. Using this partition of unity, we construct a solution
operator

Hm(λ) = ΣHrnΦj, (17)
j

where φj(x) have small supports and φj(x) = 1 in a neighborhood of πx(suppχς^).
This operator solves

' e + λ2)Hmf=Kmf,

mf\Γ = f + Qf, ( }

provided that WF(/) c W\, where Km(λ) is a FIO with amplitude of order -m and

\\Qf\\H' = 0(\λ\-°°), V ί ^ O . (19)

Set

Nmf - Σ «j(Hm
7=1 Γ

Then Nm G L0'0(Γ) and λmNm is holomoφhic in λ.
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Now we are going to find a relationship between Nm and the Neumann
operator Jf . Following [G], we set

Hm(λ) = χHm(λ) - S0(λ) (χKm(λ) + [Δe, χ]Hm(λ)) , (20)

where S^(λ} is the free outgoing resolvent. Thus Hm(λ)f solves the problem

Hmf\r=f + Qf + Rmf,

with
\\Rm(λ}\\^Hm(Γ)) g C|A|-'"+1 (22)

provided that λ e Λc,,c2

 witn C\ small enough. If we denote the exact solution to
(9) by 3 f ( λ ) f , we see that

fi/
By differentiating this at the boundary, we get

^(f + Qf + Rmf) = Nmf + Rmf, WF(/) C Wλ , (23)

where \\Rm\\<e(Hw,HW) = O(\λ\~m+2) and Qf,Rm satisfy (19) and (22),
respectively.

4. Proof of the Main Result

Let {/£/} be the partition of unity used to construct Hm (see (17)). Choose an open
set W2 C Γ*Γ? such that Σ C W2 CC W\ and pick χ0 e Q°(ΓT), such that χ0 = 1
on W2 and supp/0 C W\. For each ζj let us define a local *FDO using the special

coordinates related to ζj by A^J = Op (χoZ^) an^ set ^ = Σ/^^0/ (see (17)).

Then yί G L0'0(Γ), y4 is an entire function of λ and σp(Λί) = 1 on W2ί σp(A) — 0
outside W\ . Moreover, the symbol of A in any local coordinates is supported in
W\ . Since the symbol of Nm has also compact support, we will extend Nm as an
operator elliptic outside W\ with characteristic variety Σ. To this end fix an integer
m > 0 and set

P(λ) = λ2m-λN2m^A + ί(λ2 - ΔΓ}
m(I-A) , (24)

ΔΓ being the Laplacian on Γ. Note first that P is an analytic function of λ
with values in ^(Hs+2m,Hs). Secondly, let us mention that in any logarithmic
region Λcl,c2> ? can be considered as a ΨΌO with large parameter λ\ = Re /I and

P G L^ m(Γ). We claim that P is elliptic outside Σ. Indeed, for the principal sym-
bol of P we have

σp(P) = λ2m-lσp(A)σp(N2m^) + iλ\m(\ - σ p ( A ) ) ((1 + ί λ 2 / λ , ) 2 + \η\2

x)
m ,

where σp(A) is a function supported in W\ and |?/|x denotes the norm of the
covector (*,//). Note that here we consider N2m-ι9 A as 'FDO-s with large para-
meter λ\9 not /t, and respectively σp(N2m-\\ σp(A) are the principal symbols of these
operators obtained by using (14). In W2\Σ the principal symbol σp(P) is elliptic,
because σp(A}\w2 = 1 is elliptic. Outside W\, σp(P) = λ\m((\ + iλ2/λl)

2 + |^|^)m is

elliptic as well, including at the infinite points of f Γ. Finally, on W\ \ W2 our
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claim follows from the fact that for any Hermitian elliptic matrix B we have
\xBx + iβx 2 = u2\Bx\2 + β2 x\2 ^ c\x 2 provided that α + β = 1.

The next proposition establishes existence of "resonances" of P.

Proposition 2. There exist λj and // G C°°(Γ), j = 1,2,...,

b) |Im/7 ^ Cln \λj and \λj\ —> oo, fls 7 — >• oc,

c) \\fi\\Hm(I ) = 1, WF(/) C Γ, wΛere /(χ,λ) := //*), λ = λ, .

To prove Proposition 2 we are going to apply the Phragmen-Lindelόf principle
to P~l(λ). To this end we need the following two lemmae. First we prove an
a priori exponential estimate of P~l(λ) similar to that in Lemma 2 (see also [SV2],
Proposition 5.2).

Lemma 3. Assume that P~l(λ) has no poles in ΛC],c2 with some C\,C2 > 0. Then

Proof. Let us rewrite P(λ) in the form

P(λ) = i(I-ΔΓ)
m(I+K(λ))9 (25)

where K ( λ ) = K } ( λ ) + K2(λ) with

K λ ( λ ) = -[I + (A2 -!)(/- ^r)"1]7^ - /(/ - ΔΓΓ
m λ2m~lN2m^A ,

^2(Λ) = [/ + (λ2 -!)(/- ^r)"1]1" - /

Clearly, (̂>1) is an entire family of compact operators on L2(Γ). Moreover, the
operator K2(λ) is of trace class and we can consider the entire function h(λ) =
det(7 - K2(λ)). As in the proof of Proposition 5.2 in [SV2] first we will prove the
following a priori estimate

where V = C\(J{λ G C; \λ — Zj\ ^ ky|^4}, Zj being the zeros of h. To this end
we will prove first that h(λ) is of order 3. We have

g ΠO + μ,(£ι(λ)))2 Π (i + μX^22α)))2 , (27)
7=1 7=1

where μ/(K) denote the characteristic values of K and K\ = K2 + K\K2 + K2K\.

Let us first estimate μ j ( K \ ( λ ) ) . Clearly,

μ j ( K λ ( λ ) ) ^ \\K,(λ)\\ ^ CecW9 Vλ G C, Vy . (28)

On the other hand,

(29)
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Let us recall that A is a finite sum of operators A^φ with kernels of the kind

-
2π

where χ is a cut-off function supported near ζ in the elliptic zone, φ G C^° and
φ(y) — 1 in a neighborhood of πr(suppχ). Set M := π^(suppχ). We have A^ =
A{A2, where Aλ : L2(M) -> L2(Γ\ A2 : L2(Γ) -> L2(M) have kernels (//2π)2χ(;c,ί?)
el/JC ' η and e~/Λ>' " ηφ(y), respectively. For the kernel of A2 we have

sup |(7 - Δ^e-'ίy V(y)| ίi CecM((C\λ\F + (2k)2k) .
y£ supp 0, ί/

Therefore, we get for any k ^ 0 and for any j > 0,

μ j ( A 2 ) ^ μj((I - ΔnΓ
kW " ̂ )%|| ^ C/-^

Taking k = [|/|/2], j ^ C(q)\λ\2 gives

μy (^2) ^ y~2e"9 | A | for any ̂  > 0 and j ^ C(^)|/|2 . (30)

By (30) and the estimate \\A\\\ ^ Cec\λ\ we get the same type of estimate for A1*,
and hence for A. Thus, choosing q properly, in view of (29) we obtain

μj(K,(λ)) ^ CΓ2 for j £ C'|A|2 . (31)

Combining (28) and (31) yields

OO T

^ Π (Cecμi)2 Π (1+C'r2)2 gCec | ; > . (32)
|2 i>c'\λ\2

It remains to estimate βj(K^). We have

On the other hand,

thus, setting (λ) := (1 + |A| 2)' / 2, we get

^C{Λ)2y-' for y ^ (A}2/2 .

Thus we get from (33) and the estimate above

μj(K2) ί C(λ)*Γ2 foτj^(λ)2. (34)
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Using (34) we deduce

no

^ Π [C(tfm] Π 2

^ exp[C{x)2ln{/)]exp c(Λ>4 Σ Γ2]

^ exp[C{x)2ln(/)]exp[C{/}2] ^ Cec . (35)

Now (32) and (35) together imply

00 3
\h(λ)\ rg

We will complete the proof of the lemma as in [SV2]. By [Ti, Ch. VIII] we conclude
from (36) that

\h~l(λ)\ ^ Cec\λ\ , A E K . (37)

On the other hand, we have (see e.g. [GK, Theorem 5.1])

3

Cec^ . (38)

By (37) and (38) we obtain

which implies immediately (26). As in the proof of Lemma 2 if we assume that
P~l is free of poles in some logarithmic domain, we will get that (26) holds in a
slightly shrunken domain. D

Denote /± = {λ G C; ReΛ ^ C2, IniΛ = ±Q ln(Reλ)} Let us assume that
C2 > 1, so that ln(Reλ) > 0.

Lemma 4. For any C\ > 0 there exists C2 > 1, SMC/Z ίAαί the operator P(λ) is
ίnvertίble on l± and

Proof. Let C φ ^2 and χ G C§°(T*Γ) be a cut-off function with sufficiently small
support in T*Γ\W2. Since P is a ^DO with large parameter λ\ elliptic outside W^,
we get

l|θp;,(χ)/|| g IIF/II + Gvμr^H/ll (39)

for any N > 0 and λ G /±, where Op; (χ) is the 'FDO with symbol χ written in
the special coordinates related to ζ. The same estimate holds if χ is supported near
the infinite points in Γ*Γ, i.e. for χ — χ'(x)χff(η), where suppχ7 is close to a point
XQ G Γ, while suppχ2 C {ηι cR\η\ > 2}.

Let us now choose ζ G W\ and pick χ G Cξ°(Γ*Γ) supported in W\, such that
/ = 1 in a neighborhood of ζ. The principal symbol of P considered as a ΨΌO
with large parameter λ G /± is λ2mn\(x,η) (see Sect. 3). In a neighborhood C/ζ of
suppχ we have

rn1Γ = diag(4|^-l,l,l)5, (40)
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where S = diag(a/

1,a2,^3) is elliptic and a\ = (c\\η\2

x - \)a'l,a2,a^> are the eigen-
values of n\. Here T is a unitary matrix. Let us now consider Op}(c^\η\2 — 1) as a
ΨΌO with large parameter λ\. From (14) we deduce that the principal symbol of
the latter reads

Therefore, modulo this operator coincides with

— (-ΔΓ - λ2 -2iλιλ2) .

Observe that for any g and C2 sufficiently large

1 , n O _ . Λ Λ ,

= Cι

This inequality together with (40) shows that for any N > 0 we have

Cιιop;.ω/ιι ^ \\Pf\\+CN\λ

Choose χi G C^°(Γ*Γ), such that suppχi C {C; #(() = 1}. Then one easily gets

C
HθpΛ l(χι)/H ^ \2m-\ In

(41)

By (39),(41),
<

j^-Πni/i
for any / and \λ sufficiently large. Since we can prove the same type of estimate
for P*, we get that P~l(λ) exists for λ G l± sufficiently large and satisfies the
desired estimate. D

Proof of Proposition 2. Assume now that there is a finite number of poles of P~}

in some logarithmic domain Λc^c2- Taking C2 sufficiently large we can assume
that Λcl,c2 is ^ree °f poles and Lemma 4 holds. Let us apply the Phragmen-

Lindelof principle to the function λ2m~l(]ogλ)P~l(λ) in /td/2,2c2 ^Y Lemma 3
it satisfies the a priori exponential estimate in Λc1/2,2c29 while by Lemma 4 it is
uniformly bounded on the boundary. Therefore, it is uniformly bounded in Λc}β,2C2

as well, i.e.

c
(42)

The final step of the proof of Proposition 2 is to show that for real /,, (42) leads to
contradiction for real λ. We will do this in exactly the same way as in [SV2]. Let
{μ2} be the eigenvalues of —c\Δγ and denote by φ;, \\q>j\\ — 1 the corresponding

eigenfunctions. Fix ζ° G Σ and let / be supported in a small neighborhood U of £°
in the elliptic region. Let Π(x,η)9 (x, η) £ U be the projection onto the eigenspace
corresponding to the first eigenvalue a\ = (c^\η\2 — l)a\. Set

{βk}l=ι being the standard base in R3. Denote Θ = {μj}^ι and f k ( x , λ ) = fk(x,μj),
φ(x,λ) = φj(x) for λ £ Θ. Consider all ΨΌO-s below as ΨΌQ-s with large
parameter λ G Θ. Then

Pfk - Gekφ , (44)
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where G G L^m(Γ\ σp(G) = λ2m(c2

R\η\2 - l)a\χΠ. Since the principal symbol of

—c\Δr — λ2 is λ2(cj{\η\2 — 1), we have

Pfk = λ2m~2Op(χa\Π)(~c2^Ar — λ2)ekφ + Bekφ = Bekφ , (45)

where B G L^m~\Γ). Thus

||P/i|| ^ Cλ2m~] for k =1,2,3; λ G 6) . (46)

According to (42), (43),

||Op(χ//)^φ|| g -—- for A: = 1,2,3; λ G (9 . (47)
I n / L

Since the projection Π(ζ) is well defined and does not vanish near Z, we have that
Σ\Πιj 2 is elliptic in U provided that U is sufficiently close to Σ. Thus from (47)
we deduce that ^

\\0p(χ'χ")φ\\ g j^j , (48)

where #' = /(*), z" =/'(>7) and /(Λ:) = 1, χ"(/7) = 1 for (*,/?) close to £°,
suppχ'χ" C {χ = 1}. On the other hand, (—c2

RAp - λ2)φ = 0 and —c\Aγ - λ2 is

a ΨDO on Γ in L0'0(Γ) with principal symbol /ί2(c||^|J — 1) elliptic outside Σ.

Therefore, WF(φ) C Σ. Hence,

l|0p(/(l - χ"))φ|| ^ C^x-^, V7V > 0 . (49)

Combining (48) and (49) we get

for any cut-off function χ'', such that χf = 1 near x° = πx(ζ°) and suppχ7 is suffi-
ciently small. Since ζ° £ Σ was arbitrary, we get | |φ| | ^ C/\nλ which contradicts
the fact that |M| = 1.

Thus, there exists a sequence {λ}} of poles of P~l(λ) satisfying (b). Going
back to the representation (25) we conclude by the Fredholm alternative that for
any pole /7 there is a function //ΦO such that P(λj)fj = 0. Since P, considered
as a ΨΌO with large parameter λ\ (with λ satisfying (b)) is elliptic outside Σ, we
get (c). D

Next we show that Proposition 2 implies existence of asymptotic zeros of A^w-i

Proposition 3. Let Ί;,//, j = 1,2,... be as in Proposition 2. Then

(b) \lmλj\ ^ C\λj ~2m+2 with some C > 0.

Proof. It follows from Proposition 2 (c) that (/ — A)fj = O(\λj ~°°), which in view
of (24) yields (a). To prove (b), set f(x9λ) = fj(x\ λ G Θ := {Ay}^! and recall
that //2m-1 solves (18) with 2m — 1 instead of m. Arguing as in [SV2], we get that

where φ G CJ°, φ — 1 near Γ. Multiply (50) by φHιm-\f and integrate by parts.
Using (18), we get that

Im/l2 < -—
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Now, we use the facts that [Δe, φ] is a first order differential operator with compactly
supported coefficients vanishing near Γ and that the parametrix in the elliptic zone
decays exponentially in λ\x\. This implies

\\[Δe,ψ}H2m-,f\\ ^ < Ce~

with some y > 0 (recall that ||/||#3/2 = 1). On the other hand, by trace theorem,
in view of (17) and using the fact that the operator Δe with Dirichlet boundary
conditions is coercive, we have

ll/ + β/Hτ/3/2 ^ C\\φH2m.λf\\H2 ^

which gives for large λ £ Θ

λ\2\\φH2m_lf\\ .

Combining the above estimates implies (b) at once. D

We are ready now to conclude the proof of Theorem 1. Let us see first
that for any integer TV ^ 1 there are infinitely many resonances in {λ £ C :
Im/ί ^ | Λ | ~^> |Re/,| §; 1}. Assume the contrary, i.e. Rχ(λ) is holomorphic in
{λ £ C : Imλ ^ \λ ~N , Rex| ^ Co} for some constant Co > 0. Choose m so that
2m — 3 > N + 9. Let f j 9 λ j be as in Propositions 2 and 3, and set f(x,λ) = fj(x),
λ £ Θ := {λj}^. In view of Proposition 2(c) we can use (23) to obtain

N2m-lf + Rlm-lf = ̂ (f +

Since Θ Π {λ; |Rex| ^ C\} C {λ e C: \lmλ
enough, by (10) we obtain

R2m-lf\ λ G Θ .

-N~6, \Reλ\ ^ CJ for C\ large

\\ f \ Γί f \ Ό f \ \ <^ Γ*\
lU +W +R2m-\J 1 1 //3/2 ^ C

On the other hand, in view of (19), (22),

(2/w — 3)

therefore we get a contradiction for large λ = /I/.
We will now choose our sequence of resonances by induction. Assume that we

have already chosen λ\,...9λk-\. It follows from the above analysis that there exists
a resonance λ^ satisfying \λk > >U-ι + 1 and

0 < (51)

Thus we have an infinite sequence of different resonances {λk} satisfying (51) for
each k ^ 1. It is easy to see now that

0 < ^ CN\λk\ V*, (52)

for any integer N ^ 1 with CΛA = \λN\N. Indeed, for k ^ N (52) follows from (51)
at once, while for k ^ N we have

Imλ* g μ t-* ^ μ^^l^-^,

which completes the proof of (52), and hence of Theorem 1.
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