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Abstract: A local generalized symmetry of a system of differential equations is an
infinitesimal transformation depending locally upon the fields and their derivatives
which carries solutions to solutions. We classify all local generalized symmetries of
the vacuum Einstein equations in four spacetime dimensions. To begin, we analyze
symmetries that can be built from the metric, curvature, and covariant derivatives
of the curvature to any order; these are called natural symmetries and are glob-
ally defined on any spacetime manifold. We next classify first-order generalized
symmetries, that is, symmetries that depend on the metric and its first derivatives.
Finally, using results from the classification of natural symmetries, we reduce the
classification of all higher-order generalized symmetries to the first-order case. In
each case we find that the local generalized symmetries are infinitesimal generalized
diffeomorphisms and constant metric scalings. There are no non-trivial conservation
laws associated with these symmetries. A novel feature of our analysis is the use
of a fundamental set of spinorial coordinates on the infinite jet space of Ricci-flat
metrics, which are derived from Penrose's "exact set of fields" for the vacuum
equations.

1. Introduction

Symmetry plays an important role throughout theoretical physics and one of central
importance in field theory [1,2]. Indeed, in the construction of a field theory physical
considerations usually demand that the field equations (or the Lagrangian) possess
certain symmetries. These symmetries include Poincare symmetry, gauge symmetry,
difΓeomorphism symmetry, various discrete symmetries, and a host of specialized
symmetries needed to ensure the conservation of appropriate quantum numbers.
Symmetries also play an important role in the mathematical analysis of differential
equations [3,4]. Originating with the work of Lie, symmetry group methods and
their recent generalizations have proved useful in understanding conservation laws,
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in constructing exact solutions, and in establishing complete integrability of certain
systems of differential equations.

The symmetries encountered in field theory are usually of the type commonly
referred to as point symmetries. A point symmetry of a system of differential equa-
tions is a 1 -parameter group of transformations of the underlying space of indepen-
dent and dependent variables that carries any solution of the equations to another
solution. If a point symmetry preserves an underlying Lagrangian for the system of
equations, then there is a corresponding conservation law. However, not all conser-
vation laws stem from point symmetries. To account for all local conservation laws
in Lagrangian field theory one must enlarge the notion of symmetry to include gen-
eralized symmetries [5]. In this paper we will define a generalized symmetry to be
an infinitesimal transformation, constructed locally from the independent variables,
the dependent variables, and the derivatives of the dependent variables, that carries
any solution of the differential equations to a nearby solution. The importance of
generalized symmetries is underscored by their role in completely integrable systems
of non-linear differential equations. In particular, the integrability of a system of dif-
ferential equations is often (but not always) reflected by the existence of "hidden"
generalized symmetries [3,6,7].

In recent years considerable attention has been devoted to applications of sym-
metry group methods to a variety of non-linear partial differential equations, but
relatively few complete results have been obtained for the Einstein equations. It
is, of course, natural to inquire whether or not the Einstein equations admit any
hidden generalized symmetries, but the apparent complexity of the ensuing analysis
has, to date, precluded substantive progress. The existence of hidden symmetries of
the Einstein equations would lead to solution generating-classification techniques,
and perhaps even information about the general solution to the Einstein equations.
There are hints that such symmetries may exist. The two Killing vector reduction of
the Einstein equations leads to an integrable system of partial differential equations
[8,9]; the self-dual Einstein equations exhibit an infinite number of symmetries and
can be integrated using twistor methods [10,11,12]. A complete generalized sym-
metry analysis provides a systematic and rigorous way to unravel some aspects of
the integrable behavior of the gravitational field equations. In particular, such an
analysis indicates whether the rich structure of special reductions of the Einstein
equations extends to the full theory via local symmetry transformations.

An equally important consequence of a generalized symmetry analysis stems
from the fact that the existence of generalized symmetries of the Einstein equations
is a necessary condition for the existence of local differential conservation laws for
the gravitational field [13]. If such conservation laws could be found, they would
lead to observables for the gravitational field [14]. It has long been an open prob-
lem in relativity theory to exhibit such observables, and the lack thereof currently
hampers progress in canonical quantization of general relativity [15].

In this paper we will give a complete classification of all arbitrary-order local
generalized symmetries for the vacuum Einstein equations in four spacetime dimen-
sions. We shall show that the only generalized symmetries admitted by the vacuum
Einstein equations consist of the diffeomorphism symmetry that is inherent in the
Einstein equations and a trivial scaling symmetry. More precisely, we will prove
the following theorem.

Theorem. Let
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be the components of a kth-order generalized symmetry of the vacuum Einstein
equations Rij = 0 in four spacetime dimensions. Then there is a constant c and a
generalized vector field

X1 = Xl(χ\ gljy gijίhl,..., glhhr hk_λ )

such that, modulo the Einstein equations,

hab = Cgab + VaXb + VbXa

This result was announced in [16].
The plan of this paper is as follows. In Sect. 2 we begin with a summary

of the theory of generalized symmetries, and we present elementary applications
of this theory to the Einstein equations. The technical machinery needed for our
analysis is then summarized. A complete account of this machinery can be found in
[17]. Section 3 is devoted to applying our techniques to a model problem, namely,
classifying a relatively simple class of third-order generalized symmetries. All our
subsequent analysis follows the pattern of this example. In Sect. 4 we classify natural
symmetries, which are symmetries built from the metric, curvature and covariant
derivatives of the curvature to any order. In Sect. 5 we classify first-order generalized
symmetries, which require a considerably more intricate analysis than that needed
for natural generalized symmetries. In Sect. 6 we extend the analysis of Sect. 4 to
obtain a classification of all generalized symmetries. The analysis of Sect. 6 uses
an induction argument to reduce the classification to that of first-order generalized
symmetries. The Appendix contains various results from spinor and tensor algebra
which we use repeatedly.

We believe the methods that are used to prove these results are of no less
importance than the results themselves. In classifying the generalized symmetries of
the Einstein equations we have developed an effective spinor-jet bundle formalism
for analyzing mathematical properties of the Einstein equations and related equations
[17]. By far, the most important ingredient in this formalism is the use of what
Penrose calls an "exact set of fields" for the field equations [18,19]. These are spinor
fields which allow us to parametrize the jet space of vacuum Einstein metrics. In
future work we will apply these spinor-jet techniques to related aspects of general
relativity. Specifically, our methods can be used to classify systematically (i) all
closed ^-forms that are built locally from a Ricci-flat metric, (ii) all symplectic
forms for the Einstein equations, and (iii) all divergence-free symmetric tensors built
locally from Einstein metrics. Finally, it is worth pointing out that the existence of
an exact set of fields is not limited to the Einstein equations. For example, the
generalized symmetries of the Yang-Mills equations are amenable to analysis using
these techniques [20].

2. Preliminaries

In Sect. 2A we briefly review the geometric theory of generalized symmetries for
differential equations and their role in constructing local conservation laws. For more
on generalized symmetries and their applications, see [3]. In Sect. 2B we derive the
defining equations for the generalized symmetries of the vacuum Einstein equations
and present some preliminary results concerning solutions to these defining equa-
tions. We then summarize in Sect. 2C the technical machinery needed to compute
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the generalized symmetries of the Einstein equations. A complete presentation of
the results in this latter section can be found in [17].

2 A. Generalized Symmetries for Classical Field Theories. In classical field theory,
the fields are usually identified with sections φ: M — > E of a fiber bundle π\E-^M.
In general relativity, M is a 4-dimensional manifold and π is the bundle π: f& — » M
of quadratic forms on the tangent space TM with signature ( — h ++). A section
g\M — > ^ is a choice of Lorentz metric on M.

Let πk

M:Jk(E) — > M be the bundle of £th order jets of local sections of E. A
point σ e Jk(E) is, by definition, an equivalence class of local sections defined in
a neighborhood U of the point x = πj^(σ); two local sections φ\,ψ2' U —> E are
equivalent if φ\ and ψ2 and all their partial derivatives to order k agree at x. If
φ .U-^E is a local section of E, then the canonical lift

jk(φ): U -+ Jk(E)

is the map that assigns to each point x E £/ the £-jet jk(φ)(x) represented by φ at
c. There are also canonical projections

defined for all k ^ /. When / = 0, we write nk

E\Jk(E) — > £. The infinite jet bun-
dle n^:J00(E) -^ M is similarly defined. For a more detailed presentation of jet
bundles, see [3,21].

A differential form ω on JOG(E) is called a contact form if, for every local
section φ: U — > £,

[y°°(φ)]*(ω) = 0 .

The set of all contact forms on J°°(E} is a differential ideal in the ring Ω*(J°°(E))
of all differential forms on JΌG(E\ and we denote this ideal by <g(J°°(Ey).

A generalized vector field Z on E is a vector field along the map π|°, that is,
for each point σ E J°°(E), Zσ is a tangent vector in Tp(E\ where p = π|°(σ). If
Z is a generalized vector field on E, then there is a unique vector field prZ on
J°°(E), called the infinite prolongation of Z such that

(i) for each σ e J°°(E), (πf )#[(prZ) f f] - Zπ«>(σ), and

(ii) prZ preserves the contact ideal, that is, under Lie differentiation

We shall give local expressions for Z and prZ shortly. A generalized vector field
Y on E that is π-vertical, i.e.,

for all σ G JOG(E), is called an evolutionary vector field. Evolutionary vector fields
determine "infinitesimal field variations," and their prolongations determine the in-
duced variations in the derivatives of the fields. Finally, a generalized vector field
X on M is a vector field along the map π^, and a generalized tensor field A of
type (p,q) on M is a smooth map
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along π*M, where 7/(M) is the bundle of tensors of type (p,q) over M. Note that
if Z is a generalized vector field on E, then ZM — π*(Z) is a generalized vector
field on M.

Every generalized vector field X on M defines a unique vector field totX on
J°°(E), called the total vector field of X, with the properties

-^(σ), and
(ii) totJf annihilates all contact 1 -forms, that is, if ω is a contact 1-form, then

totX-1 ω = 0.

We remark that if X is a generalized vector field on M and XE = (π|°)*(totJO,
then

pr Jf£ = totX .

In other words, totX is also a prolongation of a vector field and therefore totX
preserves the contact ideal.

If Z\ and Z2 are generalized vector fields on E, then there exists a generalized
vector field Z^ such that [prZj,prZ2] = prZ3. We call Z^ the generalized Lie bracket
of Z\ and Z2 and write

[Z,,Z2]=Z3.

It is also straightforward to verify that if totX\ and tot ̂  are two total vector
fields, then [tot J^, tot ,¥2] is also a total vector field, [totX\,totX2] = tot ̂ 3. (Hence
the set of all total vector fields on J°°(E) is a connection of general type on
JX(E) — >M.)

Now suppose a system of differential equations for the sections of E is given.
These are the field equations for the classical field theory. If these equations are of
order k (typically k = 2), then they determine a smooth subbundle

mk ̂  jk(E)

with projection πk

M:$k — » M". We call $k the equation manifold for the classical
field theory. The total derivatives of the field equations to order / then define the
/th prolonged equation manifold

The field equations, together with all their total derivatives, determine the infinitely
prolonged equation manifold

m^ ^ J°°(E] .

It is customary to assume [22,23] that the maps

are surjective for all / ^ k and have constant rank. The fiber dimension of π ;

/ f l

represents the number of "degrees of freedom" available in constructing a formal
power series solution for the field equations to order / + 1 from a given solution
to order /. Roughly speaking, equations that are not "over-determined" will satisfy
the surjectivity assumption. As we shall see, the vacuum Einstein equations satisfy
these surjectivity and constant rank assumptions [17].
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Definition 2.1. A generalized vector field Z on E is called a generalized symmetry
of the given field equations z/prZ is tangent to the infinitely prolonged equation
manifold .«°°, that is, for all σ E .̂ °°,

Generalized symmetries are sometimes called Lie-Bάcklund symmetries. If Z\
and Z2 are two generalized symmetries for °̂°, then the generalized Lie bracket
[Zι,Z2J is also a generalized symmetry.

We now give local coordinate descriptions of these various notions. If (V, φa) — >
(xl ); i = l ? 2, . . . , n and α = 1, 2, . . . , m, are local coordinates on π: £ — » M, then the
standard local coordinates for J°°(E) are

where, for a given local section φα =

The contact ideal ^(J°°(E)) is spanned locally by the contact 1 -forms

θU^<.,,-<..v '̂
for & = 0, 1,2, .... These forms satisfy the structure equations

dθ*r..lk=dx^θi..lkj.
A generalized vector field Z on E assumes the form

where

A' = AW, φf, ψ(,...,φ( ..,k ), and 5α = 5 V, /, Φf, ,..., φf, . ..,,).

A generalized vector field Jί on M and an evolutionary vector field Y on £ take
the form

X = Ai- a n d Y = B * ,

where, again, the coefficients A1 and B* are functions of xl, φ* and the derivatives
φ(fl...ik to some arbitrary but finite order. The vector field totJf is given by

totX =AiDi ,

where DI is the total derivative operator

We write

A,ι2... ί t=A,A2 A,.
The prolongation of Z is given by the prolongation formula [3]

00 Λ

prZ =Λ'A + Σ Aw /^5" - ̂ ')p-5 -
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Note that, in particular, the prolongation of the evolutionary vector field Y =

k=0 (Pi\iι ~ik

We now remark that (2.1) and (2.2) together prove the following theorem.

Theorem 2.2. Let Z be a generalized vector field on E. Then there exists a unique
evolutionary vector field Zev such that

prZ = totZM +prZev , (2.3)

where ZM = π*(Z).

The evolutionary vector field in (2.3) is

(2.4)e v - .

If X\ = A\ -^-j and X2 = A1

7 -A- are generalized vector fields on M, then1 ox z ox

If Y\ = B\ -π and 72 = #2 J j * are evolutionary vector fields on E, then

L ^ l ? J / J — LFX ^1V^ 2 7 FA ^V-Ί 7J Λ α

An evolutionary vector field Y = B* -^-y defines "infinitesimal field variations"

δφfr..i , 7 — 0,1,..., which depend locally on the fields and their derivatives. Ex-

plicitly, δφ^...^ is defined by letting the prolonged vector field pr 7 act on the
coordinates φ* ι , which are viewed as functions on J°°(E):

(2.5)
If

is a system of field equations for the fields φα, then $k C Jk(E) is the manifold de-
fined by these equations. The infinitely prolonged equation manifold °̂° is defined
by the Eqs. (2.5) together with the equations

for 7 = 1,2,....
It now follows that if X is a generalized vector field on M, then totX (or more

precisely XE = π|°(totX)) is always a generalized symmetry for any system of
equations. Total vector fields are therefore viewed as trivial symmetries. A general-
ized symmetry Z is also considered trivial if Z vanishes on the prolonged equation
manifold °̂°. Two generalized symmetries are said to be equivalent if their differ-
ence is a trivial symmetry. Theorem 2.2 implies that every generalized symmetry
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Z of a given system of equations is equivalent to a generalized symmetry Y which
is π-vertical, that is, to an evolutionary generalized symmetry.

The evolutionary vector field 7 = By -£-$ is, according to the tangency condition

in Definition 2.1, a generalized symmetry of (2.5) if and only if the coefficient
functions By satisfy the linear total differential equation

k fiAβ
^-[^..,•^1 = 0 on.^0 0. (2.6)

This equation is called the formal linearization of (2.5), or the defining equation
for the generalized symmetry 7.

Let us remark that when Z is an ordinary vector field on E, that is,

dxl ' dφ*

and (prZX/lβ) = 0 on the equation manifold Aβ = 0, then Z is called a
symmetry of the equations. Point symmetries are in one-to-one correspondence with
first-order evolutionary symmetries

with By a collection of affine linear functions of the first derivatives φf.
Finally, we cite a version of Noether's theorem as it applies to generalized

symmetries [3]. Recall that a local differential conservation law V for the field
equations Aβ = 0 is a generalized vector density

v = κ<(Λ φ; « > - , . . . , <...,) A

on M such that the total divergence

-AF' -0 on ̂ °° .

A conservation law V is said to be trivial if there is a generalized skew-symmetric
tensor density

S" =S"'(xk,φ",φ?l,φl2,. ..,<..„)

such that
Fz = Z)̂ '̂ on ̂ °° .

Two conservation laws are said to be equivalent if their difference is a trivial conser-

vation law. Following Olver [3], an evolutionary vector field Y = 5α^^ is called

a characteristic vector field for the conservation law V if

OivV = ByA« (2.7)

identically. Under mild regularity conditions on the equations Aβ = 0, it can be
shown that every conservation law V is equivalent to a conservation law V whose
divergence satisfies (2.7). It is a simple result from the variational calculus that if
Δy_ are the components of the Euler-Lagrange operator E%(L) for some Lagrangian
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then every characteristic vector field Y for a local differential conservation law
for the equations zlα = 0 defines a generalized symmetry. The converse need not
be true. For example, scaling symmetries of Euler-Lagrange equations typically will
not lead to conservation laws.

2B. The Formal Linearization of the Einstein Equations. To study the general-
ized symmetries of the Einstein field equations, we let π ^^M be the bundle
of Lorentz metrics over the spacetime manifold M. Standard local coordinates for
Jk(&) are

\ X •> yΊj •> 9Ίj,ι\ ">''••> Qi]i\ Ϊ2 ' ' ik ' '

The Christoffel symbols Γψ the curvature tensor Rfjk, and their derivatives are now

considered functions on Jk(^). The covariant derivatives of a generalized tensor
field on M are defined in terms of total derivatives. For example, if

are the components of a generalized 1-form on M, then

VbAa = DbAa - Γc

abAc

_ <^£ dAa dAa SAa

~ b ®li'b ®ίjJlb dij,ir i+kb i abΛc

We now compute the formal linearization (2.6) of the vacuum Einstein equa-
tions.

Proposition 2.3. Let

fi
Y = h h(xl Q Q •

be an evolutionary vector field on the bundle Ή of Lorentz metrics. Then Y is a
generalized symmetry of the Einstein equations Rη — 0 if and only if

[-(fdδa

ίδ
b

j - g^δ^δ'j + gac (δb

ίδ
d

j + δb

fδi)] VcVdhab = 0 (2.8)

whenever RIJ and its covariant derivatives to order k vanish.

Proof. This is an easy computation based upon the identities

(pr 7 )(/;'•) = \glm[Vihmj + Vjhmi - V/Λ/ ] , (2.9)

and
(pr Y)(Riljk) = Vk(pr Y(Γ/j)) - V/(pr Y(Γ^)) . (2.10)

These formulas are, of course, familiar from the variational calculus. We emphasize
that now (2.9) and (2.10) are to be viewed as identities on Jk(^\ where they are
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direct consequences of the prolongation formula

d d d
pr 7 = hab- h (Djhab)- h (Ay^H h .

OQab V9ab,i V9ab,ij

We remark that Proposition 2.3 could also be formulated in terms of the Einstein
tensor Gγ7 and its derivatives. The symmetry conditions so-obtained are equivalent
to (2.8). D

Let X = Xa(x)^-^ be a vector field on M with local flow φt:M —> M. Then

φt induces a local flow on ̂  with corresponding vector field X on ̂  given by

x = xa4--

The associated evolutionary vector field is, by (2.4),

It is well-known [24] that ̂ , or equivalently XQV9 represents a point symmetry of the
Einstein equations corresponding to the diffeomorphism invariance of the Einstein
equations. This observation motivates the following definition.

Definition 2.4. Let

d
X = Xa(χl

9 glJ9 glJ4[ , . . . , g.jjιirmmiι) —

be a generalized vector field on M. We call the evolutionary vector field

where Xl — g^X-*, the associated generalized diffeomorphism vector field on &.

We remark that if X\ and X^ are generalized vector fields on M, then

Proposition 2.5. For any generalized vector field X on M, the associated gener-
alized diffeomorphism vector field 3Cχ is a generalized symmetry of the vacuum
Einstein equations.

Proof. By virtue of (2.9), we find that

(pr Jfr)(φ - VjViX'+Rt'jpX" ,

and hence, by (2.10),

(pr ^x)Rij = (VpRtjϊX? + RpjVtX
p + RlpVjX* ,

which vanishes when Ry ~ 0 and VkRij = 0. G

We call the symmetry 3Cχ a generalized diffeomorphism symmetry of the
Einstein equations. Note that the generalized diffeomorphism vector fields 3Cχ will
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be symmetries for any generally covariant set of field equations on .̂ In particular,
Proposition 2.5 generalizes to the Einstein equations with cosmological constant.

There is one more obvious symmetry of the vacuum Einstein equations RΪJ = 0.

Proposition 2.6. For any constant c, the vector field

(2.11)
v

is a point symmetry of the vacuum Einstein equations Ry = 0.

Proof. This proposition follows from the fact that (pr^)(/^) = 0, and hence
(pr^c)(Rij) = 0. Alternatively, htj = cgtj clearly satisfies (2.8). D

On a 4-dimensional manifold M we have

Thus the scaling symmetry ^ of the Einstein equations does not preserve the
Hubert Lagrangian (even up to a divergence) and therefore does not generate a
conservation law. The generalized diffeomorphism symmetry 3C x is a characteristic
for a conservation law for the Einstein equations, namely,

But the conserved vector density Vj — 2^gXiGij is trivial.
We remark that the scaling symmetry &c and the point diffeomorphism symmetry

X are the only point symmetries of the vacuum Einstein equations [24].

2C. Spinor Coordinates for Prolonged Einstein Equation Manifolds. Let $k c
Jk(&) be the set of £-jets that satisfy the Einstein equations and the covariant
derivatives of the Einstein equations to order k — 2,

^ = {/(<?)(*<>) € Jk(#) Gij = 0, GijV] = 0, . . . , <%, ...ik_2 = 0 at jk(g)(x0) } .

Here and in what follows, we will either use the vertical bar or V to indicate covari-
ant differentiation. If hab = hab(x

l .gij.gijj^. . -,9ijjr j k ) is a generalized symmetry
of the vacuum Einstein equations, then the linearized equations (2.8) must hold
identically at each point of $k+2. To solve these equations we shall need explicit
coordinates for these prolonged equation manifolds [17].

To this end, we let Γl

jk be the Christoffel symbols of the metric gtj and induc-
tively define higher-order Christoffel symbols by

fork ^ 1 . These higher-order symbols arise naturally from the prolongations of the
geodesic equations and play a prominent role in T.Y. Thomas' theory of normal
extensions [25]. We will, on occasion, denote the generalized Christoffel symbols
(2.12) simply by Γk. Note that ^jQjr..jk is completely symmetric in the indices

" ' jk and depends on the metric and its first k derivatives.
Next, let [18]

QiJJl Jk = 9ir9jsRr(h SJ2 \h 'Jk ) ' (2 ! 3 )
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for k ^ 2. This tensor is a generalized tensor on M of order k, which we denote
by Qk . Note that Qιj,Jr Jk is symmetric in ij and j\ y^, and satisfies the cyclic
identity

βu,y, Λ ) = 0 (2-14)

It is then possible to prove [17] that the variables

(x •> 0ι/> ΓJQJI , . . . , ΓjQjl..Ίk , Qιjj}j2,> . . , Qΐjji j ) (2.15)

can be used as coordinates for the bundle Jk(^). Furthermore, if [Qab,/r -yjtracefree
is the completely trace-free part of Qabj} jk (trace-free with respect to $/y), then

local coordinates for $k are given by

(x1, dlj, ηoh .../;, [βy, ;ι ...7;]tιacefree) for / ^ k . (2.16)

Now we consider the spinor representation of the curvature tensor [19],

KA'B'C'D' _ ψ ΓA'B>C'D> .
KABCD — * ABCD^ ?> i

where

V c ) . (2.17)

The totally symmetric spinors ΨABCD and ψA'B'c'D' correspond to the spinor represen-

tation of the Weyl tensor. The symmetric spinor ΦC

A% corresponds to the trace-free
Ricci tensor, and the scalar A corresponds to the scalar curvature. If we set

L \dab, J\ Jk\ tracefi ee < ^

then it is not too difficult to show that

^ABJΓ Jk ~ 6 l ό ίTABJΓ Jk

where

and

In summary, the spίnor coordinates for the prolonged Einstein equation mani-
fold <$k are

_ τl τl τl τl T' j' _ jl j'

" J\'"Jk-2 J ' J

For instance, the spinor coordinates for <$2 and $ 3 are

_ τ> j' j> r'
(Ύl Π Γl Γl Ψ r r T T Ψ l 2 3 4Ϊ(.X 9 9ιj, 1 yoy! > 1 JQJIJ2,

 ΎJ\J^1,J^ T ) '

and

rl rl ,/ r! jf rl rl rl jt r!

f γ l π Γl ΓΪ Γl ψτ

 1 2 3 4

\X ' Vih 1 707 1 ' * 707172 ' λ 70717273 ' ^ J
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j'...j' j' j'
The symmetrized covariant derivatives ^.../J2 and Ψj...jk+2 corresponding to

Penrose's notion of an exact set of fields for the vacuum Einstein equations [18].
Henceforth we refer to these spinors as the Penrose fields for the vacuum Einstein

equations, and we denote them by Ψk and Ψ . We remark that to pass between the

coordinates (2.19) and (2.16) we use any soldering form σA

a

A such that

9ίj = ®i σ]ΛA' -

We have the following important structure equation for the Penrose fields [18].

Proposition 2.7. The spinorial covariant derivative of Ψj .../ 2, when evaluated

on 6*k+\ is given by

'
where {*} denotes a spinor -valued function of the Penrose fields Ψ2, Ψ , . . . , ψk~l

 }

y*-1.
The fact that the lower-order terms {*} are of order less than or equal to k — 1 is
essential to much of our symmetry analysis.

It now follows that the restriction to Sk of any tensor on Jk(^) built locally
from the metric, curvature, and covariant derivatives of curvature, say

la\ ap \Qij •> Qij, j \ > — -> 9ij, j \ - - jk ) •>

may be uniquely expressed as a function of the Penrose fields, that is,

Under an arbitrary SL(2,C) transformation A\, the spinor Γ satisfies the identity

T l P\Λ Ψ~\ = ΛBl - ΛBp~ΛA] - -~/\ApTBl Bp\Ψλ n ??ΊA ...A L J A A R f)f R •••R L J ' \^.j-s^j
P P \ p P

where A Ψ denotes the action of SL(2, C) on the Penrose fields, for example,

(A Ψ)ABCD = ΛJ

AΛ
K

BΛ
L

CΛ^ΨJKLM .

We_call spinors_(2.21) that satisfy (2.22) natural spinors of the Penrose fields
ψ2 ψ2 ψk ψk

We let dψJ\"Jf,+2, &ψJ.}"'kΓ2, and dr{°'"^ denote the (symmetrized) partial dif-
VΛ-2 J\'"Jk+2

j'...j' j' -j'
ferential operators with respect to the coordinates Ψ} τ

k~2, Ψ / / 4 2 , and Γ .
Γ J\'"Jk+2 J\'"Jk — 2 J Ό ' " J k

For example,

As a consequence of (2.22) we have the following result [17],

A1 A1

Proposition 2.8. Let TA

l^.A

p

q be a natural spinor of the fields Ψ2,Ψ2,..., ψk,ψk.

A' ---A'
The spinorial covariant derivative of TA A

p is a natural spinor of the Penrose
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fields Ψ2,Ψ2,...,Ψk+\Ψk+\ and is given by

We close this section by deriving a spinor expression for the linearized Einstein
equations (2.8) that we shall use to compute generalized symmetries. Starting from
(2.8), and using the spinor correspondence

VcVd ̂  Vcc/ Vflzy hab *— + hABA,B, gcd +—> εCDεc/D/ ,

the defining equation (2.8) takes the form

r CD C'D'tA sA1 *B *Bf ABjB'τC <f' zD τDf

L — ε ε όMoM,oNoN/ - z ε OMOM,ONON,
(2.23)

+ 8ACεA/c/(δB

MδB

Mfδ^δD

N

/

f + «X4)]Vcc'VDZy W*' = 0 .

Since hABA>Br — hBABrA/, we have that

hABA'B' = nBAA>B' + \^AB^A'B'^ , (2.24)

where the trace h of hABA/B/ is given by

j, ΛBΛ'B'T,
n = ε^ ε nABA'B' -

Substituting (2.24) into the last two terms of (2.23), we find that all the trace terms
cancel leaving us with

r CD C'D1 sA zA1 τB *B' , BC J C1 *A τB1 ?D tD1 , BC A1 C1 zD ?Df ?A τB1 -,L-ε ε oMόMfdNoN, +ε ε oMόM,dNόNf + ε ε oMdM,όNdNt\

X ^cC'^DD'hABA'B' = 0 .

We now multiply this expression with arbitrary spinors αM, αM , βN , β to get our
final spinor form of the linearized equations.

vacuum Einstein equations, then for all spinors αM, αM , βN

 9 β ,

Theorem 2.9. If hA,B

B, are the spinor components of a generalized symmetry of the

n for

— B1

β +

+ εBce*'c'aDβAάPff

In general h^,B

B/ is a function of the coordinates (2.19), that is,

1 I1 I1 I1

l'"Jk-2 ~ψJ\'"Jk+2\
A JoJl •> - - 70-A' JιW*> > > Jι-Jk+2 ' ψ J\ -4-2 )

,h*f

B

B, =0 on δk+2 . (2.25)

Λ^/Ί, Z5 a natural generalized symmetry,

LAB __LABsψ -
"Ά'B' ~ ^AfB'(ψJ\J2^4^
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In both cases, h^,B

B, satisfies the SL(2,C) invar iance properties

Ac

AA
D

BA
Ac,AEu,hA

A?B,(x,o,r, ψ) = hc

c?D,(x,Λ - σ,Γ,Λ Ψ) ,

where A σ, and A Ψ denote the action of SL(2, C) on the soldering form and
Penrose fields.

3. Third-Order Symmetries of the Einstein Equations: A Model Problem

The complete classification of higher-order generalized symmetries of even the sim-
plest partial differential equations, let alone the Einstein field equations, is almost
always a daunting computational task. In this section we shall characterize a par-
ticularly simple class of third-order generalized symmetries of the vacuum Einstein
equations. Subsequent sections of this paper will extend this analysis in full gen-
erality. Our goals here are principally to elucidate our basic computational scheme
and to introduce notation and techniques which will be used repeatedly in what
follows.

Recall that a third-order generalized symmetry of the Einstein equations is a
symmetric rank-2 spacetime tensor

ab

that satisfies the linearized equations (2.8). The standard jet coordinates on

are ill-suited to the problem of solving Eq. (2.8) because they are not well-adapted to
the structure of the Einstein field equations. In Sect. 2 we showed that any function
(3.1) can also be expressed as

n°b

where the generalized Christoffel symbols Γjkh,Γjkhl are defined by (2.12), and the

curvature tensors Qij,kh,Qij,khi are defined by (2.13). However, a generalized sym-
metry of the Einstein equations is only defined up to terms which vanish when
RΪJ — 0, Rjjft = 0, ..., and so, with no loss of generality, we may replace the de-
pendencies of hab on Qtj^kh and Qij^hi by their trace-free parts. These trace-free
tensors are best represented by the Penrose fields and so we can assume that the
general form of the third-order symmetry is given by

., At A1 A1 A1 A1

j / / / /± p/' pz p/ IT/ U/ 1 U/ 1 2 ^ A

(3.2)
In the next section we classify arbitrary-order symmetries depending upon the

Penrose fields alone (natural symmetries). In Sects. 5 and 6 we complete the gen-
eralized symmetry analysis of the Einstein equations by considering higher-order
symmetries with dependencies typified by (3.2). In this section we shall simply
analyze natural symmetries whose spinor components are of the general form

nA'B' = hAfB/(
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Admittedly, this is a somewhat artificial problem, but it serves us well for the
purposes of this section. We shall prove that if (3.3) satisfies the linearized equations

r CD C'D' sA sΛ' sB sfl1 , BCjc'ϊA τB1 τD τD1 , pBC J C1 tD zDf τA *Bf -,
[-8 8 °MdM'όNόN> +β 8 όMόM'0NόN>+& & dMόM'dNόN'\

X ^CC'^DD'hABA'B' = 0 , (3.4)

when RΪJ = 0, Rtj\k = 0, Rtj\kι = 0, and RlJ\kim = 0, then there is a vector field

and a constant c such that ,

iΛB _ _ ΛB- \V7AγB\ vyβ γA
"Ά'B1 — c £ ZA'B1 r V AI^B' "~ ^ B'^A' '

To begin the analysis of (3.4), we first expand the covariant derivatives of
by the chain rule (Proposition 2.8) to find that, because of (3.3),

r)hAB ΐ)hAB A'
\?D r,AB _ ϋnA'B' s^D ψ \ , UΠΆ'B' /vyD A\
^ D'hA'B' - ~w - (yD,ΨAλA2AιA4)l -- ^7 - ( V D>

UiA{A2A3A4 Άψ 1
CJΨA1A2A3A4A5

+ {*}) , (3.5)

where we have used the structure equations (2.20), and {*} reflects terms quadratic
in ΨABCD- We take another covariant derivative and, retaining for the moment only

λl C'Γ) Λ* Ώ^

the terms involving ΨA\..A C/D/ and ̂  A\...A^ B\ B^ we ^^ tnat

C ' D ' A

where {*} denotes terms depending upon the Penrose fields ΨAl...A4, ΨA

1

Γ..A5, and
A' A'

terms linear in ΨA

l.2

A .
The critical point to make now is that, in using the structure equations (2.20)

to evaluate V^/r^, and V£/V^//z^/, we have made full use of the Einstein
A1A1A1 A1 A1

equations. That is to say, the fields ΨA

1

A

2.3.A and ΨA A

2...A are completely arbitrary
and (3.4) is an identity in these higher-order Penrose fields. All the analysis that
follows depends upon this fact.

A' A' A'
Thus, in (3.4) the terms depending upon ΨA

1

A

2..3

A must vanish identically. Tak-

ing into account the symmetries of this spinor field, we conclude that the derivative

^ΨA'"' 5^AfBβf satisfies the complicated algebraic equation

Ά'sΨj'"A5h\*&Lt') = U ' (3 6)

Our next task is to analyze this equation completely. This is almost impossible
to do without first introducing some appropriate notation. Then we can bring to
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bear some decidedly non-trivial - but completely algebraic - results from the two-
component spinor formalism. To begin, we set

,]̂ ,̂ ^^^^ '̂̂ '/' . (3.7)

As we explain in the appendix, this notation indicates that [d3

ψh] is a spinor which
is completely symmetric in its first 5 indices. We use a semi-colon here to separate
the arguments of [dψh] that correspond to the derivative indices from those attached

to the spinor hA

A?B,. We emphasize that the values of δψA

l, 5h^,B

B/ are completely

determined by the values of (3.7).
_ J _ > / _ J f _ βl

We now multiply (3.6) by ψrAlψA2 ' ' 'ΨAjUAββΨ lψ 2ψ 3%A β to arrive at the
more palpable, but completely equivalent equation,

+ (α, φ)(a, ψ)[dlh](ψ5, ψ; ψ, β,~β,ψ) = 0. (3.8)

If we set α = β and α = β, this equation reduces to

[δ3

Ψh](ψ5, ~ψ;ψ9 α, α, ̂ ) = 0 ,

or, because of the symmetry of h^/B

B, ,

[d3

Ψh](ψ5, \j/'9 α, ψ, ΪA, α) = 0 . (3.9)

In components this first equation is equivalent to

A5hBI = 0 . (3.10)

We now recall (Proposition 7.2) that if τA\Aτ ^Λ § a Spinor ̂ ^ js symmetric
in A\Aϊ A$ and satisfies

then there is a symmetric spinor SA^AI-AI>A^ such that

jΆιA2 Άs,A _ g(A\A2A3A4gA5)A

In terms of our index-free notation, we write this equation as (see Proposition 7.2)

We apply this result to (3.9) to conclude that

, ψ; a, β, a, ̂ ) = (ψ, oc}S(φ4, φ\ β, ά) . (3.1

We can decompose [33

ψh](ψ5, I/A; α, β, α, β) into its symmetric and antisymmetric parts

in the arguments corresponding to φ and β, and then use (3.11) to conclude

5, φ; α, β, α, β) = (ψ, a)S(ψ4, φ~β, β, α) + (φ, ~β}T(^, a, β, α) .

Unfortunately, this representation of [d3

ψh] does not incorporate the symmetry

[d\h](φ5, φ' a, β, α, ~β) = [d3

Ψh](φ5, ψl β, α, β, α) . (3.12)
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It is a rather difficult algebraic problem to simultaneously impose both (3.9) and
(3.12). Theorem 7.7, in the appendix to this paper, solves this problem and we may
write

[d3

Ψh](ιl/5, iA oc, β9 α, J8) = (ψ, α)(<A, β)A(ψ3

9

+ ( ι l / , β ) ( β 9 ψ ) W ( ι l / \ * 9 o ί ) . (3.13)

Written out in components, this reads

fiA}A2 Ά5hAB _pAO ψ f n ι ι — b
A'B'

B(A}

— b ^B'(A( A1}

With the symmetries as indicated in (3.13), the spinors A and W are uniquely
defined by d\,h. This result completely solves (3.8).

The next step is to analyze the consequences of setting to zero the terms in
A'

(3.4) which are quadratic in the Penrose fields ΨA

1

A ...A . To accomplish this we
c' D'

differentiate (3.4) with respect to Ψc

l

c c

 an(* ^o\D2 D5

 an<^ multiply the result
_ £</ f

by "symmetrizing" fields \l/dΨc2 ' -ψcs, 7.D{XD2 - χD5, and ψ 1χDι . Because

[dΨ

c

c\^ ^Ψ^A2...^^ ,

we obtain the equations

5, χ α, β, α, ~β)

ψ γ5. χ α, χ9 χ9 ά)

L β)(χ, Ti)(d3

Ψd3

Ψh)(ιl,5

9 ^ χ5, χ α, ψ9 ̂  ά)

+ (χ, α)(χ, ά>(44A)(^5, ̂  χ5, χ; ̂  ^r, ̂ J) = 0 . (3.14)

The six terms in this equation (one appears twice) come from each of the 3
terms in (3.4). Each term of (3.4) contributes twice to (3.14) because the coefficient

A'of these terms is quadratic in the Penrose fields ΨA

1

A A Note that we have again

used semi-colons to separate the arguments of d3

ψd
3

ψh corresponding to the different
partial derivatives.

Using (3.9) we immediately find that all the terms in (3.14) vanish but the first,
so that

In components this equation is
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j
and hence hA

APB, must be linear in the third derivative fields ΨA

1

A ...^ . This then
implies, by the uniqueness of the representation (3.13), that the spinors A and
W in (3.13) can only depend upon the second derivative Penrose field ΨABCD
This exhausts the information arising from the coefficients of the highest deriva-

A' A' A' A' A' B' B'
tive term ΨA

l

lA

2

2.
3.Aj and the quadratic terms ^ A^ A^ B\B\ B^ in me linearized

equations.
To summarize the results up to this point, we have shown that the generalized

symmetry (3.3) must take the form

AB _ ΛAlA2A3ABA'l AΓ A4BA , A: - A4Aβ , TA B

where the spinors A, W and h all depend on ΨABCD
The next step is to examine the terms in the linearized equations (3.4) which

involve the spinor
Δ1 Rf Rf

ψΛ\ W 1 2
Ύ

J/

Taking into account the fact that hA

APB, is linear in ΨA

1

A A , and the structure

equations (2.20) for the derivative V^/*/7^2...^, , we find the relevant terms to be

C'D'A

A' B' B'
Thus, when we differentiate (3.4) with respect to ΨA

1

A AS, ΨB\B B anc* con-

tract with the fields ̂  ι/^5, χB[ - - χ#6, and ψ }γB{χB2 we conclude, after some
simplifications, that the derivatives

satisfy the algebraic conditions

4A](χ4; ̂ 5, ~φ;«, β, α, ~β)

, ~β)[d2

Ψd3

Ψh](ψ4;χ5, χ α, φ, ψ, α)

+ (φ, α)<^, α)t44A](,A4;χ5, χ β, φ, φ, ~β)

+ (χ, β)(x, ~β)[S2

Ψd3

Ψh](χ4; φ5, φ; α, φ, φ,x)

+ (I, «}<χ, α>[44A](χ4; φ5, φ β, φ, φ, ~β)

+ {φ, β}(φ, ~β)[B2

Ψδ3

Ψh](χ4; φ\ φ α, χ, χ, α)

;^5, ^;j5, χ, χ,~β) = 0 . (3.15)



498 I.M. Anderson, C.G. Torre

These equations we analyze in 2 steps. First, Eq. (3.9) implies that the coefficients
of (χ, β){χ, β) and (χ, α)(χ,α) each vanish, and so we can rewrite Eq. (3.15) as

-2(ψ, χ) (φ, χ} [d2

Ψd\h}(χ4 Ά 5> Ψ; «, β, δ, 0)

V, χ jβ, <A, Ψ, β)

χ , χ ; a , ψ, ψ, α)

+ [B2

Ψd\,h](χ4;ψ5, ^ α, χ, χ, α)} = 0 . (3.16)

Setting α = jS = ψ in Eq. (3.16), we conclude that

In terms of the decomposition (3.13), this implies that

ψ3,ψ3) = 0, (3.17)

and so A in (3.13) is independent of the spinor ΨABCD, i.e., A is independent of
the Penrose fields. Together, Eqs. (3.16) and (3.17) show that

4 ψ5, ψ; α, β, α, β) - {^, α)(ά, ψ)[&ΨW](X4; Ψ*> β, β)

+ (ψ, β}(β, ψ)[PΨW](χ4;ψ*, α, «) . (3.18)

Next, we set α = ^ and α — j8 in (3.13), and substitute from (3.18) to arrive at

4-^, α, α) ={χ, α)(χ,

The right-hand side of this equation is unchanged by the simultaneous interchange
of ψ with χ and ψ with χ, so we conclude

Written out in full, this equation is the curl condition

We therefore deduce that there are functions

such that

Together, Eqs. (3.17) and (3.19) solve (3.15) completely.
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Define

By Proposition 2.5, k^,B

B, is also a generalized symmetry. On account of (3.19), a
simple computation shows that

" ψoίβ). (3.21)

This means that k^,B

B/ takes the form

We have already shown that the spinor A is constant. We now show that this
spinor must in fact vanish. To do this we must isolate the terms in (3.4) which

A' A'
are linear in the fourth order Penrose fields ^ ̂  A -- A This can ^e done by simply
expanding the total covariant derivatives as we did in (3.5). However, this proce-
dure is somewhat complicated, and does not readily generalize to the higher-order
symmetry analysis we shall give in subsequent sections. We therefore introduce an
alternative, more powerful, approach to this step in our analysis, one based upon
the commutation rules for the total covariant derivative operator V^/ and the partial

derivative operator δ f J J 6.
B\B2

Lemma 3.1. If F = F(ΨAlAlA^ Ψ4^...^ ̂ ..̂ λ then

, ( 4 * 2 *5)F . (3.22)

(3.23)

Proof. These formulas follow directly from the chain rule (Proposition 2.8) and the
structure equations (2.20). D

Note that we can express (3.22) and (3.23) more succinctly as

and
[4(V

We can apply this lemma to the spinor V£/V^//r^/; we find

(3.24)
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A' A1

We now use (3.24) to compute the derivative of (3.4) with respect to Ψ 'A
l

 A

2 :.. - / 4 .

Taking into account (3.9), we find, after some lengthy but straightforward manipu-
lations, that

(β, Ψ)(β, Ψ){[d2

Ψk](ψ4;a,ψψ, α) + ^αΛ[V

+ (a, ιA)(α, ψ){[PΨk](ψ4;β,ψ, ψ, ~β) + βA

+ ψΛψA'[VA

A, d3

Ψk](ψ5, ψ; α, /?, α, /?) = 0 . (3.25)

In (3.25) we set α = β = ψ and use (3.21); we find that

ψAψ
A'[VA

A,A](ψ\ψ3) = 0. (3.26)

In components (3.26) is the condition

By differentiating this equation with respect to the spin connection coefficients, it
is straightforward to show (see Proposition 7.6) that this condition forces

that is,
Λ A}A2---A5JAB
VψA' KA'B'Λ\

Therefore, (3.20) becomes

^'' = ̂  '^-1 + ̂ 'X ' +

The spinor /z^/^/ is a second-order generalized symmetry of the Einstein equations.
We can analyze its structure by repeating the steps of this section. In particular, the
derivative of h^βt with respect to the Penrose field ΨABCD has the form

[d2

Ψh](ψ4; α, j8, ά, J8) - (</>, α}(^, j8>3(^, ά, J8) .

The spinor A is shown to vanish as before. Thus h^,B

B, is seen to be independent
of the Penrose field ΨABCD - It is straightforward to verify that the only constant
solution to the linearized equations (3.4) is the spinor form of a constant times the
metric. Thus we have

This completes the classification of generalized symmetries of the form (3.3) for
the Einstein equations. The rest of this paper is devoted to extending the analysis of
this section to the general higher-order symmetry. The computations are somewhat
more intricate, but the ingredients are much the same as exhibited in this simple
example.
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4. Natural Generalized Symmetries of the Vacuum Einstein Equations

In this section we obtain a complete classification of all natural generalized symme-
tries of the vacuum Einstein equations, that is, we find all solutions to the linearized
equations

+ εBCε^'anβAa
D']Vc

c,VDWJBl = 0 , (4.1)

where
LAB — hAB (ψ2 ^μ2 tί/3 ̂  ψk ^ϋk\
"A'B* — "A'B'(Ψ ' ψ ' ψ ' ψ ' ' ψ ' ψ )

is a natural spinor depending upon the Penrose fields to order k. Equation (4.1) and
all subsequent equations in this section hold by virtue of the Einstein equations and
their derivatives.

Before beginning the detailed analysis of (4.1), let us review the principal steps.
Since hAJB, is assumed to be of order k, the linearized equation is an identity to
order k + 2 in the Penrose fields. It is easy to see that this identity can be written
symbolically as

<*Ψk+2 + βΨM + yΨk+l Ψk+λ + δΨk+λψk+l + εΨk+lψM

+ pψk+l + τΨ*+1 + Ό = 0 , (4.2)

where the coefficients α, /?, . . . , υ are complicated expressions of order k involv-

ing hAJίB, and its repeated derivatives with respect to Ψ2, Ψ , . . . Ψk, Ψ . Each

of the coefficients α, /?, . . . , v must vanish identically because the fields ψk+2

9

Ψ ,Ψk+λ,Ψ may be freely specified on $k+2. As is standard practice in
symmetry group analysis, we analyze this complicated identity beginning with the
highest-order conditions α = 0 and β = 0.

Let dψh and dk^h denote the partial derivatives of hAJβf with respect to Ψk

_ it
and Ψ . The conditions α = 0 and β = 0 impose certain algebraic conditions on
the spinors dψh and dk

ψh which, when carefully analyzed, lead to unique spinor
decompositions that we shall write symbolically as

&Ψh=A+B+W and dk

ψh = D + E + U . (4.3)

This we do in Sect. 4A; see Propositions 4.3 and 4.4. Each term A,B,...,U in these
decompositions separately satisfies the algebraic conditions arising from α = 0 and
β — 0. In Sect. 4B we show that the vanishing of the coefficients 7, δ, ε force hAJβ/

_ jς
to be linear in the highest-order Penrose fields Ψk and Ψ , so that the spinors
A,B9...,U in the representation (4.3) are all at most of order k — 1. The analysis
of the conditions p = 0 and τ = 0 is accomplished in two steps. In Sect. 4C we
prove that A,B,D,E must actually be of order k — 2, and that there is a generalized
natural vector field

such that

XA

A, =

W = dk

ψ~
lX and U =
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We let
jAB _ ιAB (T-jA γB , γy5 yA \
IA'B' - hA'B' ~~ (VA'XB' + V B'XA') '

Then 1AJB/ satisfies (4.2) and (4.3) with W = 0 and U = 0. In Sect. 4D we find that
the remaining coefficients A,B,D,E in (4.3) now satisfy certain covariant constancy
conditions, from which it readily follows that A=B = D = E = Q. The classifica-
tion of the natural generalized symmetries of the Einstein equations is then com-
pleted by a simple induction argument. Note that our analysis of natural symmetries
completely parallels that of Sect. 3.

We begin by fixing some notation. If

is a natural spinor of type (p, q) and order k, then the partial derivative of T ' } J
L\'"Lq

with respect to Ψl is a natural spinor of type (p -f / -f 2, q -f- / — 2). We shall write

1+2 τ^\'"^P~\ I 1 I 1-τZ I 1 1 1 — 2

j ..*',_JcΊ...<$M\ " ΨAI+2Ψ\ •••ψl-2

Further, let φ\...,φp and φ\,...,φq be arbitrary spinors; we shall write

A semi-colon will always be used to separate arguments corresponding to derivatives

with respect to the coordinates (2.19). Partial derivatives with respect to ΨAl ...^/~2

will be similarly denoted. Examples of this notation can be found in the previous
section.

We shall repeatedly need certain commutation relations between the partial

derivative operators Sψ^'^AT
+2 and δ ,̂1 ...A?~2 and the covariant derivative operator

1 m —2 1 w-t-2

^c'

Proposition 4.1. Let _ _
ΎT _ T'" ( Ψ^ ^P^ ψm ^pm \

be a natural spinor of order m. Then

[d™+} vc$r;;](lA
m+3Jm"1 ) = ψcψc,[dm

ψτ:;](ψm+2,ψm~2) , (4.5)
and

, (4-6)

and similarly,

m3 m2 (4.?)
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and

2 , φ m } + φcφc,[δm

φ-
lr::-\(φm-\φm). (4.8)

Proof. These formulas follow directly from Proposition 2.8 and the structure equa-
tions (2.20). Examples of these formulas can be found in Sect. 3. D

4A. The ψk+2 and Ψ Analysis. We suppose that hΛJBr is a natural generalized
symmetry of the vacuum Einstein equations of order k\

In this section we derive necessary and sufficient conditions for the vanishing of
the coefficients α and β in (4.2), and we analyze these conditions in detail.

We have, by two applications of (4.5),

= φcφDφc,φD,[dk

ψh
AJB,](φk+2,φ ).

Therefore, if we differentiate Eq. (4.1) with respect to Ψk+2 it follows that

(β, φ) (β, φ) [dk

ψh](φk+2, φk~2;a,φ,φ, α)

+ (a,φ}{a,φ)[dk

ψh](φk+2,φk'2;β,φ,φ,~β) = 0 . (4.9)

When k — 3, this is exactly Eq. (3.8) obtained in our model problem.

Similarly, we differentiate the linearized equations (4.1) with respect to Ψ
and use (4.7) to find

2,φ;β,φ,φ,'β} = 0. (4.10)

Proposition 4.2. If hAJB, is a natural generalized symmetry of order k for the
vacuum Einstein equations, then

9ψ ψ, α, α, ψ) = 0 (4.11)

and

Proof In Eq. (4.9) we set α = β and a = β to deduce that

' l/~2;α,ιA>,α) = 0.

The symmetry hABA/B/ — hBAB<Aι then leads to (4.11). In Eq. (4.10) we set α = β and

α = β, and then use the symmetry of hABA/B/ to arrive at (4.12). Note that (4.11)
and (4.12) are necessary and sufficient for (4.9) and (4.10) to hold respectively. D
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Theorem 7.7 allows us to explicitly characterize all natural spinors that satisfy
(4.11) and (4.12).

Proposition 4.3. The spίnor [dk

ψh](ψk+2, ψ α, /?, α, β) satisfies the symmetry con-
ditions (4.11) if and only if there are natural spinors,

\ψk~*\ W= fF(^+1,^*~3,α,α), (4.13)

I , ~ , α , α ) . (4.14)

spinor A is symmetric in its first k and last k arguments', the spinor B is
symmetric in its first k -f 4 #«rf to/ £ — 4 arguments; and the spinor W is sym-
metric in its first k + 1 and following k — 3 arguments. With these symmetries, the
spinors A,B, W are uniquely determined by dk

ψh. When k — 3, (4.14) is valid with

B = 0 and W = ^(^4,α,α). When k = 2, (4.14) λoWs w/ίλ 5 = 0 and W = 0.

We note that the case k = 3 is treated in Sect. 3.
Let us remark that (4.14) contains the algebraic form of the generalized diffeo-

morphism symmetry. Indeed, if

XA' = XAf(ψ2> ψ>- > Ψk~l

9ψ~)

is the spinor form of a natural vector field of order k — 1, and we let

ιAB \ηA \rB , τ-jB \rA
dA'B'

 = VA'XB' + VB!XA> '

then, by (4.5),

, α ) . (4.15)

We observe that with W = dkψ~lX the right-hand side of (4.15) coincides with the
expression involving W in (4.14). In Sect. 4C we shall prove W satisfies integrability
conditions that imply W = dk^~lX.

There is an analogous decomposition for dk^h.

_ I f l J _

Proposition 4.4. The spinor [d—h](ψk~2,ψ ;α,j8,α,j3) satisfies the symmetry con-

ditions (4.12) if and only if there are natural spinors,

(4.16)
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such that

k-\a,χ ). (4.17)

The spinor D is symmetric in its first k and last k arguments', the spίnor E
is symmetric in its first k + 4 and last k — 4 arguments', and the spίnor U is
symmetric in its first k + 1 and following k — 3 arguments. With these symmetries
the spinors D,E, U are unique. When k = 3, (4.17) is valid with E — 0 and U =

When k = 2, (4.17) holds with E = 0 and U = 0.

4B. The ψk+iψ*+\ ψMψk+i9 andΨk+lΨk+l Analysis. In this step we prove that
if hAJβ, is a natural generalized symmetry of order k, then h^?B, must be linear in

the highest derivatives Ψk and Ψk. To begin, we use the commutation rules (4.5)
and (4.6) to find that

+ ̂ V£(3i^

- (^c'Λ' + ̂ D'X%0(44^/)(^+2^"2; x*+2> x*-2) (4.18)

We differentiate the symmetry equation (4.1) twice with respect to ψk+l and
use (4.18); after some elementary simplifications we obtain

2^~ χk+2,χk-2 β,ψ,ψ,β) = 0 .

In the notation of Eq. (4.2) this is the condition y — 0. Using Proposition 4.2, we
immediately find that this equation simplifies to

(dk

ψd
k

ψh)(ψk+2,ψk~2;χk+2,χk-2;cί,β,όί,~β') = 0 . (4.19)
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This proves that hAJB, is at most linear in the variables Ψk. Likewise, if we take the
- k+\

second derivative of the linearized equations (4.1) with respect to Ψ and use
Proposition 4.2, we obtain

;/-2,χ*+2;α, )8,αJ) = 0 , (4.20)

_ it
which implies that hAJB, is linear in the variables Ψ . Finally, differentiation of

the symmetry condition (4.1) with respect to Ψ and ψk+l

y followed by use of
Proposition 4.2, leads to

^+2;/+2,χ*-2;α9]8,άJ) = 0 . (4.21)

Together, Eqs. (4.19), (4.20), and (4.21), which follow from setting the coefficients
y, δ, and ε in (4.2) to zero, prove the following proposition.

Proposition 4.5. Let

be a generalized symmetry of the vacuum Einstein equations. Then hA^B, is at most

linear in the top-order Penrose fields Ψk and Ψ .

Corollary 4.6. The spinors A,B,W and D,E,U in Eqs. (4.14) and (4.17) are at
most of order k — 1 .

Proof. This corollary follows from Proposition 4.5 and the fact that the spinors
A,B, W and D,E9U in the decompositions (4.14) and (4.17) are unique. D

At this point we are able to prove that there are no natural generalized sym-
metries of the Einstein equations of differential order two in the metric, aside from
the scaling symmetry (2.11).

Corollary 4.7. Let hA^B,(Ψ2, Ψ ) be a natural generalized symmetry of the vacuum
Einstein equations of order 2. Then

hAJB, = cεA,s,ε
AB ,

where c is a constant.

Proof. According to Proposition 4.3 and Proposition 4.4, we have that

and

[4/zJOA4; α, j8, α, ~β) = (ψ, α) (

Proposition 4.5 implies that the spinors A and D are independent of the Penrose

fields Ψ2 and Ψ . Because h is SL(2,C) invariant, A and D are SL(29C) invariant,
and consequently they are constructed solely from the ε-spinors. It is easy to check
that there are no spinors with the rank and symmetries of A and D built solely from
the ε-spinors. Therefore A = D = 0. This implies that h^β, is constructed only from
the ε-spinors from which the corollary follows. D
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4C. The ψkψk+^ ψkψk+\ ψkψk+\ and ψkψk+l Analysis. In this section we
shall prove that the spinors A,B,D and E must be of order k - 2, and that there
exists a natural type (1,1) spinor X of order k — 1,

yA γA / ιτ/2 "(7/2 \lfk-1 ~πjk—1\ //ι '->'-) \
A^/ — ̂ A'^ ' ' • • • ' '^ / ' ^T-.ZZ j

such that

^ 3 ^ 2

and
£/(ι/f ,^~3,α,α) = [3/:-~1y^](^~3,ι^ ;α,α) . (4.24)

We obtain these results by analyzing the equations arising from the coefficients of
ψkψk+\9 ψkψk+\ ψkψk+ι^ and ψkψk+l

 in the linearized equations (4.1).

We begin with the ψkψk+l terms. Because hAJtB, is linear in the Penrose fields

Ψk, Ψ , we can use the commutation rules in Proposition 4.1 to deduce that

+ χc^χc>ΨD'[4-]ak

ΨhAJB,](xM,χk-3 , Ψk+2,ψk~2) . (4.25)
We now apply the operator dk

ψd
k^λ to the linearized equations (4.1) to find, after

substituting from (4.25) and simplifying, that

,χ,χj) = 0 . (4.26)

The symmetry condition (4.11) implies that the coefficients of (χ,β)(χ,β) and
(χ, α)(χ,α) each vanish, and so we can rewrite Eq. (4.26) as

(4.27)
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In this equation we set α = β — ψ to arrive at

[dk

ψ-
ldk

ψh](χk+\f-3;ψk+\ψk~2;ψ,ψ,ΰ,~β) = 0 .

In terms of the decomposition (4.14) we have that

and so this equation implies that

[^"^Kχ^1,^"3;^4,^"4) = 0 . (4.28)

In other words, B is independent of the spinor ψk~l. Likewise, by setting α = β — ψ
in Eq. (4.27), we conclude that

and so A is independent of the spinor Ψk~~l. Together, Eqs. (4.14), (4.28), and
(4.29) show that

1 , χ - 3 ; + , ^ ~ > α , α ) . (4.30)

We next set α = β and α = β in (4.27), and substitute from (4.30) to arrive at

l

> χ * - 3 ; ^ + 1 , ~ , α , χ ) . (4.31)

The right-hand side of this equation is unchanged by the simultaneous interchange
of ι// with χ and φ with χ so we conclude

(432)

Equation (4.32) is necessary and sufficient for Eq. (4.31) to hold, and is one of the
integrability conditions needed to establish Eq. (4.23).

In exactly the same fashion we can apply the operator dkφ dk^1 to the linearized
equations (4.1) to show that

\ψk+};f,χk ) = 0, (4.33)

1;***,/-4) = 0 . (4.34)
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Moreover, we have that

k'\a,a). (4.35)

Before applying the operator dk^ dk^γ to the linearized equations, we first use

the commutation rules of Proposition 4.1 and the fact that hAJβ/ is linear in Ψk and

Ψk to deduce that

Using this result, if we differentiate (4.1) with respect to Ψ and ψk+l and take
into account the leading order symmetry conditions of Proposition (4.2), we have

+ [dkildk

Ψh](χk-\f+> ,ψk+2,ψ~ , a , χ , χ , c ϊ ) } = 0 . (4.36)

With α = β = ψ, and then with α = β = if/, Eq. (4.36) implies

[δk

φ

]B](χk-\χk+ί;ψk+4,ψk-* ) = 0 (4.37)

and

(4.38)

We set α = β and α = β in (4.36) to find

oi,χ,χ^} . (4.39)
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Again, in exactly the same manner, the dk

ψd
k^~l derivative of the linearized

equation (4.1) yields
k~3

[dk

ψ~
lD](ψk+\ψ~;χk ,/) - 0 , (4.40)

1,/"3;^44,^-4) - 0 , (4.41)
as well as

Λr 3;^ ,^ ;α,χ,χ,α)}. (4.42)

Equations (4.28), (4.29), (4.33), (4.34), (4.37), (4.38), (4.40), and (4.41) prove
the following proposition.

Proposition 4.8. Let h4Jβf be a natural generalized symmetry of order k. Then the
spinors A, B, D, E appearing in the decompositions (4.14) and (4.17) are at most
of order k — 2.

On taking Proposition (4.8) into account, the substitution of (4.14) and (4.17)
into (4.39) and (4.42) gives rise to

ι , / . ι i -rfc —3

l/κ+\\l/ ,χ ,α) , (4.43)

along with

,/ \\l/ , t/r ,χ,α). (4.44)

In this last equation, we simultaneously interchange ψ with χ and ί// with χ; a
comparison with (4.43) allows us to deduce that

(4.45)
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Equations (4.32), (4.35), and (4.45) are the integrability conditions for (4.23) and
(4.24).

Proposition 4.9. Let hAJB, be a generalized symmetry of order k. Then there is a
natural vector field of order k — 1,

A A ^ ' ? ? ? / ?

such that the spinors W and U in (4.14) and (4.17) are the gradients

Λ -rk-3
, α , α ) , (4.46)

and

Γ~k-\ τπ, ,k-ϊ ~rk+l -X ττs-Γk+l ,k-T. -x , Λ Λ ^ ^[ d - X](ψ \ψ ;α,α)=t/( ι^ ,ψ , α , α ) . (4.47)

Proof. We have already seen that the linearized equations (4.1) imply the in-
tegrability conditions for Eqs. (4.46) and (4.47) are satisfied. It is easy to check
that

A1 J BΛ Bι_~L Bιr:i κf ...nf A1 V 5 ? • • • ? "> •> ι ^ )

-4- jfψBl'''Bk-l'''Bk+lττBl'~Bk-lA (ψ2 ψ2 ψk-2 ψk~2

 fψk-\ fψ
k

+ atΨB .B U ' ' ' Ψ >* > ' " > Ψ '^ '^ '^

defines a real, natural vector field that satisfies Eqs. (4.46) and (4.47). D

4D. Reduction in Order of hAJB,. Let us set

r]AB _ τ-jA γB , ryβ yA
dA'B' - VA'XB> + VB'XA> '

where X*, is defined in Proposition 4.9. By Proposition 2.5, we know that dAjB, is
a solution to the linearized equations (4.1) and so defines a generalized symmetry
of the vacuum Einstein equations. Therefore

]AB _ frAB ιAB
LA'B' ~ nA'B' ~ aA'B'

is also a generalized symmetry. Since

and
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we have, from our basic decomposition (4.14) and (4.17),

' —^^ / ' —\ / ' ^\ T " I If-1-2 p I \ (Λ Λ O \

and

_ ]f-\-r) _

αjS,^4). (4.49)

As in Sect. 3, we now show that the linearized equations (4.1) force

A=B = D = E = 0 , (4.50)

and hence
^ = W+VX, + /;&,, (4.51)

where lA

Λ?n, is now of order k — 1 .
A D

To prove (4.50) we differentiate Eq. (4.1) one final time with respect to ψk+]

and use the leading order symmetry condition satisfied by /^β/, namely

to arrive at

l^^

+ [Grad $pl](\l/ $\ ^+2,^~2;α,]85α,j8) = 0 , (4.52)

where Grad is defined in (7.15) and

[Div 4/](^+2,/"2;α,ά) - α,α5/[V^4/^](^+2,/"2) . (4.53)

In (4.52) we now set α = β = ψ; by virtue of Eq. (4.48) we then find

[Grad B](φ^ ^+4,/~4) - 0 . (4.54)

Similarly, if we set α = β = ψ in (4.52) and use (4.49) we find that

[Grad A](\l/,ψ'9\l/',ϊj/') = 0 . (4.55)

Proposition 7.6 implies that A = 0 and B = 0.
We have thus found that

Likewise, by differentiating the linearized equations (4.1) with respect to Ψ we
can show that D = 0 and E = 0 so that

These last two equations prove (4.50).
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Theorem 4.10. Let

be a natural generalized symmetry of the vacuum Einstein equations of order k.
Then there exists a natural vector

XA

A, =

of order k - 1 and a constant c, such that

1ΛAB ^AB n i r-jA \rB , V7# vA ^^ &khA,B, = c ε ZA,B< + vA/XB, + VB,XA, on δ .

Proof. If k = 2 this theorem reduces to Corollary 4.7. Let k > 2. We have shown
that

LAB _ rjA yB , vyβ γA , jAB
"A'B' — v A'ΛB' "+" v B'ΛA' + 1A'B'^

where 1AJΪB, is a natural spinor of order k — I. A straightforward induction argument

now shows that 1A^,B, can be reduced to a function of the Penrose fields Ψ2, Ψ2 at
the expense of changing the vector field XA,. We apply Corollary 4.7 to the natural
generalized symmetry 1AJΪB, to show that

JAB _ ~AB
LA'B' — c ε £A'B' '

and our classification of the natural generalized symmetries of the vacuum Einstein
equations is complete. D

5. First-Order Generalized Symmetries

In this section we begin our classification of all generalized symmetries of the
vacuum Einstein equations by determining all first-order generalized symmetries.
As mentioned in the introduction, the calculation of the higher-order generalized
symmetries reduces to that of the first-order generalized symmetries. While the
analysis of the higher-order symmetries is similar in spirit to that of the natural
symmetries, as presented in the previous section, the analysis of the first-order
symmetries is rather more complex and merits a separate presentation.

To begin, let

hab =hab(xl,gιj,dιjjc)

be the components of a first-order generalized symmetry. We emphasize that the
functions hab are no longer assumed to be the components of a natural tensor and
hence may depend explicitly upon the coordinates xl and the first derivatives of the
metric gij,k The linearized equations

{-(fdδ1δ] - fδtfj + £T(δ^ + δ»δϊ)WcVdhab = 0 (5.1)

involve the metric and its first 3 derivatives, and must be satisfied when the Einstein
equations

Rab - 0 and VcRab = 0 (5.2)

are satisfied. In accordance with the results of Sect. 2, we write hab as a new function
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and express the linearized equations in terms of the jet coordinates

{xl, 9ij> Γjk> Γjhk> Γjhkh Qij.kh Qίj,klm} (5.3)

for </3(^), which were introduced in Sect. 2 (see (2.12) and (2.13)). The Einstein
equations (5.2) hold if and only if the variables Qη^ι and Q^^im are completely
trace-free. Consequently, the linearized equations (5.1) for the first-order generalized
symmetry must hold identically for all values of

\x •> 9ιj> Γjfcτ ijhk^ ίjhkh [βj/,A7Jtracefree> [β/,/:/mJtracefree|

In order to determine the dependence of the linearized equations on these adapted
jet coordinates we will need the following structure equations for the coordinates
(5.3):

DiCjβ = gβΓ'ίk + guΓfj , (5.4)

r>, ph _ ph i 2 πh I ph pm , ph pm sr c\
υkί tj — * ijk + 3^k,ij + L mi1

 }k "Γ 1 mjl ik 5 P D )

Π rh _ rh _L 1 nh 2 s\m rh ι_ 4 rm Ώ h Q Γm Γ^ ( c /; \
Dlί ijk - 1 i/kl + 2^l,i/k ~ 3^l,(ιj{ k}m + ΐ1 (ikKj) lm ~ M (ik1 ,}ml •> (^^)

and

^mQιj\kl = Qij,klm + ^Qm&fiM ^ Qkl.ijm) (5.7)

We will use the following notation. The derivatives of ha^ with respect to the
metric 0^ and connection variables Γ^ will be denoted by

Λ Γ S T dhab Λ ~rsι δhabΰrshab - — - and ΐf hab = —— .
Sgrs dΓ{s

Note that these quantities are symmetric in the indices rs and ab. If

=Xa-, 7 = 7 f l - , and α = ardxr ,
dxa dxa

we let

and
α, Y\XX) = ^rasY

tXa

We denote by α* the vector field obtained from the 1-form α by "raising the index"
with the metric,

and we denote by X^ the 1-form obtained from the vector X by "lowering the
index" with the metric,

The natural pairing of X and α is
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Proposition 5.1. Let hab = hab(x\glJ,Γjk) be a first-order generalized symmetry

for the vacuum Einstein equations. Then there are zeroth-order quantities

such that
d?hab = <5[χ; . (5.8)

Proof. Since
^ dhab = Djhab - Γl

adhib - Γl

bdhaί

where {*} denotes terms involving the variables xl, g/7 , ΓV QJ

ihk, we conclude
using Eqs. (5.6) and (5.7) that

VcVjA^ = (d?hab)Γίscd + {**} ,

where {**} denotes terms involving the variables x^g^ , Γjh, rhjk, QJ

lhk, β/M/

Hence, by differentiating the linearized equations (5.1) with respect to Γ*.scd and
contracting the result with X^^Ύ1^^^^, we arrive at

= (X, <ή{-(X, α)[<3Γtr A](αα, Y) + 2 [3ΓA](αα, 7; α*^)} . (5.9)

Here we have defined the trace of hab in the usual way:

irh = gabhab,

When α is a null 1-form, the expression in brackets on the right-hand side of (5.9)
must vanish. By Proposition 7.4, this implies that there are quantities Ms

bt such that

- (X, α) [δrtr Λ](αα, 7) + 2 [dr/z](αα, 7; afx) = (α?, α)M(X, 7, α) ,

where

Thus (5.9) reduces to

ζ 7, α) . (5.10)

We have shown that Eq. (5.10) is necessary for (5.9) to hold. It is also sufficient.
This is easily verified if we observe that (5.10) implies

[dr/z](αα, 7; ofx) = ±((of, <ήM(X, 7, α) + (X, α)M(α*s 7, α))

and
[(9Γtr/z](αα,7)=M(α ί ί, 7,α).

It remains to be shown that Ms

bt is independent of the connection variables ΓL

To this end we first differentiate Eq. (5.10) with respect to Γjk to obtain

[dΓdΓh](ββ,Z; αα, Y XX) - {X9 o>)[dΓM](ββ,Z;X, 7, α) . (5.1 1)
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The left-hand side of this equation is symmetric under interchange of (/?,Z) with
(α, F), and therefore

VC,<ή[dΓM](ββ,Z;X, r,α) = (X,β)(dΓM](m, Y ; X , Z , β ) .

Using Proposition 7.5 we conclude that [dpM] takes the form

[ d Γ M ] ( β β 9 Z ' 9 X 9 Y 9 a ) = ( X 9 β ) W ( « 9 β 9 Y 9 Z ) 9 (5.12)

where W has the symmetry property

W(oι9β9Y9Z) = W ( β 9 u 9 Z , Y ) .

Equation (5.11) becomes

[dΓdrh](ββ9Z;oL<*,Y'9XX) = (X9<ή(X9β)W(a9β9 Y9Z) . (5.13)

Next we observe that the structure equations (5.4)-(5.7) imply

where {*} denotes terms that are at most linear in the coordinates Πhk. Using this

equation, we now differentiate the linearized equations with respect to Γl

rsd and Γ™υc

to find that

= (X, β) [drdrh](ββ, Z; αα, F; Xu* ) + (X9 α) [drdrh](ββ9 Z; αα, Y 9 X β * ) .

Into this equation we substitute from Eq. (5.13) to deduce that

Because the expression in square brackets is not identically zero, this equation
implies that W = 0 and therefore drM = 0, as claimed. Π

Next we turn to an analysis of the terms involving Qi^m in the linearized
equations (5.1). In the following proposition we let

MsJ=Ms

atg
rt and Masr = gabMs

btg
rt ,

and we let ε/;M = ±1 denote the usual totally antisymmetric tensor density.

Proposition 5.2. If hab = hab(xl,gij,Γl

hk) is a first-order generalized symmetry of
the vacuum Einstein equations, then there are quantities

Va = y"(xi,glj) and Wa=Wa(x>,gti)

such that
Mf 1 = ajfrJ + gsp

(r
ίεaMlW

1 . (5.14)

Proof. Because

Vdhat, = l(dr,shab)Q'd^ + (3r

t

shab)Γ'rsd + {*} ,
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where {*} denotes terms involving the variables xl, gυ, Γ^, we can show

VcVdhah = \(^hab)Q\rAc + \(^hab}Qlrsd + {**} ,

where {**} now indicates terms involving the variables x\ g/7 , Γf , Γk

ijh, Γk

ijhl, Qi/^i
Therefore, for the linearized equations to hold we must have that

ζd i etc sib Sid i be Sid Sid ~ι Γ 2 / ^rs 7 \ s^\h \ 1 / ^\vs 7 \ /^\h \ r\
0 ι ~ Q ό O ι " ί7 O ό I ~ ( (7; /? A ι\J Λ I " i ( (7 /2 /i )(_X j — (J

(5.15)

for all g^jc and Q^rsd that are completely trace-free. We multiply (5.15) by XlχJ

and substitute for dr

h

shab from Proposition 5.1 and for Qh

c rsd and Qd rs, from (2.13)
to obtain

[-MbshXcXd +McshXhXd]

d + Rdhcb\s + Rshcd\b

= 0.Rbhcd\s + Rshcb\d + ^dhcs\b) + ϊ(Rbhds\c + Rshdb\c)

By using the algebraic curvature symmetries and the Bianchi identities, every term
in this equation may be expressed as either a multiple of MbshX€XdR^hbc\s or

MbshXcXdRshbc\d. The coefficient of the former term vanishes, while that of the
latter term is one. Thus (5.15) holds if and only if

MbshXcXd[Rshbcld]iracefΐee = 0 . (5.16)

To analyze this condition it is convenient to revert to spinors. We set

MBB'AA'HH> =Λ/ f a<<jf'σf'<jf'',

and use (2.17) and (2.20) to write

[^sλ£c|ί/Jtracefree < * £SH£BCisfHfBfCfDfD ~~^~ £SfHf£BfCf * SHBCDD* '

so that the condition (5.16) is equivalent to

Xcc'xDD'MBB'ss'HH'[£SHzBCΨs,H,B,clD,D + εsVεaV ΨSHBCDD>] = 0 (5.17)

for all Penrose fields Ψ3 and Ψ3. We differentiate this expression with respect to
ΨSHBCDD> and multiply the resulting equation by ψsΨπψBψcψoΨ D> to conclude

εA,H,ψAψHψBM
aB'ΛA'HH' =0. (5.18)

Similarly, differentiation of (5.17) with respect to Ψ s> H' B' c1 D' D leads to

H^B'M
BB'AΛ'HH/ = 0 . (5.19)
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To solve Eqs. (5.18) and (5.19) we decompose M as

^BB'AA'HH' _ pBB1 AA' HH' _^ ^BB' ^H^A'H' , ^BB'A'H'^AH , -γBB'AH ^A'H' /^ 20 )

where the spinors P, Γ,Γ are each symmetric in the indices ,4/7 and ^'T/'. Note
that the spinors T and T correspond to the skew symmetric part of M in (5.14).
Equations (5.18) and (5.19) now imply that

and

These equations can be analyzed using Proposition 7.2; we find that there must

exist quantities ZAA such that

TBB'A'H' = &A>B'ZBH> + f'B^BA1

 ? (5>2] }

and

TBB>AH = εABZB/H + cHBZB/A . (5.22)

We insert (5.21) and (5.22) into (5.20). We then write the resulting equation in
tensor form to complete the proof. D

We now turn to an analysis of the conditions arising from the Γr

stuΓ™q terms
in the linearized equation. This analysis will enable us to prove that every first-
order generalized symmetry is, modulo a generalized diffeomorphism symmetry, an
evolutionary zeroth-order symmetry.

Proposition 5.3. Let hab = h a b ( x l , g ί j , Γ l

k

J ) be a first-order generalized symme-
try of the vacuum Einstein equations. Then there are zeroth-order quantities

Vi = V^x^gtj) and hab = ̂ ab(xl,9ij) such that

Proof. Let

hab = hab-(VaVb + VbVa),

where Va = gabVb is defined by Proposition 5.2. Then hab is a first-order generalized
symmetry and therefore, by Proposition 5.1, there exist zeroth-order quantities Ms

al =

M s

a t ( x l , g i j ) such that

d?hab = δ({βs

b]t . (5.23)

Moreover, by construction, M will satisfy Proposition 5.2 with V1 = 0, and hence

Ms

a

l - Af W + /W// wl (5 24)

This decomposition will allow us to prove, from the coefficient of Γr

sfuΓ™q in the

linearized equations, that Ms

a

l = 0, that is,

The derivation of the condition arising from the coefficient of ΓςtuΓ™q in the
linearized equations is the longest single calculation in this paper. To begin we first
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compute

) = a.s^u[Dc(dsfhabWd + δu

cd
s

r'Vdhab - lδ"cΓ!jδ(>(d'r
j)hab)

(5.25)

The second term on the right-hand side of this equation is found to be

α.MfVA,* = xszt[Dd(d?hab) + 2gjrδ'd(dSJTιab) + 2Γ'jd(d^hab) + 2δt

dΓ
h

r,(dfhab)

- rad(dϊ%b) - rbd(d?>Jila) - δ'dδ
s

ahrb - $dd
s

bhra\ . (5.26)

Together, Eqs. (5.25) and (5.26) imply that

; ata,X) + 2*cad[dadrhab}(uX*; ββ, Y)

,χ ) - acβbβdY
m[ΰΓhma](ax,X) - aaxcadX»>[dΓϊιmb](ββ, Y)

, Y) - βaβcv.dY
m[dΓlιmb}(^X) - βbβc*dY

m[dΓhma](aaί,X)

, Y) - oicad(Y,a}[drhab](ββ,X)

-βcβd(Y,a)[dΓhab](aa,X).

We substititute this equation into the linearized equations (5.1) multiplied by Z'Z'
and use (5.23) to obtain, after considerable algebraic simplifications,

2(Z, <ή2{[dgM](βY»; β\X, α) - duM(«Xb; β f , Y, β)}

+ 2(Z, α)(Z, β) {[dgM](aX*; «*, 7, β) - dgM(βY° a*,X, a)}

+ 2(Z,Λ)(a\β}{[dflM](ctX*' ,Z,Y,β)-dgM(βYy ,Z,X,x)}

+ 2(a!l,oί)(Z,β){[dgM](βYί' Z,X,oί)-dgM(θLXί' Z,Y,β)}

+ [(a\a)(Y,a)(Z,β) - (Z,a)(Y,a)(af,β)]M(Z,X,β)

+ [(Z, α) (X, β) (αj, β) - (of, a) (X, /?) (Z, β)]M(Z, Y, α)

- ( Z , a ) ( Y , a ) ( Z , β ) M ( « i , X , β ) + (Z,a)(X,β) (Z,β)M(of,Y, α)

+ 2 ( Z , a ) ( Z , β ) ( ^ , β ) M ( Y , X , a ) = 0. (5.27)

As a check of the accuracy of this equation, we used Maple to verify that the
diffeomorphism symmetry, for which

M(X,Z,u) = 2 [ d g V ] ( Z * ' a ; X ) - ( X ,

and Vi = V,(x',gki), provides a solution to (5.27).
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In order to simplify Eq. (5.27) using (5.24) we set

ATsr _ 1/Λ/s art I ΛΛY ast\
2ya — 2^ aty ' iyιatv )•>

N(Z, β, α) = Ns

a

rZaβsar and det(X9 Y 9 Z 9 U ) = εahcdX
a YbZc Ud,

and observe that

[ d g M ] ( β γ ; Z , X , Λ ) = [dgN](βτ,Z,X\*) + det(Z,X,af ,[δgW}(βy})

+ ί{X,y)N(Z,β,<x)-l

I(of,β)det(Z,yί,X,W)-i(βt,γ)det(Z,o

We substitute this equation into (5.27) and use the fact that

(5.28)

to deduce, again after lengthy algebraic simplifications, that

(Z, α)2K(β, 7, β* , α, X ) + (Z, α) (Z, β}K(a,X, α*, j8, 7)

Jί,Z,Jβ,7) = 0, (5.29)
where

^(α,^, Z, )8, 7) = [dgN](otX*-9 Z, 7b, j8) - [dgN](βY*-9 Z,X\ α)

,^b)-^

, 7,̂ , ̂  )+ ^ (Z, <ήdet(β*9X9 7, ̂  ). (5.30)

Equation (5.29) implies that K(a,X,Z,β, 7) = 0 whenever (Z, α) = 0. Therefore, by
Proposition 7.5, there exist quantities L such that

K(Λ,X,Z,β,Y)=(Z,Λ)L(X,β,Y).

Substituting this expression back into (5.29) and simplifying the result, we find

(β\ β)L(Y9 <*9X) + (αs, β)L(X, β 9 Y ) = Q .

In this equation we set α = β to conclude that L = 0 and hence ^Γ = 0.
In the equation

K(θL9X9 Z9β9Y)- K(X^ α*, Z, β, 7) = 0 (5.3 1 )

we put Y = β^ and Z — α* to deduce that N = 0. We then substitute this result in
(5.31) with Z - α* to get W = 0. D

We are now ready to complete our classification of first-order generalized sym-
metries.

Theorem 5.4. Let hab = hab(xί,giJ,Γ^) be a first-order generalized symmetry of the
vacuum Einstein equations. Then there is a constant c and zeroth-order quantities
Vi = Vi(x\gij) such that
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Proof. Proposition 5.3 reduces the proof to showing that the zeroth-order symmetry

hab is in fact a constant times the metric. This follows from the classification of
the point symmetries of the Einstein equations [24]. We include the proof here for
completeness.

Let us begin with the conditions placed on hab by the vanishing of the terms in
the linearized equations involving Γ^cd. From the structure equations (5.4) -(5. 6) it
is a straightforward matter to show that

fίΪΊ

V eVΛ* = 2J^gmp [C, + \Qld} - hpa [Γ> e + \Q>4b]uymn

~hpt,[Γp

adc + \Qp

cja}+{*}, (5.32)

where {*} denotes terms depending only on the variables xl, g/y, Γjj. We multiply

the linearized equations by X1X] and differentiate them with respect to Γa

bcd. The
result, after multiplying by a^aca,/Za and simplifying, is given by

)} . (5.33)

Proposition 7.5 now implies that there exist zeroth-order quantities A such that

The symmetry of (dgh) in Zpα implies that

and therefore, by Proposition 7.5, there exists a zeroth-order function F = F(jcz,^y
such that

We have therefore found that

[dgh](QLθί'9XX) = (κ,X)2F . (5.34)

It is easily verified that this equation is necessary and sufficient for (5.33) to hold.
Next, we differentiate (5.34) with respect to g^ to obtain

[dgdgh](ββ'9**',XX) = (^X}2[dgF}(ββ) .

The left-hand side of this equation is symmetric under interchange of α and β, and
we therefore have

(*,X)2[dgF](ββ) = (β,X)2[dgF](aa) .

From Proposition 7.5 it is easily seen that this equation implies

[fl^FKαα) = 0 . (5.35)

Equations (5.34), (5.35) imply that hab is of the form

hab=F(xi)gab + kab(xi). (5.36)

Now we turn to the conditions on hab arising from the terms in the linearized
equations depending on Qab,cd- It is straightforward to show, using (5.32), that this
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condition takes the form

o ^
v/ vi'ilkl- -XlX>'hkl

8g,ι 2

when Qjj^i is completely trace-free. If we substitute from (5.36) the first and second
terms vanish leaving us with

Because kab is independent of the metric, this equation implies that kab = 0.

We have reduced hab to the form

We now substitute this equation for hab into the linearized equations to find

-0ι/Vβ VaF - 2V f VyF = 0 .

We differentiate this equation with respect to Γr

st and obtain

dF
which implies that —— = 0, and thus F is a constant. D

/HW

6. Complete Classification of Generalized Symmetries of the Vacuum
Einstein Equations.

We now turn to the computation of all generalized symmetries of the Einstein
equations. Let

be the components of a generalized symmetry of the Einstein equations. Initially,
we have I — k, so the generalized symmetry is of order k. The repeated covariant
derivative of h^?B, can be given schematically by

VV/z = DDh + γ Dh + (Dγ) h + y γ h,

where y Dh is a sum of products of spin connections y^j, and y^ and total

derivatives Dc

c/h^B,, and so on. The linearized equation,

+ &BC^A'C' ^DβA^D'βB'}^c' ^D'^B' = ° °n <$k+2 '

(6.2)

is an 5L(2,C) invariant identity depending on the variables xl, σaAA>, σaAA>,b > GaAA',bo

Γ1, Γ2, Ψ2, Ψ2, . . . , Γ/+2, Ψk+2, Ψk+2. On the Einstein equation manifold <^+2

there are relationships between σaAAt>bc and Γ2, Ψ2, Ψ2, but in what follows we
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are careful only to consider terms involving Ψ1 and Ψ1 for / ^ 3. The rather
complicated lower-derivative analysis was performed in Sect. 5.

In order to analyze the dependence of this equation on our adapted jet coordi-
nates, we need the following structure equations on

n. r' r1' -\-A* ((7 Ψk+^ U/^+IΛ j_ /}' (r1 rk\
Jk+l JOJ\ Jk JQJ\'"Jk+\ 7θ7Γ' 7yt+Λ ' ' ' JQJ\'"Jk+\^ ' '

+ CJo7r..Λ {(σ,Γ\Ψk,Ψk)

Here A'.'.', is linear in Ψk and Ψk, B\\\ is bilinear in its arguments, C'.'.' is linear in
Ψk and Ψk with coefficients depending on σ and Γ1.

We also have (see (2.20))

/ j' j' A'J' J' A'J' J'

A'j(---J'k_2 2 —2 £ _ j —£_j

' A ,/j 'JfcΛ-2 ' ")'*'"> ") ) Ί \ ' )

where M.'.V is linear in Ψk. There is an analogous formula for the total derivative
o f Ψ k .

Let . . . _Ί / / —,
/(^, σ, Γ1, Γ2, <F2, ^2,..., Γ;, Ψk

9 Ψ h )

be a smooth function. We retain the notation

-2,ψm~2) and Γί

introduced in Sect. 4 for the derivatives of / with respect to Ψm and Ψn\ and we
define

[δ?/](r,ω'»+1)= -̂ — Γωyoω7l .-.ω y m .
7071 -7m

In many of our subsequent formulas the spinor components

A JA

of the covector ω will appear. In addition, we will use ω as a bilinear map

Finally, we write

A(α,ω,α) = h^fB,vίAω
Λ

B oίB .

From the structure equations (6.3)-(6.4) we readily derive the following com-
mutation rules. For / ^ 2 we have

[4+χ,/](7V+2) = ωA

A,[d'Γf](Y,oj'+l) (6.5)
and

(6.6)
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while for / < k we find that

~2) (6.7)
and

(6.8)

The terms in (6.6) and (6.8) involving [Γ1 ] and [y1 ] denote a sum of terms
each linear and homogeneous in the spin-connections.

The analysis of (6.2) now proceeds along lines very similar to those presented
in Sect. 4. As in that section, the linearized equations are viewed as identities in
our adapted jet coordinates. Starting at the highest derivative order, the linearized
equations are differentiated with respect to the various coordinates on $k+2 . Ac-
cordingly, we shall not provide all the details of the many calculations involved
in the lengthy analysis, but rather simply list the various steps and the conclusions
obtained in each.

6 A. The Γ/+2 Analysis, I ^ k — I, k ^ 2. When we differentiate (6.2) with respect
to Γ/+2, we find that

A ω ) = 0 . (6.9)

In this equation, set ωA

A, — ^A^A> to conclude that

whenever ω is a null vector. By Proposition 7.4 this implies there is a real spinor

such that

[dl

rh]( 7, ω/+1 α, ω, α) = - \ {ω, ω)P( 7, ω7, α, α) .

This fact allows us to use (6.9) to show that the highest Γ derivative of h has the
algebraic form

,ωl,u,,u) . (6.10)

Note that the commutativity of the partial derivatives dl

rd
l

r implies, using Eq. (6.10)

with β = α and β = α, that

ω(α, ά)[δf P](Z, ηl+l 7, ω;, α, α) = η(*, *)[dl

ΓP](Y, ωl+l Z, ηl, α, ά) . (6. 1 1 )
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6B. The Γ/+1Γ/+1 Analysis, I ^ k - 1, k ^ 1 The repeated derivative of (6.2)
with respect to Γ/+1 becomes, with β = α and /? = α,

/+1 Z, /?/+1 α, ω, α)

/ + 1 ;Z,f/ / + 1 ;α,^α) = 0. (6.12)

We now substitute into (6.12) from (6.10), multiply by f/(α,ά), and use (6.11) to
deduce that

[{ω, ω)η2(oc, α) + (>/, //}ω2(α, α) - 2{ω, η)ω(a, α)^(α, α)]

x [

Because the first spinor in brackets is not identically zero, we find that

[dl

ΓP](Z, ηl+l 7, ω', α, α) = 0 , (6.13)

and thus h^B, is at most linear in the variables Γl.

6C. The ψk+2Γl and ψk+2Γl Analysis, I ^ k - 1, k ^ 2. The commutation rules
(6.5)-(6.8) do not allow us to immediately differentiate with respect to ψk+2 and
Ψk+2 to arrive at the Eqs. (4.11) and (4.12), which were the basic starting equa-
tions for the analysis of natural generalized symmetries. Nevertheless, if we use the
linearity of h^?B/ in the variables Γl ', we can differentiate (6.2) with respect to Ψk+2

and Γl to find that

+ ; + , - ; ι A , α , α ) = 0 , (6.14)

and _
[δ^4/ι](7,ω/+1;^-2,^+2;^,α,α,^) = 0. (6.15)

6D. The Γ/+1 Ψk+\ Γl+lΨk+l Analysis, I ^ k - 1, k ^ 2. Here we find, in a very
straightforward manner, that

2,^"2;7,ω/+1;α,^,αJ) = 0, (6.16)

and
2,ψk+2; 7,ω/+1; α,j8,α,)8) = 0 . (6.17)

In deriving these equations we used (6.14) and (6.15).

6E. The ΓMΓl Analysis, I ^ k - 1, k ^1 and 1 = 2, k = 2. We differentiate
(6.2) with respect to Γ7 and Γ/+1. In the resulting equation we set β = α, /? = α
and substitute from (6.10) to obtain
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We multiply this equation by f/(α,α) and subtract from it the product of ω(α, α)
with the result of interchanging (Z, η) with (7, ω) to deduce that

[dl~lP](Z,ηl; 7,ω^α,^) = [dl~]P](Y,α/ Z,?/,α,α) (6.18)

6F. A Partial Reduction in Order. Equations (6.13), (6.16), (6.17), and (6.18) show
that there is a vector field

such that

Hence the generalized symmetry

is independent of the variables Γl , and accordingly we may now assume that the
original generalized symmetry (6.1) is of the type

(6.19)

This partial reduction in the order of h^B/ is important because it enables us to
repeat, almost without modification, the arguments of Sect. 4.

6G. Repetition of Steps A through E and the Natural Symmetry Analysis,
I — k — I, k ^ 3. We now repeat steps A through E assuming h^B/ to be of the
form (6.19), that is, with the Γ derivative-dependence reduced by one order. We
can also repeat steps A and B of Sect. 4 to conclude that now

(6.20)

(6.21)
and

k~\^ΰ) . (6.22)

The coefficients A, B^ W, £>, E, U, and P are functions of the variables
x, σ, . . . , Γk~2, Ψk~\ Ψk~l. Note that steps A and B of Sect. 4 are valid even
when k = 2.

Next we repeat step C_of Sect. 4 to find that A, B, D, E are independent
of the variables Ψk~l and ψk~λ , We also arrive at the integrability conditions
(4.32), (4. 35) and (4.45). Note that Sect. 4C is valid even when k = 2.
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6H. The rk-lΨM, rk~lΨk+l, ΓkΨk and ΓkΨk Analysis, k ^ 3. The derivative
of the linearized equation with respect to Γk~l and ψk+l gives, after taking into
account (4. 1 1 ),

^^~^7'ω^a>^^) = 0 (6 23)
In this equation we set α = /? = ̂  and then % = β = ψ to deduce, in light of (6.20),
that

[dk

Γ-
2B](Y,ωk~l;ψk+\ψk-4) = 0 and [dk-2A\(Y^k~l^k^k} = 0. (6.24)

Now we set β = α and /? = α in (6.23); after substituting from (6.20) and (6.22)
we find that

,iA ω,α)

3,^^ - ω)

5 α ) . (6.25)

In this equation we have defined

A1 A1 A — A1 —
(ψ ω) = ωA ψ and (ψ ω)A = MA ΨA> .

Next we differentiate the linearized equation with respect to Γk and Ψk ', then set

α = /? and α — j8, and substitute from (6.20) and (6.22) to find

{ω(ιA>)ω(α,ά)- |{ω,ω)(ιA^

-rk-3

ω) =0. (6.26)
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The last four terms in this equation are precisely the four terms on the left-hand
side of (6.25). Therefore, Eqs. (6.25) and (6.26) lead to the integrability condition

{[&ψ-
lP](ιl/k+\ψk~3;Y,cJ-\w) = [^ (6.27)

Similarly, an analysis of the Γk~lΨ and ΓkΨ conditions proves that

k~l;ψ,ψk} = 0 and [dk-2E](Y,ωk~{'^ιl/k~4) = 0 , (6.28)

and

lϊ[δt-lP](ιl,k-\ψk+lιY9ω
k-\^ (6.29)

61. Reduction in Order, k ^ 3. The integrability conditions (4.32), (4.35), (4.45),
(6.18), (6.27), and (6.29) show that there is a real vector field

such that
-1 —rk — ?> _x r^ ι τ^n, , A, ι_ ι —rk — 3

Just as in Sect. 4, we set

1M = hAJs' - (VM + V|,A^ ) . (6.30)

Then

and

(6.31)

~otβ,ψk~4). (6.32)

Finally, we analyze the terms in the linearized equations involving Ψk+l and

Ψ . To this end, it is convenient to set

^
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and
-τk+2 n _ -

Then Eqs. (6.30)-(6.32) imply that

/ = R Ψk + S

where

The repeated covariant derivative of / thus takes the form

v / v , / =(VA,VB,R) - Ψk

_ £

where {*} denotes similar terms derived from S Ψ . By (6.24) and (6.28), R

and S depend upon jc, σ, . ,.,Γk~3, Ψk~2, Ψ , and hence the derivatives V^fV^,R

and Vj/V^/S are independent of the variables Ψk+l and ̂  . Moreover, we have
that

R V^VB

βfΨ
k = R - Ψk+2 + {**} ,

where {**} denotes terms of order k in the Penrose fields. Hence R V^V^,Ψk

does not contain ψk+λ and Ψ . Consequently, if we differentiate the linearized
equations for /j|, with respect to ψk+[ and set α = ^ and α = j8, we obtain

~ 2^

(6.33)

where the covariant derivative operators Grad and Div are given by (7.15) and
(4.53). With α = ψ and oί = ψ, we deduce from this equation the covariant con-
stancy conditions

(GradΛ)(ιA,ΪA; ^*>^*) = ° ' (6 34)

and

" - 0 . (6.35)

Just as in Proposition 7.6, Eq. (6.34) implies that A is independent of all the Γ, Ψ,
and Ψ variables, that is,

A = A(x9σ) .

But now, the covariant derivative of A takes the general form

VC

C,A = DC

C,A; + yc

cτA- = σa

c

c

t (^ + ̂
\ ox" oσbBB>

Since
e
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we find that

v£U::: = rba

where {*} indicates terms involving c, σ, and the spin connections y and y. It is
now a simple matter to differentiate (6.34) with respect to Γl

 k, keeping in mind that

Γjk is independent of the spin connections, to arrive at

dA

At this point we can continue, as in the proof of Proposition 7.6, to deduce that
A = 0. Similarly, B, D, and E satisfy covariant constancy conditions that imply they
too vanish.

We have now shown that a generalized symmetry of order k ^ 3 is equiva-
lent, up to a generalized diffeomorphism symmetry, to a generalized symmetry of

order k- 1 depending on x, σ, Γ1', ί = ! , . . . ,&-2 and ψJ, ΨJ, j = 2,...,k- 1.
A straightforward induction argument then implies that any generalized symmetry
of order k g: 3 is, up to a generalized diffeomorphism symmetry, given by a gen-

eralized symmetry of order 2 depending on x, σ, Γ1, Ψ2, and Ψ . If the order of
the original symmetry is k = 2, then by repeating steps Sects. 6A through 6F the
symmetry is again equivalent, modulo a diffeomorphism symmetry, to a symmetry

of order 2 depending on c, σ, Γ1, Ψ2, and Ψ .

6J. Reduction to First-Order Generalized Symmetries. The induction argument of
Sect. 61 shows that, modulo the generalized diffeomorphism symmetry, any gener-
alized symmetry of order k ^ 2 is equivalent to a symmetry h with the functional
dependence

Sects. 6A through 6D, with / = 1 and k = 2, show that h takes the schematic form

h = P(x, σ) - Γ1 + h0(x9 σ, Ψ2,ψ2).

Sects. 4A, 4B, and 4C show that

h = P(x, σ) . Γ1 + A(x, σ) Ψ2 + D(x, σ) ψ2 + l(x, σ) .

The derivative of the linearized equations with respect to Ψ3 gives an equation
similar to (6.33), which we write symbolically as

Grad,R + DivΛ -h ®(x, σ) = 0 .

We can then repeat the arguments at the end of Sect. 61 to conclude that A — 0.

A similar analysis of the terms involving Ψ in the linearized equations leads to
D = 0. Thus we reduce our analysis to first-order generalized symmetries, which
were classified in Sect. 5 (see Theorem 5.4). We have now proven our main result.

Theorem 6.1. Let
hab = hab(xl, gtj, gijιhl,..., 9ij,hr--hk)
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be the components of a kth-order generalized symmetry of the vacuum Einstein
equations RIJ — 0 in four spacetime dimensions. Then there is a constant c and a
generalized vector field

χa =Xa(xl,gij9gljjl,.. ,9ij,hι > hk_ι )

such that, modulo the Einstein equations,

hab = CQab + VΛ + VbXa

Acknowledgements. This work was supported by NSF grant DMS-9100674 (I.M.A) and a grant
from the Utah State University office of research (C.G.T).

7. Appendix: Results from Tensor and Spinor Analysis

Here we gather together a number of key results which we shall use repeatedly in
our study of the generalized symmetries of the Einstein equations. Following the
standard algebraic treatment of tensors, we consider spinors as multi-linear maps
on complex 2-dimensional vector spaces. For notational convenience, we separate
groups of symmetric spinor (or tensor) arguments with a comma and we use no
delimiters between arguments within a symmetric set. As an example, if α, /?, y, δ
are rank 1 spinors, then T(aβ,γ9δ) denotes a rank 4 spinor that is symmetric in α
and j8,

but otherwise has no symmetries. Repeated symmetric arguments of a spinor (or
tensor) will be abbreviated using an exponential notation. For example, if T is a
spinor of rank (k + 1 ) that is totally symmetric in its first k arguments, we will
write

It is important to note that the values of T(ψιi//2 fe α), where ι//ι, ι//2, . . . , ψk are
arbitrary spinors, are completely determined by the values of

Our conventions for raising and lowering spinor indices are

and α = β ^ α * .

The skew- symmetric inner product between α# and β^ is given by

We denote by (X, 7) the metric inner product between two vectors X and Y.
The following propositions are all elementary facts which we shall use repeatedly

[19].

Proposition 7.1. Let P = P(ψk, α) be a rank (k -f 1) spinor that is symmetric in
its first k arguments. Then there are unique, totally symmetric spinors P* and Q,
of rank k + 1 and k — 1 respectively, such that

l ) (7.1)
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If P is a natural spinor of the Penrose fields Ψ2, Ψ2,..., Ψk, Ψk, then so are P*
and Q.

Proof. If we define P* by

and Q by

then we find that

The uniqueness of P* and Q is established by showing that P vanishes if and only
if P* and Q each vanish. To show this, we set P = 0 in (7.1):

P*(ι/Sa) + (ιl/,<ήQ(ιlS-l) = 0. (7.2)

If we set α = ψ in (7.2), we conclude that P* = 0; substituting this result into (7.2)
then shows that Q = 0. D

Proposition 7.2. Let P = P(ι/^,α) be a rank (k + 1) spinor that is symmetric in
its first k arguments. If P(ψk,u) satisfies

= 0, (7.3)

then there is a totally symmetric spinor Q = Q(ψk~l) such that

/Ό/^oOH^oOeoA*-'). (7.4)

If P is a natural spinor, then so is Q.

Proof. We put α = ψ in (7.1), and use (7.3) to conclude that P* = 0. D

We note for future use that (7.4) is equivalent to

PW1 •• f,a)= \Σ(V,<ήQMl V~ V+1 •••**). (7.5)
κi=\

Proposition 7.3. Let P — P(ι/^,α) be a rank (k + 1) spinor that is symmetric in
its first k arguments. If P(ι/^,α) satisfies

Λ ) , (7.6)

then there is a unique totally symmetric spinor Q of rank k — 1 such that

. (7.7)
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The spinor Q is natural if P is natural If, in place of (7.6), P(ι/^,α) satisfies

(ψ9a)P(ιlS9β) = -(ιl/9β)P(ψk

9a)9 (7.8)

then P = 0.

Proof. Both of these results are proved by setting α = ψ in (7.6) and (7.8) and
using Proposition 7.2. D

Proposition 7.4. Let T be a symmetric rank-k tensor, and suppose that

whenever X is a null vector. Then there exists a unique symmetric tensor P of
rank k — 2 such that, for any vector X,

T(Xk) = (X,X}P(Xk~2) . (7.9)

Proof. The tensor T may be decomposed into a sum of products of metric tensors
and trace-free tensors. Thus we can write T as

T(Xk) = TQ(Xk) + (X,X}P(Xk~2) , (7.10)

where TO is trace-free and symmetric. The tensor P need not be trace-free. The
spinor representation of TO is

A ---A
where (TQ)A

I ,,,A

k is completely symmetric in its primed and unprimed indices. With

—A'
x- — σA;ψAφ

we now find that

τ(xk) =

Because this must hold for all \j/ and ψ, we have that Γ0 = 0 and (7.10) reduces
to (7.9). D

Proposition 7.5. Let T(YP,X) be a tensor that vanishes whenever (Y,X) = 0. Then
there is a unique tensor U(Yp~l) such that

1} . (7.11)

Proof. Since

X = (Y,Y)X - (Y,

is always orthogonal to Y we have that

and so
(Y,Y)T(YP,X)= (Y,X)T(YP,Y). (7.12)
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But then T(YP, 7) = 0 when (7, 7) = 0 and so by Proposition 7.4,

T(YP,Y) = ( Y , Y ) U ( Y p ~ l ) .

We substitute this result into (7.12) and (7.11) follows. D

Proposition 7.6. Let

pAi Ar __ pΛ\ A,/ψ2 ~ψ2 \τ/k ΰ/£\
* fί> Ώ> Γ Ώ ' D / V - * ? - * ? • ' • ? * > - * /- • • v /

be a natural spinor that is completely symmetric in the indices A\ — Άr and
B\ B ' s . I f

vIXj j; = o on^+1, (7.13)

where $k+l is the prolonged Einstein equation manifold, then P vanishes.

Proof. Equation (7.13) is equivalent to

[GradP](α,ά;αr,oO = 0 , (7.14)

where we have introduced the notation

[GradP]GM;αr,oO = βA~βA' [VA

A, P](otr,us) . (7.15)

We differentiate (7.14) with respect to ψk+{ and use the commutation relation
(4.5) to deduce that

^*~2;ar,o?) = 0 . (7.16)
_

Similarly, if we differentiate with respect to Ψ we find that

\ψk+2',zf\κs) = 0. (7.17)

Equations (7.16) and (7.17) show P to be independent of Ψk and Ψ . A sim-
ple induction argument proves that P is independent of all the Penrose fields
u/k ^Tfk u/2 1772

The expansion of (7.13) in terms of the spinor connection coefficients y^B and

y£vg, now leads to

Ί(C'\D\"B\B'2 B'S} ~ ^(C'B( \D'\B'2 B'S}
 = ^ '

This is an identity that must hold for all spinor connection coefficients and therefore,
taking into account the identity

7C>D£AB + y^β^DA = 0 ,

we conclude that

(α,^)P(7αr-1,o?) + (α,7)P()8αr-1,αϊ) = 0 .

Setting β = y we conclude that
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Alternatively, one may conclude that P = 0 from the fact that there are no com-
pletely symmetric natural spinors of order zero, ϋ

We close this section with a characterization of spinors with certain symmetries
which arise in our symmetry analysis of the Einstein equations.

Theorem 7.7. Let P(\j/k+2,\jj , α, /?,α, /?) be a spinor that is symmetric in its first
_ yL _ 2 _

k -f 2 and next k — 2 arguments. The spinor P(\jjk+2,-φ , α,/?,α,j8) enjoys the
two symmetry properties

P(ψk+\ ψk~\ α, β ά, /?) - P(ψk+2, ψk~\ β, α, J8, α) (7. 1 8)

, , ^ , α , ) = 0 (7.19)

£>«/>> // ί/ίere are spinors,

W =W(ψ+ψ~x,a}, (7.20)

\ψ~a,oi). (7.21)

spinor A is symmetric in its first k and last k arguments', the spinor B is
symmetric in its first k -f 4 and last k — 4 arguments', and the spinor W is sym-
metric in its first k -\- \ and following k — 3 arguments. With these symmetries,
the spinors A,B,W are uniquely determined by P. When k = 3, (7.21) is valid
with B = Q and W = W(ψ\a,ΰ). When k = 2, (7.21) holds with B = 0 and
W = Q.

Proof. We begin by applying Proposition 7.1 to the arguments (ψk~2,β) of P(\l/k+2,

ϊ/^~2,α,β,α,/?) to find that

(7.22)
_ £_2 _

where H is symmetric in the arguments (ψ /?). Applying Proposition 7.1 to the
arguments (ι/^+2,α) of//, we obtain

\ψ~β,oc), (7.23)

where H is symmetric in the arguments (ι/^+2α). Because
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the condition (7.19) implies that the spinor H is identically zero. The combination
of (7.22) and (7.23) now yields

~&/^ (7.24)

This form of P satisfies (7.19), but (7.18) does not hold. The key to establishing
the decomposition (7.21) is to satisfy both (7.19) and (7.18) simultaneously. The
condition (7.18) leads to

φβ,oι,β). (7.25)

In this equation we set α = β = φ to find that

and hence, by Proposition 7.3, there is a spinor A such that

- :φk) . (7.26)

Note that A is totally symmetric.
If we now define a spinor S\ by

ψ-aί) , (7.27)

then Eq. (7.26) implies that

We can use Proposition 7.2 to conclude that

and therefore, by (7.5),

+ j-i(β,*)S2Wk+l,ψ~,β). (7.28)

We replace one of the arguments ψ in (7.27) by β and substitute from (7.28) to
deduce that

(7.29)
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We next derive an equation for the spinor T appearing in (7.24) that is similar
to Eq. (7.29) for S. In (7.24) we set α = β = ψ and use Proposition 7.3 to show
that there is a totally symmetric spinor B such that

(7.30)
Let

xβ,ψ ), (7.31)

so that, by (7.30), T\ satisfies

Γ!θA*+2,^~3,<A,<A,α) = 0. (7.32)

We apply Proposition 7.1 to Tι(ψk+2,ψ ,<x,β,a) with respect to the arguments
(ψk+2,β) to arrive at

l A + , ~ , α , α ) , (7.33)

where T\ is symmetric in its first group of arguments (ψk+2β). On account of

(7.32), T\ satisfies _ _
Γι(tfr*+3,^ ,^,α) = 0,

and therefore, by Proposition 7.2,

T^k+3,φk~\a,a) = (ψ,a)T3(ψk+2,ψk~\oϊ) .

In this equation we replace one of the arguments ψ by β to arrive at

(7.34)

Finally, the combination of (7.31), (7.33), and (7.34) leads to

2 J ~ , δ ) (7.35)

The symmetry (7.18) of the spinor P and our initial decomposition (7.24) now
imply that
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Into this equation we substitute from (7.29) and (7.35). After combining like terms,
and using the spinor identity

(φ,x}P(ψk~2,βϊ - (φ,β)P(φk-\a) = (a,β)P(ψk~2,ψ),

we arrive at

P(φk+2,φk~\oi,β,oi,~β)

(φ,a){a,φ}lV(φk+l,φk \β,β) + {φ,β)(β,φ)W(φk+l,φk 3,α,α)

+ (φ,a}(φJ)T4(φk+ίβ,φ~a)

J) . (7.36)

In (7.36) we have defined

'r ' 2(k-lΓ 'r ' r / 2(* + 3)

and

^ v r 'r ' ' 2(£ + 3)

The terms involving ^4,5, W in (7.36) give the required form (7.21) for P, and
satisfy both the requirement (7.18) and the condition (7.19). The terms involving
£3 and T4 satisfy (7.18) but now are subject to (7.19). If we set α = φ and β = φ
in (7.36), then (7.19) implies that

and so
fc 2 k 3

Therefore, the terms involving the spinors £3 and T4 in (7.36) become

This equality follows from the cyclic permutation of φ, β, α in the second and third
terms on the left-hand side. We can thus absorb the £3 and Γ4 terms in (7.36) into
a redefinition of W, and this proves the decomposition (7.21).

To prove the uniqueness of the decomposition (7.21) it suffices to show that if

= 0 ,

(7.37)
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then A,B, W each vanish. To verify this, we put α = β = ψ in (7.37) to arrive at

Because of the symmetry of A, this implies A = 0. Similarly, we can set α = β =
in (7.37) to deduce that β — 0. Equation (7.37) reduces to

-\\l/ ,α,α) = 0. (7.38)

We set α = β and α = β to obtain

Wr(ψk~*~},ψ ,/?,/?) = 0. D
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