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Abstract: We estimate harmonic scalings in the parameter space of a one-parameter
family of critical circle maps. These estimates lead to the conclusion that the Haus-
dorff dimension of the complement of the frequency-locking set is less than 1 but
not less than 1/3. Moreover, the rotation number is a Holder continuous function
of the parameter.

1. Preliminaries

1.1. Introduction. This paper will present results about circle maps and families of
circle maps that we were able to obtain during the past couple of years. We will
not discuss diffeomorphisms, which by far and large are the best understood class
of circle maps. In the present paper, we will deal with critical homeomorphisms.
Some methods and estimates can be carried over to non-invertible maps, but we
only mention [4] here.

Let us start by defining the class of maps we consider.
The objects that we intend to investigate. Points of the real line can be projected

onto the unit circle in the complex plane by means of the map

x —> exp(2πόc).

Maps from the real line project on the circle if they satisfy

/(*+!)-/(*) GZ

for every real x. Obviously, for a continuous map this difference must be constant,
and is the topological degree of the circle map.

Unless necessary, we will not make a strong distinction between objects that
live on the circle and their lifts to the universal cover. Whenever we want to make
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a strong point of something being actually on the circle, we will write (mod 1 ) near
the formula.

If c and y are objects on the circle, x — y\ is supposed to mean the distance
in the natural metric.

Hypotheses. We consider a family of circle maps given by

/,(*) = /o(*) + f (modi),

where t is a real parameter which ranges on the real line and the projection of /o
on the circle is a degree one circle homeomorphism FQ which in addition satisfies:

• It is at least three times continuously differ entiable.
• The derivative vanishes in exactly one point which is identified with 0.
• The function is differentiate enough times so as to satisfy

for some /, where the Ith derivative exists and is continuous everywhere. This
number I will also be referred to as the flatness of the critical point.

In addition, we consider the corresponding family ft of lifts of maps Ft. We
denote wth p(t) the rotation number of Ft.

λ

We state two theorems.

Theorem A. Under the hypotheses listed above, the function p(t) is Holder con-
tinuous.

Theorem B. Consider the set

Under our hypotheses the Hausdorff dimension of Ωf satisfies

1/3 ^ HD(Ω') < α < 1;

where a number α < 1 depends on /, but otherwise is independent of the choice
of FQ which determines our family.

A comment on the results. Theorem A is the first result that we know about
concerning regularity of the rotation function for critical families. Theorem B is
a refinement of the result that the measure of Ω' is zero and together with the
scalings rules stated in Proposition 5 shows that the set Ω' has a fractal structure.
However, it still falls well short of numerically established universality of the Haus-
dorίf dimension (equal to about 0.87 for cubic families). Theorem B has recently
appeared in [14]. That paper described the main steps of the argument, which are
pretty similar to our approach, but did not give complete proofs.

It is worth noting that the lower estimate in Theorem B contradicts a certain
conjecture based on extrapolating numerical data. The work [1] gave an asymptotic
formula for the fractal dimension (which is essentially another name for Hausdorff
dimension, see [3]) of Ω' which was expected to tend to 0 as the critical exponent
( / i n our notations) grew to infinity. This is contradicted by our result. In fact, the
behavior of the family at near bifurcation is what one tends to miss when doing

We define the rotation number a little later.



Critical Circle Maps Near Bifurcation 229

numerics. However, we show how this phenomenon can be well understood using
analytic tools.

The results have three roots. One is the Bounded Geometry of critical maps
which has been known for awhile. Since complete proofs of the Bounded Geometry
have not been available in the literature, we provide them, too.

Another ingredient is much stronger estimates of the geometry near a bifurcation
point. Similar estimates were given with ideas of proofs in [14].

Finally, there is a way of establishing similarity between objects in the phase
space and in parameters. We show an easy technique to achieve that. Incidentally,
this new approach is both simpler and stronger than estimates of this kind used in
[17].

An important point is that the estimates of the Hausdorff dimension are uni-
versal, that is independent of the family from our class apart from /. A heuristic
explanation of this phenomena relies on the fact that Hausdorff dimension is an
asymptotic quantity only depending on the structure of the set in small scale. Small
scale in parameters means considering high iterations in the phase space. For high it-
erations, our main tools, the Bounded Geometry and the Distortion Lemma, become
universal. As far as the Bounded Geometry is concerned, this is not a surprising
fact, since it was observed in [16] for interval maps. The reason is that "cross-ratio
inequalities" (see [17]) which are the source of the Bounded Geometry estimates
become universal if applied to very short intervals. This fact can be seen imme-
diately from the "pure singularity property" of [18], but also follows easily from
the much simpler Corollary to Proposition 1. The Distortion Lemma also becomes
universal if applied to maps with rotation number of degree sufficiently large since
it is derived from cross-ratio inequalities as well.

1.2. Topologίcal Description of Dynamics. The rotation number of a circle map
F is given by

n

p(F)= lim
->oo

where x is any point and / any lift of F to the universal cover. For the maps we
consider, the limit always exists and is independent of the choice of x or a particular
lift /. If the rotation number is irrational, it is a full topological invariant, and even
if it is rational, still a lot of information about the underlying dynamics can be read.

The structure of rotation numbers. There is no general agreement on what is
the best way to organize rotation numbers. One way is to use the so-called 'Farey
tree, and another is based on continued fractions. We will base our approach on the
Farey tree structure and only comment marginally on the connection with continued
fractions.

Farey Trees

Definition 1.1. We define the structure of a directed graph whose vertices are
exactly all rational numbers from (0,1).

By definition, each vertex p/q has exactly two outgoing edges. One leads to
a smaller number called the left daughter'' and the other to a greater number
called the "right daughter."

If p/q is in the lowest terms, we determine u < p/q < v defined as the closest
neighbors in [0,1] with denominators not larger than q. Then, the left daughter is
the rational number with the smallest denominator contained in (u, p/q), while the
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right daughter is the number with the smallest denominator contained in (p/q,v)
(they are unique.)

It is known that the graph of this relation is a connected binary tree and 1/2
is the root. This tree is called the Farey tree.

Coding. Thus, there is a one-to-one correspondence between a rational number
modi and a finite symbolic sequence (αz) (the symbols are L for the left daughter
and R for the right daughter) which tells us how to go to the number from the root.

Also, there is a unique infinite symbolic representation of every irrational number
defined by the property that the rationals which correspond to finite initial segments
of the code tend to the irrational number. The reader may try to compute the value
of the alternating code LRLR ... (it equals (3 - VS)/2).

The degree. For every itinerary in the Farey tree, we define inductively its turn-
ing points πii. The first turning point m\ is defined to be the least i so that αz Φαz+ι.
If it does not exist, there are no turning points. Once πtj has been found, nij+\ is
the least / > /w/ + 1 so that αz Φ<zz +ι. Again, if it does not exist, the sequence of
turning points ends. We also define fake turning points. The index value / is a
fake turning point if i — 1 is a turning point and 0 zΦ0 z +ι. So, if flzΦαz+ι5 then i
is either a turning point or a fake turning point, but never both.

The degree of a rational number u (denoted deg(w)) is the number of turning
points of the itinerary leading to u in the Farey tree, incremented by 1 .

The reader may try to determine the degree of the number coded by

LRLLLRRLRLR (five) .

Closest returns. Consider an infinite symbolic sequence #0 which codes an
irrational number p. We consider the sequence #/ defined as denominators of con-
secutive rationals which correspond to symbolic sequences

aι9...,at. ,

where tt are turning points of s/.
This sequence has a transparent interpretation in terms of the dynamics of the

rotation by 2πp. Namely, fix a point on the circle and consider the sequence of
iterates which map this point closer to itself than any previous iterate. This turns
out to be exactly the sequence qt defined above. Because of this interpretation we
wil refer to qt as the sequence of closest returns for p.

Farey Domains and the Harmonic Subdivision

Definition 1.2. The interval (P/Q,P'/Qf) C [0, 1] is called a Farey domain if and
only if either there is an edge between P/Q and P'/Q' in the Farey tree or it is
one of the three intervals: (0, 1),(0, 1/2), or (1/2, 1).

Fact 1.1. If (P/Q,P'/Q') is a Farey domain, then \PQr -P'Q\ = 1 and 1/2 ̂
QIQ' ^ 2.

For every Farey domain we consider a sequence un, where n ranges over all
integers. If n is positive,

For n non-positive,
(! -n)P_

Un ''~
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It is an elementary check that (un9un+\) are all Farey domains. We will call
the collection of Farey domains of this form the harmonic subdivision of (P/Q,
P'/Q'). The numbers un themselves can be called endpoints of the harmonic sub-
division.

We fix our notations so that (P/Q, P f / Q f ) always denotes a Farey domain. We
will always normalize the picture so that Q < Q'. Then q := Qf — Q and p :=
P' — P. Occasionally, r defined as the remainder from the division of Q by q and
s which is the remainder from the division of P by p will also be considered. If
the degree of P/Q is at least 3, then p/q corresponds to the last turning point in
the itinerary of P/Q9 and r/s is the one before it.

Harmonic coding. Start with the unit interval and consider its subdivision of
level 1, that is its harmonic subdivision. Next, take the harmonic subdivision of
every domain of the subdivision of the first level to get the harmonic subdivision
of the second level and so on. The Farey domains obtained on the &th level will
be called fundamental domains of level k. Now, consider a finite sequence of inte-
gers (n\9...9nk) defined by induction. For negative values, nr refers to the interval
(unr9Unr+\) of the harmonic subdivision of the fundamental domain defined by the
preceding part of the code, while for positive values, to the interval (unr-\9unr)
of the same subdivision. So, a fundamental domain of level k can be coded by a
sequence of non-zero integers of length k. Endpoints of the domains of level k will
have by definition the same coding as domains. This sacrifices uniqueness since all
rationals have two different harmonic codings. On the other hand, irrational numbers
can be uniquely coded by infinite sequences. This coding will be called harmonic
coding and sometimes is more useful than the Farey coding.

Farey coding, harmonic coding and continued fractions. For a given number there is
a close correspondence between the symbols of its harmonic code and its continued
fraction expansion. To see this we will describe the way harmonic and continued
fraction coefficients are built by means of formal sequences (αi,..., α*,...) of sym-
bols L and R which code itineraries in the Farey tree and thus can be identified
with numbers in the unit interval (0,1).

The absolute value of the first coefficient in the harmonic coding is equal to
πii and its sign is positive if and only if all αmι = L. For all other coefficients
«£, k > 1, the absolute value is equal to m^ — m^-i — 1. The sign is positive if
and only if αw/t —L.

Now we pass to the description of the continued fraction coefficients via har-
monic ones and itineraries in the Farey tree. Generally, a harmonic coefficient can
correspond to one or two continued fraction coefficients (if there are two, the first
of them will be always equal to 1) depending on whether between two consecutive
turning points there is a fake one or not. Indeed, observe that continued fraction
approximants are given by these rationals whose itineraries in the Farey tree end
just before ordinary or fake turning points. So given n^9 k > 1, we find that as = I
and as+\ =
not as =

provided there is a fake turning point between mk-i and m^. If
1. The value of s is equal to k plus the number of the fake turning

points up to ink plus ε, where ε is equal to the zero if the first symbol u.\ = L or
1 if the opposite. The only remaining point is to define the first or the first two
continued fraction coefficients having given n\. We leave the reader with this simple
problem.

In particular, properties of irrational numbers being of constant or Diophantine
type are defined by conditions on the growth of continued fraction coefficients and
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are equivalent to the same conditions imposed on absolute values of harmonic co-
efficients.

Miscellaneous properties. All numbers in the same fundamental domain of level
k have the same closest returns up to qk-ι

What all this means for our family of maps. Since our assumptions guarantee
that the rotation number is a non-decreasing function of the parameter, all those
objects from the realm of rotation numbers can be transported back to the parameter
space. So we will talk of Farey domains and harmonic subdivisions in the parameter
space as well.

There is a caveat, though. The rational numbers form an insignificant countable
subset of the set of rotation numbers, but their preimage in the parameter space,
called the frequency-locking set, is a huge set of full measure, as it was demon-
strated in [17]. What happens is that the rotation number does not always grow
with the parameter. It makes stops on all rational numbers but never on irrationals.

1.3. Harmonic Scalings. With the comments we have made so far, we hope to have
explained the main purpose of the paper as stated in the abstract.

The main technical lemma of the paper will concern the harmonic scalings in
the parameter space. To explain the notion we have to go back to our construction
of the harmonic subdivision. The elements of the subdivision accumulate to the
endpoints of the parent Farey domain. Exactly how fast their sizes decrease is the
question of harmonic scalings.

It has long been known that decrease is governed by a cubic law. The earliest
mention we found in the literature is [11]. The first mathematically rigorous work
which established the result was [10]. However, the estimates were non-uniform, i.e.
it was proved that the scalings are indeed asymptotically cubic near every frequency-
locking interval, but no estimate was given on how long one should wait to see the
asymptotics take over in each particular case.

The saddle-node phenomenon. To fix the notations, let us concentrate on a Farey
domain (P/β,/"/β')

We can assume Q < Q'. Indeed so, because the map is symmetric with respect
to the choice of an orientation. More precisely, instead of our family ft we could
consider a family φt given by

Φt(χ) = -/-/(-*) -

It is easy to check that this operation means changing the direction in the
parameter space and the orientation on the circle. The rotation number of φ-t is
going to be equal to 1 — rot(/,). The new family φt still satisfies our assumptions,
but because the rotation numbers have been flipped around one half, so has the Farey
tree. So P/Q < P'/Q' and Q < Q' remain our standing assumptions throughout the
paper.

What happens near the lower extreme of p~l(PIQ9P
/IQ/). Directly below

p~l(P/Q,P'/Qf) there is a frequency-locking interval which belongs to P/Q. The
most interesting point for us is the upper boundary of this frequency-locking. This
parameter value will be denoted by t$. The mapping ftQ is structurally unstable,
even within the family. The graph of ftQ is tangent to the diagonal so that all
non-periodic orbits are attracted to the neutral orbits. When the parameter value
increases, the graph is pushed up and a funnel opens between the graph and the
diagonal.
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How to measure the scalings. Let us take a closer look at the situation for a
parameter value t just a little above /o and me dynamics on the interval between 0

and the nearest critical point of /p on the right of 0. This critical point must be
equal mod 1 to a preimage of 0 and we denote it F^~q(Q)9 where q = Q' — Q is the
previous closest return common to all maps from p~l(P/Q,P//Q/).

Since its rotation number is a little greater than P/Q,F^ moves points a little to
the right. Thus, the critical point, for example, moves to the right every Q iterate.
Finally, it will leave the interval (0,F/~^r(0)) and the number of steps it takes tells
us exactly which domain of the harmonic subdivision we are in. So one way to
determine the scalings could be to measure the interval in the parameter space

between tk for which the image of 0 by F^ hits F^q(0) after k steps and tk+\,
where the same requires k + 1 steps.

The scalings near the upper endpoint of p~l(PIQ, PΊQr) must follow the same
rules. This is a rather trivial reduction. We can consider the Farey domain ((P +
P')I(Q + Qr\P'IQf) and then m'P me FareY tree as described before. What we get
is a Farey domain (1 - P'/Q', 1 - S§/) and now what used to be the scalings near

the top of ρ~l(P/Q,P'/Q') now are equal to corresponding scalings at the bottom
of the new domain.

So, we will only consider the scalings near the lower extreme of the Farey
domain, but the results will automatically extend to the upper scalings as well.

The crucial role of the funnel. The key observation made by the authors of the
earlier works is that the decisive factor in estimating the scalings is the time it takes
the image of 0 to go through the funnel. There are two reasons for that. The first
is that the image of 0 spends most of its time in the funnel; the other is that as
we consider the scalings in a very close proximity of the end of p~l(P/Q,P'/Q'),
the corresponding changes of the parameter are so tiny that they only bring about
minute modifications to the orbit of 0 in the region away from the funnel. The main
factor which effects the orbit is the change in the funnel clearance.

To prove what has been said here and study the effect of the funnel clearance
on the orbit was the main achievement of both [10] and [5]. The work [10] studied
this effect for the critical maps, but at that moment it was very hard technically to
get uniform estimates, in particular independent of the degree of the Farey domain
(P/Q,P'/Qf). In the meanwhile, [5] provided estimates which were uniform in this
sense, but only applied to families of diffeomorphisms. Now we are finally able to
give uniform estimates for the critical maps as well.

1.4. Notations and Technical Propositions

Uniform and universal bounds. Letters K with a subscript will be reserved
for "uniform constants." An estimate is uniform if it only depends on the family
from our class. Estimates are universal if they only depend on /, but otherwise are
independent on a choice of a family from our class.

Eventually negative Schwarzian derivative. We do not want to assume that
our function / has negative Schwarzian derivative. However, there is a remark-
able, though not hard, fact that high iterates of our functions already have negative
Schwarzian. We will use this fact in some of our future estimates, which will,
therefore, be valid only for a large enough number of iterates. The idea that high
iterates become negative Schwarzian maps is certainly not new and has been known
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to people working in the field. However, we are not aware of any proof in the lit-
erature. One reason for that may be that it is unclear how to formulate this result in
reasonable generality. Our lemma does not pretend to be general, but the reader will
see from the proof that an analogous argument will work in many other situations.

We will finish the discussion by stating a well-known but fundamental inequality
about the distortion of the cross-ratio Cr by diffeomorphisms with negative
Schwarzian derivative (see [17] for more details).

Ifa<b<c<dora>b>c>d, then define their cross-ratio by

^*Vv*, ι^,^,v*y . .

\c — a\\d — b\

Next, if a,b,c,d are on the circle ordered as indicated, their cross-ratio Cr
(a,b,c,d) is defined by choosing any lift π of the arc (a,d) to the universal cover,
and defining

CrOΛc,d) := Cr(π(a),π(b),π(c),π(d) .

Since this is independent of the lift, the cross-ratio is well-defined four ordered
quadruples of points on the circle.

Fact 1.2. For any points a < b < c < d and any diffeomorphism F with negative
Schwarzian derivative, the following inequality holds.

Cr(a9b9c9d) < Cr(F(a)9F(b)9F(c)9F(d)) .

Reseating. There are few uniform estimates on higher order derivatives for high
iterates. However, it is often possible to get estimates if the map is properly rescaled.
On the formal level that means that we take an arc of the circle and an iterate of the
function which maps a part of this arc into the arc. Next, we conjugate it affinely,
usually so that the length of the arc becomes one. We will refer to this operation
most frequently as to "changing the unit of length."

Locally Negative Schwarzian

Lemma 1.1. For every family, from our class, there is a uniform U > 0 so that

Sft ^ -1

on (-U9U).

Proof Denote A — /^(O). This A is not 0 by assumption. So, by Taylor's theorem,
the Schwarzian derivative of ft near 0 is

where o( 1) is a function of x otherwise depending on the family only, so that
0(1) —> 0 as x goes to 0. D

Globally Negative Schwarzian

Proposition 1. There exists a uniform bound n(Fo) with the following property.
Assume that the degree of P/Q is larger than n(Fo). Consider a parameter value
t from the Farey domain u(P/Q,Pf/Q') and let Γ be the affine transformation of

(0,/Γg(0) + />) onto ( 0 , 1 ) .
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Then, S(f? o Γ~l) g -K on

where K > 0 is an universal constant. Moreover, if

*, j e (/F(0) - Λ/Γβ~?(θ) + P + P) ,

then

(A;')- < < K'
- Sf?(y) ~

for another universal constant K' .

Better distortion estimates. For a function A, we introduce a quantity ΛΓh(x) :=
h" /h'(x\ also called the nonlinearity of h.

Corollary to Proposition 1

Fact 1.3. Consider a map Ft whose rotation number belongs to a fundamental
domain of degree I Assume that for some i ^ g/, the iterate fl

t does not have
critical points on an open interval J. Then, a uniform bound K exists so that f\
on J can be represented as

ft = l\°9°l2

with the following properties:

• mappings χι,χ2 and g are iterations of ft,
• the nonlinearities of χz are bounded as follows:

• the Schwarzian of g is negative.

Proof Choose k so that the degree of pk/qk is greater than «(Fo) specified by
Proposition 1 and Pk-ι/qk-ι > Pk/qk- Then apply this proposition to the Farey
domain

'Pk Pk-\ + Pk"

Λ*

To preserve familiar notations, denote Q — qk+\ and q — qk. Then, we consider

intervals h = (F,~β(0),F~*~β(0)) and 72 = (F~^~ρ(0),F~^(0)). On Iλ U72, the
first return time of Ft is either the Q on 7ι, or g on 72.

We want to pick i\ and z'2 so that χi = /J1 and χ2 — /?. We pick i\ as the
first moment when the image of J hits I\ U 72. If this never happens, we get / < Q,
so we can put i\ = z, z'2 = 0 and g the identity. If i\ was properly chosen, then

z*2 is the smallest so that Fl

t~
l2(J) contains one of the following points: 0, an

endpoint of I\, or an endpoint of 72. Then, all other iterates can be accounted for
by composing the pieces of the first return map on I\ U 72, whose Schwarzian is
negative by Proposition 1. On the other hand, i\ and z'2 are uniformly bounded, and

were chosen so that the intermediate images of J and g o χ2(J) by /J1 and f\2

respectively avoid I\ U72. So the rescaled nonlinearity of χ\ and χ2 is bounded. D
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Proposition 2. Choose a parameter t from the Farey domain and change the unit
of length by applying the same transformation Γ as in Proposition 1. Then, we
obtain the following estimate on the reseated map:

on
Also, there is a uniform bound n(Fo) so that if the degree of P/Q exceeds

), we get two more estimates:

oΓ- 1 )> -K2, K2>0

on the same interval,

• If \F?(Γ~\x)) - Γ~\x)\ < *3|/Γ*(0) + p , then

^(f?oΓ~l)(x) >K2>0.

The bound K\ is uniform. Moreover, if the degree of P/Q is greater than n
all three bounds are universal

The Rate of Change of /^ Depending on the Parameter

Proposition 3. We define a set S C T x S1 as follows. The t component ranges
between the lower extreme of the frequency-locking P/Q and the lower endpoint
of the frequency-locking of P'/Q'. If a pair (t,x) belongs to S, then x must be in

We claim that if (t\,x\) and (^2,^2) belong to S, then

„_, s

with K ^ 1 uniform. Moreover, a uniform number n(F$) exists so that if
deg(P/β) > n(Ft\ the bound K becomes universal.

Comment. This is a new estimate. It was apparently unknown when [17] was writ-
ten, as that paper instead uses a very complicated and round-about method in order
to obtain inequalities in the parameter space.

The Bounded Geometry

Proposition 4 Let F be a map from our family with the rotation number in
(P/Q,P'/Qr) so that 0 < q = Q' - Q. There are uniform positive constants K\
and K2 for which the following estimates hold:

• For any x,

K <

and the same holds with Q replaced by Qf and P substituted with P' respectively,

2 - p
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The universal Bounded Geometry. There is a uniform number n(F$) so that if
deg(/y<E2) > n(F\ then the bounds K\ and KΊ of Proposition 4 become universal

Comment. Even though the Bounded Geometry is known to the experts in the field,
there is no proof in literature. If the orbit of the critical point is periodic, Proposition
4 was proved in [17]. Then, it was shown (see [9]) how a similar argument can
be developed to prove bounded geometry estimates for mappings with irrational
rotation number. Our proof, however, is different.

Basic techniques for estimating distortion. The Schwarzian derivative of a C3

local diffeomorphism is given by:

There is this remarkable formula for the Schwarzian of a composition:

S(fog) = Sfog

which for iterates of / becomes:

The Real Kobe Lemma. Consider a diffeomorphism h onto its image (b,c).
Suppose that it has an extension h onto a larger image (a,d) which is still a
diffeomorphism. If h has negative Schwarzian derivative, and Cr(a,b,c,d) ^ ε, we
will say that h is ε-extendible. The following holds for ε-extendible maps:

Fact 1.4. There is a function C of ε only so that C(ε) — > 0 as ε -* 1 and for every
h defined on an interval I and ε-extendible,

Jfh\ I/I g C(ε) .

Proof. Apart from the limit behavior as ε goes to 1, this fact is proved in [13],
Theorem IV. 1.2. The asymptotic behavior can be obtained from Lemma 1 of [7]
which says that if h maps the unit interval into itself, then

The normalization condition can be satisfied by pre- and post-composing h with
affine maps. This will not change Jfh |/|, so we just assume that h is normalized.
Since we are interested in ε close to 1, the denominator of (1) is large and h'(x)
is no more than

As \h(I)\ goes to 0 with ε growing to 1, we are done. D

The Distortion Lemma. For iterations of / with Schwarzian derivative not
necessarily negative, we have this tool.

Lemma 1.2. Suppose that a chain of the intervals

(a, d\ (F(a\F(d)\ . . . , (Fm(a),Fm(d))
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is disjoint with the critical point and covers each point of the circle at most k
times. There is a uniform constant K^ such that for any two points x,y G (a,d)
the estimate

I log(/m)'(x) - log(fm)'(y)\ ί Km - 2logCr(/>0,/*(*),/mω,/m(<0)

holds. Moreover, there is a uniform bound n(F$,k) so that K^] become universal
if only (a,d)C(a,Fn^k\a)\

Comment. If we drop the part of the claim concerning the universality of estimates,
then Lemma 1.2 is well-known (see [13]). The universality of the constants K[^
will be obtained by showing that they tend exponentially fast to 0 with growing
dynamical size of (a,d).

We have to postpone the proof of the Distortion Lemma until after we have
proved the Bounded Geometry.

2. Proofs of Technical Propositions

2.1. Proof of the Bounded Geometry

2.1.1. Maps with Rational Rotation Numbers. We prove the Bounded Geometry
for critical homeomorphisms with rational rotation numbers. The proof is practically
the same as in [17] but we emphasize the universal character of estimates. The core
technical observation made in [17] was that the distortion of the cross-ratio Cr is
bounded on chains of intervals which cover the critical point finitely many times.

Here is the precise formulation of the cross-ratio inequality of [17].
The Cross-Ratio Inequality

Fact 2.1. Let f be a lift of a circle homeomorphism which belongs to a family
of our class. Suppose that intervals (a,d),...,(fm~l(a),fm~l(d)) (modi) cover
each point of the circle at most k times. Then

Cr(«, b, c, d) ^ K[k}Cr(fm(a\ fm(b\ fm(c\ fm(d)),

where K^ is a constant independent from the choice of(a,d). We do not require
f to be a dijfeomorphism on the interval (a,d\

Let F := Ft be a map with a periodic point z and the rotation number P/Q.
Set Q = nq -f s and let p/q be the nearest neighbor of P/Q among fractions whose
denominators are bounded by q. The orbit of z cuts the circle into Q disjoint
intervals. The collection of these intervals will be denoted by j/(z).

Lemma 2.1. For any point z and a rational P/Q there is exactly one parameter
value t so that x is periodic with rotation number P/Q.

Proof. Consider the function t —» /pOO — P, which is negative for t close to — oo,
positive for / large and increasing. D

Lemma 2.2. The lengths of any two intervals from stf(z) are uniformly comparable
and the bounds depend solely on K2.\[2]

Proof. Let / be the shortest interval in j/(z). Build up cross-ratios by taking four
endpoints of any three consecutive intervals from s0(z). By appropriate iterates
of F we can transport these cross-ratios so that the middle intervals are mapped on
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/ and each of the resulting chains of intervals cover the circle at most twice. Since
the final cross-ratio is greater than 1/4, the lemma follows by Fact 2.1. D

Assume now that F is chosen so that the critical point 0 is periodic with rotation
number P/Q and as before Q = nq + s. For simplicity of notation we will write |jc|
for the distance x - 0| between x and 0 in the natural metric on the circle.

Lemma 2.3. Suppose that Fp(0) = 0 and denote F := Ft. We claim that there is
a uniform constant K ^ 1 depending solely on K^ and the flatness of the critical
point of F so that

K = 1/7(0)1 =

Proof. Set x := F^(0)|, y:=\Fs(0)\9 and |F^+5(0)| =z. If x = y then the
lemma is reduced to Lemma 2.2, so we assume that x < y. Consider the cross-ratio
Cr(F-*+ί(0), /τί(o)9 F-*(0),0). Map these points forward by F and use the cross-
ratio inequality (Fact 2.1) for the resulting cross-ratio and the number of iterates
equal to q — 1 . We obtain that

(2)
yz - x

Next, there is a uniform constant KΊ so that

Cr(Fs(0),Fs+*(0),0,^(0)) > ^2Cr(F-^(0),F"(0),F^(0),0) . (3)

Actually, these two cross-ratios are comparable. To see this observe that the
corresponding intervals of the triples involved in their definitions are shifted with
respect to each other by a one interval from J2/(0). The margin intervals are thus
uniformly comparable by Lemma 2.2. The central intervals, which are of the form
(Fs(w\ w), where w is a point of the orbit of 0, are of smaller dynamical size than
the intervals from j/(0) and thus contain at least two of them. Consequently, they
are uniformly comparable again by Lemma 2.2. After combining the inequalities
(2) and (3) we get

xl~l zl -x1 z-y zl~l + zl~2x + + zx1-2 + x1'1 £5

- =K3 = '

The intervals (F~^(0),0) and (F*(0),0) belong to «s/(0) and thus they are uni-
formly comparable. This concludes the proof. D

Observe that the estimate of Lemma 2.2 does not involve the flatness of the
critical point and holds for diffeomorphisms too. The estimate of Lemma 2.3 requires
the existence of the critical point even though its flatness can be arbitrary small.
This shows that the bifurcation exponent at which a sudden pass from a non-uniform
geometry of diffeomorphisms to bounded geometry of critical maps takes place is
equal to 1. Compare this phenomena with the results of [12] and [6] where the
bifurcation exponent was found to be equal to 2, respectively of Fibonacci maps
and critical circle maps with a flat spot.

2.7.2. A map embedded in a one parameter family. We will prove the first in-
equality of Bounded Geometry for F from a family from our class. The rotation
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number of F is an arbitrary p £ (P/Q,P'/Qf). The map F is naturally embedded
in the family Ft with F0 :=F. Without loss of generality we may assume (see
Subsect. 1.2) that Q' > Q.

Proof of the first inequality of Bounded Geometry. If F is a map with a
periodic point z and the rotation number p,

Pn + P1

then we are done by Lemma 2.2. Hence, assume that this is not the case. Let Ftz(n)
be a map with the rotation number un,n > 0 defined by the following conditions:

1. z is a periodic point of Ftz(n),
2. un is the largest number in the set {uf : i > 0} less than p.

Lemma 2.4. The following chains of inequalities show the order of the points
near z\

* < / ( * ) - p < ΰω -p< F z ϊ - 2P

and

Λ7(

2

nf + 2P < /- δ(z) + P < /-(δ(z) + P < z .

Proof. We will prove only the first chain of the inequalities since the other can be
obtained by replacing F by F~l and reversing all the inequalities in the reasoning
below.

The family ft is increasing. Thus, by the choice of tz(n) we have that

z<f°(n)(z)-P<f°(z)-P.

To prove the remaining part of the first chain suppose, on the contrary, that

flQ

(n}(z) -2P < /%) - P. Iterating these two points by f^Q+q and /("
respectively, we obtain

z = f ( z ) -nP-P' < Fίn-W+Q(z) -(n-l)P-P' . (4)

By the choice of tz(n\ the rotation number p of F is contained in (un,un-\). Hence

the point f(n-VQ+Q'(z) <z+(n - l)P + Pf, which contradicts the inequality 4. D

From Lemmas 2.4 and 2.2 we infer the first inequality of the Bounded Geometry.
Proof of the second inequality. We preserve notation and assumptions from the

previous subparagraph. We prove first, that the claim of Lemma 2.3 holds even if
we drop the assumption of the lemma about the rotation number. Let us concentrate
on the lower bound since the reasoning which gives the upper bound is very much
the same. We observe that

The first inequality follows from Lemma 2.4. The second one can be derived from
Lemma 2.3 by substituting q \— Q, s :— q and t :— ίo(«). Furthermore,
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where the first inequality follows from the first estimated of the Bounded Geometry
applied with Q := q, x := F^w)(0), and F := F/0(Λ), while the second one is a direct

consequence of Lemma 2.4.
Thus, the second inequality of Bounded Geometry holds for z — 0. We will

propagate it along the orbit of 0 using the cross-ratio technique. Let z be a point
of the orbit {F''(0) : -Q g i ^ Q}. Obviously,

Map these points by F®+1. Since the intermediate images do not intersect more than
6 at one point, this can only expand the cross-ratio by a uniform factor. Therefore,

Cr(F2^+β(0),F^+β(0),Fβ(0),F2ρ(0)) g K[6] Cr(F2*(z),F«(z),z,Fβ(z)) .

We will show that the left-hand side of this inequality is comparable to Cr(F2^(0),
F^(0), 0, FQ(0)) within a uniform multiplicative factor. Indeed, the intervals in-
volved in the definitions of these cross-ratios are shifted with respect to each other
by a one interval of the form (F®(x\x). This changes the lengths of marginal in-
tervals only by a uniform factor from the first inequality of Bounded Geometry.
The denominator of the smallest rational number in the Farey domain (P/Q,Pr /
is equal to 1Q + q. Hence, the interval (Fg+Q(Q),0) contains the point
and consequently the middle intervals are also uniformly comparable by the first
inequality of Bounded Geometry. Since we already proved the second estimate of
the bounded geometry for z = 0, it follows that Cr(F2^(0),F^(0),0,F^(0)) is uni-
formly bounded away from zero which completes the proof.

2.2. Proof of the Universal Bounded Geometry

Dynamical size versus length. Bounded Geometry enables us to state an important
corollary.

Fact 2.2. Let / and J : / C J be the intervals of dynamical size equal to i and j
respectively. Then

where K is a uniform constant. We say that I has dynamical size i if I is enclosed
in some interval bounded by x and fqi(x}, but never in an interval between x and

/«'+'(*)•

So the geometric size of an interval goes down exponentially fast as its dyna-
mical size grows.

2.2.7. For P/Q of large degree the bounds are universal In the proof of Bounded
Geometry analytic properties of F are used only twice: in the proof of the cross-
ratio inequality (see [17]) and in the proof of Lemma 2.3. We want to show that for
P/Q of large degree only the flatness of the critical point matters in these proofs.
To see this consider first, as in the proof of Lemma 2.3, the ratio of two intervals
with the common endpoint at 0. Push forward the ratio by Ax1 instead of F. The
distortion then depends solely on / and the relative error due to the replacement is
of the same order as the lengths of the intervals.

Now we pass to the study of the cross-ratio inequality in a small scale.
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The universal cross-ratio inequality. A uniform bound n(FQ ) exists so that the
constants K\κ\ in the cross-ratio inequality depend solely on k and I provided that
the dynamical size of the interval (a,d) is larger than

Proof. According to Lemma 1.1, the Schwarzian derivative is negative on a sym-
metric neighborhood U of 0. Outside this interval F is a diffeomorphism. We split
the images of (a, d) into three classes M/,z = 1,2,3. The first class consists of all
intervals which are not contained in U. The second one comprises all that are con-
tained in U but do not cover the critical point, and finally the remaining intervals
belong to the third class. Suppose now that the dynamical size of (a,d) is large.
Then the intervals from MS cover the critical point and are contained in £/, while
these from M\ are in the distance at least \U\/4 away from 0. By a compactness
argument, the derivative of Ft is bounded away from 0 on the union of intervals
which form MI . However, this bound is only uniform.

We calculate separately the distortion of the cross-ratio on the intervals from
these three groups. First, the total distortion over the intervals of MI is less than 1
because of the negative Schwarzian derivative (see Fact 1.2). The distortion over
the intervals of MS, there are at most k of them, is calculated for Ax1 instead
of F. An error due to this substitution is exponentially diminishing in terms of
the dynamical size of (a,d). Detailed computations are done in the proof of the
cross-ratio inequality in [17]. So, the product of increases of the cross-ratio over
the intervals from M2 and M3 is universally bounded, provided that the dynamical
size of (a,d) is large enough. To deal with the increases over the intervals from
MI, we will prove that the cross-ratio is the quantity of the second order and the
Schwarzian is the right object to control its distortion.

Lemma 2.5. Let f be a C3 diffeomorphism. Then

where x is any point in (b,c) and o(z) is a function which depends on f but not
on a,b,c,d so that

Z->0 Z

Proof. Let us recall that — logCr(α,Z?, c, d) is equal to the hyperbolic length of the
interval (b,c) in the disk of the diameter (a,d). Therefore,

- logCr(flAc,</) = /!/(* - a) + \l(d - x)dx ,
b

and consequently

Cr(f(α),(6),(c),(cQ) = <• /'(*) _ 1

°g Ct(a,b,c,d) ίf(x)-f(a) x-aX

c f'(x) 1
+ - ~ ^ X '
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We approximate the denominator by the Taylor polynomials of the third degree

/(*) - f(ά) = f'(x)(x -a)- l-f"(x}(x - a)2 + l-f'"(x)(x - α)3 + o(\x -a3),

f(d) - f ( x ) = f'(x)(d -x) + \f"(x)(d - x)2 + \f'"(x)(d - x)3 + o(\d -x3).
2 6

The integrand can be thus rewritten in the form

f'(x) - ίf"(x)(x -a) + lf'"(x)(x - α)2 + o(\x - a

Write the fractions above in the common denominator neglecting all terms of order
higher than 2. We obtain

))2(d-a)-

which is equal to \Sf(x)(d - a) + o(\d - a\). D

From the lemma it follows that the total distortion of the cross-ratios over
intervals of MI is bounded from above by

] . (5)

It remains to observe that the expression (5) tends to 1 as the dynamical size of
(a, d) grows. Indeed, since ΣieM I^Ί = k> me sum °̂  squares of the lengths goes
to 0 with the biggest length. The quantity K comes from multiplying the terms

and is likewise decreasing with the length of the biggest interval. This completes the
proof of the universal version of the cross-ratio inequality. The universal cross-ratio
inequality implies the Uniform Bounded Geometry. D

Proof of the Distortion Lemma. For a quadruple (a,b,c,d) define its cross-ratio
Po by the formula

„ , , 7 X \a-d\\b-c\
Pofoi, *,</):= - ̂  - -1

\a — b\\c — d\

Fact 2.3. Under the assumptions of the Distortion Lemma we have that

Vv(fm(a\fm(b\fm(c)Jm(d) ^ KmPo(a,b,c9d),

where each K[k] depends only on the family Ft and the dynamical size of (a,d\
and each one goes to 1 as this dynamical size grows to infinity.

Proof. This follows from the Bounded Geometry and Theorem IV.2.1, part 1, of
[13]. D
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In fact we will prove a little more than we promised. We will show that if there
is extendibility only on the one side of the interval (x,y) then f'(x)lf'(y) stays
bounded away either from zero or infinity in dependence on the order of points c
and y.

Let a < x < y < d. Take a point z G (x,y). Then by Fact 2.3,

P o ( f m ( a ) 9 f m ( x ) , f m ( z ) 9 f m ( y ) )
- fτ~; - : -

Po(a9x,z,y)

Passing with z to the limits, x and y, we obtain two infinitesimal versions of the
above inequality. By algebra, we can rewrite them in the form:

ff( j
J (x) , i i\a-y\ \a-x\ \x - y\

and

1 \Γ(a)-fm(y)\ \fm(a}-Γ(x)\ \x - y\

f'(y) \a-y\ ~ 23'["] |α - x\ \f»(x) - f*"(y)\ '

The above inequalities remain true if we drop \a — y\ and \a — x\ on both sides.
Multiplying them by sides, we obtain that

The right-hand side of (6) is greater than the square of

Cι(Γ(a\fm(x\Γ(y\fm(d}).

To obtain the lower bound of f ' ( x ) / f ' ( y ) replace in the reasoning above the triple
{a,x,y} by {x,y, d}. The Distortion Lemma follows.

2.3. Proof of Proposition 1

Vanishing positive Schwarzian. Consider an iterate fm := f f on an interval (α,Z?).
Choose an open neighborhood of 0 on the circle. For any point x G (a, b) we look
at Sufm(x) defined to be

m-\

SuΓ := Σ S f ( f ( x ) ) (ί/1')7)2 (1 - Xu(f(x)(moa 1))) , (7)
/=o

where χu is the set function of U. In this situation we have a lemma:

Lemma 2.6. If the following conditions are satisfied:

• there is a larger interval (af,b') D (a,b) so that the derivative of Fm does
not vanish on (V,Z/),

• Ct(fm(af\fm(a\fm(b)9f
m(bf)) ^ s,

• all intervals (a,b\...,Fn l(a,b) are disjoint on the circle, then for every U,
every family Ft and every ε > 0 there is a constant K so that for every x G (a,b)

Sufm \b - a\2 ^ Kmax{\f(a,b)\ : 0 g / ^ m - 1} .
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Proof. By the Distortion Lemma, each derivative (fl)'(x) in the formula (7) is
comparable to the ratio \fl(a,b)\/\(a,b)\ within factors depending on ε and the
family. On the other hand, the Schwarzian derivative of / on the complement of
U is bounded. Since the sum of lengths of all images of (a,b) is less than 1, the
lemma follows. D

Conclusion of the proof. Let us denote

W := max{|/;(/Γβ(0) + Λ/Γ*(0) + p)\ : i = 0,...,β - 1}

and w = 1/7^(0) + Λ/Γ^(0) + P)\ For every family, we can find a neighborhood
U of 0 on the circle on which the Schwarzian derivative can bounded

for C\ universal. This simply follows from looking at the Taylor expansion of / at 0,
in fact like in Lemma 1.1. The bound n(FQ) can be chosen so that (F^Q(Q),F^q(Q)}
is contained in U for every t with p(ί) of degree more than n(Fo). This n(Fo)
exists and is uniform by the Bounded Geometry. Then we split the set 0, . . . , n — 1

into Afι,M2 and M3 depending on whether /{(/Γβ(0) + Λ/Γ*(0) + p)(modl) is
contained in U, contained in the complement of U9 or overlaps. Accordingly, we
can split

sf?(χ) = Σ sft(f\χ)) ((f-l)'(χ))2

+ Σ $//(/'(*)) ((/''' Xto)2

Σ sft(f\χ))
/eΛ/2

The set Mj contains at most two iterates. By possibly making n(Fo) even larger
we can make sure that these intervals are bounded away from 0 by a universal
distance. The bound

, C2W
2

= ™2

follows directly. The bound

C2W
= -π;2

is a direct consequence of Lemma 2.6.
To consider the first sum, we again replace the derivatives with ratios of inter-

vals. The Bounded Geometry and the Distortion Lemma imply that this contributes
a universally bounded error provided «(Fo) was chosen large enough,

Σ (8)

The term for i = 0 is of the order of w~2, so it majorizes the two remain-
ing sums for P/Q of large degree because they are of the order W w~2 This
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proves that the Schwarzian derivative is bounded away from 0 as is the claim of
Proposition 1. To prove the second claim, we allow x to range over the inter-

val (/?(0) - Λ/Γβ~*(0) + P + p). By the Bounded Geometry the corresponding
terms in the sums (8) are universally comparable, then so are the sums themselves.

2.4. Proof of Proposition 3. The key tool that we will use more than once in this
paper is an approximate representation of the parameter derivative in terms of the
lengths of dynamically defined intervals in the phase space.

Lemma 2.7. If(t,x) £ S, (the set S is defined in the statement of Proposition 3),
then

- log

The bound K\ is uniform, but it also becomes universal for a large enough degree
of P/Q.

Proof. The parameter derivative has the form

i (*)) -

For a given i consider the chain {(fi+J+q(x) - pjί+j(x)\ j = 0,...,g - /}. We
check easily that the chain is disjoint with the critical point. By the Bounded
Geometry f@~l can be extended as a diίfeomorphism onto a larger interval, namely
because the critical values of f@~l are outside the neighborhood of 0 delimited by
fq(0) — p on one side and f@~q(Q) — P + p on the other. Therefore, the Distortion
Lemma allows us to replace the derivatives of f@~l by the ratios

\fi+q(χ) - /''(*) - P\
with a bounded error and the estimate of the lemma follows. Because the estimates
of the Bounded Geometry are eventually universal, and so is the Distortion Lemma,
the universality of K\ for large degrees of P/Q also follows. D

Lemma 2.8. Let t\ and t2 belong to p~l[P/Q,P'/Q'], where P/Q is a Farey domain,
and let x be any point. Then

„_, \f\W- *-P\

The bound K2 is universal provided that the degree of P/Q is large enough.

Proof. Let us assume that t\ < t2. We fixed the configuration so that the fq

t — qih

iterate moves points to the left for t below p~l(p/q). Thus, the estimate from
below is obvious. Note that f^(x) > f£(x) — 2p. For a contradiction, assume

/£(*) ^ f%(X)-2p. Let Q = mq + s and apply f^~2)q to the left-hand side,

and ft™~ to the right-hand side of this inequality. This gives
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However,

)-O+l)/?

by the ordering implied by the rotation number. This is a contradiction, so

f^(x) — 2/> as claimed. The first inequality of the Bounded Geometry allows us
to conclude the proof. D

Lemma 2.9. Let t belong to ρ~l(P/Q,Pf IQf) U p~l(P'/Q'). Choose x and y so
that

y E [x,F?(x)] .

Then,

.
~ \f?(y}-y-P\ ~

60WH J KI is universal provided that the degree of P/Q is sufficiently large.

Proof. This follows by the first statement of Bounded Geometry. We observe

the ordering of points F^^(x),F^®(y),x,y,Fp(x),Fp(y) on the circle. Thus, the

arc (x,Fp(x)) is contained in (F^~®(y),Fp(y)). Hence, its length is bounded by

L $ \ F t ( y ) — y — P\ by the Bounded Geometry. The other inequality follows in a
symmetrical way. D

Finally, we get this estimate:

Lemma 2.10. Let t\ and t2 be contained in ρ~l(P/Q) U p~l(P/Q,P'/Qf) Then, the

time derivatives 0//^(0) and /^(O) are comparable within uniform constants.

Proof. We first use Lemma 2.7 to convert the parameter derivatives to sums of ratios
of intervals. Next, we need to show that any the lengths of any two corresponding
intervals in both sums are comparable within uniform constants.

Consider (/^(0),^(0)) and (F}2(0),F£q(0)). By Lemma 2.8 |F£(0)-

^(0))| and F/2(0) -F 5(F;2(0))| are uniformly comparable. Observe that 7^(0)

belongs to the interval (/^(F;2(0)),F/2(0)). Therefore, Lemma 2.9 stated for the

Farey domain [p1 '/q',p/q)9 which contains [P/Q9P'/Qf] (in the worst case p'/q' =
P/Q), concludes the proof. D

The Proof of Proposition 3. In view of Lemma 2.10, the only thing that remains
to be shown is the uniformity of change with respect to x with t fixed. By Lemma
2.7 this comes down to estimating the ratios of

We need t in the preimage of a Farey domain bounded by p/q to conclude the
argument by Lemma 2.9. Since the left daughter of p/q is at most P/Q such a t
can be found.

2.5. Proof of Proposition 2. To see the first statement, observe that the critical val-

ues of Fp closest to 0 are F^~g(0) and F®~S(Q). By Bounded Geometry this means
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extendibility of /p as a diffeomorphism onto a larger image. Then we apply the
Corollary to Proposition 1 with i :— Q. We see that χf 1 preserves this extendibility.
Thus, the nonlinearity of rescaled g is bounded by the Real Kobe Lemma, and the
first claim of Proposition 2 follows.

The key to the other two statements follow from the differential equation

DΛ g = Sg + l/2(^/)2 , (9)

which is satisfied by every C3 diffeomorphism g (for a direct check, also see [13]
p. 56.) For the second claim, choose n(F$) as given by Proposition 1. Let L denote

the maximum of S ( f f o Γ) on the unit interval, and K\ be the upper bound on

t o Γ)\ (Γ is affine mapping the unit interval onto (0,/7~^ + /?)) obtained in
the first part of Proposition 2. We see that L ^ —3K\ — K\J2 or the differential
equation (9) would clash with the bound on the nonlinearity. By the second claim
of Proposition 1 the Schwarzian derivative is comparable at various points of the
unit interval, so the bound from below follows.

To prove the last claim, consider an abstract class of diffeomorphisms ^(w,L)
defined as the set of functions defined in a neighborhood of 0 and having the
following properties:

1. Their Schwarzian derivatives are negative and bounded away from 0 by
some —β.

2. For any g G ̂ , 0(0) — w.
3. There is no x G (—L,L) where g is defined and g(x) g x.

Observe that for x G Γ~l(f? - PJq

t - p\ the function

belongs to ^(w,Z) with

'

and L universal determined by the Bounded Geometry. So, it suffices to show that
for every L > 0 there is a KI > 0 universal so that w < K^ implies ^g(0) >
K2 > 0.

We observe that every function from g G ̂ (w,Z) is uniquely determined by
three parameters: a continuous function ψ = Sg and two numbers v and μ equal to
Λ^g(Q) and g'(O) respectively. Indeed, given ψ and v,Λ^g is uniquely determined
by the differential equation (9), this together with μ determines g', and finally g
is also defined by w. Observe that with μ fixed, g is an increasing function of
\j/ and v. Indeed, a look at Eq. (9) reveals that if \j/\ ^ fa with the same v, then
the solution J f g \ ( x ) g: Ngι(x) for x ^ 0, while Jfg\ ^ Jfg^ for x ^ 0. This is
immediate if \l/\ > fa, since we see that at every point where the solutions cross
Jfg\ is bigger on a right neighborhood and less on a left neighborhood. Then we
treat ι//\ ^ fa by studying ψ1 = \j/\ + c, where c is a positive parameter and using
continuous dependence on parameters. As g' is clearly an increasing function of
J\^g and v, the monotonicity with respect to ψ and v follows. So, if we can show

that for some ψ and v and every μ the condition g(x) ^ x is violated on (— L,L),

it follows that there exists δ > 0 so that for every ψ ^ \j/9 we must have v > v + ε
if the function is in &(w9L).
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Pick ψ = — β and v = 0. The problem becomes quite explicit. From another
well-known differential formula u" = Sg u satisfied by u = l/Λ/g7 we find

j, ^ μ

Let wn —> 0 and pick μn so that the corresponding g satisfies g(x) ̂  x9 or es-
capes to +00, on (—L9L). Observe that μn must be a bounded sequence, since
we have g(x) ̂  c(L β}x ~^~w ^or x < ^? wnere £(Aβ) is the upper bound of
cosh/fa on [—L,0]. Thus if such a sequence existed, we could take a limit pa-
rameter μoo which would preserve g(x) ^ x even for w = 0, and this cannot be.

The third claim of Proposition 2 follows.

3. Scaling Rules

3.1. Notations and the main result. Throughout this chapter, we fix a Farey do-
main (P/Q,Pf IQ'). As explained in the Introduction, we may adopt the convention
0 < q = Qf -Q. The frequency-locking intervals which bound p~λ(P/Q,P1 '/Q')
from below and from above are p~λ(P/Q) and p~l(P'/Qf). For every rational u,
within p~l(u) there is a unique point c(u\ called the center of the correspond-
ing frequency-locking, and characterized by the property that the critical point is
periodic.

Next, we consider the sequence un of endpoints of the harmonic subdivision of

(P/Q,P'/Q'\
We define

Jn := (c(un+λ\c(un)\

and
J:=(c(P/Q\c(P'/Q')).

Definition 3.1. Harmonic scalings hn are defined as the ratios

h -W
H " \J\

for n G Z.

Our main result about harmonic scalings is contained in the following
proposition:

Proposition 5. Harmonic scalings decrease no faster than according to a uniform
cubic law, i.e.

where K\ is uniform.

//, in addition JOY all t E J9 Sf? < -L with L > 0 on (/Γβ(0) + Λ /~*(0) +
p) with 0 removed, then

^-w
Here K\ is a uniform constant, while K2 is a uniform function of L only. K\ and
K2 become universal if the degree of P/Q is sufficiently large.

The rest of this section will be devoted to the proof of Proposition 5.
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3.2. First estimates. As it was noticed in Sect. 1, it is enough to estimate hn for n
positive, since we can use the Farey domain ((P + P')/(Q + Q'^P'IQ') and then
flip the Farey tree. We define

tn :=c(un)

and ̂  = c(P/Q), t.^ = c(Pf/Q'\

As t moves from tn+\ to tn, Fί

(/l+1)β(0) travels from F^~β(0) to F~q(0). Thus,

where ξ is given by the Mean Value Theorem, thus ξ G (tn+\9tn). An analogous
argument shows that

this time with η <E p~l[P/Q,P'/Q'].
These equalities allow us to express the harmonic scalings in terms of ratios of

time derivatives and lengths of relevant intervals. We will now work to make this
relation as simple as possible.

Lemma 3.1. A number K > 0 exists so that

This K is universal provided that the degree of P/Q is sufficiently large.

Proof. By definition tn+\ and tn are in the frequency-locking intervals adjacent
to the Farey domain (un+\9un). Since this Farey domain belongs to the har-
monic subdivision of (P/Q,P'/Qf), Lemma 2.8 can be applied with q := Q and

Q:=nQ + Q' to see that |/^~β(0) - /,"*(()) + P| is uniformly comparable to

|/ί~*~β(0) -/,"*(()) + P|. By the Bounded Geometry, that is in a uniform ratio

with |/^(0) + p\9 and another application of Lemma 2.8 with q := q, t\ := tn and
t2 := ί-oo gives the claim. D

In view of Lemma 3.1, ndf® (0)

κ~lhn = = κh"
dt

We now concentrate on estimating the ratio in (10).

Lemma 3.2. In the situation of Proposition 5 and for n positive, there is a uniform
bound K so that

The bound K becomes universal if the degree of P/Q is sufficiently large.
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Proof. In this proof the notation x ~ y means that the ratio x/y is bounded from
both sides by positive constants that become universal for large degrees of P/Q. By
the Bounded Geometry and the Distortion Lemma, we see that

dt b dt '

Here, we replaced the spatial derivatives with ratios of intervals like in the proof
of Lemma 2.7. Next, we use Proposition 3 to replace all parameter derivatives in
this expression by

£«.„>.
again preserving comparability by uniform constants.

We see that

(Π)

dt

It suffices to show that

dfβ.
dt

:0/,0)
,

We have

as a consequence of Propositions. So, we only need to show that

iff (0) - /f +1)β(°) + p\ - 1/^(0) + P\ .
First,

l/f (0) - /^+1)ρ(θ) + p| ~ 1/7^(0) - /7*(

by Lemma 2.9 applied with c := /"+1 W°) and ̂  := fjq(0) and the first estimate
of the Bounded Geometry. Finally,

P| ~ l / " ? ( 0 ) - /ξ"
?(θ) + P\

by the second estimate of the Bounded Geometry. Lemma 3. 2 follows. D

3.3. Saddle-node estimates. In this section we derive estimates for harmonic scalings
as uniform functions of n. To this end, we will use Lemma 3. 2 in conjunction with
estimate (10) which makes this task equivalent to estimating
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It is sufficient to consider hn with n large. By the Bounded Geometry, the
expression (12) gives values bounded away from 0 and infinity in a uniform fashion
for any bounded n. Thus, the claim of Proposition 5 can be satisfied by choosing
the uniform constants appropriately.

Normalization. Consider F^ with ξ e Jn as in Proposition 5. Consider χ e

), which does not have to be unique, so that

*) - x : x G (0,F

For n large, χe(/f (0) - P,f~q"Q(0) - p - P). This follows from the Bounded
Geometry and Lemma 2. 9. We change the coordinates by an affine map so that χ
goes to 0 and FΓ^(O) goes to 1. The critical point is at some point c whose distance

from 0 is uniformly bounded and bounded away from 0. In these coordinates Fp
becomes a map which we denote by φ. By the first claim of Proposition 2, the
second derivative of φ is bounded on some (—C\9C\) with C\ > 0 uniform and
universal when the degree of P/Q is large.

Approximation rules. We say that φ satisfies the (α,κ:) upper approximation
rule if φ is not greater than the map

x -> x + α c2 + 0(0)

on some interval (—κ9k).
Analogously, φ satisfies the (α, K) lower approximation rule if there is the

converse inequality.
Since the second derivative of φ is bounded on a uniform neighborhood of 0,

there is a uniform choice of (α, K) so that the upper approximation rule is always
satisfied. In this sense we will say that φ satisfies the uniform upper approximation
rule. Then we define φu :— x + ocx2 + </>(0) with this uniform α. We will also show
that if the degree of P/Q is large, a uniform lower approximation rule also holds.
So, we define φι in the analogous way.

The advantage of approximation rules is the orbits under quadratic maps can be
examined more or less explicitly and the interesting quantities simply calculated.
This was basically the idea of the authors who previously contributed to the subject
(see [11], also [10,5], which by no means exhaust the list, as trick was discovered
independently a couple of times).

Lemmas about quadratic maps. Consider a function Φ

x — > jc -f oαc2 + ε

defined on (—κ9κ). Also assume that α > β > 0 for some β9 while K > y > 0 for
some y, and ε > 0. A maximal orbit is a sequence (>>/)o^/^/ for which yi+\ —
Φ(yi) and yo has no preimage while yι is no longer in the domain. We have two
facts about maximal sequences which are proved, though not explicitly stated, in
[5].

Fact 3.1. The length of a maximal sequence I and ε are related by

where K\( , ) is a positive function of β,j only.
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Fact 3.2. Let /o be the number of points yt from the maximal orbit which satisfy
yt+\ ~ yι < 2ε. Then

where again K2( ) is a positive function of β only.

Relating φ(Q) and n

Lemma 3.3. If φ satisfies the uniform upper approximation rule,

Proof. The number n is at least the length of a maximal orbit by φu. The claim
then follows by Fact 3.1. D

Proof of the first estimate of Proposition 5. There are n terms in formula (12).
By Lemma 3.3, each is at most of the order of n2. The estimate on hn from below
follows from Lemma 3. 2 and formula (10).

The negative Schwarzian case. The other estimate of Proposition 5 is harder,
but since we only claim it in the negative Schwarzian case, we can be aided by the
strong claim of Proposition 2. Among other things, we now know that φ satisfies
both uniform approximation rules. Also, φf has exactly one minimum which must
be attained on the right of 0. Consider (—κ,κ) so that both uniform approximation
rules hold.

Only what's inside (— K, K) counts. We prove this lemma:

Lemma 3.4. The number of iterates k so the 0 < k < n and φk(c) ^ (—κ,κ) is
uniformly bounded. Moreover, for all such values ofk, φk+λ(c) — φ(c) is uniformly
bounded away from 0.

Proof Actually, the first part of the claim obviously follows from the second. This
is only a problem if there are many iterates k so that φk(c) G (—κ,κ), otherwise
0(0) is bounded away from 0. Thus, by the approximation rules, if k\ and ki
are the smallest and the largest k so that φk(c) G (—κ,κ\ the distances φkl+\(c) -
φkλ(c) and φk2+\(c) — φk2(c) are uniformly large. But they are still smaller than the

analogous distances for the values of k for which φk(c) φ(— K:, K) by the negative
Schwarzian property. D

That means that in the sum (12) the contribution from the terms corresponding
to values of k with the property that φk(c)$(—κ,κ) is uniformly bounded. On
the other hand, it is clear that the whole expression grows at least as n2. Thus,
for values of n uniformly sufficiently large, only the points of the orbit which are
contained in (—κ,κ) can be considered, and the result will approximate the whole
sum up to a uniform multiplicative factor.

Essential estimates. Consider the smallest k so that φk(c) G (— κ9 κ)9 and de-
note this point with XQ. Correspondingly, let jc/ be the last point of the orbit still
in (—κ,κ)9 and in between we get a sequence which satisfies jt/+ι = φ(xt) for
i = 0, . . . , / — 1 . We are interested in estimating the sum

from below.
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Lemma 3.5. In our situation,

Proof. This is a stronger version of Lemma 3. 3 under stronger assumptions, and the
proof is very much the same. D

Estimating the sum (13) from below. Let y be the largest point of the orbit
of c by φ still negative. Then (y ) and (y") denote maximal orbits for φι and
φu respectively which also contain y. The sum given by (13) is larger than the
corresponding sum for (y"), as the intervals occurring in the latter are fewer and
longer. An analogous argument shows that the sum for (yf) bounds the interesting
expression from above.

To estimate

? tf+i - y?

from below we have to use Lemma 3.5 which then asserts simply that 0(0) is
comparable to n~2. Then, Fact 3.1 implies that n is comparable to the length of the
maximal orbit of both φu and φι.

Then, by Fact 3. 2 we see that the number of intervals for φu with lengths not
greater than 2</>(0) is still comparable with the length of the maximal orbit, thus
with n.

Thus, we get a uniform cubic estimate from below. Then Lemma 3. 2 with esti-
mate (10) enable us to derive the second claim of Proposition 5.

4. Holder Continuity of the Rotation Number

In this section, we will prove Theorem A announced in the Introduction.

4.1. Some consequences of scaling rules. We will derive certain "Holder type"
estimates as consequences of Proposition 5. The reasoning is actually a repetition
of that used in ([5]) to prove Holder continuity of the rotation number for families
of diffeomorphisms. We want to emphasize that we need estimates everywhere on
the parameter space and we are unwilling to assume that the denominators of Farey
domains that we work with are large enough. So, only the first claim of Proposition 5
holds, i.e.

/ ^ K\,P.5
hn ^ -TV -

Two estimates. We fix our attention on a Farey domain (P/Q,P'/Qf) subject to
our usual convention 0 < q = Q' — Q. We consider the harmonic subdivision by
points un. Also, the centers of mode-locking intervals are denoted with tn (n may
be infinite) as in the Scaling Rules section.

Lemma 4.1. Let u — un, v = un+\. Then,

\u - H \c(u) - c(w)Γβ g β\P/Q - P'/Q'\ \c(P/Q) - c(Pl/Qf)\-Λ

with uniform 0 < α,/J < 1.
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Proof. We have the following estimate as a consequence of Propositions:

P(f-oo)-p(*oo)| \tn+\-tn\* ~ ^P5(nQ + β')((/I + 1 )β + β7)

(recall that |βP' -Pβx| = 1 as Farey neighbors).
Consequently,

|p(f-oo) - P(foo)|

where we used Q < Q' < 2Q. By choosing α sufficiently close to 0 we can get
the ratio on the right-side smaller than some number less than 1, say β. D

Next, we want to generalize Lemma 4.1 to u, v arbitrary endpoints of the har-
monic subdivision of (P/Q,P'/Q').

Lemma 4.2. Let u, v be arbitrary two endpoints of the harmonic subdivision of
(P/Q,P'IQ'\ or P/Q or P'/Q'. Then,

\u - w| \c(ύ) - c(w)|~α ^ Kλ\PlQ-P'IQ'\\c(PlQ) - c(/"/β')Γα

with α uniform and positive.

Proof. First, we note that it suffices to prove the lemma when u = un and
w = unf with n n' ^ 0. Indeed, in the situation when both u and v are endpoints,
but n n1 < 0, we can consider n and 0 as well as n1 and 0 separately. Then, if
we sum up resulting inequalities and use convexity of ^, we can infer the claim
of the lemma.

If, for example, u is P/Q, we can take the limit with un, where n tends to +00.
By continuity of the rotation function, this would give us almost the estimate of
the lemma, except that on the left-hand side c(u) is replaced with t$ which is the
upper endpoint of p~l(P/Q). However, this is stronger than the estimate claimed
by the lemma.

Furthermore, we can restrict our attention to n,nr ^ 0. We define m by 0 <
m = n' — n.

Again, we use Proposition 5:

\p(tn+m) ~ P(tn)\ k-oo-^oo|α

This expression is bounded by some K\ if α ^ 1/2. D

4.2. Global estimates. Then, we let u < w be arbitrary rational numbers from the
unit interval. There is a unique simple path in the Farey tree from u to w. It contains
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the "highest" node V. This splits the path into two parts: from u to V and from V
to w.

Then, we define maps μ and v on the Farey tree. Given a rational number v,μ(v)
is the rational number that corresponds to the initial segment of the symbolic code
of v cut off at the last turning point (i.e. if the turning points are w ι , . . . , / W j b the
symbolic sequence of μ(v) is a\,...,am).

Then, v(t>) is the mother of μ(v ).
Clearly,

deg(μ(ι;)) = deg(v(ι?)) = deg(t ) - 1 .

Furthermore, v lies strictly between μ(v ) and v(ι ), and v is in fact an end-point of
the harmonic subdivision of (v(t ), μ(v)).2

The function ζ. If x and y are two rationals from the unit interval, we define

ζ(x,y):= \x-y\- |φ) -

Lemma 4.2 gives us a fundamental estimate

9 v ( x ) ) 9 (14)

provided μ(x) — μ(y).
If we iterate μ and v, we get a nested sequence of growing fundamental domains

bounded by μl(x) and vl(x). For any / we have

ζ(μl(x),v'(x)) g βζ(jl+l(x),v>+l(x)) (15)

by Lemma 4.1.
Finally, we define a sequence UQ = v and wz is equal to the greater of μz(ι;) and

v'(ι ). Similarly, we define the sequence wz so that WQ = w and w/ is the minimum
of μ/(w) and v/(w). Also, let / be the largest so that w/ ^ F.

We want to bound ζ(u,Uk). As ζ(υ,υ + υ') is convex as a function of (/, and
the sequence u\ is growing, clearly

-ι,«, ) (16)
i=l

Since MZ and wz+ι are contained between μ(w/+ι) and V(M/+I), we can estimate

by inequality (14). Then we iterate μ and v on μ(Mϊ +ι) as many times as possible,
which at least max(& — / — 1,0). By the repeated use of inequality (15), we get

ζ(μ(uM),v(uM)) g

Since C(0, 1) = 1, we can finally get from estimate (16),

by simply adding up a geometric progression.
The same argument shows that

) ^ K2 .

In this section, if we write (a,b\ we perhaps mean (b,a) when a > b.
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Finally, by their definition μ(w/) — μ(uk) so that they both are in the fundamental
domain bounded by μ(uk) and v(uk).

Again, we get

£ ( K * , W / ) ^ *!«//(«*), V(K*))

from estimate (14), and
ζ(μ(uk),v(uk)) £ 1

by the repeated use of estimate (15).
Since

by convexity, we have proved that

ζ(κ,w) g*3

with uniform ^3, which means the Holder estimate. That is, we have proven that

\p(x)-p(y)\ £K3\x-y\*9

provided that x and y are both centers of frequency-lockings.
The general Holder estimate. By continuity, we also get the same Holder esti-

mate if x and y belong to the closure of the set of centers, i.e. to the complement
of the union of interiors of all frequency-locking intervals. If c < y are arbitrary,
we consider xr which is the infimum of the set of centers which are between x,
and y' is the supremum of the same set. They are well-defined unless x and y
are in the same frequency-locking interval, in which case the estimate is evident.
The Holder estimate holds for x' and y1 '. Moreover, p(x') = p(x) and p(y') = p(y)9

while \x' — y'\ 5Ξ x — y\. The Holder estimate follows again.

5. Hausdorff Dimension

We will prove Theorem B. In this section, we will use the harmonic formalism
of explained in the Introduction section. That is, we have a one-to-one coding of
fundamental domains in the parameter space by finite sequences of Z-type symbols.
The length of the code will be called the degree of the corresponding fundamental
domain.

The fundamental domain which corresponds to the code (n\9...9nr) will be
denoted with @(n\9. ..,nr).

Let Ωf be Γ\Uw€Qp-V).
It is sufficient to prove that the Hausdorff dimension of

satisfies our bounds for r large enough. That means that we can assume that Propo-
sition 1 holds and, consequently, use both claims of Proposition 5. Moreover, both
constants from Proposition 5 are universal, i.e. they don't depend on the family.

5.1. The estimate of HD(Ωr ) from above. Take a cover of Ω' which consists of
all fundamental domains of degree r.

Then

Σ
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if β > 1/3 as a consequence of scalings rules (Proposition 5.) Here, A^( ) is a
uniform positive function with limit 0 at infinity.

Since for \nr ^ k,

1

by Proposition 5, by Young's inequality

Σ l^m,...,^ z
«1,..,«r€Z,|nr|S*

Thus,

Σ

We claim that kl~^K +K2(k) can be made less than 1 by choosing /? suf-
ficiently close to, but less than, one. Indeed, remember that K\ < 1. So, we first
choose £ so large that A^(A:) is less than 0.5(1 — K\). Then, by adjusting β we

can make hl~$K^ arbitrarily close to K\.
Since the diameters of the fundamental domains tend to 0 with the degree, this

β is not larger than the Hausdorff dimension of Ω'.

5.2. Estimate from below by 1/3. The proof is based on the following
Frostman's Lemma, which we borrowed from [15]:

Fact 5.1. Suppose that μ is a probabilistic Borel measure on the interval and that
for μ-a.e. x

lim inf log(μ(jt — ε,x + ε))/log(ε) ^ λ .
ε— »0

Then the Hausdorff dimension of μ is not less than λ3

Take η < 1/3. By the scalings rules it is clear that a number k can be found
independently of the fundamental domain ^(n\,...,nr) so that

We now define μ as a limit of probabilistic measures. The measure μo is just
the Lebesgue measure on p~l(09 1) properly scaled. To obtain μ,+ι, we consider all
fundamental domains of degree /. If ^(«ι,..., «, ) is one of those, the density of
μ/+ι with respect to μ/ on @(n\,...,rii) equals

on fundamental domains of the harmonic subdivision with \nj+\\ ^ k, and is zero
in the mode-locking intervals which belong to the endpoints of the subdivision. The
sequence has a limit which is supported on a set ΩQ contained in Ω1'. The set ΩQ
consists of the preimages in the parameter space of all irrationals with harmonic
code symbols bounded by k as to absolute value. Moreover, by our choice of η we

Frostman's Lemma remains true if the ^ signs are replaced with ^ signs.
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see that the denominator is not less than \@(n\9...9ni-ι)\η

9 thus the density is not
greater than

therefore

So, by induction,

and since clearly
. . , ni+\ )) = μl

the same estimate holds for μ itself.
Take any small ε > 0 and an x G ΩQ and look for the largest r so that

for some n\,...,nr. Note that a finite r with this property always exists by topology.
Then

and 2ε is greater than the length of the same gap between domains of the harmonic
subdivision of 3>(n\9. ..9nr) which have non-zero measure. Indeed, by the definition
of r, the interval (x — ε9x + ε) must be straddled between at least two such domains.
If the size of the gap is denoted with y, we get

log(μ(x - ε,x + ε)) > log(|^Qι,..., nr)\)

log(ε) = η log(y)

By Proposition 5, the lengths of both domains and \ S $ ( n \ 9 . . . 9 nr)\ are all related
by uniform constants. But y is not much smaller than either of them as a result of
the estimates of [17]. So the logarithms differ by a bounded amount and their ratio
tends to 1 as ε shrinks to 0.

So, if we pass to the limit with ε — > 0 we see that the assumptions of Frostman's
Lemma are satisfied, therefore the Hausdorff dimension of Ω0? which is larger than
Ω', is at least η. But η could have be chosen anything less than 1/3. So, the estimate
follows.
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