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Abstract: Using a method based on the application of hypercontractivity we prove
the strong exponential decay to equilibrium for a stochastic dynamics of unbounded
spin system on a lattice.

0. Introduction

In recent years essential progress has been made in understanding the ergodicity
properties of the Markov semigroups Pu t G IR+ defined on the space of continuous
functions ^(Ω% with a configuration space Ω = M Γ , M being a compact metric
space and Γ a countable (infinite) set. An important method for the study of these
properties was first introduced in [HS]. It involves three elements:

(i) a strong approximation property of the semigroup Pu t £ IR+ by the semi-
groups Pf'ω acting (essentially) on ̂ (MΛ), A C Γ finite sets, and fixing a config-
uration ω G Ω outside A,

(ii) the finite volume ultracontractivity property of Pf'ω9 and
(iii) the uniform in volume A and boundary conditions ω hypercontractivity

property of the semigroups Pf>ω on the spaces LP(E™), p £ (l,oo), with E™ being
the corresponding invariant probability measures.

The first two properties have been well known for a long time for the situ-
ation of compact configuration space. Although the hypercontractivity property of
a semigroup, or its equivalent property of corresponding invariant measure called
the logarithmic Sobolev inequality (LS), was introduced almost twenty years ago,
[G], for many years no nontrivial example involving an infinite dimensional con-
figuration space was known. (For the trivial one corresponding to the Gaussian or
some product measures see [G].) This was until a very nice Bakry-Emery cri-
terion (B-E) for the logarithmic Sobolev inequality has been introduced in [BE],
for a case of configuration space defined with a (finite dimensional) smooth, con-
nected and compact Riemannian manifold M with positive Ricci curvature (or a
case when the Ricci curvature is zero, but involving some special log-concave
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measures). Exploiting this criterion, Carlen and Stroock gave in [CS] the first non-
trivial examples of probability measures (for some statistical mechanical spin system
on a lattice) which satisfied the logarithmic Sobolev inequality (uniformly in volume
and boundary conditions).

A general idea and technique to study the logarithmic Sobolev inequality by
exploiting the associated Gibbs structure was introduced in [Zl-3] and developed
later in [SZ1-3], (see also [MO,LY and SZ4]). This allowed us to consider the
highly nontrivial situation where the Bakry-Emery criterion cannot work. That
includes the case when M is a compact, smooth and connected Riemannian man-
ifold with nonpositive Ricci curvature or the case (important for applications in
statistical mechanics) when M is simply a finite set.

In the present paper we extend the ergodicity results to the other important
case when M is a noncompact space. Besides that, the present paper is a necessary
intermediate step towards a study of some other interesting questions concerning
hypercontractive Markov semigroups and its applications in the field theory and
statistical mechanics (as e.g. analyticity and particle structure, ergodicity properties
for systems in continuum).

In the first section we construct a class of nontrivial semigroups Ph t e IR+,
as "a perturbation" of a Gaussian semigroup and we prove an analog of the strong
approximation property appropriate in this case. Let us mention that a different
construction based on the use of a cluster expansion, (and therefore for a very
restricted type of perturbations), has been given in [Di]. (Let us note also that
our construction is essentially independent of the Gaussian character of the free
semigroup and can be easily carried out for more general cases when we have
also multispin interactions of finite range with bounded derivative. However having
some specific applications in mind and in order to simplify the notation we consider
explicitly the case of local perturbations of the Gaussian semigroups.)

In the second section we study various ultracontractivity properties of the finite
volume semigroups.

Next using the results of Sects. 1 and 2, we give in Sect. 3 a general strategy
(extending that of [HS]) for proving the strong ergodicity result. We show that
it is possible to apply our strategy even in the situation when the finite volume
ultracontractivity fails. (Let us note that for the continuous space models, which we
shall study in the future, one can have logarithmic Sobolev inequalities, but one
cannot expect to have a local ultracontractivity. Therefore it is important to know
that such an extended strategy can work.)

Section 4 is devoted to proving the logarithmic Sobolev inequalities for a (com-
prehensive) class of nontrivial examples with Ω = IRZ, for which the B-E criterion
does not work.

In Sect. 5 we extend these results to the higher dimensional lattices. In this case
one has to introduce some restrictions, (because as is known in higher dimensions
phase transition can occur), but still one can go beyond the B-E criterion. The
results of Sects. 3-5 allow us to show a strong ergodicity result for the correspond-
ing hypercontractive semigroups with pointwise exponential decay to equilibrium.
(By this we have got an important extension of ergodicity results of [Di], where
an ergodicity of the semigroups has been proven for a very restricted class of
initial distributions. Let us mention here also the recent work [AKR], where the
Logarithmic Sobolev inequalities, proven for convex interactions via the
Bakry-Emery criterion, has been used to study the L2-ergodicity of the correspond-
ing semigroups.)
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A summary and some discussion of interesting open questions are given
in Sect. 6.

1. A Construction of the Stochastic Dynamics

We consider a lattice Γ = ΊLd', J e N with the usual Euclidean distance d( , ).
Let 5 denote the family of all finite subsets of Γ. For the purpose of
discussion of the thermodynamic limit, we distinguish an increasing sequence
go Ξ {Λn G 5}«GN invading all the lattice Γ and called a countable exhaustion.
We will assume that there is a number d0 G (0,oo) such that for any /iGlNwe
have d$ι ^ diamAn/d(0,dΛn) ^ do.

Let (Ω,Σ) = ( I R , ^ I R ) Γ . By φu we denote the ith coordinate function on (Ω,Γ),
called the spin at site i£ Γ. Given two configurations η, ω G Ω and a set A C Γ,
we define a new configuration ηΛ ωΛ£ by

ηι for i G A

a>\ tor l G AL

For A C Γ we define a σ-algebra ΣΛ as the smallest σ-subalgebra of Σ with re-
spect to which all the coordinate functions φ\9i £ A are measurable. A set of real
bounded ΣΛ -measurable functions will be denoted by 91^. The elements of the
set 2Io = Uyie^ ^ Λ a r e c a ^ e ( l t n e l°ca^ functions. If A C TLd is the smallest sub-
set such that / G 31,4, for any set A' C Zrf we define d(f,A') = d(Λ,A'). For
many applications it is sufficient to restict ourselves to a smaller configuration space
(y7 ', ® ), a subspace of (Ώ, Σ") consisting of tempered sequences, i.e. configurations
ω = (o)\\ez

d satisfying a growth condition |ωj| ^ C(l + iJl)^ with some positive
constants C and N possibly dependent on ω. For a probability measure μ on (Ω, Σ)
we set μ(/) to denote the corresponding expectation of a measurable function /
and use the following notation for the two point truncated correlation function:

μ(f,g) = μfg- μfμg

of measurable functions / and g.
Let μc denote a Gaussian probability measure on (£2, Σ) with mean zero and

a covariance G. We assume that the inverse G " 1 of the covariance G is of finite
range, i.e. there is a positive number R such that

G Γ ' Ξ O i f rf(i,j) > Λ . (1.1)

By JUQ1 we denote the Gaussian measure with the Dirichlet boundary condition

on <9/L, i.e. the Gaussian measure with mean zero and covariance G ^ such that

(Gtf/i)ij = G^ 1 if h 3 G A or i, j G ΛC, and zero otherwise. Let S = {EΛ}Λe%, be the

family of the regular conditional expectations E^(F) = EμG(F\ΣΛ^)(ω) associated

to the measure μc
Let U be a semibounded function which can be represented as a sum of a

function W with a bounded first and second derivative and a function V with
nonnegative second derivative. For every A G g we define a local interaction
energy by

UΛ(φ) = J2U(<Pi) . (1.2)
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We introduce the family $ = {EΛ}Λe%, called a local specification corresponding
to the free measure μc and the local interaction U, by setting

By <&($) we denote the set of Gibbs measures for $, i.e. the set of all probability
measures on ( y ' , S ) satisfying the condition

μ(EAf) = μf . (DLR)

By d^{S) we denote the set of all extremal Gibbs measures for the specification
$ (i.e. the set of these Gibbs measures which have no nontrivial convex linear
representation in terms of other Gibbs measures for $). Under our assumptions, it
is known (see e.g. [BH-K]), that the set <&($) is nonempty.

For later purposes we need to introduce the gradient operator by setting V A / =
ΛCΓ, where

) Ξ dfι(x\ω)

with d denoting the differentiation of a real function

R 3 x -> fi(x\ω) = f(x i ω),

the configuration x \ ω G Ω being defined by declaring its ith coordinate to be equal
to x G IR and all the other coordinates coinciding with those of the configuration
ω G Ω, and it is assumed that f x{ |ω) is differentiable for every i G A. We define
also

If A = Γ, we omit the reference to the set A in the above notation. Let
n G N denote the set of all functions / for which for any i G Γ we have
/i( |ω) G ̂ ( W ) ( R ) , with ^{n)(R) being the set of functions for which n deriva-
tives exist and are bounded. In the space ^(Ω) = ^°\Ω) we will use the supremum
norm denoted later on by || ||M. In ^ ( 1 ) we introduce a seminorm

Ill/Ill = Σl lv k /IL.

We say that a probability measure μ on (y7', S ) satisfies a logarithmic Sobolev
inequality (LS) with a coefficient c G (0,oo) if for some q G [l,oo) (and therefore,
by general arguments [G], for all q G [l,oo)) we have

μP log/ S -cμ\Vfqϊ \2 + μfq \og{μf*)* (LS)

for any positive function / for which the right-hand side is finite.
Using the gradient operator we define for all local functions / G ̂ 2(Ω) the

following operators:

where
= V?/ - j8,V,/ (1.5)
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with a coefficient β-u frequently called a diffusion coefficient, given by

V (1.6)

with C" 1 being an inverse of some covariance matrix specified later. In the case
when A — Γ and U = 0, it is known that the corresponding operator extends to a
generator <£Q of a Markov semigroup Pf = e ^ c , (called a Gaussian semigroup),
and we have

Pff{ω) = Jμc(dφ)f((\ - τ^φ + τfω) (1.7)

with

T ^ Γ ^ 1 . (1.8)

We will show also how to construct the semigroup for the infinite lattice system
corresponding to a nontrivial local interaction. For this, let us first note that, for
every A G 3 and ω G Ω, we have well defined the following (essentially finite
dimensional) semigroup

^ έ* ωAί) (1.9)

with the generator £Ά,dΛ defined by (1.4)—(1.6) with the covariance C =
Using this we define a tensor product semigroup on ^(Ω)

P{

t

k)f(η) = ]imPfn+ΛΛn'ω ..P?k+ΛΛk'mf(η) , (1.10)

where Hm^0 means the limit (in the uniform norm) as n —> oo with A\ G 5o?
/ = k,..., n + 1. Clearly the right-hand side is independent of ω G Ω and as one
can see its generator is given by (1.4)—(1.6) with the suitably chosen covariance
function C (having the Dirichlet boundary conditions on [Jn>k 8An). We will show

that the limit Ptf = lim£->oo Pf^f exists for every local function / and in fact
extends to a Markov semigroup for the infinite lattice system. We will need the
following fact.

Lemma 1.1. For f G ̂ ι(Ω) and any stochastic dynamics Pt defined above, we
have with ft = Ptf and any k G Γ the following inequality:

l iv k /,n^i iv k /iu c Σ JdsWv jsi (l.ii)
(ZK+ if d(),k)^R 0

with a constant C G (0, oo) independent o/k G A and the function f. If addition-
ally f G 91,1, Λ G g , this implies

Σ HVk/,11, ^ε(ί, iV) | | | / | | | (1.12)
d(k,Λ)^NR

with

Proof Let / G ̂ \Ω) and let f = Ptf = e&f. Then, using the fact that S£ is a
Markov generator, we have

^ 2 i £ 2 ^ (1.14)
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Since § = YJ-β] and

(1.15)

using our assumptions that V^F ϊϊ 0 and that the covariance C is of the finite
range, we get

| ( V k / , ) 2 S ^(V k / r )
2 + 2 Σ< IVk/rCy1 Vj/,| + 2||V2ff(%)||M(Vk/ί)

2 .

(1.16)
This implies that

j/tsi^^fsf ύ2 Σ, Λ- s |V kΛC k j

1V jΛ|+2| |V^(<p k) | | !,P I- ί(V k/ s)
2 .

(1.17)

Integrating the inequality (1.17) with respect to s G [0, t] and taking the supremum
with respect to the configuration ω e Ω we obtain

| |V k /, | | 2 ^ | | P , ( V k / ) 2 | | w + 2 Σ | C ϊ *
0

(1.18)
o

Hence we get

l|vk/ί|| S l | v k / | | + — C — y Σ /^l|Vj/ s | | (i.i9)

with the constant
S 2(Ckk + II v^vv \\U)(2K + 1) . (l.zU)

This ends the proof of the first part of the lemma. The inequality (1.12) follows
from (1.11) by simple general arguments, which do not depend on the semigroup
but only the inequality (1.11), (see e.g. [SZ2], 1.8 Lemma). D

Lemma 1.2. There is a constant B G (0,oo) such that

with

OCΞΞ SUp Σ I Q k Ί O 2 2 )
j k



Decay to Equilibrium for Stochastic Dynamics of Unbounded Spin Systems

Proof. To prove (1.21) we first observe that

φ])i(ω

407

(1.23)

Now using our assumption about the function £/, it is not difficult to see that for
any J G Γ we have

with the constant D ^ (1 + | | ΪP ' | | w + | infΛxK'(*)/( 1 + x 2 ) 2 ) | ) . Iterating the in-
equality (1.24) we obtain

\ ])ϊ exp(α/) (1.25)

with some constant B G (0, oo) dependent only on the constant D and

ι (1.26)

The inequalities (1.25) and (1.26) clearly imply (1.21) and (1.22). This ends the
proof of the lemma. D

Using the above lemmata we get the following useful estimate.

Lemma 1.3. For any Λn,Λn+\ e So, and any local function f e ^Λ0, ΛO C Λn we
have

(1.27)

with some constant B G ( 0 , o o ) independent of A n , A n + u the function f , ω £ Ω

and t G I R + ; [ (J>£Λ»)] denotes the corresponding biggest least integer.

Proof. To get (1.27) we note that for two Markov semigroups PtJ = etS£ι (i — 1,2),
setting ftj = Ptjf, we have

Hence

jf{ftΛ ~ hi) = JSfiίΛi - hi)

(Λi - fui) = \dsP(t-!tXλ{Sex - J?2)fs,2 •
0

(1.29)

/7+1Using this for the semigroups Pt

 /7+1 and Pf'\ respectively, we getf'\

£ Σ (1.30)
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From (1.30) and Lemma 1.1 used together with Lemma 1.2, we obtain

\pfn+ιf-pf»f\(ω) ^ (2R+l)dmaκ\C»ι\- Σ 0 + ω£)3eα'
J1 α d(kdΛ)^R

This implies (1.27) and ends the proof of Lemma 1.3. D

From the last lemma we get

Proposition 1.4. For every f G 91 Π ^ 1 ^ ' ) the following limit exists:

= \πnPff, (1.32)

and the family {Pt, t G R + } extends to the Markov semigroup on ^(ίf1). More-
over for any constant A G (0, oo) we have the following property of finite speed
of propagation of interaction: for every function f G 9ϊo Π l

\PJ-Pff\(ω)^D( £ e-Λd^\\+ωiγλ\\\f\\\e-Λt (1.33)
\ί/(k,ylC)̂ /? /

with some constant D dependent only on the smallest set Λ$ such that f G 2IΛ0,
provided that

d(f,dΛ) ^ Ct (1.34)

sufficiently large constant C G (0, oo) dependent only on the choice
of A.

Proof Proposition 1.4 follows from Lemma 1.3 by choosing the constant C in
(1.34) sufficiently large, so that

) 6 - 1 A - ( 1 3 5 )

(where C is given in Lemma 1.1, see (1.13)). D

2. Some Properties of the Stochastic Dynamics

For A G J5, let μΛ denote a Gibbs measure on (&", S ) corresponding to the inter-
action U and the free measure μ^f = μodΛ with Dirichlet boundary conditions on
dA. Let S£A and ̂ fg71 be the Markov generators defined by (1.4)—(1.6) with the
covariance G ^ and additionally with zero local interaction, respectively. Let Pf
and P°Q denote the corresponding semigroups. From now on we assume also that

there is a constant mo G (0, oo) such that for any A G 5 w e have G ^ ^ m^I in
the sense of quadratic forms. We have

Proposition 2.1. For any f G ̂ (Sf') Π 91^, we have

Pff(η) = —
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with E°η

Λ being the path-space measure associated to the semigroup P°t^ and the

initial point η e &", and ZΛ = μd^e~UΛ, and we have set

Moreover there is a constant To £ (0, oo) such that for any T ^ To the semigroup
is weakly "Ultracontr active in the sense that for any f e ^{6^f)f\%A we have

(23)

with

IΛ(η) ΞΞ — β 2
72

defined with arbitrary g G (1,2), - -f - = 1 and \ + \ = 1, β̂ <i ί^Ξg ' 04.

Proof. The representation of the semigroup given by (2.1)-(2.2) follows by standard
arguments by use of the Feynman-Kac formula. To prove the second part of the
proposition we first observe that by the Holder inequality with positive p,q such
that ± + ± = 1 and q G (1,2), we get

\pjf{n)\ ύ -=-i

Since

changing the integration variables

<PΛ -* <PΛ

we obtain

with

dμrΛ(φ) r _ κ
— ^ — — = detyi{(l - %2τ) 2

x exp < --(φ - τ

( 2 . 5 )

(2.6)

(2.7)

( 2 . 8 )

τ2Ty
ι(φ - ττη)) - (φ,G7}φ)\ .

(2.9)
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Hence using the Holder inequality with j -f | = 1 we get

,cΛ

x (μhΛe-u^φ)\f(φ)\2)i . (2.10)

If T ^ To for some sufficiently large To ΞΞ Γ0(r) e (0,oo), the first term on the
right-hand side of (2.10) is finite. Combining (2.5)—(2.10) we obtain

\P$f(η)\ g IΛ(η)(μΛ\f(φ)\2Γi (2.11)
with

This ends the proof of Proposition 2.1. D

For later purposes let us note the following lemma describing the growth of the
functional IΛ>

Lemma 2.2. Suppose the local interaction is polynomially bounded at infinity, i.e.
there are constants u$ £ (0, oo) and ί G N such that

\U{x)\^uo{\ + \x\f . (2.13)

Then for any η G £f' there are constants N = N(η) £ N and u = u(η) G (0, oo)
such that for every A G So we have

IΛ(η) S e x p { W μ Π . (2.14)

Proof. Using our assumption about the local interaction U and Jensen's inequality
we get t

Z~~2 S eW l M I (2.15)

with some constant u\ G (0, oo). Using the same assumption about U together with

the fact that we consider the finite range strictly positive operator G^ 1, from the
formula (2.2) we have

r Λ ί vx\Λ\ (2.16)

with some other constant v\ G (0, oo), whence one can easily show that

]_

( E η e Z A ' ^ exp(C,|yl|), (2.18)
Z\ V '

with the constant C\—u\Λ- Tυ\. Since for any η G <9?/ there is an a = a(η) G (0,oo)
and an Π Ξ n(η) G N such that

ηι\ ^ d(0,i)T , (2.19)
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using our growth restriction on the interaction U9 we have

\UA(η)\ g Σ «o(l + \m\f ^ b,{η)\Λ\N (2.20)

with some constant b\(η) G (0,oo) and N = 1 + ~ . This gives us the bound on
the second factor from the right-hand side of (2.12). Finally to bound the last factor
from the right-hand side of (2.12), we note that choosing T ^ 7Ό with TQ satisfying

r S ε(e2m2τ° - 1) (2.21)

with some ε G (0,1), one can easily see that the corresponding Gaussian integral in
this factor exists and we have

with some constants C2,C^ G (0, oo) independent of A G 5o and η G ί^'. Because
of (2.19), we can bound it as follows:

with some constant 62(̂ 7) £ (05°o) dependent only on 77. Combining (2.15)—(2.23)
we arrive at the bound (2.14) with a constant u = C\ + b\(η) + Z?2(^) and
N = 1 + I max(^,2). This ends the proof of Lemma 2.2. D

Remark. Let us remark that, as easily follows from the definition of I A in (2.4)
and the considerations in the above proof, there is qo G (0,00) such that for any
q = #0 we have

4
with some constant D G (0,00) for any /I,/I7 G 5 , A C Af.

Proposition 2.1 together with Lemma 2.2 give us a very simple and useful de-
vise, which has a chance to be true not only on the lattice but also in the continuum.
The estimate on Lemma 2.2 contains unfortunately a drawback, namely the restric-
tion on the growth of the local interaction. One can overcome it by restricting the
space of configurations (which is reasonable since for fast growing local interac-
tions the infinite volume measure lives on the much smaller space of very slowly
growing sequences). However in the case of lattice spin systems one can use also
the following stronger tool, which on the other hand requires the growth of the
local interaction to be sufficiently fast.

Proposition 2.3. Suppose the local interaction satisfies the following growth
condition: Ί,λ

U{x) ^ |x|2 + ό (2.24)

with some δ > 0, for all sufficiently large xGlR. Then there is T G (0,00) such
that . .. , A.

\\P$f\\u ύ eM^μΛ\f\ (2.25)

with a constant MQ G (0,00) independent offξ Sl
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Proof Proposition 2.3 is a simple consequence of the general beautiful ultra-
contractivity estimates of [DaSi] plus some careful arguments tracing the volume
dependence of interesting constants. We start by proving the following lemma:

Lemma 2.4. Suppose for any p G (2, oo) we have

μΛf
p\ogf S cΛ(p)μΛ(f{p-ι\-^AΰΛf)) + ΓΛ(p)μΛf

p + μΛf
plog(μΛf

p)

(2.26)

for any positive function f £ WΛ for which the expectations on the right-hand
side are finite, with the constants cA(p) and ΓA(P) such that

T = fcΛ(p)-£ < oo (2.27)
2 P

and
oo AΏ

MΛ = JΓΛ(p)-^ < oo . (2.28)
2 P

Then we have the following ultracontractivity estimate:

\\Pτf\U =ϊ eMΛ{μΛf)\ . (2.29)

In particular if the local interaction U satisfies the growth condition (2.24), we
have

cΛ(p) = c(p) = (log p)-2 (2.30)

and

Γyi(p) = C \Λ\ , (2.31)
P

with some /?ε(0, oo), and thus there is a constant MQ G (0, OO) such that

MA £ ^M0\Λ\ . (2.32)

Using (2.29) and (2.32) together with the duality arguments, we get the desired
ultracontractivity estimate (2.25). This ends the proof of Proposition 2.3. D

Remark. Let us also mention that the growth condition (2.24) is not the optimal
one. Actually for the ultracontractivity to be true it suffices that the interaction grows
at infinity slightly faster than x2(logx)2, see [DaSi].

Proof of Lemma 2.4. The implication of (2.29) from (2.26) assuming (2.27)-(2.28)
is a general result which one can find in [G] and [DaSi]. To verify the estimate
(2.32) of interest to us, we use the following arguments. Let p\ be a probability
measure on ( R , ^ I R ) defined as follows:

(H(dx) = l e - ϊ ^ V - ^ M ^ . (2.33)

Then using a result of [DaSi] we have for any ε G (0, oo) the following inequality:

P i/ 2 log/ rg εpilVi/l2 + γo(ε)Pif
2 + Pif

2log(pi/2)2 (2.34)
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true with some function yo(ε) diverging at zero at most as ε~~̂ , with β = 1 -f | , for
any positive function / for which the right-hand side is finite. By simple induc-
tive arguments one can see ([Z4]) that the inequality (2.34) implies the following
inequality involving the product measure pA = ® i G / 1 Pi'

pAf
2\ogf £ εpΛ\VAf\

2 + \Λ\yo(ε)pΛf
2 + pAflogipΛf2)^ . (2.35)

Now setting e~Aλ to be the density of the measure μA with respect to the measure
pΛ, we have

μΛf
2log/ = PΛie-^ff log(e-^V) + PA f(e~^/) 2 ^Λ . (2.36)

Hence using the inequality (2.35) we get

+ \Λ\γo(ε)μΛf
2 + μΛf

2 \og(μΛf
2)l2 , (2.37)

which implies

^ / 2 l o g / ί 2εμΛ\VΛf\
2 + μΛ (f2 (\AΛ + 2ε\VΛAΛf

+ \Λ\γo(ε)μΛf
2 + μΛf

2 log(^/2)2 . (2.38)

Since AA is a quadratic form in φ^, k G A, using our assumption about the inter-
action U, it is easy to see that we have the following inequality for any ε G (0,oo):

λ-AΛ + 2ε\VΛAA\
2 ^ ε(\VA log ΨA\

2 - ΛA log ΨΛ) + ao\A\(l + ε~β) (2.39)

with some constant a0 G (0, oo), β = 1 + | , and ̂ ^ denoting the density of the
measure μA with respect to Lebesgue measure. This inequality clearly implies that
we have

μ^/2log/ ^ εμA\VAf\
2 Λ-\A\yx(ε)μAf

2 -^ μAf
2\og(μAf

2γϊ (2.40)

with a function yi(ε) diverging at zero not faster than ε~K For p ^ 2, substituting

/"2 instead of/ into (2.40), after simple transformations we arrive at the following
inequality:

μΛflogf £

\-y1(ε)μΛfP + μΛfPhg(μΛfPfp . (2.41)

Hence, choosing ε = p~ (log p)~2 we arrive at the inequality

μΛf
p log/ S <p)μΛ(fp-\-&f)) + ΓΛ(p)μΛfp + μΛf

p log(μΛf
pf? (2.42)
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with

c(p) = (log p)~2 (2.43)

and

ΓA(p) ΞΞ c^°gP* \A\ (2.44)

with some constant C G (0, oo) for all p G (2,oo). From this the rest of Lemma
2.4 easily follows. D

3. Ergodicity of the Stochastic Dynamics of Infinite Spin Systems

Let μ, respectively μA, A G go, be a probability measure, respectively a sequence of
probability measures, on (&", S ). Let Pt and Pf, A G go, be the Markov semigroup
preserving μ and μA, A G go, respectively, and satisfying the following condition

C.I (Exponential approximation property). For any A G (0, oo) we have

\PJ(η)-Pff(η)\ =D(dkΣ e - M 0 ' k ) ( i + ̂ ) J I l l/Ilk^ (3.1)

with a constant D G (0, oo) dependent only on the smallest set AQ such that f £
$ί/i0, provided that

d(f,dΛ)^ Ct (3.2)

with some sufficiently large constant C G (0,oo) dependent only on A.

We assume also the following

C.2 (Finite volume weak-ultracontractivity). There is a positive function IA(η)
satisfying

lim exp(-ε\Λ\i)logIΛ(η) = 0 (3.3)
So

for any ε G (0, oo), and such that for every function F G $I/i Π £2(^/1) we have

\PfF\(η) S IΛ(η)(μΛF
2)ϊ (3.4)

for some T G (0, oo) independent of A G 5 , η G ̂ ' and the function F.

In this section we prove first the following result

Theorem 3.1. Suppose that the conditions C.I and C.2 are satisfied and that

- there is a constant B G (0,oo) such that for any A G So cind k G A, we have

\μΛφk\ S B (3.5)

and
- there is a constant c G (0, oo) such that for any A G 3o we λύwe the following

logarithmic Sobolev inequality:

μΛf
2logf ύ cμΛ\VAf\

2 + μΛf
2\og{μAf

2γ2 (3.6)
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for every function f for which the right-hand side is finite. Then the limit

(3.7)

exists. If additionally the condition (3.3) is satisfied with IAM replaced by its
integral with the measure μ, then for any local function f G 2lo Π ̂  we have

\Ptf(η)-μf\ S Cm(η)Lup(μΛ(f-μΛf)
2)l2 + | | | / | | |\e~ m t (3.8)

for any m G ^ i n f ^ ^ α ^ ί ^ ζ i , ^ ) ) ? with gap2(£?Λ,dΛ) being the spectral gap of
the selfadjoint operator-<£A^A in L2(μΛ), and with a constant Cm(η) e (0,oo)
dependent only on η G &" and m.

Remarks. As we have observed in Sect. 2, in our situation the condition (3.3) is
satisfied with IΛM replaced by its integral with the measures μA

f, uniformly in
Af G $, a n d thus also with the measure μ.

Let us note also that (3.6) implies gap2(£?A,dn) ^ £> see [Rot, Sil].

Proof. First of all let us mention that, as easily and directly follows from our
assumption (3.6), for any k G Γ and a G IR, we have

μΛe
aφ* S eL2a2+Ba . (3.9)

Thus by standard arguments the sequence {μA}Λedo *s c o m P a c t m m e weak topol-
ogy in the space of probability measures on (£f\ S ). Let μ denote its accumulation
point. Then clearly μ satisfies (3.5) and (3.6), and thus also (3.9), with the same
constants.

Let us consider now a function / G 9Io Π Ή1. Then for any A G So, we have

\Ptfin) - μf\ ύ \Ptf(η) ~ PffM\ + \Pff(η) ~ μΛf\ + \μΛf ~ μf\ (3.10)

The first term on the right-hand side of (3.10) can be estimated with the use of the
exponential approximation property C.I, i.e. assuming we have (3.2) satisfied, this
term is bounded as in (3.1). For the second term on the right-hand side of (3.10)
we have with any q G (l,oo),

\Pf(f(η) - μΛf)\ = (\
(3.11)

where we have used the Holder inequality for Pj. Now applying the weak-
ultracontractivity property C.2, we get

(Pτ\Pf-τ(f ~ μΛf)\q(η)\)< S IΛ(η)hμΛ\Pf-T(f ~ ^ / ) | 2 ' ) * (3-12)

Since by our assumption the measures μA satisfy logarithmic Sobolev inequalities
with the same coefficient c G (0, oo), with some δ G (0,1), we have the following
hypercontractivity estimate:

(μΛ\Pf-τ(f - μλf)\2q)^ ^ ( r f ( U ) Λ / - μΛf)\2)i (3.13)

assuming

2q = I + e2c(δ'-T) . (3.14)
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Using the fact that the logarithmic Sobolev inequality (3.6) implies that the self-
adjoint operator-S£^,dA m £2(£Oi) has a spectral gap gap2{^Ά,dΛ) = c~l a t the
bottom of its spectrum (see [Rot, Si2]), we get

(μΛ\Piτ(f ~ μΛftΦ ύ e^-δ^P2^Λ,SΛ)'(μΛ{f _ μΛff^ . ( 3 . 1 5 )

Combining (3.11)—(3.15) we obtain the following bound on the middle term on
the right-hand side of (3.10):

- μΛf)\ ύ IΛ(η)hβΛ(f ~ μΛf)
2)λ2e-{l~δ)βa^M)' . (3.16)

To estimate the last term on the right-hand side of (3.10) let us note that

\μΛf - μf\ S μ\Pff(ω) - μΛf\ + μ\PJ{ω) - Pff(ω)\ (3.17)

with ω G y ' denoting the integration variable with respect to the measure μ. Ap-
plying the same arguments as in (3.11)—(3.16) we get

μ\Pff - μΛf\ g μ(l\)(μΛ(f - / M / ) 2 ) ^ ^ 1 ^ ^ ^ ) ' . ( 3 . 1 8 )

(Let us remark that frequently one has an independent estimate on the last term
on the right-hand side of (3.10) from the construction of the measure μ. Then
one can use this for the estimate of quantity which interests us.) The second term
from the right-hand side of (3.17) can be easily estimated with the use of the
exponential approximation property and (3.9) for the measure μ. Now the final
ergodicity estimate (3.8) follows from our considerations by choosing the sequence
of sets A = A(t) —> TLd so that the condition (3.2) is satisfied. D

As for the ergodicity properties of the infinite volume semigroup, it is not very
natural to assume something about the ergodicity of finite volume semigroups, there-
fore we would like also to present the following result. (For a corresponding result
for the case of compact single spin space M and the discussion of its relevance for
applications in statistical mechanics see [SZ4].)

Theorem 3.2. Suppose that the conditions C.I and C.2 are satisfied and that

- there is r G (l,oo) such that

lim exp(—ε\Λ\ * ) log
dμΛ - 0 (3.19)

for every ε G (0, oo), and
- the measure μ satisfies the logarithmic Sobolev inequality with a coefficient

c G (0, oo), i.e. we have

μf2 log/ ^ cμ\Vf\2 + μf2 log(μ/2)5 (3.20)

for any function f for which the right-hand side is finite. Then for any local
function f G SÎ o Π #*, Ao G g , we have

- μf\ S Cm(η){(μ(f - μff)2 + \\\f\\\}e-mt (3.21)

for any m G (0, gap2(J£))9 with a constant Cm(η) e (0,oo) dependent only on
η G y ; , //zβ j ^ ί ΛQ (Ξ 3? α^ίi /Â  choice of m.
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Proof. Let / e 2I,i fW, Λo € g. Then for any A £ g, Λo C Λ, we have

- μf\ + \PJ(η) ~ (3.22)

The second term on the right-hand side of (3.22) can be estimated with the use of
the exponential approximation property C.I. Assuming we have (3.2) satisfied, the
second term on the right-hand side of (3.22) is bounded as in (3.1).

For the first term on the right-hand side of (3.22) we have with any q £ (l,oo),

\Pf(Άn) - μf)\ = (3.23)

where we have used the Holder inequality for Pj. Now applying the weak-
ultracontractivity property C.2, with the same r e (l,oo) as in our first assumption
(3.19), we obtain

- μf){η)\qY ύ

dμΛ

where s -f r = 1. Hence we get

'-μfXn)\")~« ^

Lr{μ)

dμΛ

-μf)\2sq)^

(μ\Pt-τ(f ~
Lr(μ)

(3.24)

dμΛ

LΛμ)

(3.25)

If the measure μ satisfies the logarithmic Sobolev inequality, then we have, with
any δ e (0,1) and

2sq= \+e^bt~T\ (3.26)

the following hypercontractivity estimate:

(3.27)^ (μ(f -

where in the last step we have used the fact that the logarithmic Sobolev inequality
implies also the spectral gap gap2(£?) ^ c~ι at the bottom of the spectrum of the
operator (—=£?) in L2(μ). To estimate the second term on the right-hand side of
(3.25) we use the approximation property to get

ύ C, (3.28)

with some positive constant C\ independent of Λ,t and / . Since μ satisfies the
logarithmic Sobolev inequality, it has also satisfy the exponential bound (3.9). Using
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this we have

g C2(sq)l2 (3.29)

with some positive constant C2 independent of k E Γ and sq. From (3.28) and
(3.29) we see that if the conditions (3.2) and (3.26) are satisfied, we obtain

(μ\Pf_τf -Pt-τf)\2sqW« ύ C3 Σ e~M°* W i l l / I l l ^ ' ύ C4\\\f\\\e-At . (3.30)

Choosing a sequence of A = A(t) so that d(f,dA) = C[ί] with a large positive
j_ i

constant C, we see also that the factors lΛ(v)q a n d \\d

 μΛ \\lf(μ) converge to one.

Thus combining all our considerations we arrive at the estimate (3.21). This ends
the proof of the theorem. D

4. Logarithmic Sobolev Inequality for Gibbs Measures:
An Example on Γ = Έ

In this section we give a first nontrivial example of a spin system for which the
logarithmic Sobolev inequality is true for the corresponding Gibbs measure in infi-
nite volume as well as for finite volume Gibbs measures uniformly in volume. Here
we take advantage of one dimensionality of the lattice to have almost "for free" the
exponential decay of correlations in the system. (A higher dimensional situation in
discussed in the next section.) Let $ — {E™}A£%,CU£,9" be a local specification de-
fined by (1.3), corresponding to a free Gaussian measure μc, with a strictly positive
inverse covariance G " 1 of a finite range R > 0, and a local interaction given by
a real function U = V -f W defined with a nonnegative convex function V and a
bounded function W having the first and the second derivative bounded. We show
the following result

Theorem 4.1. Let Γ = TL. There is a constant c £ (0, oo) such that for any A C TLd

we have
μΛflogf S 2cμΛ\VΛf2\2 + μΛf\ogμΛf (4.1)

for all nonnegative functions f for which the right-hand side is finite. This implies
that also the unique Gibbs measure μfor the local specification $ — {E^}Λe^^ωe^ι
satisfies the logarithmic Sobolev inequality with the same coefficient c.

Proof The basic idea of the proof is similar to that given in [Z2] for one dimen-
sional spin systems with a compact spin space, however now some technicalities
are much more involved. We prove the Logarithmic Sobolev inequality (4.1) only
for the case of infinite volume Gibbs measure μ on S'(7L)\ the proof for the case
of arbitrary volume A is similar. First of all for a large L £ N (to be chosen later)
we define the sets Γ,, i — 0,1 as follows

(4.2)

As one can see from this definition, each of the sets Γz consists of intervals of
length 2(L + R) separated by the distance 2R. Moreover we have

(4.3)
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and thus Γ = Γo U Γ\. Now we introduce the following regular conditional expec-
tations associated to any Gibbs measure for the local specification $

Er,= Π

with Λk = [0,2(Z + R)] + k(Z + 2R\ k G Z + | , and we set

& = EΓιEΓo.

We will show that the following lemma is true.

Lemma 4.2. There is a constant c G (0, oo) such that

i |2

(4.4)

(4.5)

&f log / g + (4.6)

additionally there is an L G N swc/z ί/zαί wzY/z

/or any nonnegative function f for which the right-hand side is finite. Moreover
there is a constant B G (0,oo) such that for any differentiable function f we have

2 2 (4.7)

constant λ G (0,1), we

(4.8)

for any nonnegative differ entiable function f G 9I(Γo\Γi).

The proof of this lemma is much more complicated than in the case of spin
systems with compact spin space and will be given later. Now assuming Lemma
4.2 we proceed as follows. Let / G ̂ A^ for some ΛQ G g , be a positive and
differentiable function. Then from our assumption it is not difficult to see that also
any function fn, n G Έ+ defined for n — 0 is equal to / and for any n G N by

fn = &"f ,

has the same properties. Moreover for n G N we have fn G 2I(Γo\Γi). Now using
the first part of Lemma 4.2, for any n G IN and k = 1,...,n we have

_, log/*_, = -X log/t_,)

log/t

= 2c^("-*+1) |V/4L1 |
2 + &"-kXfk log/*). (4.9)

Hence we get

£ A (4-10)

Using the second part of Lemma 4.2 we have

|V/f|2 ̂ (4.11a)
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(4.11b)

(4.12)

with a constant c e (c,c(\ -+- 2B(l - λ)~1)). Now to finish the proof, it is sufficient
to show that in L\(μ) we have

From this it is not difficult to see that for any « E N w e have

0>"flogf S l 2

lim £Pnf = μf (4.13)

for any local function / £ ^x. To see this we utilize an idea of [Z3] as follows.
For any m, n G IN we have

μ\0>m+nf(ω) - 0>n (4.14)

with ώ being the integration variable with respect to £Pm. By our construction we
have 0»f e MΛn where An = { i : d(i,Λ0) ^ nilL + 3Λ)}. Let {ik : k = 1,..., \Λn\}
be an enumeration of elements of An. For any two configuration ω, ώ G ^ ' , we
define the interpolating configurations ω ! / by setting

ωj, for k < I

cύik for k > I

Using this notation we have

\0>nf(ώ)-0>nf(ω)\ S ( 4 1 5 )

Since

(4.16)

we get

(4.17)

Since under our assumptions (see e.g. [BH-K]) there is a constant a e (0,oo) such
that

μ\ωi\ S a (4.18)

for any i E Γ, using the second part of the Lemma 4.2 and the fact that
|Λi| ^ 14)1 + n(2L + 3i?), we finally obtain

S 4a\\f~2\ . (4.19)
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Using the fact that λ E (0,1), we see that the right-hand side of (4.19) converges
to zero. This together with the fact that 0*n satisfies DLR equation with the mea-
sure μ imply (4.13) and ends the proof of Theorem 4.1 (assuming Lemma 4.2) for
positive local functions / E ^ ι . From this Theorem 4.1 follows by general
arguments [G]. D

Proof of Lemma 4.2. To prove Lemma 4.2 we first note that we have

Lemma 4.3. For every A E g there is c0 E (0,oo) such that for any ω E 9" we
have

Eω

Λf\ogf S 2 C o £ 2 | V / ί | 2 +E%f\ogE%f (4.20)

for any positive differentiable function f € 2ίo

Proof of Lemma 4.3. To prove the lemma we observe that the measure E°^ has
uniformly bounded from above and below density with respect to the measure

with VA = ΣieΛ ViΨί) a n ( * Eω

A being the conditional expectation associated to the
Gaussian measure. Since by our assumption VA is a convex function, the Bakry-
Emery criterion, [BE], implies that the measure Eω

A satisfies logarithmic Sobolev
inequality with a coefficient independent of ω E Ω (and in fact of A c Γ). Using
this and the general arguments of [HS] (Lemma 5.1), the lemma follows. D

From Lemma 4.3, by the product property of logarithmic Sobolev inequality [G],
we see that both Erι9 / = 0,1 satisfy LS with the same coefficient co. Therefore we
have

<?flogf=>EΓι(EΓoflogf) ^ EΓι(2coEΓo\VΓofϊ\
2 + EΓof\ogEΓJ)

+ EΓλ \VΓι(Erof)^ |2) + »f\o%»f . (4.22)

To bound the second term on the right-hand side of (4.22) we will need the fol-
lowing fact:

Lemma 4.4. Let A — [0,2(L + R)]. For any positive and differ entiable f E 31̂ 0?
AQ C A and any j E ORA, we have

VΛf
λ2\2 (4.23)

with some constants C,M E (0,oo) independent of the function f For j E A, by
the definition of local specification, the left-hand side of (4.23) vanishes, whereas
if d(],A) > R we can omit the second term from the right-hand side.

The lemma will be proven later. Now let us note that for every j E I~Ί we have

either j E Γo, in which case Vj(EΓof)ϊ = 0, or there is a unique set A} C Γo such
that j E dftAy In the second case using Lemma 4.4 we get

2 SEΓΰ\Λ.\Vi(EΛ.f)
i2\2

A " / ( Λ a y l ) | V i j / i | 2 . (4.24)
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Summing this inequality over j e Γ\\Γo and integrating with the measure EΓχ, we
obtain

2 { 2 . (4.25)

This together with (4.22) gives (4.6) with a constant c = co(3 + 2RC). To get (4.8)
we observe that for j G ΓiC we have

|Vj(£ Γ l ^r 0 /)i | 2 ύ EΓΛΛ.\V'}(EΛ.EΓof)ϊ\2 S 2RC\As\e-MLEΓι\\/Λ]{EΓjγ2\2 ,

(4.26)

where we have used Lemma 4.4 together with the fact that (EΓof)ϊ G ^
estimate (4.26) we use (4.24) together with our present assumption that / G
to obtain

\V^EΓιEΓJ)^ I2 ^ (2RC)2(2(L + i^)) 2 e- 2 M L ^ | V / i | 2 . (4.27)

If L e N is sufficiently large, we get (4.8). This ends the proof of Lemma 4.2. D

Proof of Lemma 4.4. Let / be a positive differentiate function and let j G
In order to prove the inequality of interest to us, we observe that

)-^ιEΛf . (4.28)

Therefore it is sufficient for us to find a suitable bound on the second factor on the
right side of (4.28). For this we first use the definition of our local specification to
get

= EΛV]f- Σ GZιEΛ(f,φk). (4.29)
keΛ J

To bound the first term on the right-hand side of (4.29) we use the formula Vj/ =

2/3 Vj/2 and the Holder inequality to get

I^Vj/l ^ 2 ( ^ / ) 3 ( ^ y l | V j / i | 2 ) 3 . (4.30)

To discuss the second term from the right-hand side of (4.29) we use the following
representation of the two point truncated correlation function

EA(f,φk) = l-EΛ®EΛ(f -f)(φk - φk), (4.31)

where EΛ denotes the isomorphic copy of the measure EΛ and for a function F we
have set F = F(φ), with φ denoting the integration variables with respect to the
measure EΛ. Introducing new integration variables q and p by

Ψi = -β{qi + Pi), (4.32)

Ψ[ = -yΞte - Pi),

we get the following representation of (4.31):

EΛ(f, Ψk) = \EΛ 0 EΛ(Eq,A(f -f)(φk - Φk)) > (4-33)
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where E^A denotes the conditional expectation given a fixed configuration qA as-

sociated to the measure EA <&EA via (4.32). It is easy to see that we have

with μ£

G

Λ

p denoting the corresponding Gaussian measure for p variables and the

(conditional) local action i^

rΛ{p\q) = g = Σ

is given by the following formula:

+ U . (4.35)

Let us mention that, as follows from the last formula, ^ \p\\q\) is symmetric with
respect to the change p\ —> -p\. Since / G 2I/i0, we have

" Φk) = -f)Pk) = , (436)

where Eq^Λ\ΛQ is the conditional expectation with respect to the variables p\, i G ΛQ,
associated to the measure Eq,Λ- Now using this together with the algebraic formula

/ - / = ( / 2 + / 2 ) ( / 2 - / 2 ) and the Holder inequality we get

(4-37)

To estimate the second factor from the right-hand side of (4.37) let us note that
we have

< ^ = Σ / Λ Σ G^Eί {PhPv), (4.38)
ie/lo o i C

where {p1}, i G ΛQ is an interpolating sequence defined by

Hence

θ for j < i

x forj = i

Pi for j > ii
x forj = i .

^ Σ \m\ Σ \\Eq,A\Λ0(mp*)\l

(4.39)

( 4 4 °)

To estimate the right-hand side of (4.40) we use the following lemma proven later.

Lemma 4.5. There are constants C\,M G (0,oo) such that we have

(4.41)
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Using (4.38)-(4.41), we get

Σ Px) (4-42)
)

with a constant Cι G (0, oo) independent of A,q and the function / . Now let
Φq Λ = Φq,Λ(p) denote the density of the measure Eq,A with respect to the Lebesgue
measure dp A- Then it is clear from our assumptions about the local interaction that
there are constants, a,b G (0, oo) such that, for any A G 5 and configuration q,
we have

Σ Λ ? ^ a(\V log ΦqM\2 - A log ΦqM) + b\A\ . (4.43)

Hence it is easy to see (by similar arguments as used in Sect. 2 in the proof of
Lemma 2.4) that

-Pf, (4.44)
where VA,P denotes the gradient with respect to the variables pu i G A. To estimate
the second term on the right-hand side of (4.44), we use the following lemma,
which will be proven at the end.

Lemma 4.6. There is a constant mo G (0, oo) such that for any A G 3 , g G ^ '
and all differentiable functions f G 9IΛ0 we have

^m-ιEq,Λ\VΛ,p(fL2-p)\2. (4.45)

Using Lemma 4.6 we get

Eq,Λ Uf-2 -

Using this together with (4.42), (4.37) and (4.36), (4.33), we get

\EΛ(f,φk)\ S CM\^

(4.46)

f)kEq,Λ\^Λ,P(β -f*)\2)h (4.47)
with some constant C3 G (0,00) independent of A,q and the function / . Hence by
simple arguments involving Holder inequality and the definition of the conditional
expectation, we arrive at the following inequality:

\EΛ(f,φk)\ S2(EΛf)
i2(C4\Λ\12e-i2mf'δΛ\EΛ\VΛf

12\2)i2) (4.48)

with some constant C4 G (0,00) independent of A G 3 , ω G / and the function
/ G aUo n ^ Combining (4.48) with (4.29)-(4.30), and using (4.28), we get

2 | |V / 1/2| 2)2 (4.49)

from which Lemma 4.4 easily follows. D
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Proof of Lemma 4.5. Let An, n = l,...,N be a sequence of intervals of lengths
equal to the range of the interaction R, such that k G A\ and 1 G AN for some

N ^ \*ψϊ] + i. Let

Using the symmetry p —> —p of the conditional local interaction f^( |g) and the
fact that G~ι has the finite range R, it is not difficult to see that we have

/ N \

Eq,Λ(PkPι) = ^ Λ Π ™(^+i(/?))Λ/?i . (4.51)
\«=i /

Let us define the following partition of unity χσ", σn G { —1,-fl} by setting:

χσ"=+ι(p) = χ(Vj G Λn9 \P]\ £ H), (4.52)

and let

G Λ , | Λ | > i f ) . (4.53)

Using this notation we have

Eq,Λ(PkPι)= Σ KΛ ( ft (Z σ "(^)th(β w , π + 1 (^))) Λ A ) . (4.54)
σM,«=l,...Λ \«=1 /

We divide the sum on the right-hand side of (4.54) into two parts. The first, denoted
by 5/, will contain all terms for which the number of w's satisfying σn = -hi and
σn+\ = -hi is bigger than SN, for some small constant δ G (0, \). Since in the case
when σn — +1 and σπ+i = -hi we have

l|th(εΛ,Λ+1)|| ^ e - M ° (4.55)

for some Mo G (0, oc), using an easy to prove fact (see e.g. [BH-K]) that

sup(£ M (/τf)) i ^ C (4.56)
q,Λ

with some constant C G (0, oo), we see that the first sum has the following bound:

\Sj\ ^ C2e-M»δN S D ι e - ^ d ^ (4.57)

with some constant D\ G (0, oo) independent of A and k,l G A, To bound the second
part of the sum from the right-hand side of (4.54), denoted later by S)/, we estimate
each term as follows:

(4.58)

Now it is not difficult to see (e.g. by the same arguments as in [BeH-K]) that the
second factor on the right-hand side of (4.58) is bounded by a constant D2 G (0, oo)
independent of q, A,σ and k, 1 G A. On the other hand using the fact that the local
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conditional interaction is fast increasing at infinity, we get

N \

Π Ύσn( Ίlλ\ < p~M(H^2~^N (ά SQΪ

with a constant M(H) G (0,oo) growing to infinity with H and independent of q
and A. This is because for every configuration of σ's in the sum SJJ we have to
have at least jN factors χ(\pi\ > H). Taking into account that the number of terms
in this sum does not exceed 2 ^ , for any fixed δ < ^ we can choose H G (0, oo)
sufficiently large so that [M(H)(\ - δ) - log(2i?)] > Mo(\ - δ). Then we get the
following estimate

I c I <^ J~} π~-(\~~<5)-i^ <a?(k,l) (A /:rv\
|o// | S L>2β V 2 ' R ' (4.0UJ

with some constant D2 G (0, oo) independent of q, A and k, 1 G A. Combining (4.57)
and (4.60) we get the inequality (4.41) with M = min(2<5, 1 - 2δ)M0/R. This ends
the proof of Lemma 4.5. D

Proof of Lemma 4.6. Let F G 21^ Π Ή1 with some AQ C A G %. We need to prove
that

Eq,Λ(F{φ(q,p)) — F(φ(q,p)))2 ^ m^ιEg^\\/p(F(φ(q,p)) — F(φ(q,p)))\2 (4.61)

with some constant mo G (0, oo) independent of q and A, and Vp denoting the
gradient with respect to the variables p. To see (4.61), we note that denoting by

PλiPΛo) = μG

{ΛΛθ} I exp <j -rΛ\Λo(p\q) - _ Σ . P^1 Pi } \ , (4.62)

for any function g G *ΆΛ0 we have

n ' ^ (4.63)

Let us note that the local conditional interaction i^Λ0(p\q) can be represented in
the following form:

rΛo(p\q) = Σ ^iP'Mύ + rnc{Pϊ\q\)) = r^(p\q) + r%{p\q) (4.64)

with i^c( |^i), respectively γ"nc( . 1^), being convex, respectively not necessarily
convex but satisfying

SUp\\rnC( • \q;)\\u S V! (4.65)

with some constant v\ G (0, oo). Using this we see that

d Λ o ( - ^ )
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Additionally we observe, that as follows from Lemma 4.5, we have

Σ
i,]eΛonδRΛ\Λo

= Σ ^ )
\t\eΛonδRΛ\Λo \keΛ\Λ0 keA^o /Λ\ΛO,PΛ

ύC Σ PΪ (4.67)
i€ΛondRΛ\Λo

with some constant C G (0, oo) independent of /I, ΛQ and />Λ0; we have used

( * > * )yi\/io,p/1

 t 0 denote the corresponding covariance of the conditional expec-

tation given PA0 associated to the measure Eq^- Using this, we see that there is

a convex, even with respect to /?, function i^ΛQ(p\q) and a constant vj G (0,oo),

such that we have

e-2v2\Λ0\i

for any function g G ̂ ίyi0. If the function g is odd, by standard arguments one shows
that there is a constant m0 G (0,oo), such that

This together with (4.68) implies (4.61) and ends the proof of the lemma. D

Having completed the proof of Theorem 4.1 we can now combine it with the
results of Sects. 1-3 and easily get the following corollary.

Theorem 4.2. Let Pt, t G R + be a semigroup on ^{^'(Έ)) corresponding to
the free Gaussian measure μc {with mean zero and with strictly positive in-
verse of covariance G~ of a finite range R), and a local interaction U = V + W
as in Theorem 4.1. Let μ be an invariant Gibbs measure for Pt. Then for any

\ Ao G δ , we have

\Ptf(η) ~ μf\ ύ Cδ(η)((μ(f - μfH + I l l / I l l ) ^ (4.70)

for any m G (0,(1 - δ)gap2£
?), with a constant Cs(η) G (0, oo) dependent only on

η €Sf\ δ £ ( 0 5 l ) and Λo G g .

5. Logarithmic Sobolev Inequality for Gibbs Measures:
The Higher Dimensional Examples

In this section we would like to show that also on the higher dimensional lattice
one can give examples where our strategy allows to prove the Logarithmic Sobolev
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inequality in more general situations than admitted by the Γ2 criterion of [BE]. A
careful reader has surely noticed that the basic ingredients we used in the previous
section were: the uniform (in volume and external conditions) cluster property of
conditional measures and certain operator forms bounds. The later are essentially
independent of the dimension of the lattice, but the uniform cluster property is a
more delicate matter and on a higher dimensional lattice it does not come "for free"
as in one dimension. It should be however clear for a reader that in general the
following result is true.

Theorem 5.1. Suppose there are constants C,M £ (0, oo) such that for any suffi-
ciently large cube AQ C Έd and any ω G Ω we have

Ce-Md^. (5.1)

Then there is a constant c G (0, oo) such that for any cube A^TLd we have

μΛf\ogf g 2cμΛ\VΛf
X2\2 + μΛf\ogμΛf (5.2)

for all nonnegative functions f for which the right-hand side is finite. This implies
that also the unique Gibbs measure μfor the local specification $ = {E0^}Λ<E%,ωe>9"
satisfies the logarithmic Sobolev inequality with the same coefficient c.

After a comprehensive description of the one dimensional case in Sect. 4 it
should be easy for a reader to use the geometrical considerations of [SZ3] to re-
produce the details of the proof of Theorem 5.1. Therefore we would like to re-
strict ourselves to description of a large class of models satisfying the assumption
of the uniform cluster property. Our main goal will be to show that this class
contains examples where the local interactions can have arbitrarily large negative
second derivative, for which the Γ2 form of the Bakry-Emery criterion [BE] can-
not be positive and therefore one cannot get the logarithmic Sobolev inequality
using the arguments of [BE], To achieve our goal we note that if the function
U, used to define the local interaction, differs from a convex function only on
the sets of small probability then one can get an estimate (5.1) by the following
special version of cluster expansion; (for the general principles of cluster expan-
sion, see e.g. [MM,Br]). First of all we observe that using (4.33) and (4.34), we
have

(5.3)
q

where

μhΛn(e~rΛiplq)F(p))

with μc£p denoting the corresponding Gaussian measure for p variables and the

(conditional) local action i^Λ(p\q) is given by the following formula:

= Σ (u (^(?ι + /Ί)) + u (^(?« - /*))) (5 5)
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The conditional local interaction has the following symmetry useful for us later:

(5.6)

We will like to apply a cluster expansion to the probability measures given by (5.4).
For this we define a family of covariances G(s), s = {sj G [0, l]}jeΛ> by setting

G-1(s) ijΞΞ=s iG ir
15 j foriΦj. (5.7)

Let μG(s),p be the corresponding (interpolating) Gaussian measure. Substituting this
measure into the formula (5.4) we define a probability measure £?,S,Λ Let us define
non-normalized expectation by

4 u Ξ μG%),P(e-ψΛ(pU)) Eq,s,Λ • (5.8)

The cluster expansion of interest to us is generated by the successive application of
the fundamental theorem of calculus in the following form:

'/5/ = 1 - - d-Eq,s,ΛPiPi = (Eq,s,ΛPiPi)\sι=o + j dsι~—Eq^Λp{p'} , (5.9)
o asι

where Sk = s^ for kΦl and otherwise to the integration variable. Applying (5.9)
successively and taking into the account the symmetry property (5.6), one gets the
following representation for the quantity of interest to us:

Eq,s,ΛPiP\ = Σ -Tf- J dsχ—Eq,s,ΛpiPi , (5.10)
XCΛ ^Λ 0<Sχ<\ VSX

where the summation is running only on the connected sets X containing i and j , the
integration is over s^ G [0,1], k eX and ^ - = Πker ^" ^y standard arguments
one gets the following general result:

Proposition 5.2. There is a constant λ G (0,1) such that if

sup (5.11)

then also

^ g eB\χ\ (5.12)

with some constant B <C |log λ\ and the cluster expansion (5.10) converges uni-
formly in A C 7Ld and the estimate (5.1) is true.

Let us mention that clearly the inequality (5.11) is true if for every i £ TLd',
we have GΓ1 ^ g0, with some sufficiently large constant g0 £ (0,oc) and the local
interaction is given by a convex function U. Now to finish the construction of the
example of interest to us it is sufficient to observe that if the cluster expansion is
convergent uniformly in A and q for a given local interaction given by a function
£/, then it is also convergent for any interaction given by U + SW, provided that

||M < ε with some ε G (0, oo) sufficiently small. This condition obviously allows
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us to take a function having an arbitrary second derivative and therefore one can
violate the positivity of the Tι form from the Bakry-Emery criterion.

Remark. Let us note that the Erice cluster expansion of [GJS] could be not suit-
able in general for the above arguments, since it depends not only on the supre-
mum norm of the perturbation. On the other hand this expansion converges also
in the situations of some polynomial interactions where the above given (crude)
expansion would be divergent. One could however hope that by careful modifica-
tion of the arguments (based on the multiscale analysis), it should also be possi-
ble to get Logarithmic Sobolev inequalities for the (unique) infinite volume Gibbs
measure.

Finally let us mention that by the results of Sect. 3 in all the above considered
models we have the following strong ergodicity result.

Theorem 5.2. For any model on Έd satisfying the conditions of Theorem 5.1, the
corresponding semigroup is strongly ergodic in the sense of Theorems 3.1 and 3.2.

6. Conclusions

In the present work we have shown that an extension of a general strategy for
proving strong ergodicity properties of the Markov semigroups to the case of non-
compact configuration space is possible. In particular we have shown that the general
idea of proving LS for the corresponding Gibbs measures works also in the present
setting, although some technical details require more work than in the case of com-
pact configuration space. By this we provide an important class of nontrivial situ-
ations, where LS is true and which remains beyond the applicability region of the
Bakry-Emery criterion. We have given a comprehensive characterization of the
models in one dimension. In higher dimensions the situation is more complicated
and although we have constructed a class of nontrivial examples for which the LS
is true but the Tι criterion fails, there are still interesting cases to study. For exam-
ple let us mention the λ : P(φ) :χδ lattice models of euclidean field theory with a
small coupling constant λ G (0, oo), for which one could expect LS, but for which
it seems to be impossible to prove the uniform cluster property (as in Theorem
5.1) by the cluster expansion, which would be uniform also in the lattice spacing.
It would be very interesting to study such lattice systems.

Although we know already quite a lot about the lattice systems, we still know
very little about the continuum systems. From what we have done in the present
work it seems to be clear that the logarithmic Sobolev inequality is also true
for the unique Gibbs measure of a one dimensional continuum system corre-
sponding to the free Gaussian measure μo, with mean zero and a covariance
(—d2/dx2 + ml)~~\ mo > 0, and the local interaction as considered before. This
provides the first nontrivial example which is not in the B-E class.

A more intriguing situation is in two dimensions for the measures describing the
models of euclidean field theory, [Si], with the weak polynomial interactions. (As
remarked in [Z3] for the model with the exponential interaction one can use the B-E
criterion together with some approximation procedure to get LS.) For the λ : P(φ) '.2
already the finite volume LS is nontrivial, although one can give heuristic arguments
that it should be true. The problem for the infinite volume measures seems to be
at the moment much more complicated.
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After we have constructed a number of examples of hypercontractive semigroups

it would be very interesting to study their kernels further. Besides purely mathe-

matical interests, we believe it could provide us with a better understanding of the

analyticity properties and the particle structure of the corresponding theories.
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