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Abstract: Using a method based on the application of hypercontractivity we prove
the strong exponential decay to equilibrium for a stochastic dynamics of unbounded
spin system on a lattice.

0. Introduction

In recent years essential progress has been made in understanding the ergodicity
properties of the Markov semigroups P, ¢ € R* defined on the space of continuous
functions %(Q), with a configuration space 2 = M', M being a compact metric
space and I' a countable (infinite) set. An important method for the study of these
properties was first introduced in [HS]. It involves three elements:

(i) a strong approximation property of the semigroup P,, ¢ € Rt by the semi-
groups P,A’w acting (essentially) on €(M“*), A C I' finite sets, and fixing a config-
uration o € Q outside A,

(i1) the finite volume ultracontractivity property of PtA’w, and

(ili) the uniform in volume A and boundary conditions w hypercontractivity
property of the semigroups P;>* on the spaces L p(ED), p € (1,00), with E9 being
the corresponding invariant probability measures.

The first two properties have been well known for a long time for the situ-
ation of compact configuration space. Although the hypercontractivity property of
a semigroup, or its equivalent property of corresponding invariant measure called
the logarithmic Sobolev inequality (LS), was introduced almost twenty years ago,
[G], for many years no nontrivial example involving an infinite dimensional con-
figuration space was known. (For the trivial one corresponding to the Gaussian or
some product measures see [G].) This was until a very nice Bakry—Emery cri-
terion (B-E) for the logarithmic Sobolev inequality has been introduced in [BE],
for a case of configuration space defined with a (finite dimensional) smooth, con-
nected and compact Riemannian manifold M with positive Ricci curvature (or a
case when the Ricci curvature is zero, but involving some special log-concave
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measures). Exploiting this criterion, Carlen and Stroock gave in [CS] the first non-
trivial examples of probability measures (for some statistical mechanical spin system
on a lattice) which satisfied the logarithmic Sobolev inequality (uniformly in volume
and boundary conditions).

A general idea and technique to study the logarithmic Sobolev inequality by
exploiting the associated Gibbs structure was introduced in [Z1-3] and developed
later in [SZ1-3], (see also [MO,LY and SZ4]). This allowed us to consider the
highly nontrivial situation where the Bakry—Emery criterion cannot work. That
includes the case when M is a compact, smooth and connected Riemannian man-
ifold with nonpositive Ricci curvature or the case (important for applications in
statistical mechanics) when M is simply a finite set.

In the present paper we extend the ergodicity results to the other important
case when M is a noncompact space. Besides that, the present paper is a necessary
intermediate step towards a study of some other interesting questions concerning
hypercontractive Markov semigroups and its applications in the field theory and
statistical mechanics (as e.g. analyticity and particle structure, ergodicity properties
for systems in continuum).

In the first section we construct a class of nontrivial semigroups P,, r € R¥,
as “a perturbation” of a Gaussian semigroup and we prove an analog of the strong
approximation property appropriate in this case. Let us mention that a different
construction based on the use of a cluster expansion, (and therefore for a very
restricted type of perturbations), has been given in [Di]. (Let us note also that
our construction is essentially independent of the Gaussian character of the free
semigroup and can be easily carried out for more general cases when we have
also multispin interactions of finite range with bounded derivative. However having
some specific applications in mind and in order to simplify the notation we consider
explicitly the case of local perturbations of the Gaussian semigroups.)

In the second section we study various ultracontractivity properties of the finite
volume semigroups.

Next using the results of Sects. 1 and 2, we give in Sect.3 a general strategy
(extending that of [HS]) for proving the strong ergodicity result. We show that
it is possible to apply our strategy even in the situation when the finite volume
ultracontractivity fails. (Let us note that for the continuous space models, which we
shall study in the future, one can have logarithmic Sobolev inequalities, but one
cannot expect to have a local ultracontractivity. Therefore it is important to know
that such an extended strategy can work.)

Section 4 is devoted to proving the logarithmic Sobolev inequalities for a (com-
prehensive) class of nontrivial examples with Q = IRZ, for which the B-E criterion
does not work.

In Sect. 5 we extend these results to the higher dimensional lattices. In this case
one has to introduce some restrictions, (because as is known in higher dimensions
phase transition can occur), but still one can go beyond the B-E criterion. The
results of Sects. 3—5 allow us to show a strong ergodicity result for the correspond-
ing hypercontractive semigroups with pointwise exponential decay to equilibrium.
(By this we have got an important extension of ergodicity results of [Di], where
an ergodicity of the semigroups has been proven for a very restricted class of
initial distributions. Let us mention here also the recent work [AKR], where the
Logarithmic Sobolev inequalities, proven for convex interactions via the
Bakry—Emery criterion, has been used to study the L,-ergodicity of the correspond-
ing semigroups.)
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A summary and some discussion of interesting open questions are given
in Sect. 6.

1. A Construction of the Stochastic Dynamics

We consider a lattice I' = Z9, d € N with the usual Euclidean distance d( -, - ).
Let & denote the family of all finite subsets of I'. For the purpose of
discussion of the thermodynamic limit, we distinguish an increasing sequence
To = {4, € § }nen invading all the lattice I' and called a countable exhaustion.
We will assume that there is a number dy € (0,00) such that for any n € N we
have d;' < diam 4,/d(0,04,) < d,.

Let (2,2) = (R, %4Rr)". By ¢;, we denote the i coordinate function on (£, X),
called the spin at site i€ I'. Given two configurations n,w € Q and a set A C I,
we define a new configuration 1, e w ¢ by

ni forieA

(e )-E{ -
A A wj for i€ AC

For A C I we define a g-algebra X4 as the smallest o-subalgebra of 2 with re-
spect to which all the coordinate functions ¢;, i € A are measurable. A set of real
bounded X -measurable functions will be denoted by U,. The elements of the
set Ao =Y AeR A, are called the local functions. If A C Z¢ is the smallest sub-

set such that f € Ay, for any set A’ C Z9 we define d( f,A’') =d(A,A"). For
many applications it is sufficient to restict ourselves to a smaller configuration space
(&',©), a subspace of (£,2) consisting of tempered sequences, i.e. configurations
o = (@j)jege satistfying a growth condition lojl < C(1+ [i))¥ with some positive
constants C and N possibly dependent on w. For a probability measure p on (£2,2)
we set u(f) to denote the corresponding expectation of a measurable function f
and use the following notation for the two point truncated correlation function:

wf9)=pnfg—pnfrg

of measurable functions f and g.

Let ug denote a Gaussian probability measure on (£2,X) with mean zero and
a covariance G. We assume that the inverse G™' of the covariance G is of finite
range, i.e. there is a positive number R such that

G;'=0 if d(i,j) > R. (1.1)

By /,tf";’I we denote the Gaussian measure with the Dirichlet boundary condition
on dA, i.e. the Gaussian measure with mean zero and covariance G;, such that
(Gon)ij = Gii_l ifi,je Aori,je AC, and zero otherwise. Let & = {EA}Aeg, be the
family of the regular conditional expectations E‘;{(F ) = Eu(F|2 40 )(w) associated
to the measure ug.

Let U be a semibounded function which can be represented as a sum of a
function W with a bounded first and second derivative and a function V' with
nonnegative second derivative. For every 4 € § we define a local interaction
energy by

Uale) = > U(ei) - (1.2)

ied
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We introduce the family & = {E1}1cg, called a local specification corresponding
to the free measure ug and the local interaction U, by setting

ES(eYrf)
E9(e~Un)

E(f) = (13)

By %(&) we denote the set of Gibbs measures for &, i.e. the set of all probability
measures on (&', S ) satisfying the condition

WELS) = 1S (DLR)

By 0%(&) we denote the set of all extremal Gibbs measures for the specification
& (i.e. the set of these Gibbs measures which have no nontrivial convex linear
representation in terms of other Gibbs measures for &). Under our assumptions, it
is known (see e.g. [BH-K]), that the set 4(&) is nonempty.
For later purposes we need to introduce the gradient operator by setting V1 f =
(Vif)ie/l, A C I', where
Vif (@) = 0fi(x|o)

with 0 denoting the differentiation of a real function
R 3x - filxlo) = f(x e w),

the configuration x &; w € Q being defined by declaring its i coordinate to be equal
to x € R and all the other coordinates coinciding with those of the configuration
o € Q, and it is assumed that f;( - |w) is differentiable for every i € A. We define

also
VafF(@) = ZIVif ().
i€

If A =T, we omit the reference to the set A in the above notation. Let #)(Q),
n € N denote the set of all functions f for which for any i€ " we have
fi( - |w) € €(R), with #(IR) being the set of functions for which n deriva-
tives exist and are bounded. In the space €(Q) = ¥®(Q) we will use the supremum
norm denoted later on by | « [|,. In ") we introduce a seminorm

A= 2 1V s, -
ker

We say that a probability measure u on (¥/,S ) satisfies a logarithmic Sobolev
inequality (LS) with a coefficient ¢ € (0,00) if for some g € [1,00) (and therefore,
by general arguments [G], for all g € [1,00)) we have

M”%féwaﬂf+Mﬂ%wﬂﬁ (LS)

for any positive function f for which the right-hand side is finite.
Using the gradient operator we define for all local functions f € #*(Q) the
following operators:
Lf =SS (14)
e
where

Lif =Vif - BiVif (1.5)



Decay to Equilibrium for Stochastic Dynamics of Unbounded Spin Systems 405

with a coefficient f;, frequently called a diffusion coefficient, given by
fi = (C )i + ViU(g) (1.6)

with C™' being an inverse of some covariance matrix specified later. In the case
when A =1 and U =0, it is known that the corresponding operator extends to a
generator Z¢ of a Markov semigroup PC = €', (called a Gaussian semigroup),
and we have

PEf(w) = [ pc(dp)f(1 —5)2 ¢ +Cw) (1.7)
with .
C=e . (1.8)

We will show also how to construct the semigroup for the infinite lattice system
corresponding to a nontrivial local interaction. For this, let us first note that, for
every A € & and w € 2, we have well defined the following (essentially finite
dimensional) semigroup

PR f(n) = e %aon f(ng e w40) (1.9)

with the generator ¥, ,, defined by (1.4)—(1.6) with the covariance C = Gz .
Using this we define a tensor product semigroup on €(£2)

PO Fn) = tim Pl PR ), (1.10)

where limg, means the limit (in the uniform norm) as n — oo with A; € &y,
I =k,...,n+ 1. Clearly the right-hand side is independent of w € 2 and as one
can see its generator is given by (1.4)—(1.6) with the suitably chosen covariance
function C (having the Dirichlet boundary conditions on | J,~, 64,). We will show

that the limit P, f = lim;_ o Pfk) f exists for every local function f and in fact
extends to a Markov semigroup for the infinite lattice system. We will need the
following fact.

Lemma 1.1. For f € @1 (Q) and any stochastic dynamics P, defined above, we
have with f, = Pf and any K € T the following inequality:

> Jaslivifil, (1.11)

Vifilly = Vsl + 77
IV fel Vs QR+ 1) 4=k o

with a constant C € (0,00) independent of k € A and the function f. If addition-
ally f e Wy, A€ §, this implies

> Vil = e NI (1.12)
d(k,A)ZNR
with N
o X (Cry Cte\" ¢
— Ct Ct

Proof. Let f € 4'(Q) and let f, =P, f = e’gf. Then, using the fact that & is a
Markov generator, we have

SO = NSNT Sy S FOS TN (L)
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Since ¥ = ij’j and
[Vie %1fi = —Cy' Vifi — 05 VRU(9x) Vi f,
= —Cy'Vif = 5V (@) Vi fi — ViV (@) Vi fi,  (1.15)
using our assumptions that ViV = 0 and that the covariance C is of the finite
range, we get
SO S PV A2 T (VSiC Vii]+ 2V (ol (Vi

d(jK)=R
(1.16)
This implies that

d - _ _ -
P (Vi £2 Y PV fiCq' Vifsl + 2| Vi (@), Pros(Vicfs) -
ds A0SR

(1.17)

Integrating the inequality (1.17) with respect to s € [0,¢] and taking the supremum
with respect to the configuration @ € Q we obtain

- t -
IVifills S 1BV, +2 3 1CG [ dslPr—s| Vi fsVifil
(=R 0
t -
+ 2V (@oll, [ dsIP—s(Vifs)*ll,
0

t
< IVifli+2 3 1CG [ dsl VAl Vil
d(j,k) =R 0

t
+2 [ds| Vi (@l Vi fells - (1.18)
0
Hence we get
C t
Vv S IV + 55— ds||V; fs 1.19

with the constant _
C = 2(Cyk + ]]VﬁWIlu)(ZR + l)d . (1.20)

This ends the proof of the first part of the lemma. The inequality (1.12) follows
from (1.11) by simple general arguments, which do not depend on the semigroup
but only the inequality (1.11), (see e.g. [SZ2], 1.8 Lemma). [

Lemma 1.2. There is a constant B € (0,00) such that
BPlgjl(w) < B(1 + of)ie™ (121)

with
o = sup Zk: |Cj;1| . (1.22)
i
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Proof. To prove (1.21) we first observe that
- ’ - -
B+ o)) = (1 + o})? + [dsBZ(1 + ¢})i (w) . (123)
0

Now using our assumption about the function U, it is not difficult to see that for
any j € I' we have

- ’ -
P+o})? S(U+0d)?+D+ 3 |Gy [dsPy(1 +0p)? (1.24)
(KSR 0

with the constant D < (1 + |||, + | inf (xV'(x)/(1 +x2)% )). Iterating the in-
equality (1.24) we obtain

B(1+ ¢} < B(I + w})? exp(ar) (1.25)
with some constant B € (0,00) dependent only on the constant D and

o=sup Y, ICj;]|. (1.26)
iodkjsR

The inequalities (1.25) and (1.26) clearly imply (1.21) and (1.22). This ends the
proof of the lemma. [

Using the above lemmata we get the following useful estimate.

Lemma 1.3. For any A,, A, 11 € &o, and any local function f € Wy, Ag C A, we
have

- 1 d aAn
Pl Pl fl@) < B (1+wﬁ)7e“s(n[~(ﬁ-—)blllf“l

d(k,éA,) <R R
(1.27)

with some constant B € (0,00) independent of A,, A,.\, the function f, w € Q
and t € R, [W] denotes the corresponding biggest least integer.

Proof. To get (1.27) we note that for two Markov semigroups P, = e'% (i = 1,2),
setting f,; = P,;f, we have

d .
E(fr.l = fi2)=L1(fi1— [12)+H (L1 = L) f 12 (1.28)
Hence ;
(fi1 = fr2) = [dsPu—o (L1 — ZL2) [s2 . (1.29)
0

Using this for the semigroups P,A”*l and P'", respectively, we get

Aurt g t o -
P = PR () = | [dsPyy 30 CploxViP f(w)
0 jEAn+l

ke

lIA

0k oA, 1
P> |Cjk1|0f dsP" (1 + @) [[ViP f1, . (1.30)
JEA, 1
ke,
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From (1.30) and Lemma 1.1 used together with Lemma 1.2, we obtain

B |
- Y (+op)iet
% G(k,04,)<R

<o (6| AL Y. (131)

This implies (1.27) and ends the proof of Lemma 1.3. [

IP;A"“f _ PtA"f|(a)) < QR+ 1) max ICiT1|
J

From the last lemma we get

Proposition 1.4. For every f € ANE(F') the following limit exists:
P,fEl%mP{'f, (1.32)
0

and the family {P,, t € Rt} extends to the Markov semigroup on 4(<’). More-
over for any constant A € (0,00) we have the following property of finite speed
of propagation of interaction: for every function f € WoNE(S"),

P — Pl fl(0) < D( T e oM w.%ﬁ) e (133)

d(k,AC)<R

with some constant D dependent only on the smallest set Ay such that f € Wy,
provided that
d(f,04) =z Ct (1.34)

with some sufficiently large constant C € (0,00) dependent only on the choice
of A.

Proof. Proposition 1.4 follows from Lemma 1.3 by choosing the constant C in
(1.34) sufficiently large, so that

C-'te -
<10g (W) + C+°‘> s -24, (1.35)

(where C is given in Lemma 1.1, see (1.13)). O

2. Some Properties of the Stochastic Dynamics

For A € §, let u, denote a Gibbs measure on (&', S ) corresponding to the inter-
action U and the free measure uf{‘ = ug,, with Dirichlet boundary conditions on
0A. Let & and fg” be the Markov generators defined by (1.4)—(1.6) with the
covariance G4 and additionally with zero local interaction, respectively. Let P/
and P%‘ denote the corresponding semigroups. From now on we assume also that

there is a constant mg € (0,00) such that for any A4 € § we have GZ,; = m3[ in
the sense of quadratic forms. We have

Proposition 2.1. For any f € €(&')NA,, we have

1 3
Pt/]f(ﬂ) = Ze%UA(’I)Ef"A (efédw(q)s)e—%UA((pz)f(q,t)) (2.1)
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with Eg/‘ being the path-space measure associated to the semigroup P% and the
initial point n € &', and Z, = pile=U, and we have set

1
Vi) =3 % (E(Viv)z(mo—V?U(<pi)+(GgAl<p)iviU<<pi)) SNCE)
IE

Moreover there is a constant Ty € (0,00) such that for any T = Ty the semigroup
is weakly-ultracontractive in the sense that for any f € €(¥')N WU, we have

PRSI < L) (na(f (9) )7 (2.3)
with
Li(n) = ____erA(’?) (Eo/lep/ordsf/h(%-))lp
ZZ
Y ((l—rm o))" b4
o (e (280 o mu ) ) 24

—1
defined with arbitrary g € (1,2), é + lp =land 1 +4=1,and 1, = e G,

Proof. The representation of the semigroup given by (2.1)—(2.2) follows by standard
arguments by use of the Feynman—Kac formula. To prove the second part of the
proposition we first observe that by the Holder inequality with positive p,q such
that 37—!-117 =1 and g € (1,2), we get

1
PRI £ etV (Exferllisnato) P (EteS0uten sopityi . @25)

Since

B 300D f(p)|? = pf(e=3Uat1 T”)Ewrrn)lf((l —nr)ie+ ).

(2.6)
changing the integration variables
Vi 1
o4 — oy =1 —12r)204+ 1714, (2.7)
we obtain
peA 4 ((P) _4 '
Eye 209D f(op)| = [ug'(dg’ > M( N VO (28)
with
dui (o) 1
—_— = detA{(l — T2T) 2}
du&'(e")

1
X exp {_E("’ — 1), Gy (1 —1r) (@ — 1r1) — (9,G3, eo)} .
(2.9)



410 B. Zegarlinski
Hence using the Holder inequality with % +4 =1 we get

1

noq 4 o @A = 1) "B — 1 N\
Eite100m | (gt = (MEA( KN = )3 (o m))))

dug (o)

x (ugle= VAP f(p)P)E . (2.10)

If T = Ty for some sufficiently large Ty = To(r) € (0,00), the first term on the
right-hand side of (2.10) is finite. Combining (2.5)—(2.10) we obtain

P LD £ Latn)(ual f(@))2 (2.11)
with

1
La() = Z, B0 (Enernraen)”

o (A =) o =) |7
x (MG ( ) . (2.12)

This ends the proof of Proposition 2.1. [

For later purposes let us note the following lemma describing the growth of the
functional 14.

Lemma 2.2. Suppose the local interaction is polynomially bounded at infinity, i.e.
there are constants ug € (0,00) and K € N such that

[U@)] £ uo(1 + [x])* . (2.13)

Then for any w € &’ there are constants N = N(n) € N and u = u(n) € (0,00)
such that for every A € §q we have

In(n) < exp{ula"} . (2.14)

Proof. Using our assumption about the local interaction U and Jensen’s inequality
we get

1
Z,? < e (2.15)

with some constant u; € (0,00). Using the same assumption about U together with
the fact that we consider the finite range strictly positive operator G(?Al, from the
formula (2.2) we have

Vi < o)A (2.16)
with some other constant v; € (0,00), whence one can easily show that
1 A L
- (EgAep[()TdstA(w.x)> 7 < exp(Ci1A]) (2.18)
Z}

with the constant C; = u; + Tvy. Since for any y € ¥’ there is an a = a(n) € (0,00)
and an n = n(n) € N such that

il < a(l+4(0,D))", (2.19)
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using our growth restriction on the interaction U, we have

Ua(n)] < 3 o1+ ) < bl (2.20)
S

with some constant b;(y) € (0,00) and N =1+ %. This gives us the bound on
the second factor from the right-hand side of (2.12). Finally to bound the last factor
from the right-hand side of (2.12), we note that choosing ' = Tj with T} satisfying

r< (e To — 1) 221)

with some ¢ € (0,1), one can easily see that the corresponding Gaussian integral in
this factor exists and we have

( o4 (d“3A<(1 —tar) "2 — TrN))
Hg

5 < GlA| +C 2} 2.22
) )) ew{cia s f @

with some constants C,, C; € (0,00) independent of A € §o and n € ¥’. Because
of (2.19), we can bound it as follows:

1

)) < exp{b(4[* P} (223)

i dud (1 - t2r) 2 (g — 17 1))
¢ dui (o)

with some constant b,(7) € (0,00) dependent only on #. Combining (2.15)—(2.23)
we arrive at the bound (2.14) with a constant u = C; + by(n) + ba() and
N =1+ 5 max(K,2). This ends the proof of Lemma 2.2. [J

Remark. Let us remark that, as easily follows from the definition of 7, in (2.4)
and the considerations in the above proof, there is g¢ € (0,00) such that for any
q = qo we have

pard j’ < PV
with some constant D € (0,00) for any A, 4" € §, A C A'.

Proposition 2.1 together with Lemma 2.2 give us a very simple and useful de-
vise, which has a chance to be true not only on the lattice but also in the continuum.
The estimate on Lemma 2.2 contains unfortunately a drawback, namely the restric-
tion on the growth of the local interaction. One can overcome it by restricting the
space of configurations (which is reasonable since for fast growing local interac-
tions the infinite volume measure lives on the much smaller space of very slowly
growing sequences). However in the case of lattice spin systems one can use also
the following stronger tool, which on the other hand requires the growth of the
local interaction to be sufficiently fast.

Proposition 2.3. Suppose the local interaction satisfies the following growth
condition:

Ux) 2 1 (2.24)
with some 6 > 0, for all sufficiently large x € R. Then there is T € (0,00) such
that " Mol Al

P71, = e uylf] (225)

with a constant My € (0,00) independent of f € Wy N Ly(uq).
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Proof. Proposition 2.3 is a simple consequence of the general beautiful ultra-
contractivity estimates of [DaSi] plus some careful arguments tracing the volume
dependence of interesting constants. We start by proving the following lemma:

Lemma 2.4. Suppose for any p € (2,00) we have

tafPlog f £ ealpIualf P =Luoaf)) + T p)paf? + puaf? log(paf?)
(2.26)

for any positive function f € W, for which the expectations on the right-hand
side are finite, with the constants c,(p) and Iy(p) such that

T = ch(p)-d£ < 0 (2.27)
2 p
and

My= [Ti(p)— < 0. (2.28)
2 p
Then we have the following ultracontractivity estimate:

PR Sl < eM2(uaf®) . (2.29)

In particular if the local interaction U satisfies the growth condition (2.24), we
have

ca(p) = c(p) = (log p) 2 (2.30)
and

1 25
Iu(p) = c(ong)m] , 231)

with some [ ¢(0,00), and thus there is a constant My € (0,00) such that

1
My < 5Mo|A]. (2.32)

Using (2.29) and (2.32) together with the duality arguments, we get the desired
ultracontractivity estimate (2.25). This ends the proof of Proposition 2.3. [0

Remark. Let us also mention that the growth condition (2.24) is not the optimal
one. Actually for the ultracontractivity to be true it suffices that the interaction grows
at infinity slightly faster than x*(logx)?, see [DaSi].

Proof of Lemma 2.4. The implication of (2.29) from (2.26) assuming (2.27)~—(2.28)
is a general result which one can find in [G] and [DaSi]. To verify the estimate
(2.32) of interest to us, we use the following arguments. Let p; be a probability
measure on (R, #R) defined as follows:

pi(dx) = %e_%(G;Al i ~U) gy (2.33)
Then using a result of [DaSi] we have for any ¢ € (0,00) the following inequality:

pif2log f < epilVif 2 + vo(e)pif + pif > log(pif2)? (2.34)
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true with some function y,(¢) diverging at zero at most as ¢/, with f =1+ 2, for

any positive function f for which the right-hand side is finite. By simple induc-
tive arguments one can see ([Z4]) that the inequality (2.34) implies the following
inequality involving the product measure pg = &);c 4 pi:

paf>log f < epa|Vaf P + | Alo(e)paf® + paf>log(paf?)? . (2.35)

Now setting e 4 to be the density of the measure 1, with respect to the measure
P4, We have

waflog £ = pate ¥ togle M fy +pa (e Harpla,) L 236
2

Hence using the inequality (2.35) we get
_1 _1 1
naftlog f < epalVale 1 ) + pa <(e ZAAf)ngA>

+ | Ao(@a s + paf logluas®)? (2.37)

which implies
1
af?1og f = 2eualVaf P + pa <f2 <§AA + ZSIVAAA|2>)

+ | Alo(e)ias? + paf log(paf?)? . (2.38)

Since A, is a quadratic form in @y, k € A, using our assumption about the inter-
action U, it is easy to see that we have the following inequality for any ¢ € (0,00):

1
A1+ 26|V 44 < e(|Valog Pu> — Aglog ¥ 4) + aolA|(1+e7F)  (2.39)

with some constant ap € (0,00), =1+ %, and ¥, denoting the density of the
measure u, with respect to Lebesgue measure. This inequality clearly implies that
we have

paf21og f < epa|Vaf P + | Alp(e)uas® + naf> loglpa f2)? (2.40)

with a function y;(¢) diverging at zero not faster than ¢~#. For p > 2, substituting

f % instead of f into (2.40), after simple transformations we arrive at the following
inequality:

P —1
usfPlogf < mﬁﬂxx(fp (=Zf))
4 lA|%w(s)uAfp - paf P log(uaf )b . (241)

Hence, choosing ¢ = @(log p)~? we arrive at the inequality

uafPlog f < (PSP (=L 1) + Ta(pIuaf® + paf?loguaf?)?  (2.42)
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with

c(p) = (log p)~* (243)
and

2
Ta(p) = c%m (2.44)

with some constant C € (0,00) for all p € (2,00). From this the rest of Lemma
2.4 easily follows. [

3. Ergodicity of the Stochastic Dynamics of Infinite Spin Systems

Let u, respectively p4, A € &o, be a probability measure, respectively a sequence of
probability measures, on (<%’, & ). Let P, and P!, A € Fo, be the Markov semigroup
preserving u and py, A € §o, respectively, and satisfying the following condition

C.1 (Exponential approximation property). For any A € (0,00) we have

\P.f(n) — P f(n)| gD( > e‘”"”(O""(l+nﬁ)> e 3.1

d(k, AD<R

with a constant D € (0,00) dependent only on the smallest set Ay such that f &
W 4,, provided that

d(f,04) = Ct (3.2)
with some sufficiently large constant C € (0,00) dependent only on A.

We assume also the following

C.2 (Finite volume weak-ultracontractivity). There is a positive function 14(n)
satisfying
lim exp (—e|A|4 ) log I4(n) = 0 (3.3)
0

for any ¢ € (0,00), and such that for every function F € W, N Ly(uy) we have

IPAF|(n) < La(m)(paF?)? (34)
for some T € (0,00) independent of A € &, n € ¥ and the function F.
In this section we prove first the following result
Theorem 3.1. Suppose that the conditions C.1 and C.2 are satisfied and that
— there is a constant B € (0,00) such that for any A € &y and k € A, we have

luaox| < B (3.5)

and
— there is a constant ¢ € (0,00) such that for any A € Fo we have the following
logarithmic Sobolev inequality:

paf?log f = cualVafP? + pasf? log(uaf?)t (3.6)
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for every function f for which the right-hand side is finite. Then the limit

p= I%r;l 1A (3.7)

exists. If additionally the condition (3.3) is satisfied with 14(n) replaced by its
integral with the measure u, then for any local function f € WyNE' we have

P () - 1] < c,,,m){sxjp(m(fwAf')Z)% ; uufm} e (38)

for any m € (0,inf 4 gapa(Laon)), with gap:(Lrea) being the spectral gap of
the selfadjoint operator— %44 in Ly(pia), and with a constant C,(n) € (0,00)
dependent only on n € &' and m.

Remarks. As we have observed in Sect. 2, in our situation the condition (3.3) is
satisfied with 74(n) replaced by its integral with the measures p s, uniformly in
A" € §, and thus also with the measure p.

Let us note also that (3.6) implies gap,(La.c4) = %, see [Rot, Sil].

= ¢

Proof. First of all let us mention that, as easily and directly follows from our
assumption (3.6), for any k € I and a € R, we have

ek < gia’+Ba (3.9)

Thus by standard arguments the sequence {4} g, is compact in the weak topol-
ogy in the space of probability measures on (&’, S ). Let u denote its accumulation
point. Then clearly u satisfies (3.5) and (3.6), and thus also (3.9), with the same
constants.

Let us consider now a function f € Ay N %'. Then for any A € Fy, we have

\Pf(n) = uf |  1PSf ) = PRI+ P fO) = paf |+ |uaf = nf] . (3.10)

The first term on the right-hand side of (3.10) can be estimated with the use of the
exponential approximation property C.1, i.e. assuming we have (3.2) satisfied, this
term is bounded as in (3.1). For the second term on the right-hand side of (3.10)
we have with any ¢ € (1,0),

PACLO) = 1af)] = (PR = ma /DT < (PAPL (S = waf)(n))7
(3.11)

where we have used the Holder inequality for P4. Now applying the weak-
ultracontractivity property C.2, we get

PAPA(f — pal DT < LI (ualPL o (f — ua$PD% . (3.12)

Since by our assumption the measures u, satisfy logarithmic Sobolev inequalities
with the same coeflicient ¢ € (0,00), with some ¢ € (0, 1), we have the following
hypercontractivity estimate:

1 1
WalP o (f = ua P25 < (alPl sy (f = nafIP)? (3.13)
assuming
2g = 1+ et@=T) (3.14)
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Using the fact that the logarithmic Sobolev inequality (3.6) implies that the self-
adjoint operator— %4 04 in Ly(us) has a spectral gap gap,(Lpa4) = ¢~ ! at the
bottom of its spectrum (see [Rot, Si2]), we get

L —(1=0)gap (L 4 » 1
(WAlPL o (f = AP < e =09 Laod (uy(f — a2 . (3.15)

Combining (3.11)—(3.15) we obtain the following bound on the middle term on
the right-hand side of (3.10):

1 1 _1=5 7
PACS() = af) S LaT(ualf = paf P)2e”=0wanZacal — (3.16)
To estimate the last term on the right-hand side of (3.10) let us note that
waf = pf £ WP f(@) = paf |+ plPif (@) = Pl f(@)]  (317)

with w € %’ denoting the integration variable with respect to the measure y. Ap-
plying the same arguments as in (3.11)—(3.16) we get

1 . W p
WPLf = paf | < D pa(f — paf P)te 1 -wanLaenl (3.18)

(Let us remark that frequently one has an independent estimate on the last term
on the right-hand side of (3.10) from the construction of the measure p. Then
one can use this for the estimate of quantity which interests us.) The second term
from the right-hand side of (3.17) can be easily estimated with the use of the
exponential approximation property and (3.9) for the measure p. Now the final
ergodicity estimate (3.8) follows from our considerations by choosing the sequence
of sets A = A(t) — Z% so that the condition (3.2) is satisfied. [

As for the ergodicity properties of the infinite volume semigroup, it is not very
natural to assume something about the ergodicity of finite volume semigroups, there-
fore we would like also to present the following result. (For a corresponding result
for the case of compact single spin space M and the discussion of its relevance for
applications in statistical mechanics see [SZ4].)

Theorem 3.2. Suppose that the conditions C.1 and C.2 are satisfied and that
— there is r € (1,00) such that

dpa
due,

=0 (3.19)
Ly(p)

lim exp(—s]A]é )log
o

for every & € (0,00), and
— the measure i satisfies the logarithmic Sobolev inequality with a coefficient
¢ € (0,00), Le. we have

ufPlog f < eulV SR + puflog(uf?)? (3.20)

for any function f for which the right-hand side is finite. Then for any local
Sunction f € Wy NG, Ag € F, we have

PLf(n) = uf | < CulmAu(f = 1) + |1/ 11} (3.21)

SJor any m € (0,gap,(£)), with a constant Cn(n) € (0,00) dependent only on
ne L, the set Ay € § and the choice of m.
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Proof. Let f € Wy, N%', Ay € F. Then for any A € F, Ay C A, we have

P f(n) — uf| S|P () — uf|+ 1P f(n) = P f(n)] . (322)

The second term on the right-hand side of (3.22) can be estimated with the use of
the exponential approximation property C.1. Assuming we have (3.2) satisfied, the
second term on the right-hand side of (3.22) is bounded as in (3.1).

For the first term on the right-hand side of (3.22) we have with any g € (1,0),

1 1
PACS ) = n)l = (PAS ) = nNHIDT S (PRPLA(S — 1Y), (3.23)
where we have used the Holder inequality for P#. Now applying the weak-

ultracontractivity property C.2, with the same » € (1,00) as in our first assumption
(3.19), we obtain

(PAPACS — uf YD) < L)@ (ualPAr(f — wf))%

1| d R
< )7 | SE N IR = PR L (324)
#Ie/l Ly(p)
where s~! + 77! = 1. Hence we get
Al pA q 1 < 1 d:u/l q 2sq '21—
(PRIPZr(f = )DIDT = 147 ||~ (ulP—r(f — pfI*) >
ﬂ‘@A Le(p)
1 d a P
1) || P f = Pr )P (3:25)
Hieallz, g

If the measure p satisfies the logarithmic Sobolev inequality, then we have, with
any ¢ € (0,1) and

2oq = 1 + 2T (3.26)

the following hypercontractivity estimate:

WP r(f = nfIP) < (uPA_s(f — nf)D)?
< (u(f — pf)Hrem 0= (307)

where in the last step we have used the fact that the logarithmic Sobolev inequality
implies also the spectral gap gap,(#) = ¢! at the bottom of the spectrum of the
operator (—%) in Ly(u). To estimate the second term on the right-hand side of
(3.25) we use the approximation property to get

L Nl
(WPLrf = Por P30 < C1 32 e MO0 4 (ulan[P)20)||| £l (3.28)
KeAC

with some positive constant C; independent of A,z and f. Since p satisfies the
logarithmic Sobolev inequality, it has also satisfy the exponential bound (3.9). Using
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this we have | 1
(Hlok|*7) > < Cy(sq)? (329)

with some positive constant C, independent of k € I' and sq. From (3.28) and
(3.29) we see that if the conditions (3.2) and (3.26) are satisfied, we obtain

1
(WP f — P )% < Cy E;"‘d”"”(sqﬁ 11~ < Calllf 11l . (3.30)
ke A

Choosing a sequence of A = A(t) so that d(f,04) = C[¢] with a large positive
1

_1- LY
constant C, we see also that the factors [,(n)% and || dir 41| () converge to one.
Sy ™
Thus combining all our considerations we arrive at the estimate (3.21). This ends
the proof of the theorem. [

4. Logarithmic Sobolev Inequality for Gibbs Measures:
An Example on I' = Z

In this section we give a first nontrivial example of a spin system for which the
logarithmic Sobolev inequality is true for the corresponding Gibbs measure in infi-
nite volume as well as for finite volume Gibbs measures uniformly in volume. Here
we take advantage of one dimensionality of the lattice to have almost “for free” the
exponential decay of correlations in the system. (A higher dimensional situation in
discussed in the next section.) Let & = {E%} 15, 0co’ be a local specification de-
fined by (1.3), corresponding to a free Gaussian measure g, with a strictly positive
inverse covariance G~! of a finite range R > 0, and a local interaction given by
a real function U = V' + W defined with a nonnegative convex function ¥ and a
bounded function W having the first and the second derivative bounded. We show
the following result

Theorem 4.1. Let I' = Z. There is a constant ¢ € (0,00) such that for any A C Z¢
we have

uaflog f < 2eus|Vaf? P + paf log uaf (4.1)

for all nonnegative functions f for which the right-hand side is finite. This implies
that also the unique Gibbs measure u for the local specification & = {E} pc.0ey
satisfies the logarithmic Sobolev inequality with the same coefficient c.

Proof. The basic idea of the proof is similar to that given in [Z2] for one dimen-
sional spin systems with a compact spin space, however now some technicalities
are much more involved. We prove the Logarithmic Sobolev inequality (4.1) only
for the case of infinite volume Gibbs measure p on S'(Z); the proof for the case
of arbitrary volume A is similar. First of all for a large L € IN (to be chosen later)
we define the sets I',, i = 0,1 as follows

ri= U ([0,2(L +R)]+k(2L 4 4R)) . (4.2)
keZ+5

As one can see from this definition, each of the sets I'; consists of intervals of
length 2(L + R) separated by the distance 2R. Moreover we have

I'i=To+(L+2R), (4.3)
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and thus I' = I'g U I';. Now we introduce the following regular conditional expec-
tations associated to any Gibbs measure for the local specification &

Er, = H Eﬁl’k 44)
kEZ+5

with Ax =[0,2(L + R)] + k(L + 2R), k € Z+ %, and we set
P EErlErO . (45)
We will show that the following lemma is true.
Lemma 4.2. There is a constant ¢ € (0,00) such that
Pflogf < 2PINfIP+Pflog 2f (4.6)

for any nonnegative function f for which the right-hand side is finite. Moreover
there is a constant B € (0,00) such that for any differentiable function f we have

IV(2f):} < B2VSfi]?, (4.7)

and additionally there is an L € N such that with some constant A € (0,1), we
have
V@) < 2V A (438)

for any nonnegative differentiable function f € W(Io\I'y).

The proof of this lemma is much more complicated than in the case of spin
systems with compact spin space and will be given later. Now assuming Lemma
4.2 we proceed as follows. Let f € Uy, for some Ay € §F, be a positive and
differentiable function. Then from our assumption it is not difficult to see that also
any function f,, n € Z* defined for n = 0 is equal to f and for any n € N by

fnzgnf’

has the same properties. Moreover for n € N we have f, € W(I,\I';). Now using
the first part of Lemma 4.2, for any n € N and &k = 1,...,n we have

P fiilog fior = PP fioy log fioh)
1
< pn=h <zc‘g>|v fE P+ filog fk)

1
=2t DIV P+ 2D (filog fi) . (49)

Hence we get

n 1
> PO+ 2 flog 2 f (4.10)
k=1

N Oy

P'flogf =
Using the second part of Lemma 4.2 we have

VP < B2VSIP, (4.11a)
1
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and for k = 2
1
IkaZ_IIZ é Blk—Z@k—l'vf%'Z . (411b)

From this it is not difficult to see that for any n € N we have
P flog f < ZCW"IVf%IZ-l-?”flog@”f (4.12)

with a constant ¢ € (G,&(1 +2B(1 — 2)™!)). Now to finish the proof, it is sufficient
to show that in L;(u) we have

lim 2" f = uf (4.13)

for any local function f € %'. To see this we utilize an idea of [Z3] as follows.
For any m,n € N we have

pZ" " f(0) = 2" f(w)| £ p?"| 2" f(@) — 2" f ()| (4.14)

with @ being the integration variable with respect to 2™. By our construction we
have 2" f € W ,, where A, = {i: d(i, 4o) =< n(2L+3R)}. Let {ix : k= 1,..., |44}
be an enumeration of elements of A,. For any two configuration w, & € &', we
define the interpolating configurations ' by setting

i O for k <1
@D =y fork >

Using this notation we have

[An]—1 . .
2" (D) — 2" f(w)| < 2 |2 f(@'H1) = P f(')] . (4.15)
Since
. . 4, .
12" f('+1) = P" f(@")] £ | [dxVi, 2" f(x &, &) < (log,| + @3, DIVi?" 1l »
l (4.16)
we get

MI'@”H—nf(w) _ '@"f(wn < ZA 2/.t|(l)|| . Hvlgnf”“
ied,

gﬂvﬂ<§m@wmwwvﬁm>. (4.17)

Since under our assumptions (see e.g. [BH-K]) there is a constant a € (0,00) such
that

for any i€ I', using the second part of the Lemma 4.2 and the fact that
[Au] = |40l + n(2L + 3R), we finally obtain

™ f(@0) — 2 f()] < dall ] - (11 NIBAT (14| + (2L +3R)) . (4.19)
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Using the fact that 4 € (0,1), we see that the right-hand side of (4.19) converges
to zero. This together with the fact that 2" satisfies DLR equation with the mea-
sure x4 imply (4.13) and ends the proof of Theorem 4.1 (assuming Lemma 4.2) for
positive local functions f € ¢'. From this Theorem 4.1 follows by general
arguments [G]. O

Proof of Lemma 4.2. To prove Lemma 4.2 we first note that we have

Lemma 4.3. For every A € § there is ¢y € (0,00) such that for any w € &' we
have

E%flog f < 2¢0E\V £ 1| + E© f log E% (4.20)

for any positive differentiable function [ € U,.

Proof of Lemma 4.3. To prove the lemma we observe that the measure E£9 has
uniformly bounded from above and below density with respect to the measure

EG(e"F)

EOF = ~£
T Ey(e)

(421)

with V4 =3 i . V(gi) and E-"/‘l’ being the conditional expectation associated to the
Gaussian measure. Since by our assumption Vj is a convex function, the Bakry—
Emery criterion, [BE], implies that the measure E_‘j satisfies logarithmic Sobolev
inequality with a coefficient independent of w € Q (and in fact of A C I'). Using
this and the general arguments of [HS] (Lemma 5.1), the lemma follows. [J

From Lemma 4.3, by the product property of logarithmic Sobolev inequality [G],
we see that both Er, i = 0,1 satisfy LS with the same coefficient ¢. Therefore we
have

Pflog f = Er (Er, flog f) < Er,(2coEr,|Vr, /2 + Er, f log Er, /)
< 20(P\Vry f2P + Er, Vi (Er )T P) + 2 log 2 . (422)

To bound the second term on the right-hand side of (4.22) we will need the fol-
lowing fact:

Lemma 4.4. Let A = [0,2(L + R)]. For any positive and differentiable f € Wy,
A9 C A and any j € 0grA, we have
Vi £ 2EA[Vif 31 + ClAle ™DV, f22 (423)

with some constants C,M € (0,00) independent of the function f. For j € A, by
the definition of local specification, the left-hand side of (4.23) vanishes, whereas
if d(j, 1) > R we can omit the second term from the right-hand side.

The lemma will be proven later. Now let us note that for every j € I'; we have

either j € I'y, in which case Vj(Er, f )% = 0, or there is a unique set A; C I’y such
that j € dr4;. In the second case using Lemma 4.4 we get

1 1
IViEro /)21 £ Erg sl ViEa )2

1 _ oA 1
< 2B5|Vif 2P+ ClAjle ™ IR ER |V fP L (424)
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Summing this inequality over j € I';\I'y and integrating with the measure Er , we
obtain
1 1
Er |V (Er, /)2 £ Q+2RC)PIV S . (4.25)

This together with (4.22) gives (4.6) with a constant ¢ = ¢o(3 + 2RC). To get (4.8)
we observe that for j € I we have

1 1 _ 1
IVi(ErEr, 2] < El‘l\Ailvj(EAjEFOf)z |* < 2RC|Ajle™Er, |V/1j(Er0f)2 2,

(4.26)

where we have used Lemma 4.4 together with the fact that (Er, f )% € Arpnr,. To
estimate (4.26) we use (4.24) together with our present assumption that /€ Wr\r,,
to obtain

\Vi(Er Er, f)? 2 £ QRCYR(UL + R)Pe MP|V f17 (4.27)

If L € N is sufficiently large, we get (4.8). This ends the proof of Lemma 4.2. [

Proof of Lemma 4.4. Let f be a positive differentiable function and let j € dzA.
In order to prove the inequality of interest to us, we observe that

Vi(EAf) = 2EAf) IViEAS . (4.28)

Therefore it is sufficient for us to find a suitable bound on the second factor on the
right side of (4.28). For this we first use the definition of our local specification to
get

ViEaf = EaVif — ng:A Gy Ea(f> 0x) - (4.29)
dk, <R
To bound the first term on the right-hand side of (4.29) we use the formula V;f =
2f %Vj f 3 and the Holder inequality to get

EAVif| £ 2Ef) (EalVif2P)7 . (4.30)

To discuss the second term from the right-hand side of (4.29) we use the following
representation of the two point truncated correlation function

1 - N
Ealf,00) = 5EA@ Ea(f =)ok = @i » (4.31)

where £ denotes the isomorphic copy of the measure £, and for a function F* we
have set /' = F(¢), with ¢ denoting the integration variables with respect to the
measure £ 4. Introducing new integration variables g and p by

1
i = ﬁ(‘]i + pi)» (4.32)
s Lo
q)i - \/-2-((]! pl)’

we get the following representation of (4.31):

1 . ~
Ealfs o) = SEA @ Ea(Eq a(f — Aok — @) (4.33)
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where E, 4 denotes the conditional expectation given a fixed configuration g, as-
sociated to the measure £, ® E 4 via (4.32). It is easy to see that we have

pe! (e A PIDE (g, p), @(g, p)))
Hf;,Ap(e* 7a(pla)y

Eq 4(F (9, @) = (4.34)

with ,uaG'/fp denoting the corresponding Gaussian measure for p variables and the
(conditional) local action #;(plq) is given by the following formula:

_ T = AP, Lo
”VA(plq)r-%V(p.lqn)— > (U(ﬁ(qﬁrp-)) +U<\/§(ql p-))) . (435)

icA

Let us mention that, as follows from the last formula, ¥"(pilqi) is symmetric with
respect to the change p; — —p;. Since f € U, , we have

Eqa(f =)ok = ¢i) = V2E a((f = 1) x) = V2E a((f ~ NEq s Pr) > (436)

where E, 4\ 4, is the conditional expectation with respect to the variables pj, i € A,
associated to the measure E, 4. Now using this together with the algebraic formula

f-f= (f% +f% )(f% —f%) and the Holder inequality we get
Ey a(f =)ol S Eg a(f 7+ TV Ega(f S = [P Eqng pi)?)? - (437)

To estimate the second factor from the right-hand side of (4.37) let us note that
we have

Py i

Ep pagPe= 2 [dx 32 GJIE;’,A\AO(M, Px) (4.38)
i€ty 0 i 490
dGi,1) <R

where {p'}, i € A, is an interpolating sequence defined by

0 forj<i

(Py={x forj=i . (4.39)
pi forj>i
Hence
E) pay ol = 2 Iml 2 1G] E g aa (oo (4.40)
i€y ie,C
dG,1) <R

To estimate the right-hand side of (4.40) we use the following lemma proven later.

Lemma 4.5. There are constants C;,M € (0,00) such that we have

1
Eq o (o)l S Cre 2D (441)



424 B. Zegarlinski

Using (4.38)—(4.41), we get

1 = 1 _1 3
(Ega(f? = [PV (Eq maopr)})? < Coem 2000
1 ~1 :
X <Eq,A(f7 - Pi2> (4.42)
i€,

with a constant C; € (0,00) independent of A,q and the function f. Now let
@y, 1 = D, 4(p) denote the density of the measure E, 4 with respect to the Lebesgue
measure dp,. Then it is clear from our assumptions about the local interaction that
there are constants, a,b € (0,00) such that, for any 4 € § and configuration ¢,
we have

> < a(|Viog @y 4 — Alog @4, 4) + b|A] . (4.43)

i€y
Hence it is easy to see (by similar arguments as used in Sect.2 in the proof of
Lemma 2.4) that

Eg 4 ((f% _f% Y Pf) = aEq,A(|vA,pf%|2 + |VA,pf~7|2)

i€

L BAEL (-, (4.44)

where V,, , denotes the gradient with respect to the variables pj, i € A. To estimate
the second term on the right-hand side of (4.44), we use the following lemma,
which will be proven at the end.

Lemma 4.6. There is a constant my € (0,00) such that for any A€ §, g€ S’
and all differentiable functions f € Wy, we have

No—

Ead(ft =22 < mg By alVa (7 =T (4.45)

Using Lemma 4.6 we get

2

(Eq,A ((f% Py zﬁ)) < Qa+bms JADE, 4 |Va,(fF — 7)) . (446)

i€y

Using this together with (4.42),(4.37) and (4.36),(4.33), we get
Ea(fs ou)l  CilA|Te 300 @ £,

I I IN! 1oz ol
X (Eqa(f2 + 22 (EqalVa o(f2 =fP)2)  (447)
with some constant Cs € (0,00) independent of A,q and the function f. Hence by

simple arguments involving Holder inequality and the definition of the conditional
expectation, we arrive at the following inequality:

EACS, 01| £ 2EAf)2(CalA|2e™ 2TV W, f3)3)  (448)

with some constant C, € (0,00) independent of 4 € §, w € & and the function
feWUy, N %'. Combining (4.48) with (4.29)~(4.30), and using (4.28), we get

IVAEAS)| < (EalVif[2)E + CalA[2e™ M-S, W, f32)7 (4.49)

from which Lemma 4.4 easily follows. [J
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Proof of Lemma 4.5. Let A,, n=1,...,N be a sequence of intervals of lengths
equal to the range of the interaction R, such that k € A; and 1€ Ay for some

N < [90] 41, Let 1
Ennyl = — Z QDiGi; @ - (4.50)

i€,
€44

Using the symmetry p — — p of the conditional local interaction #( - |¢) and the
fact that G~! has the finite range R, it is not difficult to see that we have

N
Eq,A(pkpl) = Eq,/l ( I:Il th(£n,n+l(p))pkpl) . (451)

Let us define the following partition of unity x°, o, € {—1,+1} by setting:

2= p) = a(i € Ay, |pil S H), (4.52)

and let
27N p)= 1= (p) = xEi € A |pi| > H). (4.53)

Using this notation we have

N
Egalpxp) = > NEq,A([Il(x“”(p)th(sn,n+1(p)))pkpl) . (4.54)

We divide the sum on the right-hand side of (4.54) into two parts. The first, denoted
by S;, will contain all terms for which the number of »’s satisfying ¢, = +1 and
op+1 = +1 is bigger than 0N, for some small constant 6 € (0, %). Since in the case
when ¢, = +1 and ¢,,1 = +1 we have

ch(ﬁn,nﬂ)“ = e Mo (4.55)

for some M, € (0,00), using an easy to prove fact (see e.g. [BH-K]) that
1
sup (Eqa(p))? £ C (4.56)
q, 1
with some constant C € (0,00), we see that the first sum has the following bound:

IS;| < Cre MooV < Dle—MT"féﬂk’“ (4.57)

with some constant D; € (0,00) independent of A and k,1 € A. To bound the second
part of the sum from the right-hand side of (4.54), denoted later by S;;, we estimate
each term as follows:

N N 2 !
Ega < I_I1 ™ th(sn,n+1(p)))pkpu>| < (Eq,A ( T_[l x"”(p))) (EqA(Pip}))?
(4.58)

Now it is not difficult to see (e.g. by the same arguments as in [BeH-K]) that the
second factor on the right-hand side of (4.58) is bounded by a constant D; € (0,00)
independent of g, 4,0 and k,1 € A. On the other hand using the fact that the local
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conditional interaction is fast increasing at infinity, we get

N <
Ega ( Hl X"”(p)> < e MG (4.59)
n=

with a constant M(H) € (0,00) growing to infinity with A and independent of ¢
and A. This is because for every configuration of ¢’s in the sum S;; we have to
have at least %N factors y(|pi| > H). Taking into account that the number of terms
in this sum does not exceed 2V%, for any fixed 6 < J we can choose H € (0,00)
sufficiently large so that [M(H )(% —6) —log(2R)] > Mo(% — 9). Then we get the
following estimate '

M
1S11] < Dae~(30)FdkD (4.60)

with some constant D, € (0, 00) independent of ¢, A and k, 1 € A. Combining (4.57)
and (4.60) we get the inequality (4.41) with M = min(24, 1 — 26)My/R. This ends
the proof of Lemma 4.5. O

Proof of Lemma 4.6. Let F € Wy, N %" with some Ay C A4 € §. We need to prove
that

Eq a(F(9(q, p)) = F($(q, p)))* < my ' Eq alVp(F(0(g, p)) = F(¢(g, p))I* (461)

with some constant mg € (0,00) independent of g and A, and V, denoting the
gradient with respect to the variables p. To see (4.61), we note that denoting by

d _
g lexp d P na(pl)— X pGilmp |, (462)
jeA\Ag,ieA,
di,j)<R

pa(pag) = 1

for any function g € 2,4, we have

Ao, —,
oo (e 40(Pl9)

PA, Ay gz)

Eq,A(gz) = %
1™ 10 p 4 40)

(4.63)

Let us note that the local conditional interaction ¥74,(plg) can be represented in
the following form:

Va(plg) = E; (7“(pilg) + V™ (pilai)) = 74, (pl) + Vig(pl)  (4.64)
i€y

with 77¢( - |gi), respectively #™( - |gi), being convex, respectively not necessarily
convex but satisfying
sup |97+ gl < o (465)
di

with some constant v; € (0,00). Using this we see that

‘V,fo(plq)p/1

0Ay, —
201 |40 PG ‘(e ,Aogz) '

E,4(g*) < e —
pZtoe ™ o p g a0)

(4.66)
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Additionally we observe, that as follows from Lemma 4.5, we have

0* Pa,A
Y PPiG Gy
i,ji€AgNirA\Ap picpj

= > Pipj< > Gi;lpk’ > Gk Pk>
A\, p 4,

i,jeAgNcpA\A4g keA\ A4y ke A\ Ay

IIN

c 3 1% (4.67)

i€ Agnég A\ A

with some constant C € (0,00) independent of A, Ay and p,,; we have used
(s ) a\dpp m to denote the corresponding covariance of the conditional expec-

tation given p,, associated to the measure E, 4. Using this, we see that there is

a convex, even with respect to p, function ﬁo( plg) and a constant v; € (0,00),
such that we have

T aoPla) z) 7 4o P19) )

_21’2'/10'#6 O(e A(g ) < 202'/10[/"6 O(e
q
CAo(e ’AO(PI‘I)) ﬂgAO(e ’AO(PI‘]))

(4.68)

for any function g € . If the function g is odd, by standard arguments one shows
that there is a constant mgy € (0,00), such that

oo, —~7, 6dy, —7
woloe Ao (Pl9) @) ——IMCG O(e AO(PIq)|vpgl2) (4:69)
N g€ : 0 A _ € .
#éAO(e “/Ao(plq)) ,uCGAO(e /Ao(plq))

This together with (4.68) implies (4.61) and ends the proof of the lemma. [J

Having completed the proof of Theorem 4.1 we can now combine it with the
results of Sects. 1-3 and easily get the following corollary.

Theorem 4.2. Let P, t € RT be a semigroup on €(S'(Z)) corresponding to
the free Gaussian measure uc (with mean zero and with strictly positive in-
verse of covariance G 'ofa finite range R), and a local interaction U =V + W

as in Theorem 4.1. Let u be an invariant Gibbs measure for P, Then for any
feWyyNE, Ay € F, we have

P f (1) = nf| S Con(u(f — nfHHE + [llf1IDe™ (4.70)
for any m € (0,(1 — d)gap, ), with a constant Cs(n) € (0,00) dependent only on
nes, 6e€(0,1)and Ay € §.

5. Logarithmic Sobolev Inequality for Gibbs Measures:
The Higher Dimensional Examples

In this section we would like to show that also on the higher dimensional lattice
one can give examples where our strategy allows to prove the Logarithmic Sobolev
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inequality in more general situations than admitted by the I'; criterion of [BE]. A
careful reader has surely noticed that the basic ingredients we used in the previous
section were: the uniform (in volume and external conditions) cluster property of
conditional measures and certain operator forms bounds. The later are essentially
independent of the dimension of the lattice, but the uniform cluster property is a
more delicate matter and on a higher dimensional lattice it does not come “for free”
as in one dimension. It should be however clear for a reader that in general the
following result is true.

Theorem 5.1. Suppose there are constants C,M € (0,00) such that for any suffi-
ciently large cube Ay C Z% and any w € Q we have

ES (93, 0p)] £ Ce MGV (5.1)

Then there is a constant ¢ € (0,00) such that for any cube A € Z we have

1
faflog f < 2cunlVaf 2z + paf logpaf (5.2)

for all nonnegative functions [ for which the right-hand side is finite. This implies
that also the unique Gibbs measure  for the local specification & = {E}} se. vy’
satisfies the logarithmic Sobolev inequality with the same coefficient c.

After a comprehensive description of the one dimensional case in Sect.4 it
should be easy for a reader to use the geometrical considerations of [SZ3] to re-
produce the details of the proof of Theorem 5.1. Therefore we would like to re-
strict ourselves to description of a large class of models satisfying the assumption
of the uniform cluster property. Our main goal will be to show that this class
contains examples where the local interactions can have arbitrarily large negative
second derivative, for which the I'; form of the Bakry—Emery criterion [BE] can-
not be positive and therefore one cannot get the logarithmic Sobolev inequality
using the arguments of [BE]. To achieve our goal we note that if the function
U, used to define the local interaction, differs from a convex function only on
the sets of small probability then one can get an estimate (5.1) by the following
special version of cluster expansion; (for the general principles of cluster expan-
sion, see e.g. [MM, Br]). First of all we observe that using (4.33) and (4.34), we
have

IES (@i, 97)] < sup|Eq a(pipi)| (53)
q

where
i (e= 4D F(p))
UG (e="atrl0))

Eq a(F(p)) = (54)

with paG'flp denoting the corresponding Gaussian measure for p variables and the
(conditional) local action ¥ 4(p|q) is given by the following formula:

v a(ple) = 27 (pilgi) = (U (\%(qi + pi)> +U <%(‘]i - pa))) . (5.5)

iea icA
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The conditional local interaction has the following symmetry useful for us later:

Va(plg) = V4(—plq) - (5.6)

We will like to apply a cluster expansion to the probability measures given by (5.4).
For this we define a family of covariances G(s), s = {s, € [0, 1]}je4, by setting

G Ns)=G:',

G™l(s)j == siGy's; for i=j. (5.7)

Let pgs),p be the corresponding (interpolating) Gaussian measure. Substituting this
measure into the formula (5.4) we define a probability measure £ s 4. Let us define
non-normalized expectation by

Eqs1 = iy (e 7 4P10) C By (5.8)

The cluster expansion of interest to us is generated by the successive application of
the fundamental theorem of calculus in the following form:

ifsp=1
_ d
Eq,s,APipj (EquPIP;)[s1 0-{-de/ quPlP] s (5.9)
where §¢ = sx for k+1 and otherwise to the integration variable. Applying (5.9)

successively and taking into the account the symmetry property (5.6), one gets the
following representation for the quantity of interest to us:

X 0
Eqs apipy = Z A\ f dsy—— quPnPJ, (5.10)
Xc4 Z/l 0<sy <1 aX
X3ij

where the summation is running only on the connected sets X containing i and j, the
integration is over sy € [0,1], k € X and 7 = [[cx as By standard arguments
one gets the following general result:

Proposition 5.2. There is a constant 4 € (0,1) such that if

sup < K (5.11)

Sy

0 -
‘a?X‘Eq,s,Apipj

then also p

cax < A (5.12)
Zy

with some constant B < |log A| and the cluster expansion (5.10) converges uni-

formly in A C Z¢ and the estimate (5.1) is true.

Let us mention that clearly the inequality (5.11) is true if for every i € Z9,
we have Gy ' > go, with some sufficiently large constant go € (0,00) and the local
interaction is given by a convex function U. Now to finish the construction of the
example of interest to us it is sufficient to observe that if the cluster expansion is
convergent uniformly in A and ¢ for a given local interaction given by a function
U, then it is also convergent for any interaction given by U + oW, provided that
oW ]|, < ¢ with some ¢ € (0,00) sufficiently small. This condition obviously allows
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us to take a function having an arbitrary second derivative and therefore one can
violate the positivity of the I', form from the Bakry—Emery criterion.

Remark. Let us note that the Erice cluster expansion of [GJS] could be not suit-
able in general for the above arguments, since it depends not only on the supre-
mum norm of the perturbation. On the other hand this expansion converges also
in the situations of some polynomial interactions where the above given (crude)
expansion would be divergent. One could however hope that by careful modifica-
tion of the arguments (based on the multiscale analysis), it should also be possi-
ble to get Logarithmic Sobolev inequalities for the (unique) infinite volume Gibbs
measure.

Finally let us mention that by the results of Sect. 3 in all the above considered
models we have the following strong ergodicity result.

Theorem 5.2. For any model on Z¢ satisfying the conditions of Theorem 5.1, the
corresponding semigroup is strongly ergodic in the sense of Theorems 3.1 and 3.2.

6. Conclusions

In the present work we have shown that an extension of a general strategy for
proving strong ergodicity properties of the Markov semigroups to the case of non-
compact configuration space is possible. In particular we have shown that the general
idea of proving LS for the corresponding Gibbs measures works also in the present
setting, although some technical details require more work than in the case of com-
pact configuration space. By this we provide an important class of nontrivial situ-
ations, where LS is true and which remains beyond the applicability region of the
Bakry—Emery criterion. We have given a comprehensive characterization of the
models in one dimension. In higher dimensions the situation is more complicated
and although we have constructed a class of nontrivial examples for which the LS
is true but the I', criterion fails, there are still interesting cases to study. For exam-
ple let us mention the A: P(¢) 1,5 lattice models of euclidean field theory with a
small coupling constant Z € (0,00), for which one could expect LS, but for which
it seems to be impossible to prove the uniform cluster property (as in Theorem
5.1) by the cluster expansion, which would be uniform also in the lattice spacing.
It would be very interesting to study such lattice systems.

Although we know already quite a lot about the lattice systems, we still know
very little about the continuum systems. From what we have done in the present
work it seems to be clear that the logarithmic Sobolev inequality is also true
for the unique Gibbs measure of a one dimensional continuum system corre-
sponding to the free Gaussian measure pp, with mean zero and a covariance
(—d?/dx* +m3)~", mg > 0, and the local interaction as considered before. This
provides the first nontrivial example which is not in the B-E class.

A more intriguing situation is in two dimensions for the measures describing the
models of euclidean field theory, [Si], with the weak polynomial interactions. (As
remarked in [Z3] for the model with the exponential interaction one can use the B-E
criterion together with some approximation procedure to get LS.) For the 4 : P(¢) :2
already the finite volume LS is nontrivial, although one can give heuristic arguments
that it should be true. The problem for the infinite volume measures seems to be
at the moment much more complicated.
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After we have constructed a number of examples of hypercontractive semigroups
it would be very interesting to study their kernels further. Besides purely mathe-
matical interests, we believe it could provide us with a better understanding of the
analyticity properties and the particle structure of the corresponding theories.
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