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Abstract: We present evidence for an undiscovered link between N = 2 super-
symmetric quantum field theories and the mathematical theory of helices of coherent
sheaves. We give a thorough review for nonspecialists of both the mathematics
and physics involved, and invite the reader to take up the search for this elusive
connection.

1. Introduction

Last year, Kontsevich noticed a similarity between the work of Cecotti and Vafa
on classifying two-dimensional N = 2 supersymmetric field theories and the work
of some algebraic geometers in Moscow [1]. In the independent and seemingly
unrelated work of physicists and mathematicians, similar structures emerged. Both
had found quasi-unipotent matrices satisfying certain Diophantine conditions, which
supported the action of the braid group. Were they the same?

Behind this question lies a potential relationship between disparate fields and the
opportunity for string theory and its offshoots to once again bring mathematicians
and physicists together. Unfortunately, my search for this bridge was somewhat in
vain. I cannot tout complete success; instead I offer an amalgam of evidence and
observations supporting this conjecture, along with various approaches used in trying
to find this elusive link. These diverse techniques span a breadth of physics and
mathematics. This paper is intended to give a thorough treatment while remaining
somewhat self-contained, perhaps at the expense of brevity.

The physics is the theory of classifying two-dimensional N — 2 supersymmetric
field theories [2] and is closely related to topological-anti-topological (tt*) fusion
[3]. The idea for classification was to obtain information about the number of vacua
and solitons between them in the infrared limit. Given a massive N = 2 theory
(we will always consider two-dimensional theories), one can consider the whole
renormalization group trajectory-its infrared and ultraviolet limits. In the conformal,
or ultraviolet, limit, the (universality class of the) theory can be partially classified
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by the structure of the chiral primary ring [4]. In particular one can compute the
number of ring elements and their U(l) charges. In the infrared limit, there is no
superconformal symmetry; the excitations above the vacua become infinitely massive
and we can investigate tunneling between vacua. These amplitudes will reveal the
numbers of solitons connecting different vacua. These numbers, too, help classify the
theory. In fact, the U(\) charges of the theory at its conformal limit may be derived
from this information. Our interest is in the topological sigma model associated to
a Kahler target space. The physical picture is detailed in section two.

The mathematics involved regards a branch of study which has been developed
in the past decade primarily at Moscow University [5]. The theory is that of collec-
tions of coherent sheaves called helices. The theory arose from the study of vector
bundles over low dimensional projective spaces. Unfortunately, the math is almost
as new as the physics, and few results are known rigorously. Helices are collections
of sheaves over some complex base manifold obeying a sort of upper-triangularity
condition (on the Euler characteristic between sheaves). These collections trans-
form under mutations defining an action of the braid group on a finite collection
of sheaves - the foundation- from which the helix is determined. A bilinear form
over the foundation is defined; in several examples, we see that it is precisely the
matrix derived from the physical theory on the same base manifold. Section three
is composed of a detailed exploration of this mathematical subject.

Even without an explicit connection between the two disciplines, it may be
possible to prove some sort of categorical equivalence between certain classes of
N = 2 quantum field theories and foundations of helices. Such a description, while
interesting, would not be as enlightening. For example, we have noticed that the
matrices associated to topological sigma models over a given manifold correspond
to the matrices associated with bundles over the same space. A categorical equiva-
lence could not guarantee that the base space of the vector bundles and the sigma
model should be in correspondence. We will discuss this further, along with several
techniques which may be useful in finding a bridge, in section four.

A note on point of view: In the section labeled "The Physics," the first per-
son "we" is taken to mean "we mathematicians." In the section of mathematics,
it means "we physicists." This schizophrenic viewpoint reflects only the author's
natural identification with those who feel inexpert.

2. The Physics

2.1. Overview. The physics we will discuss involves the realm of two-dimensional
quantum field theories with two independent supersymmetry charges. These theo-
ries have many interesting properties which relate to various fields of mathematics
including de Rham and Hodge cohomologies [6]; Morse theory [7]; singularities
and Picard Lefschetz theory [2,8]; variations of Hodge structure. The latter two are
more closely related to our area of investigation, and are particular to the N = 2
case (these structures are absent in N = 1 supersymmetric models). Specifically, we
will be working in the topological sector of such theories [9]. This is interpreted as
follows. There exists a certain set of correlations functions in these theories which
are independent of the positions of the fields on the two-dimensional surface. If we
restrict the set of fields and correlation functions to those which have this prop-
erty, we can use the N = 2 theory as a means of creating a "topological theory."
Typically, the space of topological field theories is composed of finite-dimensional
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components. This space can be thought of as the parameter space of the quan-
tum field theory, where only the topologically relevant parameters-i.e. those which
when perturbed change the topological correlation functions - are considered.

Thus, our spaces will be finite-dimensional spaces, each point of which will
represent a topological field theory. Let us fix a component M of this space, and
label its points by t. The fields φι in these theories create states |/) which comprise
a Hubert space, fflt. The fields (and hence states) will typically transform amongst
themselves under a perturbation. They thus define a vector bundle over moduli
space, with a natural connection we will determine presently through field theoretic
methods. The fields define a commutative associative algebra: φxx φj = Cjjkφk
The correlation functions, being independent of position, can only depend on the
types of fields and on the point t. We will be concerned with the variation of these
parameters with the moduli.

As we will show, the Hubert spaces can be thought of as spaces of vacua,
i.e. states of zero energy. If we imagine a potential, the vacua lie at the minima,
which we will take to be discrete and labeled xn. If space is the real line, a field
configuration φ(x) satisfying φ(oo) = xa and φ(—oo) = JQ> is said to be in the ab
soliton sector. A minimal energy configuration is a soliton. The situation is decidedly
more difficult to interpret in field theories without potentials. After our discussion
of topological field theories, we will relate some of the quantities discussed above
to the numbers of solitons in the theory. The sigma models are theories defined
for a given Kahler manifold and Kahler form, k. The moduli space of theories for
a given manifold will be the Kahler cone. To each such manifold we will derive
a matrix encoding the soliton numbers, which has several interesting properties. It
transforms under the action of a braid group and is quasi-unipotent. We will liken
this to a similar matrix derived through the theory of helices.

2.2. Topological Field Theory. Topological field theories are models in which cor-
relation functions do not depend on the positions of the operators involved. They
therefore depend only on the type of operators involved, and on topological prop-
erties of the space of field configurations. In the case of topological sigma models,
in which the quantum fields are maps to some target manifold, the topology of the
target manifold becomes crucial. Such a theory can be defined given any N = 2
quantum field theory. Topological theories constructed in this manner will be studied
here.

Let us describe the twisting procedure which yields a topological theory from
an N = 2 theory. To do so, let us first consider a theory defined on an infinite
flat cylinder. A quantum theory with N = 2 supersymmetry is invariant under the
N — 2 superalgebra. This algebra contains two fermionic generators Q\Q2, as well
as bosonic generators, which mix non-trivially. There is also an SO(2) automorphism
of this algebra rotating the β's. We usually write Q± = \{Qι ψiQ2), where the
sign denotes the charge under the SO{2) generator, J. Further, since the supercharges
are spinorial (they give spinors from bosons), their components have a chirality in
two-dimensions. This gives us four charges: Q~£, QR, Qΐ, QJ. The algebra contains
the two dimensional Lorentz group as well and reads:

{β+, Ql} = 2HL, {Qt,Qκ}= 2HR ,
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[L,HL]=HL, [L,HR] = -HR,

[J, Q±] = ±Qt, [J, Q£] = ±Q% , (2.1)

with all other (anti-Commutators vanishing.1 Here L is the generator of the
Euclidean rotation group 50(2) and J is the generator of the 50(2) rotation mixing
the jg's. Also, HLyR =H±P.

The topological theory is defined cohomologically by constructing a boundary
operator from the β's. Let us define, then,

Q+ = Qΐ + Qt •

Note that

(Q+f=O.

We use this operator to define cohomology classes, reducing the space of states to
a finite-dimensional Hubert space:

{\ψ):\ψ)=Q+\Λ)}-

Similarly, the fields are defined modulo commutators with Q+. Topological invari-
ance follows from the fact that derivatives with respect to z and z are represented
by the action of Hi and HR, respectively, on the fields. Since both HL and HR are
exact (Hijt = \{Q+,Qϊ^}), all correlation functions between topological states will
be invariant under infinitesimal variations of the positions.

We would like to extend this analysis to arbitrary Riemann surfaces. What
prevents us from doing so now is that Q+ is made up not of scalars but of pieces of
spinors. When our surface was a flat torus with trivial spin connection, the separate
components of Q+ and Q- were globally defined. These will not be globally defined
on a general Riemann surface, and so what was cohomologically trivial in one set
of coordinates may be nontrivial in another. To remedy this, we simply declare
Q+ to be a scalar. That is, we can redefine the spin of the fermions by adding a
background gauge field proportional to the spin connection.

The topological fields form a ring, just as de Rham cohomology elements
form a ring. The products are well-defined, since we can note (φ\ + [Q+,Λ])φ2 =
Φ\φi + [Q+>Λφ2] = Φ\Φi> which follows from [Q+,φ2] = 0. Let us choose a set of
generators φι for the topological field space. The operator product can be captured
through the structure constants Qj k by writing

φι x φj = CιJ

kφk .

The field space is in one-to-one correspondence with the Hubert space by the rela-
tion

In the above we have used the unique vacuum |0) from the N = 2 quantum field
theory.2 The correlators are then all given by the ring coefficients Clj

k and the

1 This algebra is modified in soliton sectors. There, it includes central terms which yield the
Bogomolnyi bound.

2 This vacuum is the unique vacuum of the Neveu-Schwartz sector.
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two-point function

Άn = (i\J) (2-2)

Note that we don't take the adjoint state (/| in forming the topological metric. In
(2.2), (i\ obeys

<i | β + = 0,

which insures topological invariance of the correlation functions. We note here that
in the particular case where \i) is a ground state, and therefore annihilated by Q+

and Q-, we can take the regular adjoint and the correlation functions will still
be topological. The discovery of such independence in correlators was made in
particular models several years before topological field theory was systematically
treated.

The analogy with de Rham cohomology can be extended to Hodge cohomology.
We can interpret the Hamiltonian as the Laplace operator, with Q+ and Q- serving
as the d and d operators. Then, as with Hodge decomposition, we have the follow-
ing statement. Every Q+ cohomology class has a unique harmonic representative,
i.e. a unique representative annihilated by Q-. Noting that zero energy states are
annihilated by Q+ and Q- we have the equivalence of several vector spaces:3

Q+ cohomology <-> Vacua <-» Q- cohomology. (2.3)

The second equivalence in (2.3) is made simply by interchanging the roles of β+
and g_.

The simple observation (2.3) will provide us with a rich source for exploration.
Specifically, we will ask how the isomorphism between the Q- and β + cohomolo-
gies varies over the space of topological field theories.

To illustrate the structure of topological theories and provide us with our main
object of study, we briefly discuss the structure of the chiral ring for the topological
sigma models. By sigma model, we mean a quantum field theory in which the
bosonic variables are maps (from a two-dimensional surface) to a target manifold.
In the N = \ and N — 2 supersymmetric theories, the fermionic structures mimic
the forms of de Rham and Hodge cohomology. The action takes the form

5 = 2tJd2z^gudz^8^J + iφLDzψίgn + ι#Ά-Vίfif« + RiφΨ+ΨΪΦLψL (2.4)

Here Σ represents the Riemann surface, which, for our purpose will always be of
genus zero, Qu and R^j are respectively the metric and Riemann tensor of the target
space. D is the pull-back onto Σ of the connection under the map, Φ. The TV = 2
structure implies a holomorphic C/(l) current, by which we may twist the energy-
momentum tensor. That is, we can redefine spins by adding a background gauge
field equal to (one half) the spin connection. Mathematically, this is equivalent to
redefining the bundles in which the fields live. As we have discussed, this will
render the BRST charge g + a scalar on the Riemann surface, so that the theory is
defined for any genus. Specifically, we now take φ[ G Φ*(Tι>°) and φi G Φ*(Γ°91).

We put φl e Ωι>°(Σ; Φ*(T°>1)) and φι_ e Ω0Λ(Σ; Φ*(Tι>0)); that is, they combine to
form a one-form on Σ with values in the pull-back of the tangent space of K: call
these components φj and φί respectively.

3 We see (ψ\H\φ) = 0 => (ψ\(Q-Q+ + Q+Q-)\ψ) = 0 =» | |β + | ^> | | 2 + | | β - W | | 2 = 0, since
-Ϋ = Q+. Therefore both terms, being positive definite in a unitary theory, are zero separately.
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The important aspect of these theories are that the energy-momentum tensor is
Q+ -exact. This allows us to rescale the two-dimensional metric δhμv = Λhμv without
affecting the correlators. As A —» oo-the topological limit-the only non- vanishing
contribution to the path integral is from the instanton configurations, or classical
minima. As the space of instantons, Jί, is disconnected, the computation reduces
to a sum over components of Jί. Supersymmetry ensures the cancellation of the
determinant from bosonic and fermionic oscillator modes. The zero mode integration
yields just the number of instantons taking the insertion points to the Poincare dual
cycles representing the corresponding operators. This is how we derive the ring of
observables.

2.3. Topological-Anti-Topological Fusion and Classification ofN = 2 Theories.
We will be interested in the numbers of (Bogomolnyi saturating) solitons connecting
ground states. These numbers were used by Cecotti and Vafa in their classification
of N = 2 superconformal theories with massive deformations [2]. The idea is that in
the infrared limit, the two-point functions of different vacua (choosing an appropriate
basis) obey

(i\j) ~ δjj + tunneling corrections . (2.5)

The tunneling corrections indicate the presence of solitons, and will depend on
the size (Kahler class) of the manifold, or more generally the couplings of the
theory. The tunneling corrections vanish in the infinite volume (conformal) limit,
but the asymptotic behavior will indicate the number of solitons present (in a manner
which will be made explicit). The dependence on the couplings is described by the
tt* equations of reference [3]. We review this technology below, then discuss the
Diophantine constraints of classification.

In the previous section, we discussed how to make a topological field theory
given any N = 2 theory by taking the Q+ cohomology classes as states. Alterna-
tively, we could have defined a theory with the Q- cohomology. We can call this
theory the "anti-topological" theory (it is still a topological field theory). In (2.3) we
noted that the spaces of states were isomorphic. They can be thought of as different
bases for a finite dimensional vector space. This means that each anti-topological
state \a) can be expressed in terms of the topological states: \a) — Σ^Q,|£), for
some coefficients Q,. More generally, we write

(ά\ = (b\Mb

d,

with the sum over b understood. In this section we will describe how to compute
this change of basis, and its variation on theory space. To do this, let us examine
the relationship between the topological and anti-topological field theories.

The quantum field theory defines a metric on the topological Hubert space,

dab = Φ\a) >

where we require the states to be ground states. This metric thus fuses the topolog-
ical and anti-topological theory. In fact, by connecting two hemispherical regions
along a common flat boundary, we can perform the topological twist on one half
and the anti-topological twist on the other half. The long cylindrical middle projects
states to their ground state representatives; flatness allows us to conjoin the different
background metrics, used to make the topological twist, where they vanish. The re-
sulting metric is the one described above, and is independent of the representatives
of the topological states.
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The topological theory defines a symmetric topological metric, given by inter-
sections in an appropriate moduli space of classical minima:

ηab = (a\b)

(ηdβ = η*b). We note that M = η~ιg and (CPT)2 = 1 implies MM* = 1 by relating
topological and anti-topological states.

These structures are defined for any N =2 theory, and become geometrical
structures on the space of theories. We can coordinatize this space by coupling
constants {tj}. The key observation for us is that correlation functions of neighboring
theories can be computed in terms of correlators of a given theory. So let us consider
a theory described by an action S(0) at some point t = 0 in parameter space. We
can parametrize a neighborhood of 0 by perturbing by the local operators φt. Thus,
we write

S(t) = S(0) - £ [fd2θ-d2ztiφi + h.c] , (2.6)
i

where the perturbation is assumed to be small. The correlations functions are now
ί-dependent, but we can compute the variation given knowledge of the theory at
t — 0. Indeed,

dι(φι(zι)...φn(zn))t=0 = Uφι{z)d2zd1θ-φλ{zλ)...φn{zn))t=Q ,

where dj = d/dtj and the subscript indicates that the correlation functions are eval-
uated at t = 0. At each t, we have a chiral ring, isomorphic to the Ramond ground
states of the theory. We thus have a vector bundle-the bundle of ground states-
with the metric given above (now ί-dependent). A ground state, characterized by
its U(\) charge, is then a section of this bundle; its wave function is therefore
^-dependent, and we can thus consider the connection defined by

(A,)aE = (b\d,\a) .

Here we project out the change in \a) orthogonal to the ground states. The covariant
derivative is then Dι — dΊ — At. This connection is defined so that

which follows simply.
The equations of topological-anti-topological fusion, the tt* equations, describe

the dependences of our geometrical constructions on the couplings tt and tj. The
equations may be expressed covariantly, or in a particular choice of basis for the
ground states (gauge). We will first show that the topological states (i.e. the Q+

cohomology) constitute a "holomorphic basis," in which the anti-holomorphic part
of the connection vanishes: A-a

b = 0. To prove this we note that in the path-integral
formalism, the state \a) = \φa) is given by the path-integral over SR, the right half
of a sphere; so we have, from (2.6):

• a =
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(we adopt the convention Q+ = D+). Then it is clear that the projection to states
obeying {c\Q+ = 0 kills A :

Clearly, we could also choose the anti-topological basis, which would yield Ajά b = 0.
In the holomorphic basis, the covariant constancy of the metric determines the con-
nection:

0 = Di9ab = dι9ab ~ ΛιaC9cb ~ 9acAih

 C = dιgaE - Aιa

CQch

(the mixed index parts of the connection vanish by the Kahler condition). Thus,

A, = dtg g~ι = -gdtg'1 . (2.7)

The tt* equations are derived by path integral manipulations like the ones used in
finding the holomorphic basis. In fact, the existence of such a basis immediately
tells us that the chiral ring matrices Cj (defined by φtφj — (Cz)y

 kφk) obey D-Cj =
djCj — 0, since the chiral ring has no t- dependence-the t terms in the action are
Q+ -trivial. Similarly one shows that the topological metric, η, only has holomorphic
dependence on the couplings.

We study succinctly express the tt* equations by considering a family of con-
nections indexed by a "spectral parameter," x:

Vί = Dϊ-χ-ιCr. (2.8)

The tt* equations, conditions on the metric and the Q, are then summarized by the
statement Jhat V and V are flat for all x. For example, from the term multiplying
x in [Vy , V ] = 0 we have the formula proved above:

[D;,Cj]=DICj = 0.

The terms independent of x in the same equation give

In the holomorphic basis, we know what the connection is from (2.7). Further, one

finds the action of Cj is by the matrix gCjg~ι. Thus, we arrive at

In the foregoing, we have assumed that the two-dimensional space was an infi-
nite cylinder with unit perimeter. A perimeter of β, which we will take as a scaling
parameter, adds a factor of β2 to the right-hand side. Now flow in the space of
theories along the β direction-a change in scale, that is-is given by the renor-
malization group. We can study what the connection in the β direction looks like.
One finds that the gauge field in the β direction corresponds to the Ramond charge
matrix, q, in the conformal limit [10]. We define

\ ) a b (2-9)
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(we have actually taken the direction defined by τ, where β = e ( τ + τ *^ 2 ). Then q — Q
as β —> 0. The reason for this relation is that under a scale transformation, a state-
represented by a path integral with a circle boundary - changes by the trace of the
energy momentum tensor plus the integral along the boundary of the topological
twisting background gauge field coupled to the chiral fermion current:

δg = εg=ϊ δ\a) = | JTrT^φa) = \Jψφa) + \j8μrφa) .

The matrix Q is the axial (left plus right) charge matrix, which is a conserved
charge only at the conformal point (for example, any mass in the theory breaks this
chiral U(\)). If we change our point of view, exchanging "space" and "time" in
the path integral expression for Q, then the configurations being integrated are the
solitons which run from vacuum a to vacuum b along the spatial line. The chiral
fermion number then gets rewritten as the fermion number, since j5

μ = iεμγj
v in two

dimensions. The result is expressed as a limit as the spatial volume goes to infinity:

Qab = lim i^Ίτab(-\)FFe-βH . (2.10)

The ab subscript indicates that the trace should be performed over the ab soliton
sector of the Hubert space. It is clear from the presentation (2.10) that the coefficient
of the leading exponential for large β can be used to count the minimum energy
solitons between a and b, weighted by F(—\)F.

Let us now consider the following set of equations:

V, Ψ(x, wa) = VrΨ(x9 wa) = 0 . (2.11)

In order to solve these equations simultaneously, we must require that V and V
commute, i.e. they are flat; the consistency condition is thus tt*. We can amend
the connection to include the variable x so that the independence of the phase of
β follows from requiring flatness. That this independence should hold follows from
the freedom to redefine the phases of the fermions, eliminating an overall scale in
the superpotential.4 We write:

xyψ = (βxC + Q- βx'xC) Ψ . (2.12)

The matrix C is given by Q J = ΣkwkCkίJ ( s e e m e footnote for the definition
of Wfc) C — gC^g~ι, and Q is as above. Here we have written that the scale of
the superpotential is βeιθ with x = eι(\ but the equations now make sense for x a
complex variable. In general, there will be n solutions to (2.11), so we take Ψ
to be an n x n matrix whose columns are solutions. The equations are singular
at x — 0, oo, which means the columns of Ψ will mix under monodromy x ->

Q2m χ . ψ _^ JJ # ψ j n fact̂  ^g s o i u t j o n s c a n b e expressed in terms of two regions

of the x-plane. In the overlap of the regions, the solutions are matched by matrices
which are related such that the total monodromy takes the form

4 By "superpotential," we mean the values wa which can be assigned to the different vacua such
that the Bogomolnyi soliton masses (the central terms in the ./V = 2 algebra on the non-compact
line) are given by the absolute values of differences of the wa (these are the canonical coordinates
of the theory). Note that β = e~A, where A is the one-instanton action or area.
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Furthermore, a flat connection guarantees that H (as well as S) is a constant matrix -
independent of local variations the couplings of the theory. In particular, we can
evaluate it in a convenient limit.

Consider β —> 0 with x small; this is the conformal limit, since the area goes
to infinity. (We note that the scale of β, since \nβ multiplies the actions, does
not affect the configuration of the vacua.) In this limit, the equation in x takes the
simple form

ψ

where θ is the phases of x and q = Q\β=Q is the Ramond charge matrix. The solution

is Ψ(θ) = Q2πiqθ. It is then clear that

Eigenvalues [H] — Eigenvalues [e2π^] :

the phases of the eigenvalues of the monodromy around zero are precisely the
Ramond charges. Since these charges must be real, the eigenvalues λt = e2πiqι of
the monodromy must satisfy \λi\ = 1.

We can now go to the infrared limit (β large) to determine H, as it is in-
dependent of β. Let us see how the (weighted) numbers of solitons enter in the
calculation of H. As we discussed when deriving (2.10), these numbers appear as
terms in the leading asymptotics of the matrix Qab. In the large β limit, the soliton
states of minimal energy-the Bogomolnyi solitons - dominate the expression for Q,
so that the leading behavior is

Qij\β-*co = -^AιjmιJβKx{mijβ),

where mlJ is the soliton mass. Using the relation (2.9) between Q and g~ιdg, the
asymptotic form of g is seen to be

gij^δ^-^jKoίmijβ), (2.13)

where the KQ and K\ are modified Bessel functions. Soliton numbers thus are directly
related with solutions to the tt* equations. The more rigorous analysis of Sect. 4 of
[2] is needed to relate the solutions Ψ of (2.11) to the metric gtj. The monodromy
H is found to be related to the matrix A by the following expression:

H = S(S~ι)t

 9

S=l-A. (2.14)

In a standard configuration of vacua, S is an upper-triangular matrix.
We have therefore seen that the soliton numbers counted with F(—1)F can be

arranged in a monodromy matrix H = (1 - A)(\ - A)~t whose eigenvalues give the
chiral charges of the vacua in the conformal limit (the integer part of the phases
are defined by smoothly varying the identity matrix to A while counting the number
of times the eigenvalue winds around the origin). We get constraints on H due to
these facts. It must be integer valued. Its eigenvalues Xt must obey \λt\ = 1. Their
phases must lie symmetrically around zero, due to fermion number conjugation. In
addition, there is an action of the braid group, corresponding to changes in couplings
which alter the configuration of the vacua in the W plane (defined abstractly for
non-Landau-Ginzburg theories-see the previous footnote) and hence the number
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of solitons connecting them. Specifically, the Diophantine constraints are that the
characteristic polynomial of the n x n matrix H,

P(z) = det(z - H)

must be quasi-unipotent (i.e. (Hm ± l)k+ι = 0 for some m,k) and obey

P(Z) = Π (Φm(z)Yim) ,
m£N

where v(m) G N (non-negative integers) are almost all zero, and Φm(z) is the cy-
clotomic polynomial of degree equal to φ(m), the number of numbers relatively
prime to m. Further [2],

!• Σmv(m)Φ(m) = n •>
2. v ( l ) = Imod2,

3. n e 2Z => either v(l) > 0 or Σk>ιv(pk) = 0mod2, for all primes p.

We are primarily interested in the sigma model case, for which the Ramond
charges lie in the set {—d/2,—d/2 + l,...,ί//2 - l,rf/2}, where d is the dimension
of the Kahler manifold, M. Further, we restrict our attention to manifolds with
diagonal Hodge numbers (or else the finite chiral ring would have nilpotent elements
of non-zero fermion number, and no canonical basis - crucial to the derivations -
would exist). In other words,

P(z) = (z- Ef

where ε = 1 for d even and ε = — 1 for d odd.
Let us now illustrate some solutions to these equations. The first example has an

obvious physical interpretation; we will return to discuss the next example - affine
Lie groups-in Sect. 2.4. The simply laced Lie groups are related to possible so-
lutions for A as follows. Suppose the matrix B = S + S* is positive definite. Then
HBHX = SS~\S + St)S~ιSi = B, which means that H is in the orthogonal group to
the quadratic form, B, which tells us that H is simple and |/ίz| = 1. The simply laced
Lie groups correspond to positive definite integral matrices through their Cartan ma-
trices. B defines an inner product on Rw, and if we take A to be upper triangular,
with Aυ- = —Btj/2, i < j , then H = (1 — A){\ — A)~ι satisfies the Diophantine con-
straints. These matrices correspond to the N = 2 A-D-E minimal models, and have
explicit realizations as Landau-Ginzburg theories. Weyl reflections of the lattice
vectors produce different, though equivalent solutions to the Diophantine equations.
These reflections correspond to perturbations of the superpotential, W9 such that the
vacua move through colinear configurations in the W plane. Such reconfigurations
of the vacua produce a braid group action on the matrix H.

The affine Lie groups correspond to the case where B = S + S* has a single
zero eigenvector, v9 thus satisfying S*v = —Sv. Then B defines a reduced matrix B,
on the orthogonal complement to ΈLv, which solves the Diophantine equations. We
now note that

H*v = S-lS*v = -S~ιSv = -v,

so \λv\ = 1 and we see that all the eigenvalues / of H indeed have \λ\ = 1. The
remaining constraints on H are satisfied as well.
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2.4. Mutations. We have already discussed a monodromy when one of the pa-
rameters of the theory is taken around the origin. In fact there are a number of
discrete mutations or braidings of these theories. The treatment in this paper has
been for general N — 2 theories, but this braiding is particularly intuitive in the
case of Landau-Ginzburg models (all the results are valid in the general case).
These models are described by a superpotential W{X) and the vacua correspond
to critical points Xι such that VW(Xt) = 0. The locations of these points clearly
depends on the parameters of W. Solitons, it is found, travel on straight lines in
the W plane, and so a discrete shift in soliton number can occur when these vacua
pass through a colinear configuration. This situation describes precisely the Picard-
Lefschetz theory of vanishing cycles, (the inverse image of a point along the line
in the W plane is a homology cycle, and solitons correspond to intersections of
two homology cycles)5which undergo basis changes when crossed. Essentially, the
change is

Λac -> Λac±AabAbc (no sum),

where the sign depends on the positive/negative orientation of the crossing. In a
configuration in which the matrix S is upper triangular, the change of basis matrix
implies

S -> PSP,

where P = ί °χ _
{

s j in the ij subsector. Note that P depends on S itself, and so the

mutation is nonlinear.
We note here, too, that the canonical basis is only defined up to a sign. Further,

reversing the orientation of the W plane - equivalently, taking the monodromy in
the other direction - leads to H —> H~\ i.e.

Thus, all matrices S obtained by any combination of the above transformations are
related to the same (continuum class of theories associated to the) N = 2 quantum
field theory.

Finally, we show how S and S~ι can be related. To the braid group of n objects,
generated by Plt i — 1... n, which denote braids of the zth object over the (i -f 1 )-th
object, we define the element

V - P1P2P1P3P2P1 .Pn-\Pn-2 ~PlP\

consisting of ( ~ I transformations. This corresponds to reversing the orders of the

elements. (Note that as a matrix v depends nonlinearly and nontrivially on S.) Then
if J = δhn+ι-t is a reordering, we find

S-* = JvSvJ .

In particular, S and S~ι are associated to the same N = 2 theory. We will use this
point in our comparisons of results from math and physics.

5 We note here that the mathematical theory to be discussed has been seen to parallel the
Picard-Lefschetz theory as well, though a greater understanding of the relation is still unknown.
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/I a b\
We conclude this subsection with a simple exercise. We take S = ( 0 1 c \.

Vθ 0 1/
/0 1 OX

Then Pi is represented for this S by Pi = 1 - α 0 I. One finds from P\SPχ that

Vo o 1/
the action is P\ : {a, 6, c) »-> (-α, c,b — ac). Similarly, P 2 : {a, &, c) *-+ (b,a — be, —c).
The element v = P1P2P1 then sends

(α, 6, c ) 1—> (—β, c, fe — α c ) H-> (c, — 0 — c(Z> — flc), ac — b) \—> (—c, # c — Z>, — α ) .

/I -c ac-b\
Therefore, v : 5 - ^ 5 = 0 1 —a , and it is simple to check that JSJ =

\0 0 1 /
S~*. Thus S and 5 " 1 are related (taking the transpose, as discussed above).

Of course, for the general N — 2 theory there is no simple geometric interpreta-
tion of the placement of the vacua, though colinearity is still well-defined in terms
of the N = 2 algebra. Still, the question of how perturbations of the theory affect
the vacua is quite subtle. In addition, some of the perturbations may not make sense
physically. For example, perturbations by nonrenormalizable terms are not allowed.
We suspect that these phenomena are related to the question of eonstructability of
helices, an issue we will return to from the mathematical viewpoint in Sect. 3.

2.5. Examples: Projectίve Spaces, Grassmannίans, and Orbίfolds. One of the few
cases in which we can compute the soliton matrix by studying tt* asymptotics
directly is the simple case of the projective line P 1 . This theory has two chiral ring
elements corresponding to its cohomology. Let us label them 1 and X. The quantum
ring is X2 — β = e~A, where A is the area of the P 1 , complexified so as to include
the θ angle. Briefly, this comes about as follows. X has a non-vanishing one-point
topological correlation (which we normalize to one), since there is a unique constant
map taking the insertion point on the sphere to the chosen point on P 1 representing
X, the volume form. The only non-vanishing three-point correlator is (XXX) = β,
which has nonzero contribution at instanton number one arising from the unique
holomoφhic map from the (Riemann surface) sphere to the (target space) sphere
taking the three insertion points to three specified points. This gives X2 = β.

The metric gaβ is diagonal, due to a Z 2 symmetry which is the leftover of the

anomalous U{\) symmetry (the chiral U{\) is broken to ΊLn on Pn~1). This tells

us that (Ϊ\X) = (X\l) = 0. Thus g = (o°)> w i t n a a n d b r e a l a s 9 i s hermitian.

The metric ηab is given by η = ί °{

 ι

Q), since only X has a non-vanishing one-point

correlation. The reality constraint, or CPT, tells us

l W f l O W O 1 \ ( a 0
O J l O 6 7 I 1 0 J V0 b

which gives b = a
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We write the tt* equations for variations with respect to β and β. We thus need
the matrix Cβ, corresponding to the operator represented by varying β. Clearly A is

the coefficient for X, and so Cβ = Cx ( § ) = - ± (° j ) ; also Qc\g-
χ = ( α ° 2

The tt* equation is then

0 \ , (a~x θ \ 1
0 a) |/ϊ|2

0 l W 0 βa2

u (2l5

β 0 Λa-2 0 'I ( 2 1 5 )

Both nontrivial components of (2.15) are equivalent. Further, a only depends on
the absolute value of β, since the phase can be absorbed by a redefinition of the
phase of the fermions [3]. Let x = \β\ and define u = \n(a2x). Then (2.15) gives

u" H—u — 4sinhι/.
x

As often happens, requiring finiteness of the metric at x = 0 fixes the metric
(i.e. one boundary condition is enough to impose). We need

u —» lnx + c

as x —> 0. The asymptotic behavior at x —> oo has been analyzed in [11]. We
compute the soliton number from the asymptotics of g in the canonical basis
O± = (X ± y/β). Extracting the lone soliton number A+_ from (2.13), we find

Note that det(z - H) = (z -f I ) 2 = Ψi(z)2 (Ψι denotes the second cyclotomic poly-
nomial), which gives the Ramond charges N + \. The integer part, N, can be de-
termined by recording how many times the phases of the eigenvalues of H(t) wrap

around the origin as S(t) = (ι

0 ~2t) runs from the identity matrix to S while t spans

the interval. One easily calculates that the two phases are

9± = ±tan~
\-2fi

and so the charges are ±\ as they should be. The braid group action is simple in
this case. There is one mutation, P\, which sends the matrix element £12 —» — £12
(this can also be effected by a change of sign).

The classification program, in all its glory, has been illustrated by this simple
example. Other spaces, such as the higher projective spaces and Grassmanmans, are
too unwieldy for a direct analysis. Too little is known about the solutions to the tt*
equations, which for Pn correspond to affine Toda equations. Perhaps the proposed
relation between math and physics is best borne out by a rigorous analysis of these
equations and their asymptotic properties.

Fortunately, the soliton numbers for P π - 1 are computable by other methods,
and the Grassmanmans G(k,N) (A -planes in C^) may be analyzed as well. First
let us consider P " " 1 . These theories have an anomalous U(l) charge (which is
evident in the chiral ring, which has the simple form Xn = β). Instantons break
this symmetry down to Z n . We can choose a basis for the vacua such that the
Zιn symmetry cyclically rotates the n vacua. The soliton matrix μab then depends
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only on the difference b — a. Further, one can directly analyze the properties of the
Stokes matrix by studying possible asymptotic solutions to (2.11) and (2.12) [2].
These considerations allow us to write the monodromy matrix H as H = AB, where
A commutes with H. This condition allows us to conclude that the characteristic
polynomial of B must also contain only products of cyclotomic polynomials. The
real information, however, comes in the fact that B encodes the soliton numbers
as well.

To see how this works, let us simply note that the Ramond charges of P"""1

have the form q^ — k — (n — 1 )/2 and are thus half-integral or integral when n is
even or odd, respectively. We therefore have

for n even/odd. As a result, we conclude that, for n odd, say, det(z — B) —

(z — l)w = Σ ^ = o ( r ) (—l)kzk, from which we may conclude
\/c)

( )

The minus signs may be removed by a redefinition of vacua efl —•» (—l)αefl, but we
shall leave them in. Similarly, for n even we get the same result without the minus
signs. We can reinsert them by performing the same change of basis.

These models have the special property of being integrable, for a special choice
of the Kahler metric; i.e., they have an infinite number of conserved quantities such
that the momenta of solitons are only permuted by interactions. Interactions of soli-
tons in integrable models can be computed using the thermodynamic Bethe ansatz.
Such an analysis shows the lightest solitons appear in fundamental multiplets of the
original SU(n) symmetry. These represent the n solitons of μ^ +i. The interpretation
of the other solitons of greater fermion number is that they are particles formed
by anti-symmetric combinations of these n solitons [12]. Witten considered these
solitons in Ref. [13], in which he formulated the P w - 1 model by gauging a (/(I)
action on fields nι G Cn constrained by Lagrange multipliers to satisfy \n\ = 1. The
effective theory of the Lagrange multipliers and gauge field relates the topological
charge of solitons to the U(\) charge of the gauge field via the Gauss' law equation
of motion. These n fields n1 are the fundamental solitons connecting neighboring
vacua, and clearly transform under the fundamental representation of SU(n). Other
solitons are (anti-symmetric) composities of these fields.

The Grassmannian case is more subtle, and we must use a different technique,
discussed in Sect. 8.2 and Appendix A of Ref. [2]. The Grassmannian G(k,N) of k-
planes in C^ is a complex manifold of dimension k(N — k), and can be identified
with the homogeneous space U(N)/(U(k) x U(N — k)). Cecotti and Vafa have
shown how to relate the observables to k copies of P ^ " 1 . The prescription is to
take as vacua fully antisymmetric tensor products of k vacua for P ^ " 1 . There are
(N

k) such choices, equal in number to the Euler class of G(k,N). The inner product
of two vacua is then given in terms of the constituent P ^ " 1 vacua. In this manner,
the Grassmannian case can be reduced to the projective spaces. However, in the
Grassmannian case, there is an ambiguity in asking what the soliton numbers are,
as various vacua are aligned in the W plane. Such a configuration can lead to
non-integer entries in the matrix S yielding monodromy matrices H which do not
satisfy the classification equations. In the case of the Grassmannians, the matrix
so-obtained does not satisfy the Diophantine equations, presumably for this very
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reason. To fully resolve this difficulty, one would need to perturb the model so that
the vacua were configured with no three of them colinear.

Orbifolds of P 1 = S2 by discrete subgroups of 50(3) are interesting cases in
which the tt* equations may be explicitly used to compute soliton numbers. This
procedure was employed in [14] and [15]. What makes these theories workable is
that the orbifold theory possesses a symmetry which simplifies the metric, gaβ. The
only new subtlety is in the computation of the quantum rings, which are obtained
by an analysis of equivariant holomorphic maps from covering surfaces, branched
over the insertion points of twisted observables. This theory was developed in [16]
and [17].6

The case of the dihedral groups yields the following results, easily generaliz-
able though not yet proved for the tetrahedral, dodecahedral, and icosahedral groups
[17]. A discrete subgroup G of 50(3) lifts under the Z 2 covering SU(2) -> 5O(3)
to a subgroup G of 5C/(2), which is associated to a Dynkin diagram in the fol-
lowing way, due to McKay [18]. The fundamental representation of 5(7(2) defines
a two-dimensional representation R of any subgroup. If we label the irreducible
representations of G by Vi9 we can define a matrix Atj by the tensor decomposition

McKay's theorem states that the matrix N is the adjacency matrix of a Dynkin
diagram of an affine Lie algebra. As N is symmetric with zeroes on the diagonal,
we can write N — A+ A1, where A is upper triangular. For example, to compute the
matrix for the ZN orbifold of a sphere, we compute the matrix N for the double
cover Zι2N The Dynkin diagram corresponds to the Lie group AIN-X^ and looks
like a circular chain of 27V dots. For the dihedral groups DN, the matrix A obtained
from this procedure yields the Dynkin diagram for the affine Lie group DN+2 (we
should not be disconcerted by the mismatch of numbers; there need be no relation).
This analysis is verified physically by computing asymptotics of gaβ from the tt*
equations.

Of course, we have already proven that these affine Dynkin diagrams yield
solutions to the classification constraints. The discussion here allows us to identify
these solutions as orbifolds.

3. The Math

3.1. Overview. We have stressed that no link has been found between the physics
we just discussed and the mathematics we will introduce, so our motivation is
indirect. Nevertheless, the evidence that some link exists is compelling. Certainly,
none will be found without a thorough understanding of the structures at hand.

The evidence is the following. In the previous section we constructed, given a
Kahler manifold with positive first Chern class (to guarantee asymptotic freedom, so
that the quantum field theory makes sense) and diagonal Hodge numbers (so that
a canonical basis exists), a quasi-unipotent matrix satisfying certain Diophantine

6 The orbifold of a quantum field theory - a model with target space M/G, where G is a discrete
group acting on M, includes states in the Hubert space which correspond to strings running between
points on M related by an element of G. The holomorphic maps, or instantons, to this singular
space (as G may have fixed points) are analyzed by studying holomorphic maps between G-covers,
which are equivariant with respect to the G action.
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equations regarding its eigenvalues. This matrix-the matrix of (properly counted)
soliton numbers between vacua-had an action of the braid group on it. The new
matrices so constructed also satisfied the equations in question. Here we will start
with a topological space and consider sheaves over that space (for the time being
we can think of the sheaves as vector bundles). We will construct a set of "ba-
sis" sheaves, i.e. a set such that all other sheaves are "equivalent" to (i.e. have a
resolution in terms of) a direct sum of sheaves from the basis set. Now from this
set we simply consider the bilinear form which is the Euler character between two
sheaves, i.e. the alternating sum of dimensions of cohomology classes. This matrix
will be quasi-unipotent. The choice of basis set will not be unique, and the different
choices will yield different matrices which satisfy the same properties. Further, we
will be able to show for the projective spaces that the matrices are exactly the
same as in the physics case. We will also explore other examples which have not
yet been solved physically.

To make this clear, let us learn about coherent sheaves, helices, and braiding.
Finally, we will look at some examples-projective spaces and Grassmannians - in
detail.

3.2. Coherent Sheaves. We begin with a brief discussion of sheaves, following a
brief summary of the algebraic geometry we will need. The treatment here borrows
liberally from Ref. [9]. Heuristically, we can think of a sheaf as the generalization
of a vector bundle when we replace a vector space by an abelian group. Thus,
given a topological space, X, SL sheaf $F on X gives a set of sections #"([/) which
are abelian groups with the following properties. Given open sets U C V we have
a restriction map rViu :^(V) -> &(U) satisfying for all U C V C W, σ e
τ e

• ry,u ° rw,v = rw,u (thus we can write σ\u for rγj

• σ\AnB = τUnB => 3 p e &(A U B) s.t. p\A = σ9 p\B = τ .

Roughly speaking, this says that sections are determined by their values on open
sets.

The most important example of a sheaf for us will be Θn, the sheaf of holomor-
phic functions in n variables (usually, we will drop the subscript n). Thus, Θ(U)
consists of the ring of holomorphic functions on U C Cn. Clearly 0(X\ when X
is a compact complex manifold, is equal to the globally holomorphic functions, or
constants.

The algebra of sheaves will be important to us, so we briefly review the perti-
nent aspects. We should have little difficulty with the constructions, as they closely
parallel manipulations of abelian groups or vector bundles. A map between sheaves

over X is a collection of group homomorphisms7 fu \ϊF(U) —> @(U). As with
abelian groups, given such a sheaf map we can define its kernel and cokernel.
The sections of the kernel are simply the kernels of the section maps fjj. Thus,
KQΐ(άF)(U) = Ker(/c/). The cokernel is slightly subtle. We cannot take the naϊve

7 Recall a homomorphism / between abelian groups A,B is a map commuting with the group
addition: f(a + b) = f(a) + f(b)
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definition of Cok, which would read Cok(#')(t/)"="Cok(/ ί /), as it does not satisfy
the properties required of sheaves. For example, consider the sheaves Θ and Θ* of
holomorphic and non-vanishing holomorphic maps on C — 0. The abelian groups
are addition and multiplication, respectively. Then the exponential map exp :h(z) \—>

Q2mh(z) j s a h o m o m o r p h i s m ? with kernel Z, the sheaf with integer-valued sections.
Generalizing the notions of algebra, we would like to have the sequence

o->zΛ$c-5$*-+o (3.1)

be exact, i.e. have Θ* = Θ/Z = Cok(z). However, with our simple definition, the
cokernel is not even a sheaf. Consider the section h(z) = z G Θ*(C — 0) which is
not in the image exp($(C — 0)). Clearly, its restrictions to the contractible sets
U\ = {—ε < Argz < π + ε} and Uι = {π — ε < Argz < π} are in the image of
exp : (9{Ut) —> Θ*(Ut), i = 1,2. Thus the second condition above is not satisfied. To
remedy this, we define the sections of the cokernel of / over U to be given by a
set of sections σα of a cover {C/α} of U satisfying

^\uyπuβ ~ σβlusΠUβ e / (^(C/ α Π Uβ)) .

We then identify two sections (i.e. collections (£/α,σα) and (Vβ,pβ)) if at all points
p in U and open sets t/α, Vβ containing p9 there exists a neighborhood N C U^ΠVβ
such that the restrictions to this neighborhood of σα and pβ differ by the image of
a section on N. This procedure allows the cokernel to be defined on open sets
which would otherwise be "too big," by allowing the equivalence to be true up to
refinements. It can be checked that the sequence (3.1) is now exact for any complex
manifold, i.e. Θ* = Cok(z).

Generally, a sequence of sheaves

is said to be exact if fn o fn_λ = 0 and

0 -> Ker(Λ_0 -+ # „ _ ! - . Ker(/Π) -^ 0

is exact for all n. We will henceforth assume that a fine enough cover (C/α) exists
such that the subtleties discussed are erased, i.e. such that each induced sequence
of sections over Ua is exact.

We are interested in topological properties of the sheaves we will consider. Sheaf
cohomology measures global properties of sheaves by comparisons on intersections
of a cover. Let (t/α) be a cover of a manifold, M, and 3F a sheaf over M. Then we
define the sheaf cohomology by taking the cohomology of the following complex.
Define Cm to be the disjoint union of the sections of all (m + l)-fold intersections
of the C/α:

cm(U,^)= Π

Then the coboundary δ:Cm(U,^)-^ Cm+ι(U^) is defined by

m+l

yiyσ«o.. Λ - ^ . l ^ o n • n uam+i .
/=0
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The sheaf cohomology //*(M,JΓ) is just the cohomology Ker((5)/Im((5) of this
complex, provided we choose an appropriately fine cover.8 As an example, we
observe that H°(M,έF) = Ker(<5) c C°, which is the set of collections {σα} obeying
(δσ)Oίβ = σβ — σα = 0 (with the restriction to Ua Π Uβ understood). This is precisely
the data which determines a global section. Thus, H°(M,ϊF) = J*(M). We note that
this property is independent of the covering.

Sheaves differ from vector bundles mainly due to the fact that the abelian groups
involved, i.e. #"(£/), need not be free. In the cases we will study, all our sheaves
will be ^-modules. Thus, the sections admit multiplication by locally holomorphic
functions. In this case, and if its stalks are finitely generated (the condition is
actually slightly different from this, as we will see), then we can the treat the
sheaves as we would ordinary modules. As the sheaves are generally not made up
of free abelian groups (and are thus not vector bundles), defining notions similar
to the Euler characteristic will be quite subtle. To this end, we will briefly review
homological properties of commutative algebra before discussing how to generalize
these concepts to sheaves.

In the following, we will describe point-wise and then global constructions. So
to begin, instead of considering sheaves as ^-modules, we will consider modules
of the ring

On = lim &(U), C / C C " .
{o}eu

Thus, On is the ring of convergent power series in z. Some facts about this ring.
It has a unique maximal ideal equal to the (power series of) functions vanishing at
the origin (they clearly are an ideal since /(0) = 0 => / g(0) = 0). The ring On

is also Noetherian, meaning all ideals are finitely generated.
The sheaves we will consider are global versions of On -modules, which for us

will always be finitely generated (as On-modules; they may be infinite dimensional
vector spaces). Any On-module M defines a module of relations, R as follows. If
{mi,...,m^} is a set of generators, then

R = {(λu. ..,λkyλxmλ +- + λkmk = 0} .

R, it can be shown, is also finitely generated. We then have that the sequence of
On -modules,

0 -> R -> O(

n

k) -+ M -> 0 ,

is exact, where θik) = On 0 On Θ Θ On (k times). The global analogue of finite-
dimensionality is the notion of a coherent sheaf. A coherent sheaf is one which has
a local presentation

By "local presentation," we mean that for each point p there exists a neighborhood
U 3 p such that the above sequence is an exact sequence of modules when restricted
to U. The Θ^ means that 3F\υ is finitely generated (not just the stalk #"|/>) an<^
the Θ^pλ> means that there are a finite number of relations among these generators.

8 The actual sheaf cohomology is defined as a limit of the stated cohomologies under refine-
ments of the cover. If the cover is acyclic, meaning the cohomology of any multiple intersection
is trivial (for example if they are contractible, for sheaves of holomorphic p-forms), then the
sequence yields the proper sheaf cohomology.
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The gist of this definition is that it allows us to carry properties of finite-dimensional
modules over to sheaves.

Of course we have the usual properties of modules. Given two On-modules M
and N, we can construct the On-modules M Θ N, M ®On K and HomOn(M,N). Note
that tensoring and Horn do not necessarily preserve exactness. We have instead the
following. Given the exact sequence

0 -• P -> Q -> R -> 0

of On-modules, and an On-module M, we have the following exact sequences:

Λ n M -> R ®on M -» 0 ,

0 -• HomO/I(M,i>) -> HomOλ?(M,Q) -• HomO|f (Af,Λ) . (3.2)

The maps are the obvious ones: e.g., if φ : P —* Q then φ : Homo,7(M,P) —»
Homoπ(M, β ) sends / t o φ o f. The operations (functors) on complexes of 0 o π M
and HomoΛ(M, *) are said to be right exact and left exact, respectively. Naively,
we would expect the sequences in (3.2) to extend to a short exact sequence, and
indeed this is the case if the module M is projective (-ΦΦ free; we discuss such
modules shortly). The same functors apply in the category of sheaves, as well.

It is instructive to study how these functors can fail to be exact. This situation
can arise when the module M - o r sheaf in the global case-is not locally free.
Consider the ideal / C O\ generated by zm. Then we have the exact sequence of
O\ -modules

O - + / - U 0 ! A 0 i / / - + O . (3.3)

Clearly O\/I is generated by {l,z,...,zm~1} and is an O\ module in the obvious
way. Let us now apply ®oλθ\ll to this sequence to get

/ ® O l Oxll Λ Oχ ®Oχ Oχ/I ^ Oχ/I Θ O l Oxll -> 0 .

If this is not exact, then / has a kernel.9 Let us enumerate the generators. {zm 0
zj,j < m} generate / 0 O l Oχ/1, since zm+a 0 zb - zm®za+b = 0 for a + b ^ m.
Note that we cannot move the zm across the tensor product since zm cannot be
written as something in / times something in O\ other than a scalar.10 The generators
for O\ ®θι Oι/1 are {1 ®zJ'j < m}9 since now any zs on the left side can be moved
over by the tensor equivalence. Under the map /, zm 0 zj is mapped to zm ®zJ ^
zm 1 ®zj ~ 1 0 z w + /" = 0. Hence the map ϊ is trivial, and Ker(Γ) = / 0 O l Oχ/1.
The nontriviality of the kernel clearly had to do with the torsion of O\/l, or the
existence of zero divisors. It is also instructive to check exactness at the middle
of this sequence, and to find the non-surjectivity of the right-hand side of (3.2)
when we apply Hom(0i/7,*) to the original sequence (3.3). In what follows, we
will define modules which measure the non-exactness of the functors 0 M and
Hom(M,*).

9 The surjectivity of the map π follows from surjectivity of π. For a® b <ε O\/I <g)0, O\/I, we
have a = π(p) for some p and thus a®b = π(p®b). The property is clearly true in general.

10 Recall the definition of the tensor product of i?-modules: A ®R B = (A x B)/I, where / is
the ideal generated by elements (ra,b) — (a,rb).
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Important to us will be the notions of projective modules and projective reso-
lutions. A projective module is one for which the following diagram holds:

That is, given surjective maps / and g, there is a map h such that g o h — f.
Another way to put this is that M —> N -» 0 is exact implies Hom(P,M) —»
Hom(P,iV) —> 0 is also exact. Thus for projective modules P, Hom(P, *) is a (right
and left) exact functor. (The sequence could have been extended to a short exact
sequence by adding Ker(g) on the left.) The same is true of <8>P. It can be proven
that projectivity of a module coincides exactly with its being free (no relations
among the generators, hence isomorphic to a vector space). In the sheaf language,
projectivity is defined similarly, and it coincides with a sheaf's being locally free,
i.e. isomorphic to Θ^d\

We will use projective modules to "resolve" general modules. In this way, the
complexity of a module will be borne out in the cohomology of the resolution. A
(left) projective resolution of a module M is an exact sequence

n , p J» , n Jl p Jo Λ/f n

(J > Fn > > JL\ > r o > M > U

such that each Pi is projective and dj o dj+\ = 0. Every finite-dimensional module
has a projective resolution. One builds it iteratively, beginning with the sequence
of relations (3.3) and continues to use (3.3) on the kernel of the left-most term in
the resolution.

When discussing sheaves, we call a resolution by locally free sheaves a syzygy.
Coherent sheaves have syzygies for the same reasons as above. Given a syzygy of
some sheaf E, we can analyze the complexity of the sheaf, loosely speaking, by
measuring the extent to which Hom(is,*) fails to be exact, for example. To do this
we define Ext as follows, first for modules. Give O-modules M,N9 we can first
construct a resolution {Pi} of M then create the complex C":

0 -> Hom(P0,N) -> Hom(PuN) -> Hom(P2,N) -> (3.4)

(not exact). We then define

To define the vector spaces E x t z ( ^ , ^ ) (which can be thought of as trivial sheaves)
we first resolve the sheaf SF with a syzygy {^,}. We note that the stalk of the
sheaf, #p, at a point p is nothing other than an O module; likewise for CS. The
sheaf E x t ' ^ , ^ ) has the natural property that Ext z (#',^) / ? = E x t ' Ό ^ , , ^ ) and is
built by applying Ext to the local syzygy. The global version, E x t z ( ^ , ^ ) , must be
defined more carefully. We have a complex of sheaves {Hom(^/,^)}, analogous
to (3.4), which gives rise to a double complex. The horizontal differential is just
the natural one from the complex, while the vertical direction is defined by the Cech
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cohomology of the sheaves, reviewed in this section. Έxtι(^,^) is the zth term of
the cohomology of the total complex of this double complex.11 We note without
proof that if Ext%^,^) = 0 for q < k then Ext*(#",^) is equal to the global
sections of Ext*( J^, ff).

3.3. Exceptional Collections and Helices. A coherent sheaf £ over a variety M is
called exceptional if

In the case of sheaves over projective spaces, these conditions imply that E is
locally free, i.e. we can think of E as the sheaf of sections of some vector bundle.
We sometimes refer to E itself as a vector bundle.

An ordered collection of exceptional sheaves ε = (E\,...,Ek) is called an ex-
ceptional collection if for all 1 ^ m < n ^ k we have

The most important property that exceptional collections enjoy is that they can
be transformed to get new exceptional collections. We will define right and left
transformations or mutations. Together, they will represent an action of the braid
group on the set of possible such collections.

Mutations of collections by the action of the braid group are performed by
making replacements of neighboring pairs. Take a neighboring pair (Ei,Eι+i) of
sheaves in an exceptional collection, ε = (E\9...,En). Suppose the following con-
dition is true: Hom(2£/,isz +i)=t=0 and

Hom(El9El+\)® Eι -^ Eι+\ -* 0

is exact (i.e., ev is surjective), where the map ev is the canonical one. Then we
can define a new sheaf LEi Ei+\ to be the kernel of this map:

0 -* LEi EM -> Hom(£ z,£ / + 1) ® Et -> Et+ι -> 0 .

For brevity, we usually write this new sheaf as LEi+\. Thus we write L2Eι+\ for
LEi_x{LEiEl+i), etc. If we then replace the pair (EhEi+\) by (LEι+\,Ei) in the
exceptional collection, we have the following [20].

Theorem. The new collection ε' = (E\,...,isz _i,LE i + \,E(,Ei+2, >En) is excep-
tional.

Sometimes the canonical map Hom(iiI,2i/+i) 0 £ Ί —> Ei+\ —> 0 is not surjective.
If, however, it is injective, we can define LEι+\ to be the cokernel of this map
instead of the kernel, and the theorem is still true. Finally, if Hom(2si,£i+i) = 0
but Ext1 (Et,Eι+ι)ή=0, we can define the left mutation LEιEi+\ to be the universal
extension, defined by its property of making the sequence

0 - EM - LEE,+i -> Ext1 (EhEι+ι) -> 0 (3.5)

exact.

11 Given a double complex ClJ\ ij > 0, with horizontal differential, d and vertical differential
δ obeying dδ + δd = 0 (if d and δ commute, we can redefine the signs of odd ί/'s so the two
anti-commute), we define the total complex Cn = 0C 1 " ' 1 ' with differential D = d + δ.
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To demonstrate how ev : llom(A,B) <&A —» B may not be surjective, consider
the simple example of modules (not sheaves) on the complex plane, C. Define
A = Θ/I2, B = Θ/U, where Im is the ideal generated by zm. Then {l,z} generate A
and {I,z,z2,z3} generate B. Now / <E Home(A,B) must satisfy f{zna) = znf(a),
and since z2 — 0 in A, we have z2f(a) — 0 in B. Thus, / ( I ) = cjz2 + C2Z3,C; G C.
Clearly, the image of ev is Cz2 θ Cz3, which is not all of B.

We can perform right mutations as well, under a different set of conditions.
Since U.om(Ei,Eι+\) as a vector space has the indentity morphism in

we get a canonical map from Eι to YίomfJE^Ei+i)* ®Ei+\. To understand this,
it may help to consider the finite-dimensional vector space example. Choose bases

cii,bj for E^Ej+i and dual bases ά\ϊ> for E*,E*+ι. Then the map sends α ^ ^ ( f l 0

bJ)®bj. If this map is injective, then the right mutation is then defined by the
cokernel as shown:

0 -> Ex -> Hom(J?/,i?f+1 )* 0 EM -» i ^ + 1 £ z -> 0 . (3.6)

Similarly to the left mutation, we can define the right mutation if this map is
surjective, or if Ext1 (βu is z+i)φ0.

We note here - though it should not be seen as obvious - that if the exceptional
pair (A,B) admits a left mutation, then the pair L(A,B) — (LB,A) is exceptional (by
the theorem above) and its right mutation is such that R(LB,A) = (A,B). Thus, if
the left operation is seen as a braiding (we have yet to show this), then the right
mutation is an unbraiding. The right operation is dual in the following sense. If
ε = (E\,...,En) is exceptional then so is ε* = (E*,...,E*), and if ε admits a left
transformation abbreviated Lε, then ε* admits a right transformation. We then have
(Lε)* = Rε*. If Rε exists then so does Lε*, and in that case (Rε)* = Lε*.

These mutations amount to an action of the braid group of ^-objects on he-
lices, as they obey the Yang-Baxter relations. Specifically, if Lι represents mutating
(EuEi+\) to (LEιEί+uEi)-i.Q. a shift at the zth entry of the foundation - then

LiLi+\Lt = Li+\LiLi+\ (3.7)

is satisfied. The same is true of the right shifts.

A helix is an infinite collection of coherent sheaves {Ei}iez such that

1) for any ί e Z, (Ei+\,...,Eί+n) is an exceptional collection,

2)Rn-ιEi=Ei+n.
Thus when you move n steps to the right, you come back to where you were, up
to a translation. This explains the terminology. It is clear that a helix is uniquely
determined by any of its foundations, and conversely any exceptional collection
determines a helix.

We are finally in a position to define the bilinear form which corresponds to.
the matrix S of soliton numbers. Let us assume we have a helix ε with foundation
(E\,...,En). In the case of bundles, this form is the relative Euler characteristic,
and is defined generally to be

χ(E,,Ej) = E ( - l ) * d i m E X t * ( £ , , £ ; ) . (3.8)
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We took care to define this form even for sheaves which do not correspond to
bundles. For vector bundles, though, computations are simplified by the following
derivation. Since these sheaves Eι are locally free (they are sections of a vector
bundle), the syzygy or projective resolution is trivial: it has the form 0 —> Po —*
Ei —• 0, with P o — Et. Since the complex {P} just contains a single element, the
double complex used to compute Ext reduces to a single complex, and Ext(Ef,Ej)
becomes the ordinary sheaf cohomology of Hom(Eι,EJ). Thus

άimExtk(EhEj)

and so

χ(El9Ej) = Σ(-
k

M

where in the second line we considered the sheaves as vector bundles, using the
equivalence of sheaf and vector-valued cohomology (the de Rham theorem). The last
line expresses the Euler characteristic in terms of characteristic classes of bundles
in de Rham cohomology, and is equivalent to the Riemann-Roch theorem.

3.4. Examples'. Projective Spaces, Grassmannians, Orbifolds, and Blow- Ups. The
simplest spaces for us to consider are the projective spaces. We recall the connection
between divisors and line bundles. A hyperplane is described by the zero locus
of a linear polynomial in homogeneous coordinates (which is itself a section of
a line bundle). Thus, up to isomorphism, all hyperplanes have the form XQ = 0.
To find the corresponding line bundle, look at the set U\ = {XiΦO}. Then the
hyperplane H is described by z0 = Xo/X\ = 0. In U2 = {X2ΦO}, it is given by
wo Ξ X0IX2 = 0, and on the intersection the two functions are related by a nonzero
function: z0 = (X2/X\)wo, which defines a transition function between open sets.
The set of all such transition functions determines a line bundle. More generally, a
divisor defined by a function fx in Ua and fβ in Uβ defines holomorphic transition
functions saβ on Ua Π Uβ by

fa = S^βfβ .

Different defining functions for equivalent divisors yield isomorphic line bundles.
We find that the isomorphism classes of line bundles are given by the degrees of
the defining polynomials (with negative degrees associated to divisors along poles),
and so all line bundles can be written as powers of the hyperplane bundle described
above. We denote the dth power of the hyperplane bundle by Θ{d).

Theorem. [20], The collection {Θ(m) : m € Z} of sheaves on Ψn is exceptional,
and (0,0(1),. . . , Θ(n)) is a foundation of the helix. We define Eι = G(i).

To show that this collection is a helix, we have to study the mutations. Here we
will just consider the first right mutation. Consider the following exact sequence of
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sheaves:

O->0 -* r<8)fi)(l)-> Γ - + 0 .

Here F is the «-f 1 dimensional vector space of which P n is the projectivization
(the notation V above thus signifies the trivial rank n + 1 vector bundle) and T is
the holomorphic tangent space. This sequence is called the Euler sequence. Locally,
for some choice of basis for F, sections of V ® 0(1) look like (fo,...,fn) and are
mapped to the vector field X ẑ//3/ (easily checked to be well-defined when the /}
are in 0(1)), where we have the relation Σ z J ζ δ/ = 0. The one-dimensional kernel
is the image of the left map. We need to show that the maps are the canonical
ones of (3.6) and that V 9έ Hom(0,0(l))*. We show only the latter. In fact, this
is readily checked. The notation Horn stands for the global sections, here, and
since V = F* as vector spaces, we need to show dim//°Hom(0,0(1)) = n -f 1.
Since Horn is taken over 0, we can identify Hom(0,0(l)) = 0(1). The global
sections of 0(1) are linear functionals on V, and there are n+ 1 of them-the
n+ 1 coordinate functions, for example. Thus, the above sequence gives the right
mutation and RΘ = Γ.

Further right mutations (by "exterior products" of this sequence) show that as we
move 0 right by mutations we find RkΘ = ΛkT, and indeed RnG = Λn T = G{n + 1),
as it must [21].

Now that we have an exceptional collection of vector bundles, we may compute
the bilinear form

The Todd class and the Chern characters of vector bundles are computed in terms of
the Chern roots-two-forms computed from the splitting principle, or diagonalizing
the curvature. For the tangent bundle TP", each Chern root xt is equal to x, the
Kahler two-form. The Todd class is given by

td(£) = Π — = Γ for TPn

v ;

 z y i - e - ^ (1 - e - * ) ^ 1

The Chern character is defined to be ch(E) — X]ex?. We have

Therefore,

χ(EhEj) - χ(EΪ®Ej) = χ(0(/)* 0 Θ

= χ(Θ(j ~ 0)

-/ch(0(y-/))td(ΓPw)
p»

xn+x

P"

The integrand is understood as a polynomial in the two-form x. For P \ we have
JpnXn = 1, so we simply need to extract the coefficient of xn. To do this, we multiply
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by x~n~ι and take the residue:

χ(EhEj) = § {

= §(1 - J O " 0 " 0 - 1 y'n~xdy, y = 1 - e

= ^((j - 0 + i )(O" - 0 + 2)... (0" - 0 + B)

J
(j ~ 0

Indeed, this is related to the result we obtained for the (weighted) soliton numbers
of the topological sigma model on P π . Specifically, we have found the inverse of the
matrix (2.16). As we discussed in Sect. 2.4, a matrix and its inverse are equivalent
under braiding. Therefore, the conjectured math-physics link has been demonstrated.
What is more, the fundamental solitons of the physical theory were shown to be
given by the coordinate functions of the Cn+ι which fibers over P". These are none
other than the global sections of the bundle (9(1). Note that

d i m / / V ( l ) ) = dimExt°(0(A:),0(A;+ 1)) = χ(Θ(k),Θ(k + 1)).

Here, then, the physical and mathematical calculations are counting the same things!
Unfortunately, the correspondence does not seem so direct for other examples.

Exceptional collections for Grassmannians and other flag manifolds were con-
sidered by M. M. Kapranov in [22] and in the sixth article in [5]. These authors
were able to construct exceptional collections by relating vector bundles over homo-
geneous spaces to representations of the coset group in the standard way. Namely,
on G/H we can define a vector bundle given any representation of H by the as-
sociated bundle of the principal H bundle G —• G/H.u The Grassmannian G(k,N)
of &-planes in C^ is equated with U(N)/(U(k) x U(N — k)) (by considering that
U(N) acts transitively on the set of planes, with U(k) x U(N — k) fixing a given
plane), and is thus a homogeneous space. We can take representations of U(k) alone
to define vector bundles. These representations are described by Young diagrams,
where now we allow negative indices, as the totally antisymmetric representation
acts by the determinant (which is trivial for SU(k) but not for U(k)), which can
be raised to any (positive or negative) power.

Kapranov has shown that an exceptional collection is defined by the Young
tableaux with the property that all entries are non-negative and no row has more
than (N — k) elements. We note that there are (£) such diagrams, equal in number
to the Euler character and the dimension of the Grothendieck group (the Hodge
diamond is diagonal).

In order to compute the bilinear form, we note that the tensor products of these
line bundles are nothing other than the bundles associated to the tensor products

1 2 Given a principal H bundle, G, with transition functions hΛβ and a representation p : H —>

Aut(F) of//, we construct the associated rank n = dimF vector bundle by considering the transi-

tion functions s^β = p(haβ). Equivalently, we take the space G xp V defined to be G x V modulo

the relation (gh,v) ~ (g,hv).
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of the representations. Further, the dual bundle is described by the dual represen-
tation, defined by reversing the sign and order of the Young tableau indices (thus
(αi,...,α/t)* = (—<%£,...,—αi)). Therefore, in order to compute the Euler character
χ(E,F) we just decompose the tensor product E* ®F and take the Euler charac-
ter of each component separately. Kapranov [23] has shown that this quantity is
nonzero only when all of the Young indices are non-negative, and equal to the
dimension of the representation (as a representation of U(N)) in this case. There-
fore, we have reduced the problem of computing this bilinear form to a question
of representation theory.

Note, too, that there is a partial ordering on the representations in terms
of inclusion of Young diagrams. As E* ® F contains positive parts only when
E appears as a subdiagram of F, the upper-triangularity of the bilinear form
follows immediately. These results are readily extended to the flag manifolds
U(N)/(U(nι) x x U(nr)\ Σnj = N. See Ref. [22].

Let us compute the first nontrivial example: the Grassmannian G(2,4) = £/(4)/
(C/(2) x U(2)). The basis {βi,...,β6} for the bundles is given by the diagrams

(0,0), (1,0), (2,0), (1,1), (2,1), (2,2),

where the / h entry denotes the length of the / h row of the tableau. Note that the
totally anti-symmetric (1,1) diagram, for example, is trivial as a representation of
SU(2) but is in fact the one-dimensional representation in which a matrix in U(2)
acts by its determinant. We will do a sample computation of a matrix element in
the bilinear form. Consider χ2,5 — x(e2^s) We need to decompose

e ; ® e s = ( 0 , - 1 ) ® (2,1) = ( ( - 1 , - 1 ) ® (1,0))® ((1,1)® (1,0)) = (1,0)® (1,0),

where in the last steps we have factored out the (det)± ι representations (which
cancel when tensored). Using the usual rules of decomposition, we find (1,0)0
(1,0) = (2,0) θ (1,1), where the second summand is not trivial in U(2). We find
X2,5 = diπi£/(4)(l, 1) + dimc/(4)(2,0), where the subscript indicates that we take the
dimension of the representation as a representation of t/(4). Hence #2,5 = 10 + 6 =
16. Proceeding straightforwardly, we find

(\
0
0
0
0

V0

4
1
0
0
0
0

10
4
1
0
0
0

6
4
0
1
0
0

20
16
4
4
1
0

20 \
20
10
6
4

1 )

As it must, the matrix χ satisfies det(z — χχ ') = (z — I) 6 . Other Grassmannian
spaces - including projective spaces-can be computed similarly. We note that
G(N - 1,7V), equivalent to G(l,N) = PN~ι, gives a basis for which the bilinear
form is the same as in the physics case (no matrix inversion is necessary).

The case of orbifolds, discussed from the physical viewpoint in Sect. 2.5, has not
been studied from the mathematical viewpoint in the context of helices. However,
Bondal and Kapranov [24] have discussed the derived category of complexes of
Z3-equivariant sheaves over P 1 , and have found collections of sheaves leading to
results similar to those derived in Ref. [15]. The sheaves are no longer locally free,
but include those associated to the fixed points of the Z 3 action. Similar results
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hold for any finite group, leading us to conjecture that the bilinear forms will be
associated to Dynkin diagrams, as was previously discussed.

It is interesting to consider blow-ups of P 2 at n points. We will encounter an
example of such a space (when n = 1) in some detail in Sect. 4.4. For now, we

just note that these spaces, which we shall denote P 2 , have isomorphisms

1 = 1

That is, each point pu i = 1.. .n is replaced by an "exceptional divisor" Eu isomor-

phic to P 1 . The isomorphism arises from a map π:Pn —> P 2 , with n~ι(pι) = E[.
An exceptional collection can be defined for these spaces, though whether they

generate helices or not is now known (for most examples; for P 1 ? see Sect. 4.4). The
collection is given by (9(i), i — 0... 2 - sections of the zth power of the hyperplane
bundle, pulled back under π-and the sheaves Θβj= \...n, which have support
only on Ej. That is Θj(U) = Θ(U)/I(U), where / is the ideal of holomorphic
functions vanishing on Ej. Clearly, Θj(U) = 0 for U Γ\Ej = 0. One finds for the
bilinear form (say, for n = 3) [25]:

/ 1 3 6 1 1 1
0 1 3 1 1 1
0 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0

β 0 0 0 0 1,

We note that H = γj~ι is unipotent, yielding the correct charges (Hodge num-
bers) for the topological sigma model, including the integer parts (see P 1 example
in Sect. 2.5). Namely, the eigenvalues of//, all equal to unity, wrap around the
origin an integral number of times when χ is given a t dependence and is taken
from the identity to χ smoothly. The integer value is precisely the form degree. The
Hodge numbers of the space are determined as follows: each exceptional divisor,
isomorphic to P 1 , contributes one (1,1) form, in addition to the P 2 cohomology
which pulls back from π; thus hιj = diag(l,4,1), which is what is found.

We note that if n > 8, then these spaces have negative first Chern classes,
and therefore do not have a simple geometric interpretation as asymptotically free
quantum field theories. Nevertheless, the mathematical constraints are satisfied. The
difference may arise from the difference between an exceptional collection and a
helix: admissibility of mutations and the "periodicity" requirement of the shifts Rn

and Ln.

4. Links

4.1. Parallel Structures, Categorical Equivalence. One way of formalizing the par-
allel structures shared by topological field theories and exceptional collections is by
describing a categorical equivalence between the two. In fact, one approach to the
theory of helices is through their categorical definition. Many of the structures we
have discussed are structures which can be defined given an abelian category and
its derived category.
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For those of us unfamiliar with categorical constructions, we recall only the very
basics. One constructs a category of objects (e.g., sets, topological spaces, sheaves,
groups, vector spaces, complexes) and composable morphisms (e.g., functions, con-
tinuous functions, maps of sheaves, homomorphisms, linear maps, morphisms of
complexes). Categories may have additional structures such as addition of objects
(e.g., direct sums of vector spaces or complexes). Functors are maps between cate-
gories which map objects to objects and morphisms to morphisms, respecting com-
position. For example, the fundamental group %\ is a functor from topological spaces
to groups. Continuous functions are mapped to group homomorphisms.

Equivalence of two categories, $t and ^ , is provided by constructing a bijective
functor-an invertible recipe for getting J* objects and maps from such s$ structures.
First, let us consider the example of the category of coherent sheaves. As every
coherent sheaf #" has a syzygy ¥Pn —+ 2P§ with homology HQ{^' ) — jF, we
may focus our attention on the category of complexes of sheaves, defined up to
(co)homology, instead of just the category of sheaves. This is called the derived
category of coherent sheaves.

We now pass from sheaves to algebras using the following construction [26].
Consider a sheaf, jF, an object of the category si of coherent sheaves. Then we
have an algebra A — Hom(^, SF\ and we can use #" to construct the map (functor)

) = Ext ' ( ,^ ,0)

from the category of sheaves to (bounded) complexes of representations of A, or
Z)b (mod-v4). Here the differential map on the complex of Ext's is the zero map.
Of course the interesting question is when is this functor a category equivalence.
A.L Bondal has shown that when 3F includes sufficiently many summands-usually,
3F will be a direct sum of generators for j2/-then this is so [26].

This statement is profound. It allows us to shift our focus to finite-dimensional
algebras. What is more, we can analyze the algebraic properties associated to ex-
ceptional collections and helices. What are the special algebras and representations
which result from this construction? The algebras turn out to be those associated to
quivers, which we will briefly review here.

[Before discussing quivers, it should be noted that helices can be defined not only
for collections of sheaves, but for an arbitrary triangulated category (a triangulated
category is an abelian category #, with an automorphism functor T: ^ —> %> which
satisfies certain axioms; the paradigm is the category of complexes of sheaves, with
automorphism a shift in Cech degree). We will not discuss these matters in detail,
except to say that the constructions are rather general. We feel the geometric link
to physics is of primary importance, and have therefore concentrated our attention
on this application of helix theory. For more on the categorical approach to helices,
see the first and seventh articles in Ref. [5].]

A quiver is a set of labeled points with some number of labeled directed arrows
between them. An ordered quiver is one in which the points are ordered and arrows
connect points labeled with a lesser number to those with a greater label. For
example, the following diagram defines an ordered quiver:

(4.1)
i 2
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Path composition defines an algebra, A, associated to a quiver, with vertices p}

corresponding to projections in the algebra: pt pi = pl9 and products equaling
zero if paths don't line up tip to tail. We may impose relations in the algebra. In
the example above, we may put

/« 9j = fj 0i (4.2)

In this case, we say we have a quiver with relations.
The projections pi decompose representations V of A (or left A -modules) into

(non-invariant) subspaces Vu via

and arrows determine morphisms Vι —» Vj. Now suppose W is a right ^-module.
Then we can also decompose W into subspaces G\ W = JFp/ via

W = ®WPι = QGiW .
i l

We can then consider A as a right module over itself and define submodules i \ =
(closed under A). Now the algebra of a quiver with n + 1 vertices looks like
Φo^"> which is naturally identified with

A = ^OM) ^ ( )
\ί=o y=o / i,y

Therefore the algebra of a quiver is the algebra of morphisms between modules.
Also note that Hom(Pi9Pj) = 0 for / > j , if the quiver is ordered.

Suppose we have a strong exceptional collection, by which we mean an excep-
tional collection satisfying the additional requirement that Έxtk(Ei,Ej) = 0 for all
i and j when £=}=0. (As stated, we will work here with sheaves over X.) Then
if the derived category is generated by the collection, we can write E = ζ&Ej and
define A = Hom(E,E). Then A is the algebra of a quiver with relations, and Bondal
has proven that this mapping from sheaves to right ^-modules is an equivalence of
categories:

£>b(Sheaf (X) ^ £>b(mod -A).

An example of a strong exceptional collection is (Θ,Θ(l),...,Θ(n)) over Pn.
Consider n = 2. Then

A = Hom($ Θ 0(1) Θ 0(2), 0 Θ 0(1) Θ 0(2)),

which is the algebra of the quiver (4.1) with the relations (4.2). The vertices pi cor-
respond to the one-dimensional spaces Hom(0(z), 0(z))> and the arrows correspond
to the three independent generators of Hom(0(z), (9{i + 1)) (see calculation for Pn

in Sect. 3.4), which compose according to the quiver relations. Further, mutations
act similarly on exceptional collections and modules.13

We remark here that not all exceptional collections have all mutations admissi-
ble, nor is it known whether a strong exceptional collection can always be found.

1 3 We define the (right) mutation of representation spaces R(Vt, Vi+X) = {V', V{+1) by V[ = Vι+{

and V' =±Vι+ιΠVι®Vι+ι.
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Further, the helix generated by an exceptional collection might not yield a quasi-
unipotent bilinear form (if RnE were not represented by tensoring by a line bundle,
for example).

Another notion which these remarks cannot address is the question of con-
structivity. Can any exceptional collection be generated by mutations of a given
one? For P 1 and P 2 , for example, it has been proven by Drezet and Rudakov that
this is so. For P , the conditions of being exceptional yield the Markov equation,
x2 -f y2 -f z1 — 3xyz = 0, for the ranks of the bundles involved [27]. For higher di-
mensional spaces, little more is known. Note that the Markov equation is precisely
the equation of classification for topological sigma models with three vacua (see
Sect. 6.2 of Ref. [2]). The constructivity of the helix then tells us that this is the
only such model with three vacua (up to continuous deformations, as always). It
would be interesting to see these conditions translated into the simple-or more
intuitive - structure of quivers.

4.2. Localization. The difficulty of the classification program is that rinding the
soliton numbers of a physical theory is a daunting task, especially in the sigma
model case. One must first find the quantum ring of the topological sigma model,
which itself demands a detailed knowledge of rational curves on the manifold.
Then, one must construct and solve the tt* equations. Very few solutions to these
equations are known. At best, some asymptotics have been calculated in a limited
number of cases. This is what is needed in order to extract the soliton numbers.
These numbers may be calculable numerically, but that program, too, is formidable.
A quick way of deriving soliton numbers would be a godsend. This is why a link
would be so interesting.

In this section, we shall outline a possible approach to this problem. While diffi-
culties remain, we hope that these obstacles can be overcome. The idea is to localize
the vacua by adding a potential to the sigma model. Normally, this would destroy
the N = 2 invariance, as the potential would have to be a holomoφhic function of
the superfield coordinates (and the only holomoφhic functions on a compact mani-
fold are the constants, which don't affect the Lagrangian due to the integration over
superspace). However, this difficulty can be circumvented if the manifold admits
a holomoφhic Killing vector for its Kahler metric. We recall that any manifold
admits a supersymmetric sigma model-a natural extension to superfields of the or-
dinary nonlinear sigma model. If the manifold is Kahler with metric gfj, then the
separation into holomoφhic and anti-holomoφhic tangent spaces (preserved by the
connection) leads to a second independent supersymmetry. A potential is added to
this model by inserting a more general form for the Lagrangian, accompanied by
new transformation laws. Conditions on the potential terms arise from requiring this
Lagrangian to be invariant under supersymmetry.

We report here the results of this procedure, calculated first in [28]. Let us call
the Lagrangian of the usual topological sigma model 5Ό(Φ) (here Φ denotes all of
the fields). Then the sigma model with potential has the form

S0(Φ) + m2gμvV
μVv + mφμDμVvψ

v . (4.3)

Here V is the holomoφhic Killing vector, which by definition obeys
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Since V is holomorphic, we have V1 = (V1)*, and the second condition above tells
us that we may write

Va = idaU,

where U is a real (not analytic) function (the metric relates our holomorphic Killing
vector to a closed one-form, which is therefore the exterior derivative of a function,
as the diagonality of the Hodge numbers implies Hx = 0). We may proceed with
the topological twisting in the usual fashion, redefining the bundles of which the
fermions are sections. To obtain the topological theory, we need the action of Q+.
We find

Note that if we now try to do the usual game of relating local observables to
differential forms by χι <-> dz1 etc., we find that Q = d + rniγ = dm, where iγ is
contraction by V and m is a parameter which scales with V (we have defined
Q = Q+). It is clear then that

Q2 = m{diγ + ivd) = mSev ,

where j£? γ is the Lie derivative in the V direction (the second equality above is
true for differential forms). Thus, the notion of g-cohomology doesn't make sense
unless we are talking about F-invariant forms.

The simplification of this procedure is that the bosonic action now has a potential
term, so the vacua are localized at the minima of the potential. Since the potential
is essentially \V\2, the minima are at the zeros of V. To simplify the discussion,
we will assume that we can choose a holomorphic vector field with isolated zeros.
In fact, by a mathematical theorem of Carrell and Lieberman, this property requires
the Hodge numbers to be diagonal [29]. These are just the manifolds in which we
are interested from the point of view of classification, as they have finite chiral
rings. Furthermore, such manifolds have the property that the dm cohomology is
isomorphic (as a vector space) to the ordinary de Rham cohomology. Therefore, no
number of observables is lost in the addition of the potential to our theory.

The physical classification of these theories rests on the calculation of soliton
numbers. In the ordinary sigma model, the space of minimum bosonic configurations
is the entire target manifold (constant maps) and the solitons are derived from a
quantum-mechanical analysis. Here things are much simpler: the vacua are points,
as in Landau-Ginzburg theories. As usual, we consider an infinite cylinder with
compactified time. Let us label the vacua (zeros of V) xa. The solitons in the ab
sector correspond to time-independent field configurations with φ(—oo) = xa and
φ(+oo) =Xb The solitons which saturate the Bogomolnyi bound minimize the en-
ergy functional. We have, for (the bosonic part of) time-independent configurations,

E = fdxfajdxφ'dxφj + m^iUdjUg11]

= Jdx[dxφ' ± mffU][dxφ
J ± m^U\gf] =F mJdx(dxU),
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from which we derive the Bogomolnyi bound

E ^ m\U{oo)- C/(-oo)|

(m can be incorporated into U as well; henceforth we will put m = 1). This bound
is saturated for trajectories for which

3XΦ=J . V , (4.4)

where J is the action of the complex structure. Thus the solitons move along paths
defined by the vector JV, which is V rotated by the complex structure tensor, i.e.
φ1 — JV (here we are speaking of the real vector field V + V). We note here that
any trajectory obeying (4.4), transformed by the flow defined by V, will still obey
(4.4). This follows because U and the metric are invariant with respect to V.

The subtleties of these theories are two-fold. First, we need to know how to
compute the chiral ring and ensure that the tt* structure is left intact. Secondly,
we have a continuous set of classical soliton trajectories which needs to be quan-
tized by the method of collective coordinates. When we perform the quantization,14

the collective coordinate becomes a quantum-mechanical particle. This technique is
standard. The first subtlety amounts to asking whether there is continuity at m — 0,
i.e. do the soliton numbers change discontinuously when we turn on this vector
field. As we have discussed previously, the cohomologies are isomorphic, but the
theories may be different. We may suddenly be describing a massive N = 2 theory
with a different classification - after all, the configuration space now only includes
F-invariant forms. Without fully resolving these issues, we will walk through a
simple example, highlighting the general features.

Our example is just the sphere, P 1 , endowed with its usual (Fubini-Study) met-
ric,

2

The holomorphic vector field is just a rotation of the sphere, say about the polar
axis (φ —> φ -f- c). The vector field V has the form

V — izdz — izδf

and the function U is

[/ = - -
z\2

v1 ~ p

(we sometimes use the notations V for just the holomorphic piece, too), and so
iVz — zdz, which generates dilatations or lines of longitude emanating from the
north pole. Specifically, the solitons are

z(t) = peiφ°emx ,

where p and φo are arbitrary real parameters associated to translation invariance
and the U(l) invariance generated by V. The translational symmetry means that
solitons can appear with arbitrary momentum. The minimal energy will have zero
momentum. The collective coordinate φo is simply the spatially constant part of
the azimuthal angle φ and becomes a free particle upon quantization. Explicitly,

14 See, for example, Ref. [30]. One extracts the parameter describing the different solutions from
the path integral. Restoring the time dependence amounts to treating it as a quantum-mechanical
particle, so the space of solitons includes a one (or more) particle Hubert space, from which we
will choose the state of lowest energy.
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we define z — peιφ, then single out the zero mode φ — φ(x,t) + φo(0 a n d write
the bosonic action as

Shos =fdxdt 22[dμpdμp + p2dμφdμφ - m2p2(l + p2)]

-f JdtφlA -f φ0B .

Here A and B are defined in terms of the other fields:

Expanding around the classical soliton solution and performing the integration, we
have

The action for ψo is thus a standard free single particle quantum-mechanical action.
We know the full Hubert space of a free particle in one (bound) dimension,

and its energy is minimized by the n — 0 ground state. This analysis would thus
tell us that there is just one Bogolomonyi soliton. However, if we could eliminate
this state, the ground state(s) would appropriately be a doublet (n = ±1). This is
indeed the correct representation under U(l) induced by the doublet of SU{2). That
is, the theory without potential - what we are interested in, after all-has an SU(2)
symmetry and the solitons have been shown (by independent analysis) to lie in
the doublet of £77(2). The potential breaks the 51/(2) to £/(l), and the resulting
solitons should thus have charges ±\ under this U(l). Unfortunately, to eliminate
the ground state we had to impose the known solution. A possible resolution of
this conundrum may come from the form of the TV = 2 algebra in the models with
potentials from holomorphic Killing vectors. In Ref. [28] it was found that the
algebra contains central terms proportional to S£γ. The difference from the usual
N — 2 algebra suggests that we are studying the equivariant quantum cohomology
ring in this example (which may indeed be equivalent in this case when the vector
field is set to zero). The soliton structure of these theories may not be continuous
as V -> 0.

4.3. P : A Good Test Case. In this section we will present materials necessary for

studying the manifold P , by which we mean the blow-up of the projective space P 2

at a point (in Sect. 3.4 this was denoted F^). This manifold is particularly interesting
for several reasons. It is a diagonal Fano variety with c\ > 0, so it defines a good
quantum field theory. Further, it is not a coset space. Coset spaces may prove
to satisfy the proposed link due to simplifications from a representation-theoretic
description. However, this space has no simple treatment, so the equivalence here
would show that the link was more robust. Another reason this space is interesting is
that though it is not simple, we do have some tools available to help our treatment.

P is the blow-up of a projective space. Due to this fact, we will be able to give an
exceptional collection and compute the bilinear form from the mathematical point
of view. Happily, this space is also a toric variety. These spaces were studied
by Batyrev, who showed that their quantum cohomology rings have a very simple
description. This knowledge is necessary for computing the soliton numbers through
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the tt* equations in order to compare with the mathematical results. What is more,
this space has holomorphic vector fields, since it is a toric variety. Therefore, it
may be treatable by the method of localization described in Sect. 4.2. Finally, the
space has only four cohomology classes, so the calculations are not too messy.

Let us first describe the blow-up procedure. We begin by recalling the blow-up

of C 2 at the origin, denoted C . It is the subset of C 2 x P 1 defined by

C2 = {(zuz2;λuλ2) e C2 x P 1 : zxλ2-z2λx = 0} .

Thus the / part is determined to be the unique line through (z\,z2) whenever

(zi,z 2)φ(0,0). At the origin, we have the entire P 1 (all lines through 0). We

call this P 1 the exceptional divisor, E. Note that C 2 - E = C 2 - 0. To define the

blow-up of P 2 , we choose a point (0,0,1) and replace a neighborhood ίsomorphic

to C2 by its blow-up. Thus,

P 2 = {(μuμ2,μ3;λuλ2) e P 2 x P 1 : μxλ2 - μ2λ2 = 0} .

This is the zero locus of a homogeneous function of bi-degree (1,1) in P 2 x P 1 .

We can also understand this space as a toric variety, being one of the rational,
ruled, or Hirzebruch, surfaces. The study of toric manifolds is quite a broad subject.
A readable hands-on introduction is given by Batyrev in his paper on quantum rings
of toric varieties, the results of which we shall use presently [31].

In the language of toric varieties, the space
(drawn on a plane)

P is described by the diagram

which is interpreted as follows. We define a complex variable for each arrow,
beginning with the space C 4 — V. Here V is an open set containing points which
must be removed so that the group action by which we mod out has no fixed
points.
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From the diagram we get that15

V = {zι = z 2 = 0 } U {z3 = z 4 = 0 } .

We then mod out by the action of (C*) 2, which is derived from the independent re-
lations among the arrows: iί\ -f v2 = 0, v\ + v3 + V4 = 0. Thus we act without fixed
point by (λ,p) e (C*) 2 on C2 - F by sending

(zi,Z2,Z3,Z4) l-> (pAzi,λz2,pZ3,/7Z4) . (4.5)

We can see here that (zi,z2,Z3,Z4) —> (z3,Z4) G P 1 represents a fibering over P 1

equal to the projectivization of the bundle 0 0 0(1), as the A action represents
the projective equivalence on the fiber and the p action on z\ denotes that it is a
coordinate of an 0(1) bundle. The nth Hirzebruch surface, Hn, gives V4 a height of
n (instead of one) and is equal to the total space of the bundle P(0 0 0(«))

In order to compute the tt* equations for this manifold, we need the chiral ring
coefficients Clj

k. In fact these can be computed in the purely topological theory,
since Cψ = (φiφjφk), and the indices are raised with the topological metric ηtj. The
topological correlation functions are obtained by passing to the topological limit, in
which the path integral becomes an integral over the moduli space of instantons (not
to be conftised with parameter space). The instantons are holomorphic maps. The
topological observables, as we have discussed, correspond to cohomology classes
of forms, and can be chosen to have support on their Poincare dual cycles, Lt.
The correlators {φι(Pi)φj(pj)φk(Pk)) just count the number of holomorphic maps
taking pm to Lm (when that number is finite16), weighted by exp(—dA\ where d
is the degree of the instanton and A is the area of the image (which depends on
the Kahler class of the target space).

Batyrev has calculated the ring coefficients for toric varieties. We quote his
results without proof for the nth Hirzebruch surface, Hn, obtained by taking
v4 = (—l,w) (our example is n = 1) and generalizing the action of (C*)2 in (4.5)
by changing the pλz\ to pnλz\ on the right-hand side. For this space, Batyrev's
prescription gives a ring with two generators, z\ and z2, and the following relations:

z\ — e~α - nz\z2 .

In the above, the α and β are parameters describing the Kahler class. As they
represent the areas of the two homology cycles, they should both be positive. We
note here that in the large radius limit, where the Ricci curvature goes to zero and
these areas go to infinity, we recover the ordinary cohomology ring or intersection
ofHn.

The ring gives us the values Cυ

 k. To compute all the correlators, we need Cψ
which we can get by lowering indices with ηlj = Cljo = CJj

mηmo (where the subscript
0 represents the identity element of the ring). But ηmo represents the one-point

1 5 This set is defined by taking the union of all sets obtained by setting to zero all coordinates
corresponding to vectors of a primitive collection. A primitive collection consists of vectors not
generating a single cone (there are four two-dimensionl and four one-dimensional cones in the
diagram above), though any subset of those vectors generates a single cone of the diagram.

1 6 If the formal dimension of such maps is zero but there is a continuous family, then the
"number" of maps is replaced by the Euler characteristic of a vector bundle over this family.
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function, which is determined by the anomalous charge conservation. That is, the
chiral charge (i.e. the form degree) is violated by 2d (the dimension of the space)
units, so only the top form (z\z2 here) can have a nonzero one-point function. We
can normalize this to be unity. Thus we have all the information necessary to write
down the full tf equations.

The tt* equations will be nonlinear differential equations for the metric gtj. Since
this is a matrix, they are coupled differential equations representing the different en-
tries. It is almost certain that they cannot be solved analytically by today's methods.
One might hope to obtain the soliton numbers through a numerical analysis. A sim-
ilar analysis was performed in [32] in a computation involving Landau-Ginzburg
theories. In that paper, the author started from the conformal (homogeneous) point
and iterated out to the infrared limit. To do so, one needs the values, and first
derivatives of the metric at the conformal point. In the Landau-Ginzburg case, ex-
plicit formulas for these values provide necessary ingredients. It was found that
convergence of the solution also determines the boundary conditions. This is con-
sistent with the cases which have been solved analytically. For the topological sigma
model, certain asymptotic expressions for the metric are known (see Sect. 5 of Ref.
[2]). One expects that these data and regularity of the solutions would once again
determine the boundary conditions needed to proceed with a numerical computation
of the soliton numbers from the physical viewpoint.

We should mention here that toric varieties all have holomorphic actions by
vector fields (and one can write metrics invariant with respect to such actions, so
that they are holomorphic Killing vectors). A toric variety is constructed from some
open set in Cn by modding out by (C*) r . Roughly speaking, this leaves us with
at least (C*)n~r independent C* actions of the form zj ι-» λzj. In our example, two
remaining actions are

(zi,z2,z3,z4) h-* (szi,z2,fe3,z4), s,t G C* .

Let us consider the Sι action defined by setting s — t2 G U(l). The vector field
which generates this action has four isolated fixed points, in one-to-one correspon-
dence with the number of vacua or cohomology elements for this space. They are
(0,1,0,1), (0,1,1,0), (1,0,0,1), and (1,0,1,0,). This space is clearly able to be
analyzed by the method of localization. However, it will certainly be necessary to
clean up the P 1 case before proceeding in this direction.

From the mathematical point of view, exceptional collections over P , as well
as the other rational, ruled surfaces, were studied by Kvichansky and Nogin in [5],
and by Nogin in [33]. They found exceptional collections, as well as those which
generate helices, in which shifting a sheaf right n times corresponds to tensoring by

the canonical bundle of P . In fact, these authors found foundations consisting of
line bundles. We describe line bundles using the equivalence of divisors and line
bundles discussed for Pn in 3.2.π The two homology cycles correspond to one on P 2

and the exceptional divisor. Denote these by F and C, respectively; products of their
corresponding line bundles LF and Lc will be denoted (LF)

a 0 (Lc)
b — aF -f bC =

(a,b). The authors showed that the collections {Θ9Θ(l,k),Θ(l9k + 2),0(2,2)} are
helices for all k. It would be very interesting to use these data to compute the

1 7 For other varieties the hyperplane bundle represents the pull-back bundle under an imbedding
into projective space.
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"mathematical" soliton numbers χ(Ei,Ej) and compare with results derived from

physics.

5. Prolegomena to Any Future Math-Physics

We have detailed an interesting open problem in mathematics and physics, along

with several proposals for establishing a link between classification of N = 2 theo-

ries and helices of exceptional sheaves. Currently, there is no definite connection,

though the two areas have been shown to be related through examples. Further, a

categorical link to the algebras of quivers has been discussed.

Clearly, there are many approaches to solving this problem and much work

needs to be done in all directions. One would like to amass more "experimental"

evidence through a detailed exploration of a wide range of examples. Physicists

would like the mathematical theory to be more mature, in order to develop better

intuition for why solitons could have such an abstruse origin. The situation is much

like the status of supersymmetry and de Rham theory and Morse theory, before

Witten's famous papers relating the two. Many roads can be taken; is one likely to

lead to such a fruitful discovery? In the absence of hard facts, we have amassed

circumstantial evidence that some bridge between the theories should exist. The

author trusts the reader to be well-skilled to investigate this problem, and invites

him/her to establish this elusive connection.
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