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Abstract: A Haag-Ruelle scattering theory for particles with braid group statistics
is developed, and the arising structure of the Hubert space of multiparticle states is
analyzed.

1. Introduction

Particles in 2 + 1 dimensional spacetime are not necessarily bosons or fermions; in
general, their statistics may be described by a unitary representation of Artin's braid
group [1]. Such particles will be called plektons, in the following. In a quantum
mechanical framework the possible existence of plektons in 2 space dimensions was
first observed by Leinaas and Myrheim [17] in their analysis of the principle of
indistinguishability of identical particles. In the framework of quantum field theory
the presupposed correspondence between particles and local fields seemed to forbid
exotic statistics in more than 1 + 1 dimensions. But adopting the point of view of
algebraic quantum field theory that locality has to be assumed only for observables,
Buchholz and one of us showed [2] that even in purely massive theories particles
might correspond to non-local fields with the consequence that ordinary statistics
could be derived only in 3 + 1 (or more) dimensions.

Models for particles with a one dimensional representation of the braid group
("anyons") were first invented by Wilczek [30]. Non-abelian gauge theories with a
Chern-Simons term in the action are candidates for models with non-abelian braid
group statistics. Anyons are considered to be the excitations which are responsible
for the fractional Quantum Hall Effect [16].

In order to predict phenomena caused by plektons a multiparticle formalism is
desirable. In the case of permutation group statistics the multiparticle space (as a
representation space of the Poincare group) is obtained by the choice of a Poincare
invariant metric (determined by the statistics) on the tensor product of Poincare
group representations on single particle spaces (see [3]). This is no longer true
in the plektonic case because the sum rules for spins involve the statistics [7]. A
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multίplekton space which satisfies these requirements was recently constructed by
Mund and Schrader [20]: it is determined by the Poincare group representation in
the single particle spaces and a representation of the braid group Bn.

In this paper we show that in quantum field theory with braid group statis-
tics scattering states exist, and we compute the structure of the "plektonic Fock
space" of scattering states. This space turns out to be a direct sum of the ^-particle
spaces of Mund and Schrader where the braid group representations are induced
by a Markov trace on the braid group B^. Some work in this direction has al-
ready been done by Frδhlich and Marchetti [11], who concentrated on the abelian
case, and by Schroer [26], who pointed out problems and made some prospective
remarks.

This work is based in part on the diploma theses of two of us [25,12]. In
Sect. 2 we describe the general set-up as it was developed in the framework of
algebraic quantum field theory [3,15]. In order to obtain a coherent description
of the non-local operators which one has to add to the algebra of local observ-
ables we use the formalism of [10,11] (see also [8,13]). That is, we extend the
algebra of local observables (on Minkowski space) to an algebra ^Q{M) which
may be considered as the algebra of local observables on the union of Minkowski
space with the hyperboloid at spacelike infinity. We then define the associated
field bundle [3], an intrinsic structure equivalent to the exchange algebra of ver-
tex operators [22] which is known from conformal field theory. In the next step
we develop a new geometrical description for the (statistics) intertwiners in which
the (geometrical) role of the braid group becomes apparent. Using this formulation
we can then give a compact formula for the commutation relation of generalized
fields.

In Sect. 3 we construct Haag-Ruelle approximants to scattering states. This
can be done as in [2] (see e.g. [11]). The computation of scalar products is some-
what complicated and some formulae guessed previously could not be confirmed.
There is a subtle point concerning the dependence of the scattering states on the
choice of the Lorentz frame. As pointed out to us by Schrader some years ago,
such a difficulty had to be expected in view of the absence of a Lorentz invariant
ordering on a mass hyperboloid in 3 dimensional Minkowski space, and actually,
the proof in [2] that the construction is Lorentz invariant, breaks down in 3 dimen-
sions. We therefore reformulate the Haag-Ruelle theory in a manifestly Lorentz
invariant way. The scattering vectors depend then only on the spacelike directions
which characterize the localization of the stringlike localized fields by which the
vectors were generated.

The main result of the paper is the analysis of this rather complicated depen-
dence. We show that the scattering vectors are locally independent of the spacelike
directions, and we find an explicit transformation formula (in terms of the statistics
intertwiner) relating scattering vectors corresponding to different sets of spacelike
directions. This result enables us to unveil the global structure of the space of
scattering vectors: the set of directions can be regarded as parametrizing local triv-
ializations of the universal covering space Cn of the configuration space Cn of n
non-coincident velocities in 3-dimensional Minkowski space. And the space of scat-
tering vectors has the structure of the Hubert space of square integrable sections of
a vector bundle which is associated to this covering space [27].

This structure (for the case of single particle spaces with an irreducible repre-
sentation of the Poincare group) was anticipated by Schrader [28] (see also [29])
and further elaborated in [20].
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2. Commutation Relations of Generalized Local Fields

Let us start with describing the algebraic framework of quantum field theory.1 We
are given a family of von Neumann algebras srf(Θ) (the algebras of observables
measurable within Θ) on some Hubert space J% indexed by the open double-cones
Θ in Minkowski space Jί which satisfy ίsotony

and locality

y if

where stf(&2)' is the commutant of ^(β2) and Θ'2 denotes the spacelike complement
of Θ2 in Minkowski space. Given isotony, we can define the algebra of observables
s$Q{Jί) to be the norm closure of the union UJ^(Θ) of all local algebras. More-
over, for an arbitrary region ffl C Jί, we define J / 0 ( ^ ) to be the C*-subalgebra of
stsW) generated by all algebras j/(Θ) with double-cones Θ C M, and J / ( ^ ) to
be its weak closure.

In order to describe a Poincare covariant theory, we assume that there is a repre-
sentation α of the identity component SP\ of the Poincare group by automorphisms
of J/OO^O such that

(2.1)

Furthermore, we want to assume that the action of &\ is represented on 2tf§ by a
strongly continuous unitary representation C/o>

UQ(L)AU0(LT = otL(A),

where L G 2P\ and A G s$$(Jί). The generators of the translations Pv satisfy the
spectrum condition

spP C {0} U {p G Jί\p2 > μ2, p0 > 0} (2.2)

for some μ ^ 0, and there is a cyclic unit vector Ω G J%, unique up to a phase,
such that UQ(X,Λ)Ω = Ω. Ω represents the vacuum. The embedding of J / O ( ^ ) into
the algebra &(Jfo) of all bounded operators on Jf7

0 is called the vacuum represen-
tation TΓo

In the present paper we want to analyze multiparticle scattering states in a purely
massive theory. We are therefore interested in representations of the algebra of
observables which describe massive particles, i.e. representations π of S$$(JM) by
bounded operators on a Hubert space 2tf% together with a strongly continuous rep-
resentation Uπ of the covering group P+ of P\_ satisfying

Ad Uπ(g) o π = π o <χL{g) (2.3)

for any g G P\, where g ι—>• L(g) is the covering homomorphism and the generators
of the translations are required to fulfill the spectrum condition

Hm C spP cHmU{pe M\p2 > M2,p0 > 0} (2.4)

For more details see [3,15] and references therein.
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with 0 < m < M. Here Hm is the mass shell Hm = {p G Ji\p2 = m1, p0 > 0}, m
is interpreted as the mass of the particle described by π and π is called "massive
single particle representation."

It was shown in [2] that for any irreducible massive single particle representation
π there is a unique vacuum representation π 0, i.e. a representation satisfying (2.2)
(with μ ̂  M — m) such that π and πo are unitarily equivalent when restricted to
the algebra of the causal complement of any spacelike cone S,

A spacelike cone S is the convex set

S := a + \JλΘ, (2.6)
λ>0

where a G Ji is the apex and Θ is a double-cone of spacelike directions

G = {r G Jiy = - 1 and r+ - r,r - r_ G V+} (2.7)

with r\ = r2__ = — 1, r+ — r_ G V+, V+ denoting the interior of the forward light
cone. We denote the set of spacelike cones by £f.

In view of this result we shall from now on fix the vacuum representation
πo and identify it with the defining (identical) representation of S$Q(J() on J^o
We consider only those massive single particle representations π which satisfy the
"selection criterion" (2.5) with respect to πo. Furthermore, we shall assume that the
fixed vacuum representation fulfills Haag duality for spacelike cones, i.e.

J ^ ( S " ) = jrf(S)' for all S G 6? . (2.8)

One now proceeds as in the DHR-analysis [3] and identifies the representation
spaces MQ and J^π. To this end one exploits (2.5) to define for any representation
π, satisfying (2.5), corresponding homomorphisms ρ : s$o(Jί) —> B(J^Q) which are
unitarily equivalent to π. In the present context these ρ are in general not endomor-
phisms, i.e. ρ(<stfo(d%)) (jL sd§{M\ and thus the usual definition for the composition
of sectors is ill-defined [2].

To overcome this difficulty one can pass from the algebra of quasi-local ob-
servables stf${Jί) to a larger C*-algebra Br depending on a forbidden spacelike
direction r,

Br := U s/(S') . (2.9)

Here r is a spacelike unit vector (i.e. r 2 = -1) , and Sf(r) is the set of spacelike
cones, which "contain the direction r"

y(r):={Se^\S + rCS} . (2.10)

One can subsequently show (see [2] resp. [25] for details) that if ρ is a morphism
localized in a cone S spacelike to r (i.e. there exists a S G ίf(r) such that S C S')
then ρ extends uniquely to an endomorphism ρr of Br which is weakly continuous
on all j/(5") for S G &(r). Thus one can proceed in very much the same way as
in the DHR-analysis; in particular, one defines the composition of sectors via the
composition of the corresponding morphisms on Br. However, one has to check
that all structural properties are independent of the choice of the direction r.
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To avoid singling out this "auxiliary direction" one can embed all Br into an
even larger C*-algebra, the universal algebra s$$(Ji), which can be uniquely char-
acterized by the following universality conditions (this construction was proposed
in [8] and further developed in [13] and [10,11]):

• There are unital embeddings i1 : J / ( / ) —• ̂ o(JΪ) such that for all I,J e Jf :=
{S9s'\sesr},

J I iflCJ (2.11)

and j^o(y£) is generated by the algebras /7(j/(/)).
• For every family of normal representations ( π 7 ) / e ^ , π1 ' ^ C O —• B(J^π) which

satisfies the compatibility condition

π J | ^ ( / ) - π 7 if ICJ, (2.12)

there is a unique representation π of stf^JΪ) in 3tfπ such that

π o ί I = π I . (2.13)

The usefulness of this definition is due to the fact that the endomorphisms ρr

have a common extension to an endomorphism ρ of S&Q(J$) such that the unique
extensions of π and π 0 to stf§{J4) (which shall be denoted by the same symbols)
satisfy2

π — πo o ρ . (2.14)

However, in general the vacuum representation πo is no longer faithful on
sίo(Jf) (see [10,11] for details).

The endomorphisms ρ one obtains are localized in some l€K in the following
sense [9].

Definition 2.1. An endomorphism ρ of stfe(Ji) is called localizable within
if for all 70 C /, IQ 6 X there exists a unitary U e J / ( 7 ) such that

ρ(A) = AάU(A), A e

Ad U* o ρ(^(/ i)) c

An endomorphism ρ is called transportable if for every I ζ Jf there exists an
endomorphism ρ' of ,9^Q{JΪ) which is localizable within I and is inner equivalent
to ρ, i.e. there exists a unitary U G stf$(JΪ) such that ρ' = Ad U o ρ.

Note that endomorphisms which are localizable within / are not necessarily lo-
calizable within J D /. However transportable endomorphisms which are localizable
within some region are automatically localized in every larger region.

Let A denote the set of transportable endomorphisms and Δ{I) the subset of
transportable endomorphisms which are localizable within /.

In the s 4- 1-dimensional situation, s ^ 3, it is possible to embed s$o(Ji) into a
net of field algebras #" which transform covariantly under some compact group of
internal symmetries and satisfy graded locality [4]. These fields may generate single
particle states from the vacuum, and one can use them for the construction of mul-
tiparticle scattering states by the standard recipe of the Haag-Ruelle theory [14,15].
At the time when [3] and [2] were written the existence of field algebras was not

2 From now on we shall consider <$/(/), IEK as abstract subalgebras of jrfo(JP) and only π(A)
(resp. πo(A)) as operators on the vacuum Hubert space Jfo
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established, so a different method for the construction of scattering states had to
be used. This method is based on the fact that the partial intertwiners which exist
between representations satisfying a localizability condition of the type (2.5) behave
in many respects in the same way as field operators. A convenient formalism for
the description of these partial intertwiners is the so-called field bundle introduced
in [3,11]. In cases where nontrivial braid group statistics occurs a general construc-
tion of field algebras is difficult (see, however, [19,23]). Interestingly enough, the
exchange algebra formalism of chiral conformal field theory [22] is equivalent to
the field bundle formalism [10,1].

To define the field bundle, we first fix a spacelike cone SQ. We then describe
vectors Ψ in some representation π 0 o ρ by a pair Ψ = {ρ; Ψ} and consider A(SQ) X
Jfo = / as a hermitian vector bundle over A(SQ), where on every fiber J4?ρ =
{ρ} x Jfo the scalar product is that of Jfo

In the next step, we define generalized field operators as pairs B = {ρ B} G

A(S0) x s^o(Ji) which act on 2tf by

{ρ;B}{ρ; Ψ} = {ρρ; π 0 o ρ(B)Ψ} (2.15)

and possess the norm ||{ρ;i?}|| := \\B\\. The fibers {ρ} x stf${Ji) are linear spaces
isomorphic to S0Q(J(). In addition, there is an associative multiplication law of field
operators (consistent with the above action on

{QύBι}{ρ2;B2} := {ρ2Qι\Q2{Bx)B2} . (2.16)

Observables correspond to field operators of the form {id; A},A G
The formalism contains a large redundancy which can be described by the action

of intertwiners T G S/Q(J() satisfying Q\(A)T = Tρ(A), A G sί^M\ Here T is an
inter twiner from ρ to ρi and it induces the actions

(Qι\T\ρ){ρ;Ψ} = {βuπo(T)Ψ}, (ρ,|Γ|ρ) o {ρ B} = {ρ,; TB} . (2.17)

To implement the Poincare covariance of the theory into the field bundle, we define

U(g){ρ;Ψ} = {ρ;Uρ(g)Ψ}, (2.18)

a(g){ρ;B} = {ρ; Yβ{g)<xL{g)B} , (2.19)

where Uρ(g) is the representation of Pj corresponding to π = πo o ρ (see (2.3)), α^

denotes the extension of α^ from s$o(Jί) to S$Q(JΊ) and

Ye(g) = πόι(Uβ(g)U0(L(g)rι). (2.20)

Equation (2.19) is to be understood only for g sufficiently close to the identity
in order to make sure that there is a path L(t) in the homotopy class g such
that \JtL(t)So is spacelike to some spacelike direction r. Then Uρ(g) U0(L(g))~ι G
πo(Br). This guarantees that the preimage under π 0 is well-defined since π 0 is
faithful on Br. The general case is obtained by successive use of (2.19).

Poincare transformations commute with intertwiners, i.e. if T is an intertwiner
from ρ to ρi, then

πΰ(T)Ue(g)=Uρι(g)π0(T). (2.21)
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Finally, the representation in the fiber Q\Q2 is related to the ones in the fibers ρi
and Q2 by

Uριβ2(g) = π 0 o ρι(Yΰ2(g)) UQ2(g) (2.22)

(see [10,11] for details).
A necessary condition for a generalized field operator B = {ρ; B} to be localized

in 7EJΓ is that B intertwines the identity with ρ on s$(Ir). But due to the existence
of global self-intertwiners, the intertwining property of B is too weak for a derivation
of commutation relations between spacelike separated generalized fields. Instead one
characterizes the localization by a path in JΓ, i.e. a finite sequence It e Jf, i —
0,...,n with To = So and such that either It C It-\ or ί D / ^ i , i — 1,...,«. For
each / there is some unitary Uι e <s/(7, U / Z _ I ) such that Ad Uι U\ o ρ e A(Ij).
Then {ρ,B} is called localized in (7o,...,7w) if

Un ' UxBes/Vn). (2.23)

The concept of localization described above is an extension of the corresponding
notion in [3] following ideas of [10,11]. Clearly, the localization depends only on
the homotopy class / of a path (7o, ...,/«) where homotopy is defined in the obvious
way. The set of these classes shall be denoted by Jf and the set of field operators
localized in 7 by J^(7).

Let us now consider paths with the same endpoint. They differ (up to homotopy)
by a closed path y = (I0,...Jk) with Ik = 70. We choose associated intertwiners
U\,...,Uk with πo(Uk U\) = 1. Then γ i—> U(y) = Uk U\ is a representation
of the homotopy group by unitary elements of S$Q(JΪ).

In a next step we look at products of field operators with mutually spacelike
localization. Here (70,... Jn) ~ I and (Jo,...,Jk)=J, 70 = Jo = So, are called mutu-
ally spacelike if the endpoint of 7, e(I) = In, is spacelike separated from e(J) = Jk.
Let Bt = {ρt,Bi} be localized in 7Z, / = 1,...,«. Then

B σ ( Λ ) . . .B σ ( i) = ε o B I I . . . B 1 , (2.24)

where ε is an intertwiner from ρi ...ρ» to ρσ(i)... ρσ(n)
 ε depends on the endomor-

phisms ρ, G A(So), on the localizations ϊι and on the permutation σ. It is described
in terms of a unitary representation of the groupoid of colored braids on the cylin-
der [10,11]. The associated braid can be obtained by the following geometrical
construction.

Mutually spacelike paths ϊι are continuously deformed to paths yt on the set of
spatial directions in some Lorentz frame, i.e. to paths on the circle Sx with a fixed
initial point z0 corresponding to 70 and disjoint endpoints zι corresponding to the
endpoints e(7/) of 7Z. On the cylinder Sλ x IR we choose points (zo,O> ι: = 1,...,«
and paths Γ} from (zoJ) to (zo,σ(/)),

Γ, = (yΓ',σ(0) ° (z..« ^ σ(0) ° (r. .O (2.25)

The braid is now the usual equivalence class of the family of strands Γ/, / = 1,...,«
(see for example Fig. 1, where the 3 r d dimension is introduced for visualizing the
parameter of the paths (z^i —> σ(z))).

By the standard techniques of algebraic field theory (see [3,10] for more details)
it follows that ε is invariant under small deformations of I\,...,ϊn - so equivalent
families Γ,, i = l,...,n give the same intertwiner ε - and that the braid relations
are respected.
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2 3

Fig. 1. The braid corresponding to the permutation σ = x\X2^\ in the special case where all three
paths 7/ have trivial winding number and thus can be represented as paths in the plane.

For the calculation of scalar products of scattering state vectors in the next
section we need the notion of a left inverse of an endomorphism ρ G A(So) (spe

[10,5,18] for more details): A left inverse φ of a ρ is a positive mapping of s$o(Ji),
mapping S$(SQ) into itself such that φ o ρ = id and such that ρ o φ is a conditional
expectation from S$Q(JM) to ρ{^{Ji)). If ρ is irreducible, i.e. π o ρ is irreducible,
and has finite statistics, a property which is automatically satisfied for irreducible
single particle representations [5], the left inverse is unique. If ρi,...,ρΠ e ^OSb)
are irreducible with finite statistics, the product Q = Qι — Qn is not irreducible in
general, and there is no unique left inverse. But there is a so-called standard left
inverse which is given by

φ = φn "Φι (2.26)

with φι the unique left inverse of ρz, i = \,...,n. The standard left inverse is a
trace on the algebra of local self-intertwiners of ρ, i.e. if S, T e <stf(So) commute
with Q(S/Q(^)), then

φ(ST) = φ(TS). (2.27)

Some of the following formulae are more easily expressed in terms of right
inverses of endomorphisms which have been recently introduced by Roberts [24].
The right inverse of ρ is only defined on the class of intertwiners of the form
(Q"Q\T\Q'Q). For such an intertwiner, the right inverse, χρ(Γ), is an intertwiner
from ρ' to ρ". If ρ has a conjugate representation, a right inverse of ρ can be
defined as

ρ"(RγTρ\R), (2.28)

where R is an isometric intertwiner from the vacuum representation to ρρ. Roberts
has shown that there is a unique right inverse, the standard right inverse, which
agrees with the standard left inverse on local self-intertwiners. The standard right
inverse is unique for irreducible ρ with finite statistics. Furthermore, the product of
standard right inverses is the standard right inverse of the composite endomorphism.

We also need a version of the cluster theorem [3] which is adapted to the
present situation. Let B, = {ρ, ,2?,} E ̂ {h\ * = 2,4 with ϊ2 = h and let By =
{ρj,Bj}, j = 1,3 be products of field operators. For fixed e,e2 = 1, let τ be the
supremum of \t\ for all t for which all the field operators in Bi and B3 are spacelike
localized with respect to I2 + te. Furthermore, let T be an intertwiner from ρiρ2 to
ρ3ρ4 We are interested in the leading behavior of (B4B3Ω, ΓB2B1Ω) for large τ.
Let us assume that ρ4 is irreducible with finite statistics with right inverse #4, and
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denote by {Wj} a (possibly empty) orthonormal basis of the Hubert space of local
intertwiners from ρ4 to ρ2. Then we have the following

Lemma 2.2.

(B 4 B 3 Ω,ΓB 2 B!Ω)-

(2.29)

Proof. The proof of this lemma is similar to the proof of Lemma 7.3 in [3,11].
However, introducing the concept of a right inverse makes the present proof in
our opinion conceptually much clearer. In particular, it demonstrates that the proof
extends directly to the case of non-trivial statistics.

The field bundle is invariant (up to isomorphism) under changing the location
of So locally. Therefore the same is true globally, where, however, the isomorphism
depends on the homotopy class of the path connecting the two different localiza-
tions of SO. Using this property, we can assume without loss of generality that the
localization of /2 = 14 coincides with SΌ We calculate

= (B 3 Ω,(H ρ 3 x;O(Γxl ρ - 4 )ε(ρ 2 ρ 4 , ρ i ^ B j B z Ω ) , (2.30)

where R4 is the local isometric intertwiner from the vacuum to ρ4ρ4 which appears
in the definition of the adjoint operator in the field bundle formalism and ε(ρ2ρ4, ρ\)
depends on the localization of Bi relative to SΌ (Here we use the usual notation
for the intertwiner calculus in the field bundle, see e.g. [3] for definitions.)

The usual cluster theorem (see for example [6] for a proof) implies that the
scalar product is dominated by the contribution of the vacuum sector in BjB2Ω.
Inserting the corresponding projector onto the vacuum

Σ\(Wj x iά4)R4Ω) {{Wj x Uρ-4)Λ4Ω| (2.31)
J

into the scalar product, we can conclude that the right-hand side of (2.30) is

^ ^ ) x flρ-4)ε(ρ4ρ4, ρ O B ^ Ω ) (Λ4Ω,BjfF;B2Ω) (2.32)

up to a term which is smaller than the right-hand side of (2.29). We observe that
the second term in the product (for each j) is just

(R4Ω,B\W*B2Ω) = (B4Ω, Wj*B2Sl). (2.33)

We can commute the intertwiner R4 past Bj in the first term in the product, and
thus obtain (for each j)

* W j ) x le-4)e(Q4Q4>Qi)(hi x Λ j ) B i Ω ) . (2.34)
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It remains to show that the product of intertwiners in this expression is X4(Tρ\(Wj)).

As the localization of 12 — 14 is So, we can write the ε intertwiner as

where V\ is an intertwiner from ρi, localized in So, to ρx whose localization cor-
responds to the localization of the different operators in the operator product Bj.
Thus (cf. [10,11(2.21)])

ε(ρ 4ρ 4,ρi)^ 4 = F 1~ 1ρ 4ρ 4(Fi)^ 4 = V^λR/^V\

= V~λρλ(R4)Vχ = ρι(R4), (2.36)

where, we have used that R4 is local and thus that ^ ( ^ 4 ) = ^ 4 . By (2.28) the
product of intertwiners is indeed just X4(Tρ\(Wj)). D

3. The Structure of Scattering States

To construct multiparticle scattering states one wants to follow the general recipe
of the Haag-Ruelle theory (for an introduction see [15]): one first constructs almost
local one particle creation operators B, (here almost localized in spacelike cones)
and propagates them to other times by using the Klein Gordon equation. In this way
one obtains operators Bz (ί) which are essentially localized at time t and create one
particle state vectors Ψz = Bz(ί)Ω independent of t. Then one proves convergence
of

(3.1)

for t —> ±00 and interprets the limits as the outgoing or incoming, respectively,
scattering state vectors corresponding to single particle vectors Ψ,, i — 1,...,«.

The scalar products of scattering state vectors can be computed by using the
cluster theorem. In the case of finitely localized sectors one can finally show that
the scattering vectors do not depend on the choice of the operators B,(ί), nor on
the choice of the time direction, but only on the single particle vectors Ψz, i =
l,...,n. In the case of sectors localized in spacelike cones this remains true in
s -f 1 dimensional spacetime with s > 2 [2], but it definitely fails for s — 2 if the
sectors have nontrivial braid group statistics.

This is the reason why the multiparticle space, considered as a representation
space of the Poincare group, is in general not isomorphic to a tensor product of
one particle spaces [7]. A satisfactory description of the scattering space in terms
of asymptotic fields does not yet exist. However, the structure of this space can
be completely computed and turns out to be identical to the structure proposed by
Mund and Schrader [20].

In a first step we show that a manifestly Lorentz invariant formulation of the
Haag-Ruelle theory is possible. In this formulation each particle propagates in its
own rest frame.

Let B G J^(/) for some localization 7 e JΓ be such that the energy momentum
spectrum spuBΩ contains an isolated mass shell Hm. Let / G Sf(J() have a Fourier
transform / with compact support in V+ such that supp/ Π spuBΩ C Hm. Then we
define

/ r f 3 * / r ( * K ( B ) , (3.2)
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where

/,(*) = (2π)-lfd3pe-»*+*ήϊr-*Ap). (3.3)

B(ί)Ω = Ψ is an eigenvector of the mass operator M2 = P2 with eigenvalue m2

and it does not depend on t.
The functions / have the following properties:

Lemma 3.1. Let f G 6^{jfί) have a Fourier transform f with compact support.
Then the following two statements hold:

(i) There exists a constant c > 0 such that

Jd3x\ft(x)\ < C ( l + | ί | 3 ) .

(ii) For each ε > 0, N G N there exists a constant C > 0 such

P \ i ~N

c,-Π + 1

/or all p G supp/ αwJ all x e Jt,t G IR SKCA ίAαί dist(y, ^ ) > ε Mq G supp/ .
7/ dist means an Euclidean metric on Jί.

The proof follows by standard techniques of the stationary phase approximation
(see e.g. [21]).

Let F ε (/) = {v G ̂ #,dist(i;, ̂ ) < ε for some /? G supp/}. It follows from the
lemma that the operators B(ί) can be approximated (for large /) by operators Be(ί) G

B e (0= / d3xft(x)ax(B)9 (3.4)

such that ||B(ί) - B ε(ί)| | < cN\t\~N for suitable constants cN. Moreover, the norms
of these operators are bounded by ||B(/)|| < c{\ + \t\3).

We now consider a configuration 7Z eK, Bz G «^(/,), / , G ̂ Q°(V+% εz > 0,
/ = 1,...,« such that the regions Ii + tV&ι(fi) are mutually spacelike for large ί.
Then the limit

limB^O BiWΩ (3.5)

exists and may be interpreted as a vector describing an outgoing configuration of
n particles with state vectors Ψz = B/(ί)ίϊ As long as the localizations /z are kept
fixed, the scattering vectors depend only on these 1-particle vectors and we may
write

lim B n (0 -BKOΩ = CTnJn) * x (Ψi,/i) (3-6)
ί—KX)

It is also easy to see how the Poincare group acts and how the scattering vectors
depend on the order of the one particle vectors:

U(I)(Ψ B ,/ B ) x x (Ψi,/,) = (U(L)ΨΛ >I/B) x x (U(I)Ψ,,L/,), (3.7)
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and

( Ψ φ ) , / φ ) ) X X (Ψσ(l),/σ(l)) = ε(b)(ΨnJn) X X (Ψl,/l) , (3.8)

where b is the cylinder braid defined in Sect. 2. Note that ε acts via the vacuum
representation. Since the intertwiner describing the transition from I\ to other sheets
is trivially represented in the vacuum, πo o ε is actually a representation of the
groupoid of colored braids on the plane.

In order to understand the dependence of the scattering vectors on the localiza-
tions lι G Jf, let us assume that there exists for some j G {1,...,«} a localization

Jj G JΓ , a field operator Cj G ̂ (Jj) and a test function gj with supp^ C mjVε(fj)
such that (with Cj(t) defined in analogy to (3.2))

Ψy = C7-(0Ω, (3.9)

and Jj + tVε(fj) is spacelike to ϊt + tVε(f) for z φy and for large t. If j = 1 the
scattering vector does not change when B 7(0 is replaced by Cj(t). If y φ l we first
commute Bj(t) to the right, then replace it by Cj(t) and commute it back to the
7th place. The whole procedure amounts to an application of an intertwiner ε(b) to
the scattering vector where b is a pure cylinder braid obtained by the prescription
in Sect. 2.

Next, we turn to the computation of the scalar product of scattering vectors. Let
Vj C H\ be compact and 7Z G Jf,z = \,...,n such that for suitable neighborhoods
Vf of Vt in V+ the regions tVf -f 7Z are mutually spacelike for large ί, and let
ft be test-functions with s u p p l e Vf. Let B^Q G ̂ (Ji) with associated single
particle representations ρz and σz, respectively, i — \,...,n. Let T G ̂ /(̂ SΌ) be an
intertwiner from σ\ - — σn to Q\ - gn- Then, with Ψz = B/(ί)Ω,Φz = Q(ί)Ω, we
find the following

Theorem 3.2. Le/ φί be the unique left inverse of ρl9 i — 1,...,«.

( i ) 7/*ρz is not equivalent to σι for some i G { l , . . . , n } , ίA^n

((ΨΠ,/Π) x x (Ψi,/i),Γ(ΦΠ 5/Π) x x (Φi,/i)) = 0 . (3.10)

(ii) If Qi = <7/, z = 1,...,«, then

((Ψ n ,/ n ) X • X (Ψ,,/,), Γ(ΦB >/H) X X (Φl.Λ)) = φn ί l ( Π p , Φ , )
/

(3.H)

Proof We apply recursively Lemma 2.2 to the left-hand side of the above ex-
pression. If ρι is not equivalent to σι for some /, we obtain zero. Otherwise, we
have

Φ 0 (3.12)

Xι ''' In is the standard right inverse on Q\ Qn and therefore agrees with the
standard left inverse φn- φ\ on local intertwiners. D

Thus the scattering vectors depend in a continuous way on the one particle
vectors. Since ^ ( 7 ) is dense in Jίf for all 7 G Jf, we find, by going to the closure,
all scattering states corresponding to single particle states with prescribed momentum
support.
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For a single particle representation ρ with mass mQ, let J^ρ(V) = {Ψ G M
C rriρV}. Given an irreducible endomorphism σ G ̂ l(-SΌ), let JfV,ρ,σ C J ^ denote the
Hubert space spanned by the scattering vectors

7ΎΨ I ) x x CΨ 7 ) ί3 13)

where Ψ^ G ̂ ( F 2 ) , V = (V\,..., Vn), ρ = (ρi,. ., ρw) and T G J / ( 5 Ό ) is an inter-
twiner from ρi ρΛ to σ. Finally, we define

^ . . . ^ σ , (3.14)

Ό) from

dσ

dQ " -d

Q\

Qn

•'Qn to equipped

(3.15)

where ^Qx...Qn,σ is the space of intertwiners T G J/(SO) from ρi
with the scalar product

(S, T)t = φn--. φι(S*T) = TS*

where dρ is the statistical dimension of ρ G A(So) and TS* is a multiple of the
identity as a local self-intertwiner of the irreducible endomorphism σ G A(So).

Theorem 3.2 implies that for each configuration I = (I\,...,In),It G JΓ, such
that the sets 7Z + tVt are mutually spacelike for large t and for each unitary local
self-intertwiner U of Q\ ρn, there exists an isometric embedding

^ f f - * X (3.16)

given by
(Ψi Θ Θ Ψ π ) 0 Γ κ-> Γ U(ΨnJn) x • x ( Ψ i J i ) . (3.17)

Embeddings related to different choices of I are related by a pure braid which
acts from the right on the intertwiner U. This braid can be chosen to be a local
intertwiner, as it acts via the vacuum representation (cf. (2.17)). Thus the space of
scattering states J#v,ρ?σ does not depend on I or C/.

It is easy to see that the embeddings do not change when the localizations are
translated or made smaller. Hence we may label the configurations I by points rz in
the covering space of the spacelike hyperboloid {x G Jί,x2 = — 1}. Moreover, the
embeddings are locally constant in r 2 , . . . ,r w and are globally constant in rλ.

To describe the global structure of the space of scattering states let us introduce
the following notation. Let eo G H\ be arbitrary. A configuration of disjoint particle
velocities qϊ• = &- φqj = ^ , iή=j\ is called regular (with respect to e0) if there are

mutually spacelike cones Si with apex eo such that qt G Sι (in particular q}ή=eo).
To a regular configuration q = (#i, . . . ,#„) we associate a configuration of spacelike
directions r = (r\,... ,rw), with rι—qι — e^.

We now pick a regular "reference" configuration q° and choose n homotopy
classes of paths of spacelike cones lu i = 1,...,« whose endpoints e(/z) correspond
to the canonical directions rf. We label these homotopy classes by f°. We also
choose a unitary local self-intertwiner U°. These choices then determine a reference
embedding i(ΐ °, U°) for a neighborhood V° of q°. (Note that V° may contain also
nonregular points.)

In the next step, we cover the configuration space of non-coinciding velocities
by embeddings around regular configurations q. (This is possible.) We label these
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q-space r-space

Fig. 2. A path q(t) and the corresponding path r(/).

embeddings by paths yq from q° to q which have the property that none of the n
velocities passes through eO The embedding corresponding to yq is then specified
in the following way. As before, we describe the spacelike directions r° by the n
points (rp 1),.. .,(r®,n) on the cylinder Sι x IR+. As long as q(t) is regular, the
corresponding path r(ί) is canonically determined. At a critical point, where q(t)
ceases to be regular, two directions r/ and r7 coincide.3 In a neighborhood of this
critical point we define r(t) by the following prescription: we move the direction rk

corresponding to the smaller velocity from (rk,k) to (τ>, 1/2), then change the two
directions past each other and finally move (rf

k, 1/2) back to {r'k,k). Geometrically,
this means that the points τ(t) on the cylinder, viewed from the (5'1,0)-end of the
cylinder and looking in the long direction, perform the same motion as the velocities
q(t) when viewed from β0 (compare Fig. 2). We denote the so determined path τ(t)
byyr = (yi,...,rt;).

Each path y\ lifts to a unique path y- from rz° to rι. We denote the corresponding
configuration by f= (rΊ, . . . , r π ) . Each path yq therefore determines a pure braid on
the cylinder, namely the homotopy class

% q ) - ( f Γ 1 o y r o ( f ° ) . (3.18)

Note that b defines a homomorphism of the groupoid of colored braids on the
cylinder (corresponding to paths yq, where q is a permutation of q°) to the pure
braid group of the cylinder. This homomorphism is actually an automorphism of
the pure braid group of the cylinder when restricted to closed paths yqo. (Both
properties can be easily seen from the geometrical description.) Note also, that the
image of a given path does not depend on the choice of eo locally.

The embedding corresponding to yq is then determined by

i(yq) = i(lUoε(b(yq)Γι). (3.19)

Next we want to calculate transition functions between different embeddings.
Let qf e Vi (Ί V2, where Vz is the neighborhood of qz for which the correspond-
ing embedding is well defined. In a first step we want to calculate the transition
function between embeddings y\ = yqι and 72 = yq2, where 72 is obtained from y\

3 This is the generic case. The general case is covered by the geometrical description given
below.
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by composition with the path q} —> q7 —* q2 in Vj U V2. In this case we have the
following lemma

Lemma 3.3. The transition function between two such embeddings is given as

qx oix = id . (3.20)

Proof. We have to calculate how the vector

/i(Ψi ® Θ ΨB ® T) = T U\{Vj\) x x (Ψ, ,/ | ) (3.21)

transforms under changing the localization cones I1 to I 2 . Without loss of gener-
ality we can assume that I 2 differs from I 1 only by the relative orientation of two
adjoining cones, as the general case can be reduced to this case recursively. To
calculate the unitary intertwiner in this case, we use (3.8) to commute the single
particle vector corresponding to the smaller velocity to the right. We then change its
localization to the localization corresponding to I 2 and commute it back, using (3.8)
again. (We have to change the localization region of the vector with the smaller
velocity in order to guarantee that the two localization regions become mutually
spacelike for large t for both I1 and I2.) Thus the unitary intertwiner which relates
the two localizations is just the pure braid obtained from the path from q} to q2

in Vi U V2 via (3.18). As the two embeddings differ by this braid, the transition
function (3.20) is trivial. D

Now let Φ e J^σ and denote the projector onto J^v,ρ,σ by E\. For each γq such

that z(yq) is an embedding ^yi\σ —> ^ , we can associate to E\Φ

l . (3.22)

Because of the above lemma,

i(yqΓ\EYnY,Φ) = z(7q/)- 1(^V n V/Φ) (3.23)

if yq and yq/ differ by a path in V U V7. Thus we can extend the map

Φ(yq) = /(y,)-1^*) e #§°lσ, (3.24)

where V is some neighborhood of q, to arbitrary (not necessarily regular) config-
urations q of noncoinciding velocities. As we have given an explicit definition of
the embeddings (3.19), we can calculate the covariance property of Φ(yq). We find

Φ(yq°yqo) = Φ(yq)U°ε(b(γqo))(U°Γ' , (3.25)

where yqo is a pure braid in the homotopy class of q°, b is the automorphism of
the pure braid group defined in (3.18), and the right action of j^o is the global
action of the structure group in the universal covering space. To prove (3.25), it is
sufficient to consider product vectors

EyΦ = Γ(ΨΠ,/Λ) x x ( Ψ i , / i ) , (3.26)

where I corresponds to yq. Then the preimage under i(γq oy q 0 ) is given by

Ψ i ® ΘΨB<8>ΓE/-» (3.27)
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where we have

= (Uoε(b(yq)r{rιUoε(b(y({o))(UQrι . (3.28)

This proves (3.25).

As the braids (3.18) are locally independent of eo,Φ(yq) is locally independent

of βO To show that Φ(yq) is also globally independent of eo> it is sufficient to

prove that the covariance corresponding to the motion of any velocity around e$ is

trivially represented. To this end let us observe that we can extend the covariance

(3.25) to the colored braid group of the cylinder (cf. the above remark about b).

Then, the fact that the motion of the first velocity around eo is trivially represented

already implies that the same holds for any velocity.

Now, if J#v,ρ,σ has the structure of a function space over the configuration space

of non-coinciding velocities (this can be shown, for example, under the assump-

tion of Lorentz covariance as assumed here), Φ(yq) is a function on the universal

covering space, possessing the covariance property (3.25). These functions are in

one-to-one correspondence with sections in the? associated vector bundle. We have

therefore shown that the space of scattering vectors has the structure of the Hubert

space of square integrable sections of an associated vector bundle over the config-

uration space of non-coinciding velocities. This is precisely the structure proposed

by Mund and Schrader in [20].
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