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Abstract: The scaling behaviour of fluctuations of the Bose fields ' Φ ( f ) in the er-
godic infinite volume equilibrium states of a ^/-dimensional Bose gas at temperature
T and density p, can be classified in terms of the testfunctions /. In the low density
regime, the space of testfunctions splits up in two subspaces, leading to two differ-
ent types of non-commuting macroscopic field fluctuation observables. Testfunctions

/ with Fourier transform /(0)ΦO yield normal fluctuation observables. The local
fluctuations of the field operators Φ(f) must be scaled subnormally (i.e. with a neg-

ative scaling index) if the testfunction / has/(0) = 0. The macroscopic fluctuations
of these fields can then again be described by a Bose field. The situation changes
when the density of the gas exceeds the critical density. The field operators which
have normal fluctuations in the low density regime need to be scaled abnormally
in the high density regime, yielding classical macroscopic fluctuation observables.
Another difference with the low density regime is that the space of testfunctions

with /(O) = 0 splits up in two subspaces when the critical density is reached: for
a first subspace the algebraic character of the macroscopic field fluctuation observ-
ables is also classical because it is necessary to scale the fluctuations of the field
operators normally, while for the remaining subclass, the same negative scaling in-
dex is required as in the low density regime and hence also the algebraic character
of these macroscopic fluctuations is again CCR.

1. Introduction

In the temperature-density (Γ,p) phase diagram of a free Bose gas, one distinguishes
a low density regime and a high density regime separated by a line of critical
densities p — pc(T9d). In the low density regime and on the critical line there is
a unique gauge invariant ergodic infinite volume equilibrium state for each inverse
temperature β and density p.
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However, if one steadily increases the density at a fixed inverse tempera-
ture β, then the gauge symmetry breaks down spontaneously once the density
exceeds the critical density ρc(β,d). The symmetry breaking generates a multi-
plicity of ergodic equilibrium states and for each one of them a macroscopic
fraction of the particles condensates in the lowest energy level. This macro-
scopic collective phenomenon is called Bose condensation. Suitable order pa-
rameters for this phase transition are the space averages of the Boson field
operators.

The model and its phase diagram will be presented in detail in the first sec-
tion. The space averages of the field operators are the topic of the second section:
they define suitable order parameters for the second order phase transition in a free
Bose gas. The last and most important section deals with the classification of the
fluctuations of the field operators Φ(/).

It is not simple to give a rigorous definition for the macroscopic observable
characterising the fluctuations of a microscopic quantum observable; see e.g. [9, 10]
where the case of normally scaled macroscopic fluctuations is discussed for a general
quantum lattice system.

Definition 1. The local fluctuations with scaling index δ/ of a Bose field operator
Φ(/) in an extremal infinite volume equilibrium state ( ) at arbitrary tempera-
ture T and density ~p in a d -dimensional ball Bd(Q,R) of radius R and centered in
the origin, is defined by

/ dxτx{Φ(f)-(Φ(f))}. (1.1)

The τx denote the automorphisms of the microscopic CCR algebra associated with
the space translations over vectors c G 1R .̂

The purpose of the scaling index δf is to obtain non-trivial limiting characteristic
functions

If this is the case, it is possible to identify in a canonical way the so-called limiting

observables "limΛ^00FΛ

/(Φ(/))" with well-defined operators Fδf(Φ(f)) acting on
a Hubert space. This way it makes sense to speak about the algebra of macroscopic
field fluctuations.

If the δf = 0 and the φf(s) are Gaussian, one speaks about a system with
normal fluctuations. If on the other hand it is necessary to use scaling indices
δf>Qorδf<09 then the fluctuations are said to be respectively abnormal or
subnormal.

Goderis et al. proved [9, 10, 11]: if all self adjoint operators A of a real linear
space A G & C jtfL (the algebra of strictly local observables), have normal fluctu-
ations; i.e. the limits

lim ω(
R-^oo

are defined, then one can identify the "lim^F^(^)" with Bose field operators F°(A)
of a macroscopic CCR algebra with a macroscopic quasi-free state ώ induced by
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the \imRω(elsFR(A>>). The Bose fields obey the commutation relations:

) = lim
R— >oo

Under rather weak conditions on the space clustering of the state ω (see [10]), the
total algebra of strictly local observables <s/L has normal fluctuations. For further
details we refer to the literature [9, 10, 11].

Concerning the algebraic structure of abnormal and subnormal fluctuations, there
exist partial results for the anharmonic crystal [15]. In this paper it is explained

how the commutator of two local fluctuations FR

A(A) and FR

B(B) goes to zero
if SA + δβ > 0 or to the onumber a)([A,ΣX€Zd τxB]) if δA + δB = 0. For the
observables studied in [15], it was irrelevant to study the algebraic character of the
commutator of two fluctuations FOA(A) and Fδβ(B) with δj + &B < 0. However, the
results on subnormally scaled fluctuations of field operators already indicate that
it should be possible to define non-trivial commutation relations of macroscopic
fluctuations in situations where OA + SB < 0. This topic is discussed in general
in [7].

Finally we mention that the scaling indices δf obtained in this paper differ from
those obtained in [5] where the infinite volume limits are taken of local fluctuations
of the field operators in the local equilibrium states. The indices δf obtained in the
present setup correspond to the familiar critical exponents η of the susceptibility,
which is known to be zero for free and for mean field models.

We present here rigorous results on the phenomenon of finite size scaling.

2. The Model

2.1. The algebra of observables for bosons.

The first successful treatment of an infinitely extended Bose gas using the theory
of states on CCR algebras dates back to 1963 [2]. Using the method of second
quantisation [4], we derive a representation of the CCR algebra appropriate to
describe a ^/-dimensional Bose gas.

The Bose-Fock space J^ on ΊR.d is the completed direct sum 3F — @n>$^n\

where J^(0) - C and ^(n} = L2

symm(1&(dn}) and consider the subspace 0 which is
the incomplete direct sum:

00 /

^=U
/ = l n = 0 -

The creation and annihilation operators on ̂  are: for / G

with ψ(n) = Pnψ, where Pn is the orthogonal projection of ̂  onto ^(n\ The fol-
lowing commutation relations are easily verified for these operators on 3ί:
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The Bose field operators, defined as the sum of creation and annihilation oper-
ators,

-

are essentially self-adjoint [4] and hence when exponentiated, they yield the unitary
operators

W(f) = exp[iΦ(/)]

which satisfy the Weyl relations:

+/2)exp -

The norm closure of the linear span of these operators W(f\f G C™mp(JRd), forms
a C* -algebra U containing the quasi-localised observables of a Boson gas.

2.2. Ergodic equilibrium states of the free Bose gas.

Araki and Woods explained how the infinitely extended Bose gases can be described
in the framework of C*-algebras [2]. In the same context they proposed a simple
expression for the equilibrium state of the infinite free Bose gas, which later turned
out to be the infinite volume limit of the canonical states. Lewis and Pule reformu-
lated some ideas of Kac in this new framework and this lead to the infinite volume
limit of the grand canonical states [13] which are linear combinations of canonical
states at different densities. Kac had shown that the coefficients of this linear combi-
nation converge to a simple distribution (in the infinite volume limit), the so-called
Kac density. Lewis and Pule realised that the infinite volume limit state they had
calculated from local grand canonical states, was related to the one conjectured by
Araki and Woods through this Kac density, but the proof of convergence of the
canonical states is due to Cannon [8]. A first important result on critical behaviour
in Bose systems is about the density fluctuations in the canonical states in [3]. No
attention is paid to the algebraic character of the fluctuation observables.

For free Bose gases with particle densities above sharply determined critical
values, the limiting canonical and grand canonical states are not equivalent: the
Kac density is not a delta function. Hence it is useful to determine the ergodic
equilibrium states. This will be done in this section using the well known technique
of adding an external field term to the local Hamiltonians.

Let A1 be an arbitrary bounded region in IR^ (d ^ 3) of unit volume. Aλ must
be star shaped with respect to some interior point, chosen to be the origin. The
boundary dΛl has to satisfy certain regularity conditions [14].

Isotropic dilation of this unit volume defines the sequence of regions ΛL for
L > 0, by:

ΛL = { j tGR* :/,-'* G Λ 1 }

and put 3fL = L2(ΛL). One has ΛL C A1' and $el C ̂ L' whenever L < L'.
Take HL to be the unique self adjoint operator on ffl1 determined by the

Laplacian — j in ΛL and by Dirichlet boundary conditions φ = 0 on dΛL and let
[φL

k}k=\,2,... be an orthonormal set of eigenfunctions labeled by the index k such that
the corresponding eigenvalues 0 ^ E\ < E^ ^ E\ ^ .... The set {φ^\k = 1,2,...}
forms a complete orthonormal set of 3?L'.
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The local Hamiltonians describing a gas of free bosons in a volume ΛL with
particle density ~p are induced by these HL. They are specified by the following
operators acting on the Fock space

L

μL,h,0 = Σ EL

ka
+(φL

k)a(φL

k) - /£ a+(φL

k)a(φL

k)
k=\

V(tf ) + eiflα(#)) . (2.2)

The values for the chemical potentials μL ^ E\ are determined by the constraint that

the local equilibrium state ω,, _ , „ ( • ) =
^ Ap,M v '

β has particle density p; i.e.

at inverse temperature
F

A gauge-symmetry-breaking field h > 0, θ G [0,2π) is included in the Hamiltonians
to recover the extremal translation invariant infinite volume equilibrium states.

The generating functionals of the local equilibrium states at inverse temperature
β and density ~p are given by the Gibbs states:

By the orthogonality of the φ%, the algebra U is equivalent to the tensor product
^j H£ and in this representation

where
k=\

Furthermore

Hence

= ®exp -̂
v2

xexp |- 7

The form

where

(2.3)

h

exp[β(HL _
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is determined by the density and is the unique solution of:

P =
(InC)2

+ L-

where we used the notation η^ = E^ — E\.
The first step in finding extremal infinite volume equilibrium states, consists in

taking the limit L —» oo of the generating functionals Eh - h 0 for fixed parameters
β,~p,h,θ. Let gα be the function defined on the interval [0,1] by:

and let pc(β,d) be the "critical densities" defined by:

Theorem 1. The generating functional

2 = C-mp(Rrf) by:

roo
*Λ

x exp

with

Ek - h θ is given for f G

\\x-y\\2

n=l
d

nϊ
-(err

and ζ^° the unique solution of the equation:

P =

The second step is to take the limit h —> 0+ of the Eg?- h 0, keeping the other
parameters β,~p,θ fixed.

Theorem 2. The generating functional E^- θ

1- P < Pc(β)

is given on 3) by:

= exp eχpUτ^w/*l/^)l2
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where ζ is the unique solution of

The dependence on θ disappears in the limit and E^- () is the generating functional
of a gauge-invariant state.

2- p ^ Pc(β)

= eχp i(2π)ι

v/2

The gauge-symmetry is broken for the corresponding states and there is clearly a
dependency on the boundary conditions.

The proofs of both theorems are merely technical generalisations to arbitrary dimen-
sions of the proofs presented in the paper on the grand canonical 3 dimensional Bose
gas by Lewis and Pule [13]. The presence of the external field is not a problem;
for the proofs, see [6].

3. The Order Parameters

The spontaneous breaking of the gauge symmetry and the appearance of a Bose
condensate is described with order parameters which are the infinite volume limits
of the following operators: for any function / G Q) = C^mp(lRί/), one can define in
the GNS representations of the states ω °̂- θ and ω °̂-, the operators

®Λ(f)= TTϊJ' dxτxΦ(f). (3.4)
\Λ\Λ

These operators $Λ(/) are unbounded operators and therefore we prove explic-
itly that their limiting distributions in an ergodic equilibrium state agree with the
predictions of the general theory on the weak law of large numbers [12], [4]:

Proposition 1. For volumes A, consisting of d-dimensional balls Bd(Q,R), centered
in the origin and with increasing radius R and volume \Λ\ — vo\(Bd(Q,R)\ the
distributions of the order parameters in an extremal equilibrium state are:

1. ifp ^ pc(β,d), then

lim ω5

^ ρc(β,d\ then

lim ω2°̂  #(exp[iμ$yi(/)]) = exp
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Proof. Proving the statement for the high density regime p ^ pc(β,d) immediately
implies the result for the low density regime. Thus consider any state ω °̂- () with
~p ^ pc(β,d) and Θ G [0,2π). From Theorem 2, one has:

lim

iΦ

= lim exp

x lim exp
R-+OO

x lim exp
#-+00

where

/

l(0)^(0) + c.c.}

- 1

and where QR is a shorthand notation for the function

with

An easy calculation:

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

yields the limiting form of (3.6):

lim exp

= exp

x/2
! (0)^(0)}



Scaling Behaviour in the Bose Gas 643

To handle the remaining factors (3.7) and (3.8), it is useful to calculate first
the Fourier transform of QR\

B'I(0,R)

(3.10)

where

It is straightforward to calculate
polar axis is in the direction of p:

m spherical coordinates where the

2/
o

where Φ^/_2 = 2π,/J! is the area of a (d — 2) dimensional sphere. Formula (11.1.1)

of [1] has been used in the last line.
The remaining factors (3.7) and (3.8) can now also be discussed.
Beginning with (3.7), one obtains:

This limit is zero for / G ̂ , by dominated convergence, since

2 _ 2

~ d

(see formula (11.4.6) of [1]).
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The last factor (3.8) has a divergent factor in the integrand: -7-4— is asymp-
Qf>\P\ —I

totically O(\p\~2) around p = 0.

dp+
J$(\p\) /(*)

= £&&Wrj

1. The contribution of the integration domain where \p\ ^ εR, can be bounded

R-" f dp

Ji(\P\)

e/Jfc — (\P\Y

R-+OO

and then of course also
0,

lim limR~d

2. Finally, one also has that

dp
\p\*

lim lim R~d Γ dp
^o+β-,oo og,^^

This follows from a bound on

\P\d

= R~d / dp

_

= 0.

- 1

because d ^ 3.
This completes the proof of Proposition (1). D
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4. Zero Mode Fluctuations of Field Operators

At the critical densities, the increased importance of long-range correlations man-
ifests itself through the formation of a Bose condensate which is a phenomenon
of macroscopic order. Another effect of the long-range correlations is that a devi-
ation from equilibrium in a small region of the system, will have an influence at
very large distances. It is logical to expect that these long-range correlations lead
to abnormal behaviour for the fluctuations of the field operators in the k — 0 mode;
i.e. for

/ dx{τxΦ(f) - ω^()(

when the density ~p of the state exceeds the critical density.
In this section, central limit theorems and reconstruction theorems will be for-

mulated and proved. In every proposition and theorem on the field fluctuations, it
is implicitly assumed that the testfunctions / are Schwartz functions with Fourier
transforms /(/?) which are analytic in a neighbourhood of p = 0.

4.1. The low density regime

Low density regimes have usually exponential clustering properties, hence it is not
surprising that the fluctuations are normal for most operators [10].

Proposition 2. For densities ~p < ρc(β,d\ the k = 0 mode fluctuations of field op-
erators Φ(f) are normal for testfunctions f with /(0)ΦO, i.e. £/ = 0
and

= exp |/(0)|2

Proof We have:

exp -s2RdVd(2nΓdSdp\gR(p)\2

— ζ

where g% is defined in (3.9). From the calculations of the previous section, it is
trivial that:
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Since / is assumed to be a Schwartz function, dominated convergence yields
immediately

limRdVd\\gR\\2=2(2π)d\f(0)\2.
/?—KX)

Analogously:

\\mRdVd(2πΓdfdp\gR(p)\2
D

Obviously, the local fluctuations on the normal scale of field operators Φ(/)
for Schwartz functions / with /(O) = 0 do not survive in the limit R —> oo. The
limiting fluctuation observable for each field operator Φ(/) with /(O) = 0 will con-
sequently be the zero operator, unless one scales the local fluctuations subnormally
for these operators.

Proposition 3. For densities ~ρ < pc(β), k = 0 mode fluctuations of field operators
Φ(/) with /(O) = 0 exist on a subnormal scale; i.e. with a scaling index δ/ =
— ̂  •> the characteristic functions are

= exp
S2 y-l + ϊ

d_

2 2π

Proof. For this type of testfunctions

\f(p)\2

_ £

x exp

The first factor gives now

R

= lim(2π) ί/

R— >oo

= <2*>V ~̂~l lim

R f d p \ f

lim R

\Jd
fn\\2 2(P)\

0<ί<r

(\p\R)\2

\P\ι

+ s>r

The integration domain has been split up in two parts in order to simplify the
analysis of the limit R —» oo.
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Introducing the positive function h defined on IR+ by

}9...9θd-l)\2

9 (4.11)

where J ' dΩd-\ is a shorthand notation for the angular integrals and the use of the
asymptotic form of the Besselfunction Jj(\p\R) for large values of R,

gives first:

l-l i m l im* / d p - \ J < ( \ p \ R ) \

"

2

\P\d "ί

1)
= - lim lim Γ dp-—-r-j- cos2 I \p\R

Tt c-»0+Λ-»oo i |> I/Ί V

This is a finite number, since / is a Schwartz function with /(O) = 0 and hence
fdΩd-ι\f(\p\,θι,...,θd-ι)\2 is at least of order O(\p\2) around p = Q.

Secondly, one has

lim lim^fdlpllpllJ^pDl2

lim lim —O(εR)

= 0

With the same arguments, one proves

It is important to note that the limits Fό/(Φ(/)) can be characterised as well-
defined operators on some Hubert space. To that end one needs a reconstruction
theorem.
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Essential ingredients of the reconstruction theorem are the following B-C-H
formulae

Lemma 1. One has:

(4.12)

I - (4.13)
K ' " ~ ' K ' " \ I

3.

ι rx~> / \F (Φ(fii ^ \F (Φ(cι^}} \lιrγ^ fii^^ I /^ p v ^ ^ v ί / l ) ) p i 1 1 D v ^ v ί / 2 / / Iu™ ωft? I e e I

/ L \

(4.14)

(4.15)

Working in the GNS representations of the states co2°, one has:

) / \ 5^(0, R)

dx{(Rd VdΓ
δJ fx + (Rd Vd ΓVl j

Bd(0, R) )

Γ / N

xexp \-i(RdVdΓ
(l+δf+S!>)ϊm( / dxf*, / dxtf

L \βd(ϋ,R)

The techniques used in the proofs of the central limit theorems, in particular
Propositions 2 and 3, are also applicable here and yield:

/ dxfx,(K'VdΓ
(ίi+δίl) f

Bd(0,R) Bd(0,R)
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f2Im(/(0)#(0)) iff δf = δ
J 0 iff δf*δg

-1

\
V_d_ ΓΛnIm(/(/>)g(P)) 'ff x £ _ 1
—— J aPr^7+iltt °J -09-~2d

The discussion of the situations δf = δg = 0 and δj = δg = - ̂  is in fact im-
plicitly present in the proofs of the central limit theorems. The situation in which
δfή=δg remains to be considered; in this case

+

-=^? o.

The limit is zero since either /(O) or $(0) is zero and the other is not. This leads

to an angular integral which is at least of order O(^ ).
It is now also trivial that the distribution of the sum of a normal and a subnormal

fluctuation is the product of their distributions:

if either δ/ or ̂  = — ̂  and the other is 0. D

These B-C-H formulae are very important because they reveal the structure of
the algebra of the macroscopic fluctuations of the fields. Consider the symplectic
space: (C 0 S, σ), where S is the linear space of Schwartz functions / with /(O) =
0 and where σ = σ\ Θ &2 is defined by

On this symplectic space (C05,σ), one can construct the Weyl algebra
5,σ) generated by the Weyl operators {W(A)\A e C 0 5} which satisfy the product
rule
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In fact, ^(CΘS,<7) = ίF(C,σι)® W(S,σ2). The reconstruction theorem can now
be formulated:

Theorem 3 (Reconstruction theorem for the low density regime). Define for f G Q)
and g G S:

W(0) θ g) = F°(Φ(/)) 4- F~™(Φ(g)) .

The limits lims^00ω^°-(elf'ϊ^'0'θί'') determine a quasi-free state ω = ώ\ ®&2 on

W(€ φ S, σ) = fF(C, σi ) ® ff (S, σ2) with generating functional

= exp Λ •" i \j \~/? j \~ j/ ~ -r ^exp --

— lim

= lim

Proof. The previous central limit theorems and the inequality

2

σ( ΛίOϊff i tfi ΛΎmΦ/iiϊ
4

guarantee the existence of the quasi-free state ώ. See also reference [10]. D

This theorem determines the macroscopic fluctuation operators. There corre-
sponds a unique GNS triplet (jfr\ (g) J^πj (g) π2,Ωι Θ ^2) to the system
5),ώ) such that

The regularity of a quasi-free state assures the existence of the Bose fields F°

and F~ΰ such that

πi (g) π2(^(/(0) θ g)) = exp[i(F°(/(0)) Θ F~Ή(g))] .

Precisely these Bose field operators F°(/(0)) and F~^u(g) are called the normal
and subnormal fluctuation observables of the field operators. This completes the
discussion of the k = 0 mode fluctuations of the field operators in the low density
regime.

4.2. The high density regime.

The presence of long-range correlations in the high density regime will lead to the
abnormality of the fluctuations of the field operators. In the physics literature, such
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a phenomenon would be characterised by a critical exponent η appearing in the
asymptotic form of the connected two-point function:

O — as x • oo

If the connected two point function has this asymptotic behaviour, then it is easily
verified that the field fluctuations require a scaling index δf which is related to the
critical exponent η by the following relation:

η = 2-2dδf. (4.16)

It is standard wisdom that in a free or in a mean field model the critical exponent
η describing the asymptotic behaviour of the correlations, is zero and hence an
abnormal scaling index δf — ^ is to be expected. We give a mathematically rigorous
proof of this.

Proposition 4. For densities ~p ^ pc(β\ the k — 0 mode fluctuations of field op-
erators Φ(f) with /(0)H=0, are abnormal with a scaling index δ/ — ^. In each
of the extremal equilibrium states ω«°- 0 (θ £ [0,2π)) the limiting distribution of
these fluctuations is:

=eχP

Proof. Consider the characteristic function of the field fluctuations

x exp

Concerning the first factor of (4.17), it has been proved in Proposition 2 that

lim
R— >oo

Consequently

due to the abnormal scaling of the fluctuations of the field operators.
It is important to note that this will imply the abelian character of the macro-

scopic fluctuation observables of these field operators.
_ι

The extra volume factor R~^Vd

 d in the scaling of the local fluctuations is
required to compensate the diverging contribution of the factor -—^ — in the

QP\P\ —\
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integrand of the second factor in (4.17). Using again the function h defined in
(4.11), one writes:

_ ι _ 2 ΓεΛ oo I

- lim lim Vd

 d R~2 fdx + fdx
LO ε/? J

By dominated convergence:

_ _ ,
lim K, "R-2 fdx-l—= -̂ = 0 .

The other term can be rewritten as

0

The limits of the previous expressions can be determined using the inequalities

I> α :̂-
x2 e/*2-l

The conclusion is that

lim lim V, </R-2fdx
_ " J ιυ e «2 - 1

= F~^'^

and that

— = 0 . D

Following the analysis of the low density regime, the next question is of course:

what about the field operators for which /(O) — 0. The answer is a little more
complicated for the high density regime, because there are two types of Schwartz
functions to be considered. For a first class of Schwartz functions / the <5/ = 0 and

for a second class of Schwartz functions g,δg is equal to — ̂ . It seems that for
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the second class the appearance of a Bose condensate has no influence at all on the
behaviour of the corresponding field fluctuations.

Let us begin with the class of Schwartz functions / with /(O) = 0 and which

have moreover the property that for some i £{ ! , . . . ,d} : ^- φO. In this case
Pl p=Q

the function h2(\p\) (4.11) associated to / is of order <9(|/?|2); i.e. -4^-, φO.
|/?|=0

For this kind of functions /, the following proposition holds:

Proposition 5. For densities ~p ^ pc(β\ the k = 0 mode fluctuations of the field
operators with /(O) = 0 and the corresponding function h2(\p\) of order O(\p\2)
have no scaling index or equivalently δ/ = 0. In each of the extremal equilibrium
states ω^0- () with θ £ [0,2π) the limiting distributions of the field fluctuations are:

Proof.

x exp

From the Proof of Proposition 2 we know that

ltm>B
dVd\\gR\\2=0.

Again, the limiting fluctuation observables will be abelian.
To discuss the second exponential factor, we rewrite

fdx+ ίdx1
00

f Λ v ^ ΓΛv. 2

o

By dominated convergence

oo J2

d(xR)h2(X)

For the other integral, we use the asymptotic behaviour of h2(x) for small x and
obtain

^oo 2(h'(0))2

~" dVdβ
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The other class of test functions consists of the Schwartz functions with /(O) =

0 as well as all partial derivatives of / in the origin

This implies that h2(x) ~ O(x2n) with n ^ 2.
p=0

= O;/ £ {!,..., d}.

Proposition 6. For densities p ^ pc(β\ the k — 0 mode fluctuations of the field
operators with /(O) — 0 and corresponding h2(\p\) of order O(\p\2n) with n ^ 2
have a scaling index δf — — ±. In every extremal equilibrium state ω «°- θ with θ £

[0,2π), ί/ί£ limiting distributions of the field operator fluctuations
are

= exp
2 2π eβ\p\2 -

+

Proof. In the Proof of Proposition 3, it has been shown that

This means that this is the only kind of testfunctions / for which the quantum nature
of the limiting fluctuation observables of the field operators Φ(/) is preserved in
the high density regime.

Moreover,

,_,!! [εR oo

= lim lim Vd

 dR\fdx+fdx

Treating again the two terms separately

lim

x ef* - l)

lim F. dR(dx
- rf

lim V~d
R-+OO d
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and

_,_,_! oo Jd(χ}h (7?)
lim lim V,

κκ x ( ̂  - 1

_1 +

- lim lim Vd

 Ti fdxd J

which is a finite number, due to the asymptotic character of h2 around x = 0. D

^,
These three central limit theorems (for scaling indices ^,0 and — ̂ ) are basic

for the reconstruction theorem characterising the limiting observables F δ f ( Φ ( f ) ) in
the high density regime as well defined operators on some Hubert space.

Consider again in the G.N.S. representations of the states ω«°- θ the product of

two exponentiated to local fluctuations:

X e

On the basis of Schwarz inequality and the central limit theorems, it is easy to
prove that

lim ( K r f ) - ( 2 + / + / dxf\ / dxgx=0

for every possible combination of the scaling indices δj and δ&9 except for the one

in which δ/ and δg are simultaneously equal to — ̂ . For this last possibility, one
knows from Proposition 3 that

l\m(RdVdΓ
(^+δf+δβ}[ I dxfx

9 / dxg*
R~*°° \βd(Q,R)

lmf(p)g(p)

\P\d+l
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These considerations lead to the following B-C-H relations summarised in the fol-
lowing lemma:

Lemma 2.

lim
#—KX)

= lim

x exp

B'I(0,R)

r fx

equal to 0 otherwise.

Proof. The considerations preceding the formulation of the lemma reduce its proof
to proving the existence of the limits

lim W ^ / dX{(Rd Vd)~δ < f* δ» θ*}

For bj = δg, this was exactly the subject of the central limit theorems for the high
density regime. If δ f ή = δ g , this characteristic function is equal to

= lim exp

x lim exp

x lim exp

\f(p)\2J%(\P\R)

\p\d(eβ\P\
2 _ i)

\p\d(Qβ\P\2 -

2^(f(p}g(p)V\(\P\R}

\p\Ί(eβ\p\2 - 1)

The central limit theorems guarantee again that the first two factors are well defined
for any δ/ and δg. To discuss the last factor, one has to distinguish the following
cases: with the shorthand notation



Scaling Behaviour in the Bose Gas

one has

.
1. First, if < (or vjce versa), then

, = 0

e*

= lim lim — fd\p\

+ lim lim - f d \ p \J ιn =-
\p\(e/!\P\2 -

= lim lim R~2 fd\p\

i d
βd\p\

657

lim O(R~2)

=o o

2. On the other hand, if (or vice versa), then

lim
- 1)

{

= lim lim R~ϊ fd\p\
, ^ΛJ D _ ±~-, J

lim lim

- l

I ( f , g ) ( \ p \ } J 2

d ( \ p \ R )

= lim lim (for n > 2)

+ lim lim
ί;̂ 0+ Λ->o

lim lim
c^

0.
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f δ f = 0
3. Finally, if < (or vice versa), then

Re(f(P)g(p))Jl(\P\R)
lim p-"\-f> r<ι» *

R—>oo

= lira lim

\P\

.1

0

4- lim lim ~'

= lim lim
ε-»0+Λ-»oo

= 0.

In the calculations above, we used the asymptotic behaviour of the integrals

for small \p\ and the asymptotic form of the Besselfunction Jd(\p\R) for large

values of R

It follows from this result that the relevant symplectic space for the CCR algebra
of macroscopic field fluctuations in the high density regime of a Bose gas will be
(C θ 1R Θ S',σ). The space *S" is the linear space of Schwartz functions / with /
analytic in a neighbourhood of p = 0, satisfying moreover

dpi
-0 V ί 6 { l , . . . , r f } .

p=0

The symplectic form will be σ = 0 Θ 0 Θ σ2 where
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We construct on this symplectic space the Weyl algebra W(& Θ R Θ S',σ) gen-
erated by the Weyl operators {W (A)\A G IR Θ 1R Θ S'} satisfying the product rule

It is trivial to see that

W(<C θ IR θ 5;, σ) = W(<C9 0) 0 W(R, 0) 0 W(S'9 σ2 ) .

The reconstruction theorem for the high density regime looks as follows:

Theorem 4 (Reconstruction theorem for the high density regime). Define for

/2(0) = 0 and for /3 e S1 ',
|p|=0

~2'd(Φ(/3)).

limits

sl™o ω ,̂ e(exp[i^(/, (0) φ ̂ (/2) θ /3)])

determine then a quasi-free state ώ = ώ0®ώσ2 on (W(<C,Q) Θ ff(IR,0))<g>

= exp ί-^o(/1(0)θαc(/2),/1(0)θί(/2))l exp \~sσ2(f
L 2 J L 2

with

5,(0)θ*(/2)) - Jim ω^,ίX[F|(Φ(/1)) + F«(Φ(/2))]2)

Proof. The central limit theorems and the inequality

^M/S,^)!2 ^ Sσ2(/3,/3>σ2(03,03)

guarantee the existence of the quasi-free state ώ ([10]). D

One can now determine the macroscopic fluctuation operators for the high

density regime. In the GNS triplet (J^0 0 ^2,π0 0 π2,Ω0 (8) ^2) of the system
^f(R θ R,0) 0 W(S',σ2) one can characterise two Bose fields Fa (where Λ refers

to the abelian character) and F~ΰ such that

„ T T 7 / Λ Λ / j r ,
π0 0 π2 /^O) θ *(/2) θ

^ \ \ i

/3J J = e
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As usual, exactly these Bose field operators Fa (/ι(0) Θ*(/2)) and F~^(f^)

are defined to be the macroscopic fluctuation observables for this system.
This finishes the discussion of the zero mode fluctuations of the field operators

for all the points (T,p) of the phase diagram of a ^/-dimensional free Bose gas.
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