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Abstract: We prove the existence and the asymptotic completeness of the Dollard-
type modified wave operators for many-particle Stark Hamiltonians with long-range
potentials.

1. Introduction

The present paper is a continuation to the work [AT] where we have proved the
asymptotic completeness of the Graf-type modified wave operators for many-particle
Stark Hamiltonians with a class of long-range potentials. We here study the problem
of the asymptotic completeness for many-particle Stark Hamiltonians with a larger
class of long-range potentials.

We consider a system of TV particles moving in a given constant electric

field δ G R3, <f ΦO. Let mj9ej and r/ € R3, 1 ̂  j ^ N9 denote the mass, charge
and position vector of the yth particle, respectively. The N particles under con-
sideration are supposed to interact with one another through the pair potentials
Vjk(rj — ?k\ 1 = j < k ^ N. Then the total Hamiltonian for such a system is de-
scribed by

"= Σ

where ξ η = Σ/=ι ζjtfj f°r ζ*n ^ ̂  and the interaction V is given as the sum of
the pair potentials

r= Σ Vjk(rj-rk).

As usual, we consider the Hamiltonian H in the center-of-mass frame. We introduce

the metric (r,r) = ΣyLi mjrj ' ?j f°r r = (rι> > r w) and f = (r\9. . . 9rN) G R3 x y v.

We use the notation \r\ = (r,r}1//2. Let X and Xcm be the configuration spaces
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equipped with the metric ( , ), which are defined by

X= r G R
3xyv

These two subspaces are mutually orthogonal. We denote by π : R3 x y v -^ x and
πcm : R3 x y v —» χcm the orthogonal projections onto X and Xcm, respectively. For

r G R3χyv, we write x = nr and xcm = πcmr, respectively. Let E £ X and £cm G Xcm

be defined by

= π l —<£f,...,—tf ] , £ c m =π c l
v / w i ^yv

respectively. Then the total Hamiltonian H is decomposed into H = H ® Id +
Id ® Γcm, where /J is the identity operator, H is defined by

H = -A/2 - (E,x) + V on L2(X),

Γcm denotes the free Hamiltonian Γcm = -Zlcm/2 - (Ecm,xcm) acting on L2(Jfcm), and
A (resp. /dc m) is the Laplace-Beltrami operator on X (resp. Xcm). We assume that
|£|ΦO. This is equivalent to saying that e7/m7φ^/m^ for at least one pair ( j , k ) .
Then H is called an TV-particle Stark Hamiltonian in the center-of-mass frame.

A non-empty subset of the set {!,..., TV} is called a cluster. Let C7, 1 ̂  j ^ m,
be clusters. If Uι<^mCy = {!>•..,#} and C/ Π Q = 0 for 1 ̂  7 < A: ^ /w, α =
{Cι,...,Cm} is called a cluster decomposition. We denote by #(a) the number of

clusters in a. We denote by <$/ the set of cluster decompositions and set stf =
{a G J/ : #(α) ^ 2}. We let a, b G j/. If 6 is obtained as a refinement of α, that
is, if each cluster in b is a subset of a cluster in a, we say 6 C a, and its negation
is denoted by b (]fL a. We note that a C a is regarded as a refinement of # itself. If,
in particular, b is a strict refinement of α, that is, if b C a and fe φ <z, this relation
is denoted by b ς; α. We denote by α = (7, A;) the (TV — l)-cluster decomposition

Next we define the two subspaces Xa and Xa of X as

JΓα = < r G X : Σ πijΓj — 0 for each cluster C in a> ,
I ec J

Jζj = {r G X : ry^ — r^ for each pair α = ( j , k ) C α} .

We note that X* is the configuration space for the relative position of /h and
&th particles. Hence we can write Fα(.xα) = Vjk(rj — r^). These spaces are mutually
orthogonal and span the total space X =Xa®Xa, so that L2(X) is decomposed
as the tensor product L2(X) = L2(Xa) ®L2(Xa). We also denote by π° : X -> Xa

and πa : X —> Xa the orthogonal projections onto Xa and Xa, respectively, and write
xa — πax and xa = πax for a generic point x G X. The intercluster interaction Ia is
defined by
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and the cluster Hamiltonian

ffa=H-Ia = -A/2 - (E9x) + V\ Va(xa) = Σ V*(xΛ) ,
αCfl

governs the motion of the system broken into non-interacting clusters of particles.
Let Ea = πaE and Ea — naE. Then the operator Ha acting on L2(X) is decomposed
into

Ha=Ha®Id + Id® Ta on L2(Xa) <8> L2(Xa) ,

where Ha is the subsystem Hamiltonian defined by

Ha = -Δa/2 - (Ea,xa) + Va on L2(Xa) ,

Γα is the free Hamiltonian defined by

Ta = -Δa/2-(Ea,xa) onL2(Xa),

and zlfl (resp. Aa) is the Laplace-Beltrami operator on Xa (resp. A^). By choosing
the coordinates system o f X 9 which is denoted by x = (x°9xa)9 appropriately, we can
write Δa = |V f l |2 and Δa = |V f l |

2, where V" = dx« = d/dxa and V f l = dXa = d/dxa

are the gradients on Xa and X09 respectively. We note that we denote by xa (resp.
Xa) a vector in Xa (resp. A^) as well as the coordinates system of Xa (resp. Xa).

We now state the precise assumption on the pair potentials. Let c be a maximal
element of the set {a G stf : Ea = 0} with respect to the relation c. As is easily seen,
such a cluster decomposition uniquely exists and it follows that E" = 0 if α C c, and
£ α φO if α ςz! c. Thus the potential Kα with α $£ c (resp. α C c) describes the pair
interaction between two particles with βy/myΦ^/m^ (resp. ej/rrij = βk/mk). If, in
particular, e7/myΦ^/m^ for any 7 φ k9 then c becomes the TV-cluster decomposition.
We make different assumptions on Fα according as α (jt c or α C c. We assume that:

α(*α) ^ C00(^a) is a real-valued function and has the decay property

for some \/3 - 1 < p ^ 1.
Under this assumption, all the Hamiltonians defined above are essentially self-

adjoint on C °̂. We denote their closures by the same notations. Throughout the
whole exposition, the notations c and p are used with the meanings described above.
If Fα satisfies this decay assumption, then Kα is called a long-range potential. To
formulate the obtained result precisely, we define the modified wave operators. The
definition requires several new notations. We assume that a C c. Then the subsys-
tem operator Ha does not have a uniform electric field, that is, Ea — 0. Hence it
may have bound states in L2(Xa\ We denote by Pa : L2(Xa) -> L2(Xa) the eigen-
projection associated with Ha. We also denote the direction of E by ω = E/\E\ and
write z = (x9ω). We should note that z = (xα,ω) because of ωa = 0. We set j c j j =
zω and JC_L = x — x\\9 and write xat_ι — nax_\_. Then we can write xa = (xa,±,x\\)
We also write pa — (pa,^p\\) for the coordinates dual to xa = (xa,±,x\\) and de-
note by Da = —iVa = (Ai,_L9£>||) the corresponding velocity operator. If we write
δj| = ω<9z, we see that Dy = —id\\ and D0t± = Da — D\\. Let Γa be the intercluster
interaction obtained from Hc\
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We consider the time-dependent Hamiltonian

HaD(t} = Ha+Ic

a(tDa^} + Ic(tDa^ + t2E/2) on L2(X) . (1.1)

Since Az, _ι_ commutes with Ha, the three operators on the right-hand side of (1.1)
commute with one another. We note that I^(tDa^) = Ic

a(tDa) for Ic

a(tpa^) —
Ia(tπcpa,λ.) — Ic

a(tPa)' Then we denote by UaD(t) the propagator which is gen-
erated by Ha[)(t), that is, {£/a/)(0}/eR is a family of unitary operators such that for
ψ G D(HaD(Q)), ψt = UaD(t)ψ is a strong solution of id\l/t/dt = HaD(t)ψh ψo = ι/ί
Uao(t) is explicitly represented by

(sDa^ + s2E/2)}ds) . (1.2)
/

With these notations, the Dollard-type modified wave operators in question are now
defined by

W±D=s- irn exp(itH)UaD(t)(Pa ® /</), aCc. (1.3)

It can be easily proved that if these wave operators exist, their ranges are all closed
and they have the intertwining property Qxp(itH)W^ = W^DQxp(itHa) for t G R.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that (V) is fulfilled. Let c be as above. Then the Dollard-
type wave operators W^D, a C c, exist, have the intertwining property and are
asymptotically complete:

aCc

If, in particular, c is the TV-cluster decomposition, that is, no subsystem has zero
reduced charge, the asymptotic completeness of the Dollard-type modified wave
operators can be also proved under the assumption (V) with p > 1/2. For we need
not apply the argument of Dereziήski [D] to this situation. Furthermore, we can
introduce the modifiers which are different from the Dollard-type ones, so that the
asymptotic completeness of such modified wave operators can be proved under the
assumption (V) with p > 0. This result is an extension of the result for two-particle
systems of Jensen-Yajima [JY] and White [W1,W2] to the case of many-particle
systems. This problem will be discussed in detail in Sect. 6.

The problem of the asymptotic completeness for many-particle quantum systems
has made great progress for the past several years. For the systems without electric
fields, this problem was first solved by Sigal-Soffer [SSI] for a large class of
short-range pair potentials. After that work, alternative proofs have been given by
several authors (cf. [Grl,Ki, T1,Y and Z]). On the other hand, for the long-range
case, Enss [E] first proved the completeness for three-particle systems with the
pair potentials decaying like <9(|;tα|~v) at infinity for some v > >/3 - 1. This result
has been extended by Dereziήski [D] and Zielinski [Z] to TV-particle systems and
also the case of potentials decaying more slowly has been dealt with by Gerard
[G] and Wang [Wa] for three-particle systems. We should note that the condition
p > Vϊ - 1 in our assumption (V) is assumed in order to apply the argument
of [D].
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For the systems with uniform electric fields, if the assumption (V) is satisfied
for some p > 1, Fα is called a short-range potential. For the class of short-range
pair potentials, the ordinary wave operators

W* = s - lim Qxp(itH) exp(-itHa)(Pa ® Id)

exist without adding the time-dependent modifiers I^(tDat_\_) + /c(*Az,_L + t2E/2) to
the cluster Hamiltonians Ha. The asymptotic completeness in the short-range case
has been proved by Tamura [T3] and M011er [M0] for N-particle systems. However
it is known that such wave operators do not generally exist for the class of long-
range potentials which we consider here (see [JO] and [O] for the case of two-
particle systems).

In the previous work [AT], we have considered the class of long-range potentials
such that

for some p,μ > 0 such that p + μ > 1 (Fα(xα),α C c, satisfy the same assump-
tion as in (V)) and we have proved the asymptotic completeness of the Graf-type
modified wave operators

W±G=s- lim Qxp(itH)UaG(t)(Pa ® /</), a C c ,

where the propagators UaG(t) are generated by the time-dependent Hamiltonians

HaG(t) = Ha+ Ic

a(tDa) + Ic(t2E/2),

and are concretely represented by

UaG(t) = exp(-itHa)exp (-if{Γa(sDa)+Ic(s2E/2)}ds
\ o

This type of wave operators was introduced by Graf [Gr2] for two-particle systems
(see also [Zo] and [JO]). However it is known that such wave operators do not
exist for the class of long-range potentials which we consider here (see [JO] for
the case of two-particle systems). Therefore we need introduce the Dollard-type
modifiers (1.2).

2. Preliminaries

In this section, we recall the known results. First we introduce some notations.
We use the following convention for smooth cut-off functions F with 0 1Ξ F rg 1,
which is often used throughout the discussion below. For sufficiently small δ > 0,
we define

F(s ^ d) = 1 for s ^ d + δ, = 0 for s ^ d -f 2δ ,

F(s^d)=l for s ̂  d - δ, - 0 for s ̂  d - 2δ ,

F(s = < / ) = ! for \s - d\ ̂  δ, = 0 for \s - d\ ̂  2δ

and F(d\ ^s ^ d2) = F(s ^ d\)F(s ^ d2). The choice of δ > 0 does not matter
to the argument below, but we sometimes write F$ for F when we want to clarify
the dependence on δ > 0.
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We define S0(X) by

So(X) = {q£ C°°(X) : \dζq(x)\ ^ Cβ(x)~^} ,

where we write (x) = (1 + x|2)1/2. Let ω = E/\E\ be the direction of E. We denote
the coordinate z G R by z = (jt,ω), so that H is written as H = ~A/2 — \E\z + V.
We should note that

are bounded.
Now we state the recent result of Herbst and Skibsted [HS], which is concerned

with the spectral properties for many-particle Stark Hamiltonians.

Theorem 2.1. Assume that (F) is satisfied Let D = -/V and A = (ω,D) = —idz.
Then

(1) H has no bound states.
(2) Let R > 0 be fixed and let Π : X —> X be an orthogonal projection such

that HE ΦO. Then

\\FK(H = λ)F(\Πx\ ^ R)\\ -> 0, ε -> 0,

uniformly in λ G R. /« particular, one has

\\FE(H = λ)F(\x«\ ^Λ) | |->0, β - > 0 ,

/or a (£ c.
(3) Lei 0 < σ < |̂ |. 7%ew owe cvzw ίαfce ε > 0 so small (uniformly in λ G R)

that
Fε(H = λ)i[H9A]FB(H = λ)^ σFε(H = λ)2 .

The above theorem plays a basic role in studying the propagation properties of
exp(—#//). In particular, the uniformity in high energies λ > 1 in the statement (2)
is important. This makes it possible to take A as a conjugate operator in the form
inequality in (3).

Next we recall the almost analytic extension method due to Helffer and Sjόstrand
[HeSj], which is useful in analyzing operators given by functions of self-adjoint
operators. For two operators B\ and B2, we define

ad° J (B2 ) = B2, ad^ (B2) = [ad^' (B2 ),B} ], n ^ l .

For m e R, let &m be the set of functions / G C°°(R) such that

l/^)! ^ Ck(s)m-*, kZO.

If / G ̂ m with m G R, then there exists / G C°°(C) such that f(s) = f(s) for

s G R, supp/(C) C {C G C : |ImC| ^ rf(l 4- |Reζ|)} for some d > 0 and

|3c/(OI ^ CM(CΓ-1-M|Imζ|M, M ̂  0.

Such a function /(£) is called an almost analytic extension of /. Let B be a
self-adjoint operator. If / G ^~m with m > 0, then /(#) is represented by

f(B) = —fdζf(ζ)(B - ζ)'ldζ ^dϊ. (2.1)
2πc
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For / G 2Fm with m G R, we have the following formulas of the asymptotic expan-
sion of the commutator:

* ~ n

B(B})f(n\B) + RM , (2.2)I ~~D V ' JJ \ J ' -* VKI ?

• ζ)~lad%(B\)(B — ζ)~M dζ/\dζ. (2.3)

T?M is bounded if there exists k such that m + k < M and adj!f(/?ι)(/? + /)~* is
bounded. For the proof, see [G].

We use the following lemma frequently. For the proof, see [AT].

Lemma 2.2. Let fj G C£°(R), 1 ̂  j ^ 2, and let g G J^°. Assume that B is a self-

adjoint operator such that adJ

B(H)(H + 0-1> 1 ^ 7 = 2 , are bounded from L2(X)
into itself. Then

( i) [/,(//),3(5/0] =
(2)

Moreover, let A be as in Theorem 2.1 and Q = (x) or z(= (x,ω)). Then

(3)

(4)

(5)

(6) (// + i)[fl(H),f2(Q/t2)] = 0(t-!).

Here O(t~v) denote bounded operators with their norm estimated by Ct~v as
t —> GO.

3. Propagation Properties

We will prove Theorem 1.1 for the + case only. In this section, we prove some
propagation estimates which mean that the solution exp(—itH)ψ concentrates asymp-
totically on classical Stark trajectories as / — > oc.

We begin by fixing some new notations. We define a conical neighborhood
of ω = E/\E\ by Γ(ω9ε\9r) = {x G X : (ω,x/\x\) ^ 1 - βi, \x\ > r] for e\ > 0 and
r > 0. We denote by D//(/) the Heisenberg derivative with respect to the time-
dependent Hamiltonian H(t): D//(/)Φ(0 = Φf(t) 4- i\H(t\ Φ(t)]. Throughout the dis-
cussion below, we always denote by / G C^°(R) a non-negative smooth function
with a compact support. We use the notations || || and (, ) for the L2 norm and
scalar product in L2(X\ respectively. We also denote by B(t),t g; 1, operators hav-
ing the following properties: (1) f(H)B(t)f(H) : L2(X) -^ L2(X) is bounded; (2)

First we need the following proposition, which is the same as Proposition 4.2
of [AT]. Thus we omit the proof.
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Proposition 3.1. There exists M ^> I dependent on f such that:

(1) For ψ eL2(X\

\ L

(2) For ψ G ̂ (X\ ^(X) being the Schwartz space over X,

°°dt
J — \\F((x)/t2 ^ M)/(//)exp(—ίtH)ψ\\2 < oo .

Next we prove the following proposition, which means that the particles are
accelerated along the direction ω with an at least positive acceleration which is less
than \E\.

Proposition 3.2. Let 0 < v < \E\ and L > 0. Then for any ψ G L2(X\

°°dt
!-\\F(-L ^ z/t2 ^ v/2)/(//)exp(-z///)ιA||2 ^ C\\ψ\\2 .

To prove this proposition, we need the two lemmas below. These are proved as
Lemmas 4.1 and 4.2 of [AT].

Lemma 3.3. Let v be as above and K > 0. Then

00 Λ +

/ -\\F(-K ^ Alt <, v)/(//)exp(-/tf/)ιA||2 ^ C||<A||2 .
i l

Lemma 3.4. Let v and L be as above. Then there exists K ^> 1 such that

F(A/t ^ -K)F(-L ^ z/t2 ^ v/2)(H + /Γ1 - ̂ (r1) .

Proof of Lemma 3.3. The proof is done in exactly the same way as in the proof
of Lemma 4.1 of [SS2]. Let G G ̂ ° be defined by

G(s) - / Fδ(-K ^ u ̂  v)2du, 0 < δ < 1 ,
— oo

so that G'(s) = Fδ(-K ^ s ^ v)2 G C0°°(R). We write f^(H) = Fε(H - λ). We
take 0 < v + 2δ < σ < \E\ for δ > 0 as above. Then, by Theorem 2.1 (3), there
exists ε > 0 such that for any λ G R,

f^(H)i[H9A]f^(H) ^ σ/ε,,(//)2 . (3.1)

For such an ε > 0, we have only to prove the lemma with /(//) = fε,λ(H) for any
λ G R. We use

as a propagation observable. We note that Φ\(t) is uniformly bounded in / ^ 1.
The Heisenberg derivative of this observable is calculated as

ΌHΦί(t) = Φ'ί(t) + i [ H , Φ l ( t ) ] . (3.2)
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If we take g G C£°(R) such that g = 1 on the support of /^;L, then

By repeated use of Lemma 2.2, we have

/;.;(//>•[//, Φ,(0]/α(#) = F,(0/,u(tf )ιΐ//,Λ/f]/u(tf )F,(0 + B(t)

with F|(ί) = Fδ(-K <Ξ /4/ί 5; v). Hence it follows from (3.1) that

On the other hand, the first term on the right side of (3.2) is evaluated as

f,,λ(H)Φ\(t)fs,λ(H) ^ -(v + 2δ)Γlft,i(H)Fι(t)2fε,λ(H).

Thus we obtain

/t, ;X//)D//Φ1(OΛ;X//) ^ {σ - (v + 2δ)}Γlfe,λ(H)Fl(t)2fεtλ(H) +

by Lemma 2.2 again. This proves the lemma. D

Proof of Lemma 3.4. We set FA(t) = F(A/t ^ -K) and Fz(0 = F(-I ^ z//2 ^
v/2). Then u = (H - i)~lFz(t}FA(t}w solves the equation

(H - i)u = Fz(t)FA(t)w, w e L2(X) .

Recall that the conjugate operator A is represented by A = —idz. Hence it follows
that A2 rg —Δ and, by the boundedness of V and the fact that u is the solution of the
above equation, we also have \\Au\\ ^ C(||{z)1 / / 2w|| + ||w||) w^n some C > 0. We
set GA(t) = F(A/t ^ -K + 1) and Gz(t) = F(-L - 1 ̂  z/t2 ^ v/2 + 1). We note
that GA(t)FA(t) = FA(t) and Gz(t)Fz(t) = Fz(t). Since A2GA(t) ^ (K - 2)2t2GA(t)
and (z)Gz(0 ^ κ2t2Gz(t) with /c = max(L,v/2) + 2 for f ^ 1, we make repeated
use of Lemma 2.2 to obtain that

\\Au\\ ^ {(K - 2)/2}t\\(H - iTl

\\(z)l/2u\\ ^ 2κt\\(H - ίΓlFz(t)FA(t)w\\ + C|M|

for some C > 0 independent of t ^ 1. Hence we can take K > 0 so large that
FA(t)Fz(t)(H + ί)~l = O(t~}). This completes the proof. D

Proof of Proposition 3.2. The proof is done in exactly the same way as in the
proof of Theorem 4.2 of [SS2]. Let G G ̂ ° be defined by

GO) = / Fδ(-L ^ u ^ v/2)2 du ,

so that G'O) = Fδ(-L ^ s ^ v/2)2 e C0°°(R). We set Φ(0 - G(z/ί2) as a prop-
agation observable. We note that Φ(0 is uniformly bounded in t ^ 1. We write
F\(t) — F$(—L ^ z/t2 ^ v/2). Then the Heisenberg derivative of this observable is
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calculated as

ΌHΦ(t) = Γ\A/t - 2z/t2}F,(t)2 + 0(r4)

^ Γ]{vf + δ + (Λ/f - v' - δ)Fδ(A/t ^ v')2 - v - 4(5}Fι(02 + O(r4)

= rV - v - 3(5)Fι(02 + R(t) . (3.3)

Here
R(t) - r'ίΛ/f - v' - δ)Fδ(A/t ^ v')2Fι(02 + <9(r4) ,

and we used the fact that Aft ^ v' + (5 + (Λ/f - v' - δ)Fδ(A/t ^ v')2. We take
(5 > 0 so small that v' - v - 35 > 0. We shall show that Λ(f) = 5(f), which im-
plies the proposition by virtue of (3.3). Let g (Ξ C£°(R) be such that g = I on the
support of /. By repeated use of Lemma 2.2, we compute

g(H)R(t)g(H) = Γ]g(H)(A/t - v' - δ)Fί(t)g(H)Fl(t)Fδ(A/t ί v')2 + O(Γ2) .

Finally, by Lemma 3.4 and repeated use of Lemma 2.2, we have

= ΓlFδ(-K ^ Alt ̂  V)Bλ(t)Fδ(-K ^ Alt ̂  v') + O(r2) ,

where B \ ( t ) is uniformly bounded in ί ̂  1. By Lemma 3.3, we see that R(t) =
5(0. Π

The next proposition is the most important propagation estimate, which means
that the particles asymptotically concentrate in any conical neighborhood of ω.

Proposition 3.5. Let M be as in Proposition 3.1 and v be as in Proposition 3.2.
Fix εi > 0 and r > 0. Assume that q G So(A") vanishes in Γ(ω,ε\,r). Then

/ ~\\F(z/t2 ^ v/2)F((x)/t2 ^ M)qf(H}exp(~itHm2 ^ C\\ψ\\2 .
i l

To prove the above proposition, we have only to prove the following lemma.
The proof is essentially the same as that of Proposition 7.3 of [T2] (see also [M0]
and [A]).

Lemma 3.6. Let q(x) = ((x) —z)(x}~λ. Let M be as in Proposition 3.1 and v be
as in Proposition 3.2. Then

f -\\F(z/t2 ^ v/2)F((x)/t2 ^ M)qf(H)exp(-itH)ψ\\2 ^ C\\ψ\\2 .
i r

Proof. We write fε,λ(H) — FE(H = λ). For some ε > 0, we have only to prove the
lemma with /(#)'= fε,λ(H) for any λ G R. Let A\ = (x)-l/4A(x)-l/4. We write
F(t) = F(z/t2 ^ v/2)F((x)/t2 ^ M) and take

Φ(t) = f^λ(H)F(t)A,F(t)f^λ(H)

as a propagation observable. We note that Φ(t) is uniformly bounded in t ^ 1. The
Heisenberg derivative of Φ(t) takes the form

ΌHΦ(t) = fε,λ(H)F(t)i[H,A,]F(t)fε,λ(H) + B(t) (3.4)
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by Propositions 3.1 and 3.2. By a simple computation, we have

-3/4 . (3.5)

Let g G C0°(R) be such that g = 1 on the support of f ^ χ . By repeated use of
Lemma 2.2, we have

fl,λ(H)F(t)(X)-3/\y - H)(x)-3/4F(t)f,,λ(H)

O(Γ4)

= 0(Γ3). (3.6)

Next we consider the second term of the right-hand side of (3.5). We take q G
such that q = 1 in Γ(ω,ει,2r) and q = 0 outside Γ(ω,2ει,r) for 0 < ε\ <C 1 and
r > 0. We should note that we can take εi > 0 so small that |(jc)~1/2(ω, W}\ ^
C(x)~λ~pl2 on the support of q. We set q = 1 — q G *Sb(^0 and rewrite

fί,λ(H)F(t)(x}-ll2(W,VV)F(t)frJiH) = Tί+T2,

where
T , = fl,λ(H)F(t)(x}-^2(ω,VV}qF(t)ffjiH) ,

It is easy to see that T\ = O(t~2~p). We write h = (ω,VV}q/q. We should
note that q 2: c > 0 on the support of <?. We set grej /,(//) = F2K(H = λ), so that

g,,λ(H)f,,λ(H) = fκ,;{H). Then, by Lemma 2.2, we get

Γ2 = f,,λ(H)F(t)(X)-{l2qhgiί,λ(H)F(t)fE,λ(H) + 0(Γ2) .

We denote M' = #{oc : α (jL c}. Then we see that we can take R > 0 so large that
for any α (f_ c,

||{1-F(|*« ^R)}(ω,VVa)(q/q)\\ ^ \E\/(4M') .

On the other hand, by Theorem 2.1 (2), we see that we can take ε > 0 so small
that for any α <f_ c and λ G R,

^ \E\/(4Mf) .

Hence, for such an ε > 0, we have

\\hg,,λ(H)\\ Z

and
T2 ^ (\E\/2)f^(H)F(t)(X)-l

Combining this fact with (3.4), (3.5) and (3.6), we obtain

DwΦ(ί) ^ ( \ E \ / 2 ) f ( H ) F ( t ) ( x ) - ] / 2 < i F ( t } f ( H ) +

^ (\E\/2)(M+\Γυ2t-'f(H)F(t)qF(t)f(H)

which implies the lemma. D

By the above propositions, we conclude the following propagation properties.
The proof is similar to that of Lemma 4.5 of [AT]. We omit the proof.
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Proposition 3.7. Let M, v and q G SQ(X) be as above. Let Φ(t) denote one of the
following three operators:

F((x)/t2 ^ M), F(z/t2 ^ v/2), F(z/t2 ^ v/2)F((x)/t2 ^

Then
s - lim Φ(0/(//)ex(-/tf/) = 0 .

4. Time-Dependent Hamiltonians

In this section, we introduce an auxiliary time-dependent Hamiltonian which ap-
proximates the full Hamiltonian H and study the relation between Qxp(-itH) and
the propagator generated by such a time-dependent Hamiltonian.

Let qc G So(X) be such that qc — 1 in Γ(ω,ε\, \E\/3), and qc — 0 outside
Γ(ω,2ει, \E\/4). Let qc G SQ(X) be such that qc == 1 in Γ(ω,2ει, \E\/4), and qc = 0
outside Γ(ω, 3ει, I^Ί/5). By definition, it follows that qcqc — qc. We define

φc(t,x) = F((x)/t2 ^ M)F(z/t2 ^ \E\β)qc(x) , (4.1 )

Wc(t,x) = Wc(t,xc,xc) = F(z/t2 ^ \E\/4)qc(x)Ic(x) . (4.2)

We should note that φc(t,x)Ic(x) — φc(t,x)Wc(t,x). By assumption, Wc obeys the
estimate

\d?dξWc(t,x)\ ϊ Cmβ(tΓm((t) + (x)l'2Γp-W (4.3)

We consider the time-dependent Hamiltonian

Hc(t) = HC+ Wc(t), Wc(t) = Wc(t,x) ,

and denote by Uc(t) the propagator generated by Hc(t\ that is, {Uc(t)}t^\ is a
family of unitary operators such that for φ G D(Hc(l)),φt = Uc(t)φ is a strong
solution of idφt/dt = Hc(t)φt, φ\ = φ.

By the almost analytic extension method, we see that for / G C^°(R),

Dtfc(0/(tfc(0) = ^{/(^c(O)} = 0(Γ1-") , (4.4)

due to (4.3). By virtue of this estimate (4.4), we obtain the analogue of Propositions
3.1,3.2,3.5 and 3.7. Since the proofs are similar to those of theirs, we omit the
proofs.

Proposition 4.1. There exists M > 1 dependent on f such that:

(1) For φ G L2(X\

/ -\\F((x)/t1=M)f(Hc(t))Uc(tm2 ^
i l

(2) For φ G Sf(X\ ίf(X} being the Schwartz space over X,
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Proposition 4.2. Let 0 < v < \E\ and L > 0. Then for any ψ G L2(X\

00 Jj

f-\\F(-L g z/t2 ί v/2)f(Hc(t))Uc(t)ψ\\2 ^

Proposition 4.3. Lei M &£ a,? Proposition 4.1 a«d v fee as Proposition 4.2. /PC
εi > 0 and r > 0. Assume that q G ι$o(̂ 0 vanishes in Γ(ω,ει,r).

Proposition 4.4. Let M, v #«£/ g G SoC^O ^£ tf s above. Let Φ(t) denote one of the
following three operators:

F((x)/t2 ^ Ml F(z/t2 ^ v/2), F(z/t2 ^ v/2)F((x}/t2 ^ M)q .

Then

s - lim Φ(t)f(Hc(t))Uc(t) = 0 .
/— *00

Next we show the existence of the following two strong limits, the first limit
being often called the Deift-Simon wave operator (see [Grl,SSl,Z and A]).

Theorem 4.5. Let the notations be as above. Then there exist the following strong
limits'.

s- lim Uc(t)* exp(-zϊ//), s- lim Qxp(ίtH)Uc(t) .
/— >oo /— >oo

Proof. The proof for the existence of the first limit is similar to that of Lemma
5.2 of [AT]. By Proposition 3.7, we have only to prove the existence of the strong
limit

s - lim Uc(t)*φc(t,x)f(H)exp(-itH) . (4.5)

Taking /, G C0°°(R) such that /,/ - / and noting φc(t,x)(Wc(t9x) - I c ( x ) ) = 0,
we see that

f}(Hc(t))φc(t9x) - φc(t,x)fλ(H) = O(Γl) ,

by virtue of the almost analytic extension method. From this fact, the existence of
(4.5) can be proved by the same argument of [AT].

Next we note that for ε > 0 small enough and ψ G L2(X\ there exists / G
C£°(R) such that

\\{Id-f(Hc(t))}Uc(tm=0(ε)

uniformly in / ^ 1, which is proved by virtue of (4.4). Now we take M as in
Proposition 4.1 for this / and define φc(t,x) by (4.1) with this M. Then, by virtue
of Proposition 4.4, we have only to prove the existence of the strong limit

s- lim e*p(itH)φc(t,x)f(Hc(t))Uc(t),
t—+oo

which may be proved in the same way as that of (4.5). D

By the existence of the first strong limit in the above proposition, we obtain the
following theorem immediately.
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Theorem 4.6 (Asymptotic clustering). Let the notation be as above. Then for
ψ G L2(X\ there exists ψc e L2(X) such that

5. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. By Theorem 4.6, the proof is
now reduced to studying the propagation properties of the propagator Uc(t) gener-
ated by the time-dependent Hamiltonian Hc(t). For this sake, we introduce a family
of the unitary operators {T(t)}tζR on L2(X) as follows: For u(x) G L2(X), we
define

- it3\E\2/6)u(x - t2E/2) . (5.1)

We also introduce the time-dependent Hamiltonians

HaD(t) = Ha+ Ic

a(tDa) + Ic(tDa - t2E/2) ,

/WO = Ha+Ic

a(tDa) + Wc(t,0,tDa - t2E/2) ,

#c,Λ/o(0 = #C,M + ̂ α*c,*c + t2E/2) ,

ft,Afi(0 = Ha,M+Ic

a(tDa) + Wc(t,09tDa + t2E/2) ,

for α c c, where //^M = — ̂ /2 + Va(xa) acts on £2(^0 and has no electric fields.

We denote by Uao(t\ U a t s \ ( t ) , U C ί M θ ( t ) and C/α,Λ/ι(0 the propagators generated by
HaD(t\Ha,s\(t\Hc,Mθ(t} and Ha,M\(t), respectively, where UaD(Q} = Id, t/β,sι(l) =
W» ί4,A/o(l) = W and t/ f l,Mi(l) = Id. Since exp(-itHa)Da exp(itHa) = Da - tE for
0 C c, Uao(t) is explicitly represented by

= exp(-ιtf/fl) exp -i
\ o

The family of transformations {T(t)}te^ was introduced by Jensen-Yajima [JY], by
which Stark Hamiltonians are transformed into Hamiltonians without electric fields
(see also [AH]). In fact, we see by the argument similar to [JY] that

Uc(t) = T(t)Uc,MQ(t)T(lΓ}, ί/β,sι(0 = T(t)UatMι(t)T(lΓl - (5-2)

We should note that Va(xa) in HQtM does not undergo a change under the transfor-
mation T(t). By virtue of the relation (5.2), we have only to study the asymptotic
behavior of the propagator ϊ/c>Λ/o(0 generated by the time-dependent Hamiltonian
HC,MQ- We now apply to //C,Λ/O the result due to Dereziήski [D] on the asymptotic
completeness for long-range many-particle quantum systems without electric fields
(see also [Z]).

Proposition 5.1. Assume that (V) is fulfilled. Then the wave operators

Ωam =s- \im
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exist for all a C c, and are asymptotically complete, that is,

L2(X)= Σ Φ Range Q0tM} .
aCc

The condition p > \/3 — 1 in the assumption (F) is essentially used to prove
this proposition only. We go back to the original propagator Uc(t). Since T(t) com-
mutes with Pa (g) Id for a C c, the following theorem is obtained as an immediate
consequence of Proposition 5.1.

Theorem 5.2. Assume that (V) is fulfilled. Then the wave operators

Ωa^sι =s- lim Uc(t)*Ua,s\(t)(Pa®Id)
t— >oo

exist for all a C c, and are asymptotically complete, that is,

L2(X) = £Φ Range Ωa,Sι .
aCc

We also need the following lemmas to analyze the propagators Uao(t) and

Lemma 5.3. Let ψ G £f(X\ Then as t — » oo,

(1) \\(Da-tE)UaD(t)ιl/\\=0(\),

(2) \\(Da-tE)Ua,sι(tW\\=0(l).

Proof. Since

ΌHaD(n(Da - tE) = 0, DWβιSl(/)(Df l -tE) = 0,

(1) and (2) are obtained by integration. D

Lemma 5.4. Let ψ G &(X) and qc(x) G S0(X) be as in Sect. 4. Set φc(t,x) =
qc(x/t2) for t ^ 1. 77z^/2 as t ̂  oo,

(1)

(2)

/ Since φc(t,t2E/2) == 1 for t ^ 1 and |Vφc(ί,x)| g Q~2, the lemma follows
from Lemma 5.3. D

By these lemmas, we have the next proposition.

Proposition 5.5. There exist the strong limits

s - lim UaD(tγUa^(t\ s - lim U^s\(tYUaD(t} .
t-^oo t^oo

Proof We write φa(t) = φc(t,Q,tDa - t2E/2). By Lemma 5.4, we have only to
prove the existence of the limits

lim UaD(t)*φa(t)Ua,sl(t)ψ,
f— >oo

lim Ua,sl(tTφa(t)UaD(t)ψ
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for φ € y(X\ Since

jtφa(t) + i{HaD(t)φa(t) - φa(t)Ha,S[(t)}

= -Γ2((Da - tE),(Va(lc)(ΓlDa - E/2)) ,

we have the proposition by virtue of Lemma 5.3. D

We replace Uao(t) by the propagator Uao(t) defined by (1.2). We need the
following proposition.

Proposition 5.6. There exist the strong limits

s - lim UaD(tγUaD(t\ s - lim UaD(tYUaD(t) .
— —

Proof. Noting that Ia(sDa) = Ia(sDa^), we have only to prove that as t — > oo,

^{Ic(spa + s2E/2) — Ic(spa,.L + s2E/2)}ds converges locally uniformly in pa. We
write

Ic(spa+s2E/2)-Ic(spa^+s2E/2) = f((d\\Ic)(τsp\\

We note that

ds{Ic(τsp\\ +spa,±+s2E/2)} = ((d\\Ic)(τsp\\ +spa,_L +s*E/2),τp\\ + sE)

+ ((d±Ic)(τsp\\ + spa, j_ + s2E/2)9 pa, j_)

holds locally uniformly in pa and uniformly in 0 ̂  τ ̂  1 . Here we used the fact
that (VIc)(τsp\\ +spa,j_ +s2E/2) = O(s~({+p}) holds locally uniformly in pa and
uniformly in 0 ^ τ ^ 1. Hence we have

at± +s2E/2\sp\\)

This implies the proposition. D

Combining the above two propositions, we have the following proposition.

Proposition 5.7. There exist the strong limits

s - lim UaD(tYUa,si(t\ s - lim E/ f l fSι(0*E/αD(0 .
— —

We should note that these operators commute with Pa Θ Id. Indeed, we decom-
pose Hao(t) and HatS\ on L2(X) = L2(Xa)®L2(Xa) into

TaD(t\ HatSiW = Ha®Id + Id® Ta,s\(t) ,
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where

TaD(t) =Ta+ Ic

a(tDa, ± ) + Ic (0, tDa, j_ + t2E/2) ,

Ta,sι(t) =Ta+ Γa(tDa) + Wc(t,0,tDa - t2E/2) .

Thus, if we denote by Ua[)(t) and UQts\(t) the propagators which are generated by
TaD(t) and Γα>sι(0, respectively, we see that

s- lim UaD(t)*UaS\(t) = Id®(s- lim
t-^oo V f— »oo

s- lim l/β>ί,(0*t4D(0 = W
r— >oo

Completion of the proof of Theorem 1.1. The existence of the modified wave
operators W^D with a C c is proved by Theorem 4.5, Theorem 5.2 and Proposition
5.7. It follows from Theorem 5.2 that Range fl^-L Range W£D if αφi.

We shall prove the asymptotic completeness. Let ψ e L2(X). By Theorem 4.6,
Theorem 5.2 and Proposition 5.7, we have as t — •> oo,

for some ^ G Range (T*7 0W), where = lim,.^ ί/αD(0*^,5i(0^- τhis
implies

ιA G Σ Θ Range W+D ,
αCc

which completes the proof of Theorem 1.1. D

6. Case of Non-Zero Reduced Charges

In this section, we assume that no subsystems have zero reduced charges. Then
Ea φO for all cluster decompositions a with #(fl)φ7V, and hence the maximal ele-
ment c of the set [a e ̂  : £α = 0} becomes the Λf-cluster decomposition. Through-
out the section, Fα(xα) is assumed to fulfill the assumption (F):

for some p > 0 .

The aim here is to extend the result obtained in the case of two-particle systems
(see [JY] and [W1,W2]) to the case of many-particle systems.

The argument below is in principle based on the same idea as in Sigal [S]. We
should note that under this assumption, Theorems 4.5 and 4.6 still hold.

We use the notation dz = (ω, V). We construct an approximate solution to the
Hamilton-Jacobi equation

dtS + \E\dzS = \p\2/2 + Wc(t, VPS) (6.1)
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associated with Hc(t). Without loss of generality, we assume that l/p is not an
integer. Set L = [l/p], so that (L + l)p > 1. We first define KQ(t9 p) by

Ko(t,p) = \P\2t/2 - \E\(ω,p)t2/2 + \E\2t3/6 .

Then KQ satisfies

We further define Kj(t9 p), 1 _ί j ^ L, for t ^ 1 inductively as the solution to

θtKj + \E\dzKj = Fj-ι(t, p), Kj(l, p) = 0,

where

/ J \ ί 7-1 \

Fj(t9 p)=WcUΣ VpKm(t, p) - Wc ( t , Σ VpKm(t9 p) .
V m=o / \ w=o y

Lemma 6.1.
d^Kj(t9p) = 0(tl-^)9 l^j^L,

uniformly in p.

Proof. The lemma is easily verified by induction. The solution K} is given by

Kj(t, p) = fFj-ι(s,(s - t)E
1

In particular, we have

) = J[ Wc(s, (s2/2 -st)E

and hence K\ obeys the estimates by (4.3). Assume that Km, 1 g m ^ j - 1,

satisfies the estimates in the lemma. Then it follows that dpFj-\(t, p) — O(t~JP\
This proves that Kj also satisfies the desired estimates and the proof is
completed. D

The approximate solution S(t, p} to Eq. (6.1) is now defined by

S(t,p) = ΣKj(t>P)> ' ^ l
7=0

Then we have for t ^ 1,

d,S + \E\dzS - \p\2/2 - Wc(t,VpS) = -FL(t, p) ,

and hence it follows from Lemma 6.1 that

+ \E\dzS- \p\2/2- Wc(t,VpS)} = 0(ΓW) (6.3)

uniformly in p. We also consider the Hamiltonian

H0(t) = Hc + Wo(t,D), Wo(t,p)=Wc(t9(VpS)(t,p))

for t ^ 1 and denote the Uo(t) the propagator generated by Ho(t).
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Lemma 6.2. Let the notations be as above and ψ e ^(X\ Then as t —> oo,

(1) \\(x - (VpS)(t,D))Uc(t)ψ\\ = 0(1),

(2) ||(* - (VpS)(t,D))Uo(t)ψ\\ = 0(1).

Proof. Let Φ(t) = x - (VpS)(t,D). We calculate the Heisenberg derivative

D//c(,)Φ(0. We write Hc(t) = HQ(t) + Wc(t,x) - W0(t,D). It follows from (6.3) that

D//0(/) = *Wo(0,Φ(0] + Φ'(0 ̂  (VPFL)(t,D) = 0(Γ(L+}») .

Noting that — (Z, -f l)p < — 1, (2) of the lemma is proved by this estimate. We also
have

i[Wc(t,x)-w0(t9D)9Φ(ty\ = Oίr'-OΦW + Oίr1-")
by a simple calculus of pseudodifferential operators. Hence the Heisenberg derivative
D//C(/)Φ(0 takes the form

This yields

i

and hence ( 1 ) of the lemma follows immediately from the Gronwall inequality. D

By Lemma 6.2, we have the following proposition.

Proposition 6.3. There exist the strong limits

s- lim UQ(t)*Uc(t), s- lim Uc(t)*UQ(t).
t — »oo /— »oo

Proof. By a simple calculus of pseudodifferential operators, we have

Wc(t,x) - W0(t,D) = 0(Γ(l+p))(x - (VpS)(t,D)) + 0(Γ(]+p}) .

Combining this fact with Lemma 6.2, we have the proposition. D

We define the smooth function Ϋ(t,p) with values in X by

Ϋ(t,p) = F(t ̂  \)(tp - t2E/2) + {1 - F(t ̂  l ) } ( V p S ) ( t , p )

for t^O. We write W(t,p) = V(Ϋ(t,p))9 and denote by //0(0 = Hc + W(t,D)
the time-dependent Hamiltonian and by f/o(0 the propagator generated by //o(0
Let Y(t,p) - Ϋ(t,p + tE) and W(t,p) = V(Y(t,p)). Then UQ(t) is explicitly rep-
resented by

/ t \
C/o(0 = exp(-/Y//Γ)exp -ifW(s9D)ds .

V o /

Then we need the following lemma.

Lemma 6.4. Let ψ G ̂ ί^). ΓAew as t -^ oo,

(1)

(2)

(3) IKf-' ίVpSXf,/)) - ίE/2)t/o(O^II ^ 0(1),

(4) \\(t-}(VpS)(t,D) - tE/2)UQ(t)ψ\\ = 0(1).
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Proof. (1) and (2): Since

D//0(0Φ-^) = 0, Drfo(/)(D-ίE) = 0,

the statements follow by integration.

(3) and (4): We set Φ(t) = t~ }(VpS)(t,D) - tE/2. We calculate the Heisenberg
derivative of Φ(t) as follows:

>) - E/2 + Γ1D + 0(

where we used (6.3), the fact (VpK0)(t,D) = tD - t2E/2 and Lemma 6.1. Simi-
larly, we have D^ (ί)Φ(0 = 0(/~(1+p)). Hence, the statements are proved by
integration. D

Lemma 6.5. Let ψ G &*(X) and qc(x) G SQ(X) be as in Sect. 4. Set φc(t,x) =

p
qc(x/t2) for t gt 1 and write φ(t, p) = φc(t9(VpS)(t,p)). Then as t -+ oo,

(1) l l ( i - 0 (
(2) | | ( l-0<

Proof. Since φc(t,t2E/2) = 1 for t ^ 1 and \Vφc(t,x)\ ^ CY~2, the lemma follows
from Lemma 6.4. D

By these lemmas, we have the next proposition.

Proposition 6.6. There exist the strong limits

s- lim f/0(0*tfo(0, s- lim £70(0*ϊ/o(0
/—KX) /—»OO

Proof. By Lemma 6.5, we have only to prove the existence of the limits

lim U0(t) φ(t,D)U0(t)ψ,
t—>00

lim U0(tγφ(t,D)U0(t)ψ
t—+oo

for \l/eSf(X). We should note that Ϋ(t,p) = (VpS)(t,p) for ί gt 2. We write
φ ;(f,/7) = (Vqc)(t-2(VpS)(t,p)). Using (6.3), the fact (VpKQ)(t,D) = tD - t2E/2
and Lemma 6.1, we have for t ^ 2,

£-tΦ(*>D) + i{HQ(t)φ(t,D) - φ(t,D)H0(t)}

9 iΛ= (φ'(t,D)9 {-Γ2(D - tE) - 2Γ3 Σ (VP
7=1

Hence, we have the proposition by virtue of Lemma 6.4. D
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We define the time-dependent Hamiltonian by HQ(t) — Hc + F(7(ί,Z)C)j_)), and
denote by f/0(0 the propagator generated by HQ(t). Then C/o(0 is explicitly repre-
sented by

/ /
f/o(0 = exp(-/f//c)exp -i f

V o

We replace t/o(0 by Uo(t). We need the following proposition.

Proposition 6.7. There exist the strong limits

s- lim
/— >oo

Proof. Noting that D — Dc, we have only to prove that as t — » cχo, /0

converges locally uniformly in pc. We write

We note that dt{Y(t, p)} = (S,y)(f, p + tE) + |^|(5z7)(ί, p + tE) = \E\(dzΫ)(t, p +
*£) + /? + O(t~p) as ί — > cχo uniformly in p, by the definition of Y(t, p). Then we
see that as s — » cx>,

- \E\((VV)(Y(s9τp\\ + /7Cf±)), (3z7)(j,τp|| + pc,

holds locally uniformly in pc and uniformly in 0 ^ τ ^ 1 . Here we used the fact that
(VF)(70,τ/?|| + pc,±)) == O(^~(1+/))) holds locally uniformly in pc and uniformly
in 0 ̂  τ ̂  1. Hence we see that

(dzW)(s,τp\\ + /7c,

τp,| + pCt±))9 (dzΫ)(s,τp\\ + p f f - L + sE))(p\\,ω)

\E\

holds locally uniformly in pc and uniformly in 0 ^ τ ̂  1. This implies the
proposition. D

Combining the above two propositions, we have the following proposition.

Proposition 6.8. There exist the strong limits

s- lim ί/o(0*CΛ>(0> s- lim f70(0*i

What we want to prove here is the following theorem.

Theorem 6.9. Assume that c is the N-cluster decomposition and the assumption
(V) is fulfilled. Then one can construct a function Y(t, p) € C°°(R x X) with
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values in X such that the modified wave operators

( t
-i f W(s,Dc ±)ds

o

exist and are asymptotically complete, that is, W^ are unitary operators on L2(X),
where W(t, p) = V(Y(t,p)\ Moreover, W^2 have the intertwining property.

Proof. We prove the theorem for W$ only. The existence of W$ is proved by
Theorem 4.5, Propositions 6.3 and 6.8. Then it is easy to see that W^ has the
intertwining property. By Propositions 6.3 and 6.8, we see that there exists the
strong limit

Oj- =s- lim £/o(0*t4(0
ί—>00

Let φ E L2(X). By Theorem 4.6 and the above fact, we have as t —» oo,

= Uc(t)φc + o ( l ) = U0(t)Ω+φc + 0(1).

This implies φ E Range W^9 hence we have L2(X) = Range WQ . Noting that WQ
is an isometry, the proof of the theorem is completed. D

Remark 6.10. If, in particular, the assumption (V) is satisfied with p > 1/2, then we
can take Y(t, p) as Y(t, p) = tp + t2E/2, that is, we may take W^ as the Dollard-
type modified wave operators (1.3).
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