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Abstract: We give a partially new analysis of the molecular nature of matter. A key
feature is a property of the Coulomb potential as R3 is decomposed into simplices.
A further application thereof is given in an appendix.

1. Introduction

A mixture of electrons and various kinds of nuclei consists of individual atoms and
molecules, provided the temperature and the density are sufficiently low. Put differ-
ently, a gas of elementary particles is effectively described in this thermodynamic
regime in terms of an ideal gas of composite particles. Different mathematical for-
mulations and verifications of this fact have been given by Fefferman [4], by Conlon,
Lieb and Yau [2], and by Macris and Martin [8]. See also [9, 10] for a discussion
of the issues involved. With the present work we merely intend to offer a partially
new proof. The reader familiar with the subject should proceed directly to Sect. 2.

The mixture shall consist of S species of spinless particles with masses
M = (Mi,..., M5) and charges Q = (gι,...,βs) G Zs . We assume that all neg-
atively charged particles are fermions, whereas the statistics of the other parti-
cles is irrelevant. Let Nk £ N be the number of particles of the &th species, and

set N = (N\,...,NS). The total number of particles is N = Yfk=lNk. The Hubert

space J^N,/I for N particles confined to an open set A C R3 is the subspace of
L2(Λ)®N carrying the permutation symmetry appropriate to the given statistics. The
Hamiltonian is

H" A = "§ ̂  + Jr, W^\ =: T"-Λ + KN ' (U)

where (mnqt) = (M^Qk) if the /th particle belongs to the £th species. Here A A is
the Dirichlet Laplacian on A. If A — IR3, the index A is omitted. Variable particle
numbers are accounted for by means of the Fock space and the Hamiltonian

Λ , HA = 0//N,Λ . (1.2)
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For bounded A, the grand canonical partition function and the (finite volume) pres-
sure are given by

3(β,μ,Λ) = N)

where β > 0 is the inverse temperature and μ = (μi, . . . ,μs) € ^S are the chemical
potentials of the various species. The existence of the thermodynamic limit

p(β,μ)= \im p(β,μ,Λ) (1.3)
Λ— »oo

for suitable sequences {A} (e.g. sequences of balls) has been proven by Lieb and
Lebowitz [7]. They also proved that

p(β,μ) = p(β,μ + λQ) ( I G I R ) , (1.4)

which expresses charge neutrality.
A basic version of the result [2, 4] states that for suitable values of the chemical

potentials μo and for low enough temperature β~l the pressure of the S species
is to good accuracy that of a classical free gas of specific "molecules." In this
picture, molecules are non-interacting particles with no internal degrees of freedom.
The types of molecules which actually occur are determined by the neutral ground
states of H — μ0 N, as we shall explain shortly. Let EN and E(μ) be the ground
state energies of //N, resp. of H — μ N except for the vacuum, i.e., let

EN = inf {(Ψ,HκΨ)\Ψ e ^N, \\Ψ\\ = 1} ,

E(μ) = mf (EN - μ N) .

Our assumption (A) on the chemical potentials μo embodies the symmetry (1.4):
There is λo G 1R such that

enjoys the following two properties.

1) For some σ > 0 and all N,

//N-/IO N ^ σTV. (1.5)

A first consequence is that E(μ'Q) > 0 and that the set of "ground states",

is non-empty and finite.
2) Either Q N = 0 for all N G ̂  (neutral case) or there are N+, N_ G

with ±Q - N± > 0 (charged case).

The configuration space for N particles is

that for their center of mass is X^ = {x G ^N|*/ = x/> ij — 1> 5^}?

 and that for

their relative position is X$ = {x G Xn\Y^=l /H,*/ = 0}. We have X = Xc ®XR as
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an orthogonal sum with respect to the inner product x y = Y^=} m^yj. Explicitly,
x = xc + XR with

*f=*o, x?=x,-XQ9 (1.6)

where CQ = (M N)"1 J^, m/jc/ is the center of mass. Correspondingly, JfN has a
factorization Jf N = J^£ 0 Jf § and //N a decomposition //N = 7^ ® 1 + 1 0 Hβ.
We remark that the kinetic energy T£ of the center of mass is unitarily equivalent
to -(2M N)-'zl on L2(JR3,</jc0) and that (1.5) applies to H$ as well. The HVZ-
Theorem [3] implies

(//*-μ;.N) ^ 2E(μ'Q) .

It follows from (Al) that there is 0 < g < E(μ'Q) with

<Td,sc(#N - ̂  N) Π (-oo,E(μ'Q) + g)C {E(μ'Q)} (1.7)

for all NφO. Note that E(μ'Q) is an eigenvalue of H$ - μ'0 N iff N G 0.

Proviso. We shall henceforth count TV e ^ repeatedly, according to the multiplicity
of this eigenvalue.

The pressure of an ideal classical gas of molecules of composition N, internal
energy EN and chemical potential μ is

Consider an ideal mixture of such gases with compositions N G ̂ . This notation is
defined in thermodynamics by the additivity of partial pressures:

P<*(β,μ)= Σ PNGM N). (1.8)
Ne#

The chemical potentials on the r.h.s. correspond to chemical equilibrium among the
molecules N G ̂ . The pressure p^ may not satisfy (1.4), i.e., it may be related to
a non-neutral ensemble. This can happen because the molecules, although possibly
charged, do not interact in this picture. One enforces (1.4) by setting

(1.9)
/,£IR

Consider (A2). In the neutral case any λ G 1R minimizes (1.9). In the charged case,
p%(β,μ + Λ/Q) is a strictly convex function of λf which diverges as \λ' — > oo. Thus
(1.9) has a unique minimizer λ. It tends to AO as ( β , μ ) — * (-hoo,μ0) To see this,
note that in this limit β~] log py(β,μ + /I'Q) -> ~E(μf

Q) + maxNe^(// - /0)Q N
uniformly in λ' .

Theorem 1. Suppose assumption (A) holds. Then

for some ε > 0 in the limit ( β , μ ) —> (+oo,μ0).
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2. Discussion of the Proof

In this work we shall only prove the upper bound

p(β,μ) £ p%(β,μ)(\+0(*Γ*)). (2.1)

(The opposite bound [2,4] relies on the variational principle). In [4] the bound (2.1),
except for a different error term, is proven using an almost complete covering of IR3

by means of disjoint balls. Essentially, the original Hamiltonian (1.1) is bounded
below by one in which particles are confined to balls and the interaction between
balls is dropped. In [2] a decomposition of 1R3 into cubes is used instead. We sug-
gest to decompose 1R3 into simplices. An open simplex A C IR3, i.e. a tetrahedron,
is a set

J = {*eR3k* <cl9 ι = l,. ..,4}

with α, G R3, c, G IR and

Σ>/=0, (2.2)
/=!

|det(fl|,ay,αt)| = \ . (2.3)
o

Here i,j,k is some (and, by (2.2), any) triple of distinct integers in {!,..., 4}. The
value 1/6 is a convenient normalization. Elementary considerations show that the
volume of Δ is

4 X 3

Σ'.Ί , (2.4)
ι=l / +

where x+ = max(jc, 0). The reason for choosing simplices is contained in the fol-
lowing two lemmas.

The spherical average of a function / : IR3 — > IR is the function / : [0, +00) — >
IR given by

f ( r ) = fdcof(rω)9

$2

where dω is the normalized surface measure on the unit sphere S2 = {ω G IR3||ω| —
1}. Alternatively,

f(\x\)= f dμ(R)f(R~lx), (2.5)
S0(3)

where dμ(R) is the Haar measure on SO(3).

Lemma 2. Let Δ be a simplex with characteristic function χ. Set χ~(x) — χ(—x)
and let h(r) be the spherical average of χ* χ_. Then h G C0[0, +00), λ(0) = \Δ\
and h"(r) is non-increasing in r.

Lemma 3. Let h G C2[0, +cχo) with linv_++00 h(r) = 0 and let h"(r) be non-
increasing. Then

has positive Fourier transform: w(p) ^ 0.

Here ^(O)^!""1 is the Coulomb potential and, in a sense to be made precise
later, A(|JC|)|JC -1 represents the same interaction restricted to particles belonging to
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the same simplex in a decomposition of IR3. The following consequence of the
positivity of the Fourier transform is well-known: Set

N

*Ί>] = Σ

tJPXi

It follows from

, - . - N
(2π)3

'J=l

that if w(p) ^ 0 then

Due to the use of simplices, we shall not need the continuity of the stability of
matter constant [2]. That continuity refers to σ in (1.5) as a function of v j 0 when
the Coulomb potential is replaced by a Yukawa potential

Yv(x) = e-vM/|*|. (2.7)

However we shall use, as in [2], that stability of matter with some constant holds
for Yukawa potentials [1]. The rest of the proof of (2.1) is patterned after [2]. The
plan is to find a simplex which is (i) so small that most likely it does not contain
anything, but if it does, then most likely a molecule N G ̂  (ii) so large that the
energy essentially goes down when breaking IR3 into such simplices. The outcome
is given by the next two lemmas.

Lemma 4. Assume (Al). Let A be a simplex. Then there is ε > 0 such that

p(β9μ
f

9^A) ^ p*(β9μ
f)(l + O(eΓ*))9 ( ( β 9 μ f ) -+ (+00,^)) (2.8)

for all small enough γ > 0.

Lemma 5. There is a simplex A+ such that

p(β9μ) ^ p(β,μ + O(Γl)JA+)(l + O(Γ])), (/-*+00) (2.9)

uniformly in β > 0 and μ G IRS.

Proof of (2.1). Let μ' = μ + /IQ, where λ is the minimizer of (1.9) in the
charged case and λ = λG in the neutral one. Thus μ' —> μ'Q in the limit considered.
Using successively (1.4), (2.9, 8) and (1.8) we obtain

p(β,μ) = p(β,μ') ^ Pv(β,μ' + O(e"ί;/j))(l + O(e~β/j)) - p%(β,μ')(l + O(e~εβ)),

at the expense of possibly making ε > 0 smaller. D

3. The Pressure in a Simplex

We are going to derive (2.8). A similar bound for cubes has been obtained in [2].
The proof given there applies here too, because it does not significantly depend on
the shape of the domain. We include it here for the convenience of the reader.

Proof of Lemma 4. We may assume —A C 3A upon translation of A. In fact
in this way we can make the c/ (/ = 1,...,4) equal. Then, by (2.2), x £ A implies
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*ι(-*) = Σ/Φ, aJx < Σ/Φ/ Cj = 3c, , i.e., -jc e 3zl. For NΦO and / > 0 let X^ =

{x eX$\Xi £ IA9 i = \9...9N}9 where # stands for C, Λ or is omitted. It then fol-
lows from (1.6) that

XNJ C XN

and in particular //N? / ^ ^N / + ̂ N 4/ m tne sense °f non-densely defined quadratic
forms. Hence,

/-"' N) <; trrc/βjr?[4ί(e-/I7'N./(g)e-«wfi,4/-^ ' N)) = I + Π, (3.2)

the splitting being as follows: Let g > 0 be the gap in (1.7) and let ^N be the sub-
space of J"f N 4/ corresponding to the spectrum of H^4l - μ'Q N below £"(^0) 4- fif.

Then I + II corresponds to jf£ 4/ = ̂ N Θ ̂  . To estimate I we use [5]

^ (4πj8)-32 |/l| (3.3)

for the first factor in (3.2) and H$ 4! ^ E^ for the second one, i.e.,

2πP
We remark that dim^N is bounded by the multiplicity of N G 0, since //$ 4/ ^ Hβ.

We will show below that on 0*^9

ff&Ai ~ μt ' N ̂  ̂ (^) + + S(7$4/ 4- TV) (3.4)

for some 0 < δ ^ 1, all NΦO and μ' close to /IQ. From (3.1) we have Γ]^/

^N,4/ = ^N.S/ Therefore,

for large β and / = ey^ with small enough γ > 0. Here we estimated the first factor
on the r.h.s. by (const|/J|)^ using again (3.3). Combining the above with the case
N = 0 we have

Ξ(β,μf,eyβA) ^ 1 4- β\eyβA\py(β9μ
f) + const e

p(β,μ'^βA) g ^(jS,/)^ const e-^(^)+(^/2)) - Pv(β,μ')(l 4-

where we used log(l +;c) ^ c and p<y(β9μ') ^ e~^('l)+(^4)) for ^ large and /ί/
close to μ'0. To prove (3.4) we consider the inequalities on ^ ,̂

where the latter follows from the unitary equivalence (1/2)7^ 4- PN —
We add them with weights 1 — 2(ε 4- ε2), 2ε, 2ε2 and obtain

4- f + ε27£ 4/ 4-
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provided (1 - 4(ε + β2))(<7/2) - 2(ε - ε2)E(μ'Q) + ε(σN + 2εμf

0 - N) + (^ - μ')
N ^ 0 for all NφO. This holds true for small c > 0 and μ7 close to /IQ. D

4. Some Properties of Simplices

Proof of Lemma 2. We begin with

χ * χ _ ( x ) = f dyχ(x - y)χ(-y) = f dyχ(y)χ(y + x) = \ A Π ( A - x)\ .

Note that y G A Π (zl — x) iff βzjμ < c/ and ^3; < c, — α/jc for / = 1,...,4, i.e., iff

| J n ( J - J c ) | = (Σc,-( f l , J c ) + ) = \Δ\(\ - k(ω)r)3

+,

Hence A Γ\(A — x) is again a simplex. According to (2.4) its volume is

3

= \A\(l-k(ω)r,+

where we set x — rω (r ^ 0, ω G S2) and k(ω) = |^|~^3Σ/=zl (α/ ω)+. This last
function is continuous on S2 and has a positive minimum there. Indeed, if k(ω) — 0
for some ω G S2 then α/ω = 0 for / = 1,... ,4 because of (2.2). Together with (2.3),
this would imply that the four vectors a\,a^a^^ω G IR3 are linearly independent,
which is impossible. As a result,

5*2

has compact support. Its second derivative h"(r) = 6\A\fs2dωk(ω)2(l - k(ω)r)+ is
continuous and non-increasing in r. (Moreover, h has a continuous third derivative,
but we do not need this fact.) D

Proof of Lemma 3. We note that h,—h',h" ^ 0. Passing to spherical coordinates
we find for /?ΦO,

Γ , -inr -,-lrl 4π t °°w(p) = hm dxe μ e ' *w(x) — -—Γ lim
40 |/71 40 o

4π

40 β H- \p\ Q |/7|

4π °° 4π °°
- /^cos(|/7|r)Λ'(r) = fdrsm(\p\r)h"(r)

\P\ o I/Ί o

4π ~ , . , ? - • .,

The third and fifth equalities are obtained by partial integration. The series above
is alternating because h" ^ 0 is non-increasing. Hence the final inequality. D

Lemma 2 fails if one replaces the characteristic function by a smeared out
one. The following lemma is of remedy. Let </>o G C^°(IR3) be spherically symmet-
ric with </>o ^ 0, f ΦQ = 1 and supp</>0 C {\x\ ^ 1}. Set φ(x) = η~3φQ(x/η} with
^ > 0.



222 G.M. Graf, D. Schenker

Lemma 6. Let ho satisfy the hypothesis of Lemma 3 and let h : [0, +00) — » IR be
the function which is well-defined by A(|*|) = (ho * φ)(x)9 where hQ = AO(|*|). Then
Ao(0) + h'Q(Q)η ^ A(0) ̂  Ao(0). For large C > 0 and 0 < η < C~l the function

h(r) = (1 - G/)A(r) + Qy l (4.1)

satisfies the hypothesis of Lemma 3. Moreover, A(0) = A(0) and A'(0) = — CA(0).

Proof Note that h and hence h are smooth. All the statements except that h" is

non-increasing are immediate, and so will be that one once we prove h'" ^ 0. Let
ω G S2. It follows from h(r) = /dyh 0(\rω - y\)φ(y) that

Λ"(r) =

where p = \rω — y\. Let r ^ 3η and note that |jμ| ^ ?7 on the support of the inte-
grand. Using that AQ(P) is non-increasing in r we obtain

rω —

The estimates pA£(p) - A^(p)/0

p Λ ^ fQ

p dxh'J(x) = h'Q(p) - h'Q(Q)9 as well as
0 ^ r — ωy ^ p and p ^ (r + yy)/2 then yield

A'"(r) ^ const (-AJ(0))^-L; (4.2)

for r ^ 3^. We have h'"(r} - (ωV)3A|ωr = (ωV)A0 * (ωV)2φ|ωr, where A0 =
AO(|*|) is Lipschitz with constant -Aβ(0). Hence |A/ 7 /(r)| ^ const (-/^(O))/?"2 for
any r ^ 0. Thus (4.2) also holds for r < 3η. Due to

c/3 η η2

— —o-
Jr3 1 + (r/ι/) (r + η)4 '

we have A / 7 / ^ 0 if CA0(0) > -A^(O) and η < C~λ. D

In order to control the potential energy corresponding to last term in (4.1) we
will use a "stability of matter" result, namely that

T+ V[YV] ^ -constTV

uniformly in v ^ 0, where Yv is the Yukawa potential (2.7). This bound holds under
the assumption on the statistics of particles made in the introduction. It follows
immediately from the results in the Appendix of [1] by avoiding to set the number
of spin degrees of freedom equal to N (which corresponds to bosons). Let

K(x)= . * . h . (4.3)
|*|(1 + |*|)

Since (1 +r)~ ! = /0°°dve-Vvr we have K(x) = /0°°dve~vYv(x) and hence

oo

T + V[K\ = fdve~v(T + V[YV]) ^ -constTV . (4.4)
o
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5. The Localization Method

We adopt the localization method of [2], except that we break up 1R3 into simplices
instead of cubes. One way of doing this is to cut the unit cube W = [0, 1]3 with all
planes passing through the centre and an edge or a face diagonal of W . This gives
rise to congruent simplices Δn C W, (n = 1,...,24). We omit giving a proof of
this fact. The simplices AΛ = An +z with α — (z,n) G Z3 x {!,..., 24} =: / yield
a partition of IR3 up to their boundaries. We then pick φ0 € C^°(1R3) spherically
symmetric with f φ% = 1 and {φ0(;c)φO} = {(*( < 1/2}. Set φ(x) = η~3/2φo(x/η)

and y'α = (χα * φ2)I/2, where χα is the characteristic function of AΛ. It follows that

Σ Λ 2 W = ι , (*eR 3). (5.1)
α€/

Moreover, there are congruent simplices A+ with

suppyα C Al , (5.2)

| Λ + | ^ μgo+Ofo)) (5.3)

as f/ I 0. Let us identify n with (0,«). As proven at the end of this section,
jn G C ](IR3) with |Vyπ | ^ const i/"1. This and |suppVyΛ | = O(η) imply

\\Vjn\\2

2 £ const η~l. (5.4)

We remark that y2 *y2_ = (χΛ * χ Λ _) * φ, where φ = η-3φQ(x/η) and φ0 = ΦQ * ^o

has f ΦQ = I. Let /z(r) be the spherical average of X^y2 *y'2_ and h0(r) that

of Σπ=1 χΛ * χn-> From (2.5) and the spherical symmetry of φ we obtain h(\x\) =
(he * </>)(*), where A0 = λo(M)- Lemma 2 implies Ao(0) = \W\ = 1 and that /z0, Λ
satisfy the hypothesis of Lemma 6.

The following construction depends on η, I > 0 although our notation will not
reflect this for simplicity. For α E /, let J^α = J^IΔ+ and //α = HIA+ be the Fock

space and the Hamiltonian for the simplex IA+ as given in (1.2). Let A be a ball
centered at the origin. Set

I(Λ) = {αe /|//?« +.y)Π/lΦ0 for some y£ W, R E SO(3)} . (5.5)

For later use, note that for fixed η, /,

lim MΓ1 Σ W = 1 . (5.6)
1/lHoo

We define a Hubert space and a Hamiltonian acting on it as direct integrals with
constant fibers:

/ dydμ(R) <g) Jfα, ///(,i) = / dydμ(R} Σ H, .

In order to compare ^/(/i), ///(/i) with Jf^, HΛ given in (1.2) we define a map
J : Jd -> jr/(/D. To this end, let y^?α : L2(/l) -> I2(/Zl+) be given by

Then let
y>,Λ : L\Λ) -> φ L2(//l+), y^Λ = Θ
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By passing to the Fock spaces over these Hubert spaces we get the map

Γ(jy,R) :

which acts as the TV-fold tensor product of jy^ on TV -particle states. Note that
&(L2(Λ)) = $eA and &(®Λ€I(A)L

2(IΔ+)) = ®^1(Λ^(L2(IΔ^))
Finally, we define

J= / dydμ(R)Γ(jytR) .
JFxSO(3)

The map 7* ^ α : L2(IΔ+) -> L2(Λ) is given by

j*tRjyίR : L2(A) -> L2(/l) acts as multiplication by Σ^1(Λ}j
2(R~l(x/l) - y).

This function of x G A equals 1 because of (5.1, 5). We conclude that J*J — 1, i.e.,
that J is an i some try.

Lemma 7. Let η = l~l. Then

HA ^ κJ*HI(Λ}J - const Γ1^ (5.7)

for large /, where 0 < /c ^ 1 αm/ /c = 1 + O(ί~l ) as I ̂  +oc.

Proof. We claim that

;r , (5.8)
/=!

where c = X]Λ=1 | |Vy'n | |2 ^ const?/"1 by (5.4). Indeed, on 1-particle states

/ \
a]jy,R= / dydμ(R) E Jβ(-^)jβ

= -^ +cΓ2,

where Ax and Jα are the Dirichlet Laplacians on /J+ and on IR(Δ+ + y), and
Jα =Λ(/?~'(jc//) - >0 The second equality follows from —Δ = Σα6/[7α(— ̂ )Jα -
(V7α)

2], from (5.2,5) and from ^dy^^Vj^^x - y) = \\Vjn\\\. Similarly,

on 2-particle states j(^j($(®x€l(Λ} |αc, -^r')^^ = Σβe/(/.)

and

24
1 / dμ(R)E
S0(3) w=l
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where the superscripts (/) refer to particles / = 1,2. This relies on

w zez3

This proves (5.8). Lemma 6,3 and (2.6) imply

C jv
£ κV[h(\x\)\x~l] + Cηn(l +

Δ /=!

where fc = h(0) '(1 — G/) = 1 -f O(^). We then replace x by jc//, divide by / and
add the kinetic energy. We get

HA ^ κ(TΛ Hh Ft/KM/ObcΓ 1]) + (1 - κ)TΛ + 0/F[A:] - const Γ1N ,

with AT given by (4.3). If C is large enough, then K ^ 1 — Cη/2 for small η. It thus
follows from (4.4) that (1 - κ)TA + CηV[K] ^ (Cη/2)(TA + 2K[^]) ^ -const ^7V
because dropping the factor 2 amounts to a change of the charges Q. The proof is
completed by collecting estimates. D

Proof of Lemma 5. Let μt — μ/ -\- const /- 1, where the constant is the one in (5.7).
Then

Ξ(β,μ,Λ) ^ tr^e-V'WiM-fi ' N>J g tr^J*e-/j(7C//^^)-'ϊ * N)J

^^M)^ ' N) = / dydμ(R) Π tr^e^^^ ' N) ,

where the second bound is Peierls inequality [7]. Since 0 < K ̂  1 we have κHa ^
K2T% + KV = HK-\IA+, where the unitary equivalence comes from scaling. All the

simplices A* are congruent to a single one A+. We thus get

p(β,μ,Λ) ^

and, in the limit \Λ\ —> CXD,

due to (5.6, 3). The function I \—> I = K ' / i s continuous with /// —» 1 as / —* -foe.

Hence O(Γl) = O(ϊ~l). Π

Left to show is that our partition of unity is in C !(IR3). Let χ ^ 0 any bounded
(Borel) function, and j = (χ * φ2)1/2, where φ is as before. In particular, suppφ =
{φ(.x)φO} up to a Lebesgue null set. We claim that

J (χ * φVφ)/"1 if j > 0,

\ 0 if 7 = 0.

Only the second part requires proof. It means that if (χ * φ2)(x) = 0 then
j(y) = o(\y — x\) as y —> x. Since χ(x — y) = 0 for a.e. y G suppφ we have
(X * dχφ2)(x) = 0 for any multiindex α. Hence, by the Taylor expansion with
remainder, j(y)2 = (χ * φ2)(y) = O(\y - x\n) for any ft §: 0. Continuity of Vj is
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evident except for Vj(y) —> 0 as y —> x with j ( x ) — 0. By the Cauchy inequal-
ity | χ*φVφ| ^ (χ*φ 2) 1 / 2(χ*(Vφ) 2) 1 / 2. This implies (Vj)2 ^ χ * (Vφ)2. So,

;) ^ (χ * (Vφ)2)(*) = 0 and |Vyf ^ UχlUKVφ) 2 ! ! ! ^ const,,-2-

Appendix. On the Continuity of the Free Energy

We wish to illustrate another application of the decomposition into simplices. The
thermodynamic limit for the free energy f s ( p ) of S species (we drop β) exists for
neutral densities, i.e., for p in

Ps = {p = (ρ\, ..,Ps)\P Q = 0,p/ ^ 0 , / = !,...,£}.

This result is due to [7] to which we refer for the detailed statement. We intend to
discuss the following fact [7,6].

Proposition 8. f s ( p ) is continuous on P$.

The set PS is a convex subset of {p £ ]R.s\p Q = 0}. The convexity [7] of
f s ( p ) implies that fs is upper semicontinuous on Ps and continuous on its interior
PS Upon relabelling species, p0 £ dPs is of the form p0 = (pό,0) with p'Q E/V
and 0 ^ S' < S. The lower semicontinuity of fs at po £ dPs,

Mfs(p)^fs'(p'o), (A.I)
P-+PQ

is proven in [6]. The proof rests on two main intermediate results. The first is the
equivalence between the canonical and the grand canonical ensembles, namely

ps(μ) = sup [p μ - fs(ρ)] , (A.2)

which, incidentally, implies (1.4). The second is the statement "dual" to (A.I), i.e.,

Πm Ps(μ) ^ Ps>(&) > (A3)
ji-Kji^-oo)

the limit being μ/ — » μ'0i (i — 1, ... ,5') and μ/ — > — oo (/ = S' + 1, ... ,5). The proof
[6] of (A.3) is based on the decomposition [4] of IR3 into balls. Our point is that
it also follows from Lemma 5: Taking the above limit in (2.9) gives

BE Ps(μ)ίps,(μ'0 + 0(Γl),lA+)(l + 0(Γ1)), (I -> +00) (A.4)
μ-+(μ'0,-oo)

because of the stated uniformity and the simple fact that \imμ_,(μr _00^)ps(μ, I Λ + ) ^

p S f ( μ ' 0 , l A + ) for finite /. In the limit / — > +co the r.h.s. in (A.4) tends to ps'(μ'o)
because, by convexity, the limit (1.3) is locally uniform in μ. Given (A.2, 3) the
proof [6] of (A.I) is immediate: We have fs(p) ^ P μ — Ps(μ) f°r all μ G IR5

and j£/(pό) = PQ ' PQ ~ Ps'(μ'o) for some μ'o € ^S because p'Q €PS' We thus get

lim fs(ρ) ^ po μ - ps(μ) ,
P-+PO

and, in the limit μ — > (/IQ, — oo),

lim
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