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Abstract: We give new examples of discrete Schrδdinger operators with potentials
taking finitely many values that have purely singular continuous spectrum. If the
hull X of the potential is strictly ergodic, then the existence of just one potential x
in X for which the operator has no eigenvalues implies that there is a generic set
in X for which the operator has purely singular continuous spectrum. A sufficient
condition for the existence of such an x is that there is a z G X that contains arbi-
trarily long palindromes. Thus we can define a large class of primitive substitutions
for which the operators are purely singularly continuous for a generic subset in
X. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period
Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator
has no absolutely continuous spectrum for all x G X if X derives from a primitive
substitution. For potentials defined by circle maps, xn = ly($o + nu), we show that
the operator has purely singular continuous spectrum for a generic subset in X for
all irrational α and every half-open interval J.

1. Introduction

Discrete Schrδdinger operators with potentials taking values in a finite set A C
R have interesting spectral properties. Topological spaces of such operators are
obtained by choosing a compact shift-invariant subset X of the compact metric
space AΈ. If T denotes the left shift on X, the dynamical system (X9T) is called a
subshift. Every point x G X defines an operator on 12(TL} by

(L(x)u)n = un+\ + un-\ +xnun .

In X = Aπ, any spectral type can occur: the dense set of periodic operators in AΈ

have purely absolutely continuous spectrum; for almost all x with respect to any
non-trivial product measure on X = Az the spectrum is pure point [7]. Hence, by
the wonderland theorem [24], there exists a generic set in Aπ for which L(x) has
purely singular continuous spectrum. The shift on Az has many invariant measures
and there are many orbits which are not dense. It is therefore convenient to con-
sider the case of a compact shift-invariant X C AΈ that is minimal (i.e., the set of
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translates of every x E X is dense in X) and uniquely ergodic (i.e., there exists only
one Γ-invariant measure). A system (X, T) that is both minimal and uniquely er-
godic is called strictly ergodic. Two common methods for generating strictly ergodic
subshifts are the following:

• A primitive substitution, which is a map S from the alphabet A to the set of finite
words A*, defines a fixed point z+ G A^. Taking any z £ Az satisfying zn = z+
for n £ N and defining X$ as the set of accumulation points of {Tnz n £ N}
gives a strictly ergodic system.

• A circle map θ ι-> θ + α with irrational α together with a countable union J of
half-open intervals and an initial point ΘQ G T1 defines a sequence zw = l j ( θ o +
wα). The orbit closure A!} = X(J,θQ,a) is independent of ΘQ and is a strictly
ergodic dynamical system (see [15] Proposition A.I.)

The aim of this paper is to give new examples of discrete Schrόdinger opera-
tors that have purely singular continuous spectrum. We therefore need to exclude
absolutely continuous spectrum and eigenvalues.

Absolutely continuous spectrum is excluded by Kotani's theorem [19] which
says that almost all L(x) have no absolutely continuous spectrum, since the potential
takes finitely many values. Although the spectrum of L(x) does not depend on x G X
if X is strictly ergodic [15], it does not follow that there is no absolutely continuous
spectrum for all x G X. If, however, the Lyapunov exponent exists for all x e X
and is independent of c, then indeed no L(x) has absolutely continuous spectrum as
we will see below. In [15] it is shown that the Lyapunov exponent exists uniformly
if X is defined by a primitive substitution. Thus we exclude absolutely continuous
spectrum for all operators L(x) generated by primitive substitutions. We want to
emphasize that it is an open problem (cf. Remark 2 in Sect. 6) whether for every
strictly ergodic potential the absolutely continuous spectrum is independent of x G X.

In order to get singular continuous spectrum one has also to exclude eigenvalues.
This was done by a Gordon-type criterion for circle maps [10] and by using the
so-called trace map in [8,26,27,4,1,11,2,5] for circle maps and substitutions. In
this paper we note that a variation on the criterion of Jitomirskaya and Simon [17]
can be used for sequences that we call strongly palίndromic. A strongly palindromic
sequence contains palindromes wt of length // centered at m/ —» oo such that // grows
exponentially fast with respect to ml. We show that if a sequence x G X contains
arbitrary large palindromes (we call this palindromic), then there is an uncountable
set in X which is strongly palindromic. Many kinds of sequences defined by circle
maps and substitutions are palindromic. In addition, we show that the existence of
just one x £ X for which L(x) has no eigenvalues implies that there is a generic
set in X for which L(x) has purely singular continuous spectrum.

Our work gives new examples of operators with purely singular continuous
spectrum for both substitutions and circle maps.

For circle maps, Delyon and Petritis [10] have shown absence of eigenvalues
for almost all α, all intervals [0, β) and almost every ΘQ. They do not exclude
eigenvalues for all irrational α. Eigenvalues have been excluded for all irrational α
in the case β = α by Bellissard et al. [4], but only for Θ0 = 0. This was proved
independently by Sutό [27] in the "golden case" α = (\/5 — l)/2. We prove here
that for all irrational α and all intervals J = [0, β), there is a generic set in Xj for
which L(x) has purely singular continuous spectrum.

All papers on Schrόdinger operators with potentials defined by primitive substi-
tutions [1,2,11,5] exclude eigenvalues for just one x\ [2, 5] claim that the spectrum
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is a Cantor set of Lebesgue measure 0. We get purely singular continuous spectrum
for a generic set in X$ for a large class of substitutions. Only Bovier and Ghez [5]
claim to exclude eigenvalues for a class of substitutions. Our class of substitutions
contains all but one of the examples (the "circle sequence") given in [5] and the
Bovier-Ghez class does not contain the "period doubling" and the "Binary-Non-
Pisot" substitutions, which are contained in ours. (It should be noted, however, that
the results in [2,5] do not apply to the sequences stated in those papers, but to
different ones (see the erratum [6]) that are not necessarily in Xs.)

The paper is organized as follows. Section 2 introduces palindromic and strongly
palindromic sequences. Examples of (strongly) palindromic sequences are given in
Sect. 3 (substitution sequences) and 4 (sequences defined by circle maps). Section
5 shows that L(x) has no eigenvalues if x is strongly palindromic. In Sect. 6 we
prove that L(x) has no absolutely continuous spectrum for all x G X if X is defined
by a primitive substitution. Section 7 combines these results to show that L(x) has
purely singular continuous spectrum for a generic set of x G X for strictly ergodic
subshifts X defined by a large class of circle subshifts and primitive substitutions.

2. Palindromic Sequences

Let A be a finite set called alphabet and A* the set of (finite) words w\W2 - - - wn

with Wi: G A. A word w G A* is called a palindrome if it is the same when read
backwards. The empty word is considered a palindrome. An element x G AΈ is
called palindromic if x contains arbitrarily long palindromes. We say that a word
w is centered at (n + m)/2 in x if w =xn- -xm.

The shift T on AΈ is defined by T(z\ =zn+\. The orbit Orb(z) of z G A* is
the set {Tnz}ne%. The closure of Orb(z) in the product topology is called the orbit
closure of z and is denoted by Xz. A compact shift-invariant subset X of AΈ is
called minimal if Xz — X for all z £ X.

If X is minimal then every word occurring in some y G X occurs in all x G X.
Thus it makes sense to speak of palindromic sets X C AΈ, compact shift-invariant
minimal sets containing one (and therefore only) palindromic sequences. Similarly,
X is called aperiodic if the elements in X are aperiodic. Let B > 0 be arbitrary
(its value will be fixed in the proof of Theorem 5.1). Define x £ Az to be strongly
palindromic, if there exists a sequence w, of palindromes of length /, centered
at ml —>• oo such that eBm'/I, —> 0. If c is strongly palindromic then it is clearly
palindromic.

If X is minimal, then for every word w there is a d(w) G N such that in every
x G X there occurs a copy of w in every interval of length d(w) (see, e.g., [23],
p. 71). This fact is used in Proposition 2.1 to construct uncountably many different
strongly palindromic sequences in a palindromic minimal subshift. The idea is the
following. Suppose w is a palindrome centered at m. Any long palindrome w7 (say
of length I') will contain two copies of w within distance 2d(w) to the left of its
center. So w can be extended to w7 in two ways such that the center m' of w7 is

bounded by 2d(w). Hence I' can be chosen to make eBm /I' as small as desired.
This process can be repeated to construct strongly palindromic sequences.

Proposition 2.1. If an aperiodic minimal set X C AΈ is palindromic, then it con-
tains uncountably many strongly palindromic sequences.
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Proof. Let {w7}^ be a sequence of palindromes of length /, — > oo that occur in
the sequences in X . We will construct sequences yn G AΈ such that

1 ) yn is equal to one of the wl on an interval In containing 0;
2) In c /«+! and every m G Z is eventually in these intervals;
3) yn+\ is equal to yn on /„;
4) for every yn, there are two possibilities for yn+\ that are different on the

intersection of the intervals where they are equal to one of the wl .

Clearly, every such sequence yn converges to a different y G X. Since there are
infinitely many choices to be made, there are uncountably many different limit
points. Conditions will be imposed to make sure that the limit points are strongly
palindromic.

Choose a sequence of integers m/ such that m/ — » oo and eBmι /// —> 0 as / — > oo.
Let yn be equal to wjn on an interval In of length ljn containing 0. We show how
two choices arise for yn+\. There exists an integer in+\ such that d(w^n) < mln+J2.

This means there is a copy of wjn in each of the first two sub words of length w/ π + 1/2

to the left of the center of each w7 with j ^ in+\. There exists a jn+\ ^ in+\ such
that w7/7+1 is not periodic with any period less than or equal to fw/w + 1 over an
interval of length lJn+{ — mln+{, for otherwise X would contain a periodic sequence

by minimality. The two occurrences of wy/7 in those first two subwords to the left of
the center of wJn+] give the two possibilities for yn+\ Denote the two possibilities
by z and z' '. Let / and I' denote the intervals on which z and z1 are equal to w7/7+1,
respectively.

We are left to show that z and z' differ on / Π /'. Note that the length of / Π /'
is at least lJn+{ — min+l and that zf on 7 Π /' is equal to z translated by at most mln+{ .

Now suppose z and z1 are equal on / Π I' . Then wjn+l would be periodic with period
at most wi|n+1 over a length of at least ljn+l — rnln+ϊ . But jn+\ was chosen such that
this does not happen.

Note that each limit point of the yn must be strongly palindromic because ljn ^ lin

and because the center of wjn is within distance πijn of 0. D

3. Substitution Sequences

A substitution is a map S \ A ̂  A*; it will be extended to a map A* ̂  A* and
A^ ι-» ^4N by concatenation, that is, S(a\a2 - - - an) — S(a\)S(a2) - - -S(an). A sub-
stitution S is called primitive if there exists a k such that for all a G A the word
*S^(fl) contains at least one copy of every symbol. Without loss of generality, one
can assume that there exists a G A such that S(a) starts with a (see [15]). Iterating
S on a then gives a fixed point z+ £ A^. Let z be any element in ^4Z satisfying
zn = z+ for « G N. The substitution dynamical system (Xς, T) is now defined by

χs = {x e AΈ I x = lim r/z and n, -> 00} .
jWoo

It is possible to generate the sequences in X$ directly from the substitution (see,
e.g., [9,14]). The system (X$, T) is strictly ergodic (see, e.g., [23]). A substitution
S is called palindromic if X$ is palindromic.

We say that a primitive substitution S is in the class P if there exists a palin-
drome p and for each b G A a palindrome qb such that S(b) = pqb for all b £ A.
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We allow p to be the empty word; if p is not the empty word then q^ is allowed
to be the empty word.

Lemma 3.1. Class P substitutions are palindromic.

Proof. We show first by induction over the length of the word w that if w is
a palindrome, then S(w) = pu with a palindrome u. We can write w — bυb with
some b G A and some palindrome v. We have S(w) = S(b)S(v)S(b) = pqbS(v)pqb.
By induction, S(v) is of the form pu with some palindrome u. We get S(w) =
pqbpupqb which is of the form pu with palindrome u. All words Sk(a) occur in
all x G Xs, so the sequences contain arbitrarily long palindromes. D

Corollary 3.2. If S is class P, then there are uncountably many elements in X$
that are strongly palindromic.

Proof. Apply 2.1 and 3.1. D

Remarks. 7) It is sufficient that some power of S is of class P in order that S is
palindromic.

2) A subclass of class P are substitutions for which S(b) is a palindrome for
all b G A. Just take for p the empty palindrome.

3) Clearly, we could include into class P substitutions of the form S(b) = qbp.
We do not know whether all palindromic X$ arise from substitutions that are in this
extended class P.

4) Not all substitutions are palindromic, as the following example shows:

S : a i—> abbaaabbba, b f—> ab .

The word bbaaabbb occurs in the sequences but the word bbbaaabb does not occur.
5) The set of strongly palindromic sequences is invariant and therefore has either

measure 0 or 1; but which we do not know. We cannot even exclude that all c are
strongly palindromic.

Here are some examples of substitutions in class P that have appeared in the
literature of Schrodinger operators:

Thue-Morse: S2 : a ι-> abba.b ι-> baab[20,1,11].
Fibonacci: S : a »-> ab, b H-* a [18,22,8,26,27,4,3,5].
Period doubling: S : a \-+ ab, b ι—» aa [20,2,3,5].
Binary non-Pisot: S : a *—> ab,b \—> aaa [3,5].
Ternary non-Pisot: S : a^ c,b ι—» a,c H-» bab [3, 5].

Remarks. 6) The papers [2,3,5] implicitly consider the set Xz, where z is the
symmetric extension of z+: for n G N, z_n-\ = z+ and zn — z+. This is not natural.
The system (XZ9 T) is, in general, neither uniquely ergodic nor minimal.

7) We do not know if the Rudin-Shapiro sequence (rn = (-l)/ / ?, where fn

is the number of pairs 11 in the binary expansion of n) is palindromic. Contrary
to a statement in a preliminary version of this paper, our computer experiments
suggest that it is not palindromic. A Schrodinger operator with potential based on
the Rudin-Shapiro sequence has appeared in [20]. Numerical experiments done in
[12,13] indicate that there might be eigenvalues.
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4. Sequences Defined by Circle Maps

Consider the irrational rotation θ h-» θ + α on the circle T1 = IR/Z. For a half-open
interval J = [0,β) C T1 and a point ΘQ in T1, we consider the sequence z = z(θo)
given by

We denote by Xj the compact subset of AΈ obtained by taking the closure of the
orbit of Z(ΘQ). It is independent of ΘQ and the system (Xj,T) is strictly ergodic.
This remains true if the half-open interval J is replaced by a countable union of
half-open intervals [15].

Lemma 4.1. For all irrational α and every half-open interval J there exists ΘQ G T1

such that Z(ΘQ) is palindromic.

Proof. If βφ2£α, then the orbit of ΘQ = β/2 is disjoint from {0,β}. If β = 2koc
(modi), the orbit of '00 = (β + l)/2 is disjoint from {0,β}. By symmetry, these
orbits are even and therefore palindromic if they are disjoint from {0, /?}. D

Remarks. 7) The lemma can be generalized. Suppose J is a symmetric countable
union of half-open intervals with a point of symmetry ΘQ. Then if one of the orbits
of the points ΘQ + (/ + yα)/2 (ij G {0, 1}) does not hit the boundary of J, then that
orbit is even, and Xj is palindromic.

2) Another generalization of the lemma can be obtained by taking an ergodic
group translation θ t-» θ + α on Tv and taking J = [0,/?ι) x x [0,βv). The se-
quence zn — lj(θ + not) generates a strictly ergodic set X independent of θ as in
the case v = 1. This set X is palindromic: it can be shown (by induction in v)
that one of the orbits starting at ΘQ = (β -f- v)/2, where t;/ G {0, 1}, does not hit the
boundary of J.

3) There are (in cardinality) more sequences generated by circle maps than
sequences generated by substitutions: the length of the interval [O,/?) measures the
average frequency of occurrences of 1 in the sequence zn. In this way one obtains
uncountably many different sequences for different β. On the other hand, there are
only countably many substitutions.

4) The circle T1 is embedded in Xj by z(0) = lj(noc + θ) but not every sequence
z G Xj is of this form.

5. The Point Spectrum

In the preceding three sections A was a finite set of symbols. In the remainder of
the paper we map the elements to A to real numbers and again denote the image
by A. So from now on sequences x G AΈ take values in R. Every c G AΈ defines
a discrete Schrodinger operator on 12(TL) by

(L(X}U\ = Un+ι + Un_\ +Xnlln .

Theorem 5.1 (Jitomirskaya-Simon). If x is strongly palindromic, then L(x} has no
eigenvalues.

Proof. The proof is essentially [17]. However, [17] deals with operators on /2(R)
with uniformly almost periodic potentials. Since we consider discrete operators with
potentials taking finitely many values, the proof in [17] needs some modifications.
For the convenience of the reader, we have included a proof in the appendix. D
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Remarks. 7) Most (with respect to the product measure) sequences in AΈ are
palindromic since almost all sequences contain all possible finite words. But most
sequences in Az are not strongly palindromic since most sequences give Schrόdinger
operators with Anderson localization [7] and strongly palindromic sequences give
operators without eigenvalues.

2) In the golden case treated in [27,4] the sequence x is symmetric around 0.
The sequence in [11] is antisymmetric around 0. We do not know whether these
sequences are strongly palindromic, so we can not exclude eigenvalues for those
particular sequences, although in both cases X is palindromic.

6. The Absolutely Continuous Spectrum

Theorem 6.1. If the dynamical system (X,T) has the property that the Lyapunov
exponent λx(E) = λ(E) of L(x) exists for all x E X and is independent of x E X,
then L(x) has no absolutely continuous spectrum for all x E X.

Proof. For all E $σ(L) or E E σ(L(x)) with λ(E) > 0, there exist two solutions
u± E RΈ of Lu = Eu which are in /2(±N). By Kotani's result [19] and the Lya-
punov assumption, this is the case for a set Y c IR of full measure that is in-
dependent of x. The vectors Φ±(n) = (u^(n + 1), u±(n)) satisfy AE(n)Φ±(n) =
Φ±(n + 1). If Φ+ ΦΦ~, the Titchmarsh-Weyl functions m^(n) = u±(n + \)/u±(n)
are different and real (but they may be infinite). If Φ+ = Φ~, E is an eigenvalue.
The resolvent (L - E)~^ = GE(n,n) of L satisfies GE(n,n) = \/(m^(n) — m^(n))
and is the Borel transform of the spectral measure dkβn . The absolutely continuous
part of dk€n is by Fatou's theorem given by Im((j£+,o(X «)) = Im(l/(

))), which is zero for all E E Y which are not eigenvalues. D

Remark. A different proof can be obtained by using a result of Berezanskii (see
[25]): if μφ is any spectral measure of any discrete Schrodinger operator L then for
μφ -almost every E E IR there exist polynomially bounded solutions of Lu = Eu. If
there is an x G X such that L(x) has absolutely continuous spectrum then it has an
absolutely continuous spectral measure μφ supported on a set A of positive Lebesgue
measure. For μ^-a.e. E E A -which is equivalent to Lebesgue a.e. £-the equation
L(x)u = Eu has polynomially bounded solutions. So λx(E) = 0 for those E. But
we assumed that λx(E) does not depend on x and it is strictly positive Lebesgue
almost everywhere by Kotani [19]. Thus the assumption that L(x) has absolutely
continuous spectrum leads to a contradiction.

Corollary 6.2. If (Xs, T) is a substitution dynamical system, then L(x) has no
absolutely continuous spectrum for all x E Xs.

Proof. From [15] we know that substitution sequences give operators with Lyapunov
exponents independent of x G X$. Π

Remarks. 7) Another way to exclude absolutely continuous spectrum for all x is to
show that the spectrum has Lebesgue measure zero and is independent of x. This
was done in [4] for circle maps with α = β. Circle maps give spectrum independent
of x for all values of α and β [15]. Kotani's theorem [19] does not imply that the
spectrum has Lebesgue measure 0; a singular spectrum can have positive Lebesgue
measure. We do not know whether the Lyapunov exponent is independent of x for
sequences generated by circle maps.
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2) One might guess that if (X, T) is a strictly ergodic dynamical system and
V : X —>• 1R is continuous, then the absolutely continuous spectrum of the opera-
tor (L(x)u)n = un+\ + wπ_ι -f V(Tnx)un is independent of x G X. We have shown
that this is the case for dynamical systems (X$9 T) obtained by substitutions if
V(Tnx)—xn. It is also true for substitution dynamical systems if V(x) only de-
pends on jc_/•••#/, because then the Lyapunov exponent remains independent of
V(x) by Proposition 5.2 in [15]. It was already known for circle maps with α = β
[4] and V(Tnx) = xn.

3) Assume that (X,T) is strictly ergodic, that λx(E) exists for all x G X and
is independent of* and that there exists x G X such that L(x) has no eigenvalues.
Then it follows for example from the theorem of de la Vallee Poussin that the
spectrum of L(x) is the closure of {E\λx(E) — 0}. We expect (but can't prove)
that the spectrum of L(x) is equal to {E\λx(E) = 0} from which it would follow
that it is a Cantor set of zero Lebesgue measure. The spectrum has been shown to
be equal to the set {E\fdμ(x)λx(E) = 0}, where the integration is with respect to
the invariant measure on X9 for circle maps with α — β in [4]. It has been shown
that spec(Z,(ι;)) = {E\λυ(E) = 0} for a sequence υ defined by the Period Doubling
substitution in [2] and this result was extended to a class of substitutions including
Period Doubling in [5].

7. The Singular Continuous Spectrum

Theorem 7.1 (Simon). Let (X,d) be a complete metric space of selfadjoint op-
erators on a Hilbert space H such that the metric d is stronger than the strong
resolvent convergence. Then both of the sets {A e X\σpp — 0}, {A G X\σac = 0}
are G^s, countable intersections of open sets.

See [24].

Corollary 7.2. Let X C Az be strictly ergodic. If there is one x € X such that
L(x) has no eigenvalues, then there exists a generic subset in X on which L is
purely singular continuous.

Proof. By Kotani [ 19] there is a set of full measure with no absolutely continuous
spectrum. By strict ergodicity, this set is dense and by Theorem 7.1 it is a dense
G<5. Since Orb(x) is dense by minimality, there is dense set on which L has no
eigenvalues. Again, this set is a dense G§ by Theorem 7.1. Since X is a complete
metric space, the intersection of two dense G<$'s is a dense G«$ by the Baire category
theorem. D

By 5.1,2.1,3.1 and 4.1 we get:

Corollary 7.3. If X is strictly ergodic and palίndromic, then there is a generic Y C
X such that for x e Y the operator L(x) has purely singular continuous spectrum.

Corollary 7.4 (Case of substitutions). For substitutions of class JP, there exists a
generic set Y in Xs such that for x e Y the operator L(x) has purely singular
continuous spectrum.

Corollary 7.5 (Case of circle maps). For all irrational α and every half-open
interval J', there exists a generic set Y in Xj such that for x £ Y the operator
L(x) has purely singular continuous spectrum.
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Remarks. 1) Strictly ergodic palindromic systems other than those defined by circle
maps and class P substitutions can be constructed from so-called Toeplitz sequences
[16,21].

2) Corollary 7.2 asserts the existence of a generic (hence uncountable) subset
in X for which L has purely singular continuous spectrum. Note that for class
P substitutions we can actually construct elements of an uncountable set in X for
which L has purely singular continuous spectrum, because (i) Corollary 6.2 excludes
absolutely continuous spectrum for all x G X and (ii) the proof of Proposition 2.1
is constructive.

8. Appendix: The Criterion of Jitomirskaya and Simon

For the convenience of the reader we repeat the proof of the theorem of Jitomirskaya
and Simon [17] for the case of potentials taking finitely many values.

Theorem 8.1 (Jitomirskaya-Simon). Let x £ Az, where A C IR is finite. Consider
the operator on /2(Z) given by (Lu)(n) = u(n + 1) + u(n — 1) + xnu(n). Suppose
there is a sequence of intervals // of length |/,| centered at m, such that x is a
palindrome on //, 0 G // and \It\ — > oo as ί — » oo. Then there exists a constant C
depending only on A such that L has no eigenvalues if C m / / |Λ | — » 0 as i — » oo.

Proof. We can assume that |//| is either odd or even for all /. We prove the theorem
for the case that |//| is odd and then indicate what changes if it is even. So first let
// = {mi - /,, m, + /,}.

Assume Lu = Eu with \\u\\ = 1. Define u^n) = u(2mj — «), the vector reflected
at m,. Let W(u, u^n) — u(n -f l)ut(n) — U[(n + \)u(n) be the Wronskian of u and
u,. Let Φ(n) = (u(n -f- 1), u(n)) and Φ,(n) — (μι(n -f 1), u^n)) and uf = u ± M/ and

Φ± = Φ±Φ,.

Step 1. W(n) := W(u9u,)(n) is constant for n G //.

Proof. Compute using u(n + 1) = — u(n — 1) + (E — xn)u(n) and M/(« + 1) = — u\

W(n) -W(n-\) = (x2m,-n - xn)u(2mι - n)u(ή) = 0 .

Step 2. \W(m,)\ ^ 2/\I,\ - 2/(2/7 + 1).

Proof. Σn\W(n)\ ^ 2 by Schwarz inequality and \\u\\ = \\Uj\\ = 1. Use Step 1.

Step 3. Either (i) M + ( / W / ) | ^ 2|// ~l/2 or (ii) \u~ (πn + 1)| ^ 2\I, ~]/2.

Proof. Since u^(m^) = 0, one has

u+(ml)u^(ml + \)=W(u-r,u+)(ml) = 2 - W(u,ul)(ml) = 2 W(mt) .

Use Step 2.

Step 4. There exists a constant C\ such that HΦ^w,)!! ^ C\\i,\~]/2 holds for all /,
with either the sign + or — .

Proof. In case (ii), we have \\Φ~(m,}\\ = \\(u~(ml + 1),0)|| ^ 2\Il\~]^2. As-
sume now case (i). We have u,(m,) — u(πiι} and uι(ml — 1) = u(m, + 1), resp.
ul(ml + 1) = u(m, - 1) so that u+(m, - 1) = u+(ml + 1). Therefore t/;

+(m/ -f 1) =

so that \\Φ+(mt)\\ ^ C[ u+(mt)\ ^ C,,
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Step 5. For some C > 0, HΦ^O)!! ^ CmίC\ |2/ι + 1|~1/2, for either sign + or
sign -.

Proof. There exists C such that |p4(«)|| ^ C for all transfer matrices A(n\ for all
E in the spectrum of L. Denote by AΪ the transfer matrix that maps vectors at πii
to vectors at 0. In particular, because c is exactly symmetric on //,

Then also

so that

Step 6. Proof of the theorem.
By Step 5,

I ||Φ(0)|| - 1^(2/11011 1 ^ 11*^0)11 ->0

for suitable choices of + and — as z — » oo. Since | | Φ ( A W / ) | | — > 0 as ml — » oo because
u G /2, it follows that Φ(0) = 0. But then u — 0, contradicting \\u\\ = 1. If// is even
for all / we can put It :— {/w/ - / / , . . . , m / 5 / w / + l , . . . ,m z + // + 1}. Define w/(w) =
w(2mz — w H- 1), at A W / 4- 1/2 reflected vector. We have X2mι-n+\ — xn °

n //•
Step 1 and Step 2 do not change.
In Step 3, the claim stays the same. Note that ^"(ra/) = 0 is no longer true in

general. However, the claim follows from

(even with a factor 2 deleted), which is a consequence of u[ (m^u^ (mi -f 1) =

-M^(/W/ + iχ~(X)

Sίep 4. In case (ii) we take

IIΦ+KOH - ||(t/+K + l),W/

+(m;))|| ^ V2 - (^(m/)! ,

since M / " ( A W / ) = M^"(AW/ + 1). Case (i) with a different C\ follows from w~(m/) —

5. Define ^ by A^(mt) — Φ(0). Because * is symmetric on /,, we have

^^(mJΦK) - ΛΦK + 1) = Φ(2m, + 1) = Φ,(0) .

Together

||Φ±(0)|| = ||Φ(0)±Φ f(0)|| ^ 2C l"'+1 | |Φ±(/ιι/)ll

for either the sign + or the sign -.
Step 6 is the same (replace Φ(2ml) by Φ(2AWj + 1)). Π

Note added in proof. Y. Last and B. Simon have now a proof of a result, which implies the guess

done in Remark 2) Section 6 of this paper.
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