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Abstract: To a trajectory of the billiard in a cube we assign its symbolic trajec-
tory-the sequence of numbers of coordinate planes, to which the faces met by
the trajectory are parallel. The complexity of the trajectory is the number of dif-
ferent words of length n occurring in it. We prove that for generic trajectories the
complexity is well defined and calculate it, confirming the conjecture of Arnoux,
Mauduit, Shiokawa and Tamura [AMST].

0. Introduction

Consider a rectangular billiard in IRS+1, that is the dynamical system defined by
the free motion of the point between collisions with the boundary of the billiard
domain and elastic reflections at the collision instants, with the billiard domain being
a (s + 1 )-dimensional cube with the faces parallel to coordinate planes.

This dynamical system is equivalent to the trivial system with constant velocities
on a torus and is studied in much detail (see [T] for a survey). However, there are
questions still attracting a lot of attention in the literature, such as the question of
the coding of trajectories by listing its consecutive collisions with the boundary.

Specifically, to a trajectory one associates an infinite word in alphabet
<$/ = {0,..., s} as follows: each time the trajectory meets a face of the cube parallel
to the 7th coordinate plane, one writes down j. The resulting infinite word will be
called a symbolic trajectory. In exceptional cases the trajectory meets more than
one face simultaneously, but such cases are not generic and will not be considered.

The resulting symbolic trajectories arise in numerous problems related to number
theory, quasicrystals, computer graphics, etc. These trajectories were abundantly
studied in the two-dimensional case (where they bear also such names as Sturmian
trajectories or Beatty or Wythoff sequences); a sample bibliography can be found
in [B, LP, S]. Although multidimensional generalizations are investigated much less,
one can find quite a lot of results on those in the papers mentioned.

The author was supported by DFG.



44 Yu. Baryshnikov

The complexity of a trajectory is defined as the number of different words of
length n occurring in the associated symbolic trajectory considered as a function
of n. The problem of the determination of the complexity for rectangular billiards
was apparently first studied by M. Morse and G.A. Hedlund in [MH], where it
was completely solved for two-dimensional billiards. They have shown that the
complexity is independent of the trajectory (provided that the coordinate projection
of velocity are rationally incommensurable) and is equal to n + 1.

Of course, the most striking fact here is the independence of the complexity
of a particular trajectory. This independence persists in the three dimensional case,
which was considered by Arnoux, Mauduit, Shiokawa and Tamura [AMST]. They
have shown that the complexity of symbolic trajectories is n2 + n -\- 1, as was con-
jectured by Rauzy in [R]. The authors made their own conjecture concerning the
complexity of the symbolic trajectories in the multidimensional case, based on some
quite mysterious assumption of symmetry in s and n. In fact, their formula follows
immediately from the independence of the trajectory result (see part 5 of the present
paper).

Here we prove their conjecture, giving the general formula for the complexity
of symbolic trajectories associated with rectangular billiards in arbitrary dimension.

The method of the solution is as follows. The set of all subwords of length n
of a symbolic trajectory we call the ^-thesaurus. It is obvious, that if the velocities
are rationally independent, then the thesaurus does not depend on the initial point
of the trajectory (since the system is minimal), that allows us to speak about the
thesaurus of the (generic) velocities vector.

First, we write down explicitly the condition for a word of length n to belong
to the ^-thesaurus of a velocity in terms of consistency of a certain system of lin-
ear equations and inequalities. Further we investigate the change of the ^-thesaurus
when the vector of velocities varies. These changes happen when the inverse veloci-
ties are rationally dependent only, that is when a resonance occurs. If the resonance
is simple, that is there is at most one (up to multiples) vanishing integer combina-
tion of inverse velocities, then we show that there is a one-to-one correspondence
between words leaving the thesaurus and the words coming into the thesaurus when
the resonant value is traversed. That proves that the complexity of the billiard is a
well defined function of n only (that is it takes the same value for all nonresonant
velocities). To finish, we calculate the ^-thesaurus for a special velocity vector,
which yields the main result of the paper:

Theorem. The size of the n-thesaurus of the generic velocities vector (that is such
that both its component are independent over Q and their inverses are) is

n(s'n} ( Λ ί n\
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1. Basic Constructions

Let B c IR5+1 be a rectangular area bounded by the hyperplanes {x, = 0}, {*/ = //},
/ = I9...,s. Without loss of generality, we will take all // = 1 to restrict ourselves
to the unit cube case. The movement of the particle in B is defined as follows: it
moves freely with velocity v = (VQ,...,VS) until it reaches the boundary where it
reflects elastically (that means that if the collision point belongs to the face parallel
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to the /th coordinate plane, then Vj ι— » — i;/). The usual procedure of the first 2Λ + 1-fold
covering of B by the torus and then of the covering of the torus by IR5+1 leads to the
description of the motion of the point as the projection of the free motion in IR^1

with velocity u; the collision instants correspond to the instants of the intersection by
the lifted trajectory of the hyperplanes xt = n, n £ Z. Excluding lower dimensional
cases we can assume that all v} ΦO; without loss of generality, we can even take all
vl > 0. For any j the instants of intersections of trajectories with the hyperplanes
Xj = n form, obviously, an arithmetic progression with the difference a} = (Vj)~l .
Therefore the symbolic trajectory, corresponding to a billiard trajectory with the
given velocity v can be described as follows: we mark points in IR belonging to the
7th progression by j and then read all the marks in their natural order. We assume
that no point is marked simultaneously by more than one number; this is true for
almost all trajectories with given velocity vector (trajectories with the given velocity
are parameterized by their starting point modulo a shift along the trajectory, which
gives the ^-dimensional torus as the space of trajectories; trajectories for which the
corresponding arithmetic progression have common points form a countable union
of (s — 1 )-dimensional tori). Trajectories for which no point is marked by more
than one letter (or, equivalently, which never hits (s - 1 )-dimensional faces of the
cube) will be called generic.

It is more convenient to work with the vector a = (ao,...9as) of inverse veloc-
ities or differences of the arithmetic progressions in question. We will say that a
word q in the alphabet j/ = {0, . . . , s} of length n is α-admissible, if there exists
a generic trajectory with velocities inverse to a, such that q is a sub word of the
length n in its symbolic trajectory (it follows immediately that if the differences
for a/s are Q-independent, then q is a subword of the symbolic trajectory for any
generic trajectory as the system is minimal). The union of all ^-admissible words
of length n is called the ^-thesaurus for a and is denoted as &~(a).

We will represent the presence of q in &~(ά) as some condition on a polyhe-
dron depending on the word and velocities. Introduce the following (3(s +!) + «)-
dimensional space W with coordinates

. , xs x\ , . . . , xn XQ , . . . , xs

(1.1)

The meaning of the coordinates x is the following. To an ft-subword of the
symbolic trajectory n consequent instances correspond when the particle hits the
boundary. The numbers x\9...,xn represent just these instants. The number x~ (x*9

respectively) represents the last moment before x\ (the first after xn) when the
particle hits a face parallel to the /h coordinate plane.

We will often consider W as the direct sum of its 2(s + 1 ) + ^-dimensional
t-part Wx and (s -f 1 )-dimensional α-part Wa\ the projection of W on its a part will
be denoted as pa.

The conditions of precedence mentioned above are encoded by the following
inequalities defining a polyhedral cone C C W\

...,x~) g x\ g X2 ^ ^ xn ^ min(^,. . .,*+) . (1.2)

Now for any word q of length n in the alphabet jtf we define the linear space

W(q) G W as follows: let 77 = {/'(,..., /j7 , } C {!,..., «} be the subsequence of in-

dices in {!,..., ft} for which q, — j. Then the linear subspace W(q) is defined by
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the conditions that the sequences

x, ,
Ί/,l

"v ' "*y'' ' * ' "*y

form arithmetical progressions with the differences a} for j = 0, ...,5-.
A simple count shows that the dimension of W(q) is (2s -f- 2) independently of

q: one can vary the first terms of the arithmetical progressions and their differences
arbitrarily.

Further, we define the convex polyhedral cone

P(q) = CΓ\W(q), (1.3)

and its intersection with the fibers of the projection pa of W on its β-part

p-\a). (1.4)

These polyhedra play in the sequel quite a fundamental role because of the
following.

Lemma 1.5. The word q belongs to the thesaurus ^"(β) exactly when the following
equivalent conditions hold:

1. P(q) has the maximal dimension 2(s + 1) and a point (x,a) G W is interior
in P(q)\

2. P(q,a) has the maximal dimension (s + 1) in the fiber pa

 {(a).

Proof. Let the word q be a part of the symbolic trajectory associated to a generic
trajectory with the vector of inverse velocities a. Let . . . ί_ i , ί0, t\ , . . . be the instances
of collisions. Then, assuming that the word starts, say, at the first term, one can by
setting Xi = tj, i = l,...,n and attaching to x]~(Xj~) the last moment of the appear-
ance of j before t\ (the first moment of occurrence of j after tn) get an interior vector
of P(q) as all the inequalities defining P(q) are in fact strict at the point. That means
that a small vicinity of the point (x,a) (with x = ( X Q , . . . , X ~ , x\,...,xn, X Q , . . . , X + ) )
in W(q) belongs to P(q\ and the projection of the vicinity to Wa is open there,
that proves 1.

Assertion 2 follows immediately from 1.
Assume 2. It implies that there exists a point (x,a) G P(q,a) such that all the

inequalities defining P(q) are strictly satisfied. Having such a vector x one easily
constructs a piece of trajectory with differences a which has the word q as a part of
its symbolic trajectory. Extending the trajectory to both sides (which can be done
unambiguously) and disturbing a little the arithmetical progressions to avoid multiple
points in their union - that always can be done as the fact that the considered point
is interior in P(q,a) means that they are different and small distortion do not change
their order - gives the desired generic trajectory.

The following statement generalizes Corollary 4 of [LP]:

Corollary 1.6. If a word q belongs to the thesaurus &~(a\ then the reversed word
qm also belongs to it.

Proof. The mapping

takes a point in P(q,a) into a point in P(qm,a).
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2. Changes of Thesaurus, Flows in Graphs and Linear Programming

Now we are going to study the changes of the thesaurus when a varies in some
way. Our goal will be to establish the constancy of the thesaurus size. To prove
it we join two arbitrary vectors of generic inverse velocities a\9d2 by the segment
/ and consider its preimage under pa in W. The intersection of the preimage with
any of the cones P(q) is a convex polyhedron P/(q) again, and Lemma 1.5 implies
that the changes of the thesaurus occur exactly in those points of / where some of
the polyhedra P(q,a) lose their full dimension. Such points we will call critical.

The totality of all polyhedra P(q) (where q are words of length n) is finite, and
each of these polyhedra has a finite number of faces, so the set of the critical points
in / is finite. Choose one such point a* and two neighboring points <z/,<z0, between
which no further critical point besides α* occurs. That implies that the thesaurus
before a* is that at α/ and the thesaurus after a* is that in a0. Choose a linear
function / on the Wa such that /(«/) < I(a0\ and lift it to the whole W.

Lemma 2.1. The word q belongs to 3~(a^) - &~(a0) if and only if P/(q) has max-
imal dimension 5 + 2 and I reaches its maximal value over Pj(q) on P(q,a*)-a
face ofP(q)ι.

Proof. The fact that q G ̂ ~(α/ ) means by Lemma 1.5 that P(q,a) has the dimension
5 + 1 for all a G / between α/ and α*, thus the dimension of P/(q) is 5 + 2. If
for certain a between a* and a0 the polyhedron P(q9a) were nonempty, then the
polyhedron P/(q) would contain the cone spanned by a point in P(q,a) and P ( q 9 a j )
and for any a' between a* and a the fiber P(q,a') would have full dimension 5+1,
so that the word q would belong (by Lemma 1.5) to 3Γ(a') and also to &~(a0).
Therefore all the sections P(q,a) are empty for a after α* and the maximum of /
is attained on P(q,a*}.

Inversely, if the maximum of / is attained on P(q9 a*), then all the polyhedra
P(q,a) for a after a* are empty. Further, if the dimension of P/(q) is s + 2, then
some of the fibers P(q,a) have the dimension s + 1 and thus all of them before α*,
as P(q,a*) is nonempty.

To investigate implications of the criticality of a point we introduce a graph and
a flow on it. The vertices of the graph correspond to x-coordinates in W and the
edges to constraints defining the polyhedra P(q).

Let q be a word in j/ of length n. The graph Γ(q) has 2(5 + 1) + n vertices
υ~9...9υ~'9 v\9...9vn'9 v+9...9v+. The (oriented) edges of Γ(q) are of two types:
first, independent of q, are following: connecting each vy9j = Q9...9stov\; v\ to

V29 V2 to v $9...9υn_\ to vn and vn to each of Vj~9j = 0,...,5. This ^-independent
part is a tree and will be denoted as Γ; the edges of this tree will be referred to as
m-edges. The edges of second type are q specific and connect vj~ to v./ this latter

one to v.j and so on until v.f . This last vertex is connected to i t. (Recall that
< 2 'Ί/,1

Ij = ( / 1 , . , . , / ι / j ) is the subset of {!,...,«} consisting of indices / such that qt =7;

if the subset is empty v~ is connected directly to i t.) We will call them /-edges
and will mark them by the corresponding letters of s$.

The edges of the graph Γ(q) correspond to constraints defining the polyhedron
P(q)9 m-edges corresponding to inequalities defining the cone C and /-edges to
equalities defining W(q).
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Recall, that a closed flow in an oriented graph is a function on its edges such
that the Kirchhoίfs current law is satisfied: for any vertex the sum of all flows
(values of the function) over the m-edges is equal to that over all owί-edges.

Recall also some basic facts from the linear programming theory which will be
used in the proof of the following proposition (see, e.g. [FF]):

Fact. A. Let P be a polyhedron in IR5 defined by a system of linear equations
and inequalities

<K ^ 0; φβ = 0 ,

α = I,...,A; / ? = ! , . . . , B φ's and ψ's-linear ίnhomogeneous functions. Assume
that the maximum of a linear function I is attained on a face F of the polyhedron,
and y is a relatively interior point of the face. Then there exists a linear combi-
nation ("whose coefficients are called Lagrange multipliers) of the linear functions
constraining the polyhedron (i.e. ψ's and φ's), with nonnegative coefficients ofψ's,
whose sum with I is a constant. Moreover, the linear combination can be chosen
in such a way, that the coefficient for ψ^ is positive exactly when ψ^y) = 0 (LP
duality).

B. Inversely, if a linear combination of the constraining function with non-
negative coefficients for the linear functions entering inequalities defining P plus I
is constant, and all the constraining functions with nonzero coefficients vanish at
y G Λ then I achieves its maximum over P at y.

Proposition 2.2. Let a* be critical and the word q either vanishes from the the-
saurus or appears there when a varies through I. Then there exists a non-zero
closed flow on Γ(q\ and if x is a relatively interior point of P(q,a*\ then m-edges
in the support of the flow correspond exactly to those inequalities which becomes
equalities on x and the flow through any of these m-edges is positive.

Proof. Choose Lagrange multipliers

my ^ 0 for x\-x~ ^ 0 ,

πii ^ 0 for xi+\ — xl ^ 0 ,

m+ ^ 0 for jc/ -xn ^ 0 (2.3)

for inequalities defining cone C.
The constraints, defining the linear subspace W(q) are either

Xi - x~ — aj — 0, or jc/ - x^ — a} — 0, or x* — jt, — α/ = 0 ,

and we attach Lagrange multipliers /~,/ M / and /* to them respectively. Thus to
each constraint and, consequently, to each edge of Γ(q) a Lagrange multiplier is
associated.

We will need one more set of multipliers for the constraints forcing a to belong
to the line through at,a0. (Notice that there is no need to introduce multipliers for
dj ^ 0 as the inverse velocities are positive by assumption.)

So, according to the Fact of the linear programming theory (as stated above),
if a* is critical, and (x,α*) is an interior point of P(q,a*\ we can choose a set of
coefficients (Lagrange multipliers), such that the resulting linear combination plus
/ is constant.

Consider now these multipliers as defining a flow Φ on Γ(q\ Indeed, to each of
them corresponds a unique edge in the graph, so that the jc-part of the corresponding
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function is the difference of the x's at the ends of the edge. The equality of the linear
combination to — / plus a constant means exactly that the defined flow is closed:
the coefficient for any of the c's is the algebraic sum of flows to the corresponding
vertex, and / does not depend on the c's (in other words, the Lagrange multipliers
define a closed 1-cocycle on Γ(q)).

The statement about w-edges in the support of the flow is tantamount to the LP
duality.

A cycle in a graph is called simple if it passes through any edge at most once. A
simple (non-oriented) cycle in the oriented graph Γ(q) is said to be subordinated to
the flow Φ, if the only w-edges it contains are from the support of Φ and it traverses
those ra-edges in accordance with their orientation. To any simple cycle a closed
flow corresponds; it takes a constant (positive) value on all edges of the cycle. Such
closed flows will also be called simple and subordinated if the underlying cycle is.

Simple subordinated cycles are important as they generate bounded resonances
at a*. A resonance is a vanishing linear integer combination of ay's. A resonance
will be called bounded if the sum of absolute values of its coefficients does not
exceed the number of edges in Γ(q).

Lemma 2.4. Let a* be critical, x be an interior point in P(q,a*) and Φ be a
closed flow defined by the Lagrange multipliers at x. Then to any simple cycle
subordinated to Φ a bounded resonance at a* corresponds.

Proof. Any edge of the cycle corresponds either to equality *7 - xtι - a} = 0, or to
equality of one of the following formats:

x~ — x\ = 0 or jc/+ι — Xι = 0 or x~ ~ — xn = 0

(the w-edges are in the cycle if the corresponding Lagrange multiplier is positive
only, which makes them equalities). Summing up all of them we obtain a bounded
resonance at a*.

Lemma 2.5. For any closed flow Φ subordinated cycles exist. Moreover, any closed
flow can be decomposed into a positive linear combination of simple subordinated
flows.

Proof. Reverse the orientations of all /-edges with negative flow, so that the flow
through any edge is nonnegative. A subordinated cycle can be then found by the
following algorithm: pick any edge in the support of the flow and go along the
arrow. In the reached vertex choose a new adjoining edge along which the movement
according to its orientation is possible - such an edge always exists since the flow
is closed. Iterating we will reach a vertex already seen at a stage, thus getting a
subordinate cycle. To prove the decomposition part of the lemma, define the closed
flow on this chosen cycle by assigning to each edge in it the minimal flow of the
edges gone through. Subtracting the resulting closed flow from the initial one we
will obtain a flow with a smaller support. Iterating finishes the proof.

3. Simple Resonances

We say that the critical point α* is simple if all bounded resonances at the point
are integer multiples of a single resonance n a* = 0. The condition of simplicity
strongly restricts the structure of possible simple cycles subordinated to the flows
associated with the critical point a*. In fact one can prove that the support of such




