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Abstract: A new inversion formula for the Laplace transformation of tempered
distributions with supports in the closed positive semiaxis is obtained. The inverse
Laplace transform of a tempered distribution is defined by means of a limit of a
special distribution constructed from this distribution. The weak spectral condition
on the Euclidean Green’s functions implies that some of the limits needed for the
inversion formula exist for any Euclidean Green’s function with an even number of
variables. We then prove that the initial Osterwalder—Schrader axioms [1] and the
weak spectral condition are equivalent with the Wightman axioms.

1. Introduction

In 1973 K. Osterwalder and R. Schrader [1] claimed to have found necessary
and sufficient conditions under which Euclidean Green’s functions have analytic
continuations whose boundary values define a unique set of Wightman distribu-
tions. The principal idea of the Osterwalder—Schrader paper [1] was to consider the
Euclidean Green’s functions to be distributions. Usually the Euclidean Green’s func-
tions were considered to be the analytic functions. Later R. Schrader [2] found a
counter-example for a central lemma of the paper [1]. In 1975 K. Osterwalder
and R. Schrader proposed an additional “linear growth condition” under which
Euclidean Green’s functions, satisfying the Osterwalder—Schrader axioms [1], define
the Wightman theory. But these new extended axioms for the Euclidean Green’s
functions may not be equivalent with the Wightman axioms. It is possible to restore
the equivalence theorem by adding the new condition [2] that the Euclidean Green’s
functions are Laplace transforms of the tempered distributions with supports in the
positive semiaxis with respect to the time variables. The equivalence theorem then
becomes trivial [2]. This new condition contradicts the main Osterwalder—Schrader
idea to consider the Euclidean Green’s functions to be distributions and it is not

* The research described in this publication was made possible in part by Grant No. 93-011-147
from the Russian Foundation for Basic Research
** e-mail: zinoviev@class.mian.su



2 Yu. M. Zinoviev

suitable for applications because it seems difficult to check these conditions. This
paper is an attempt to understand the mathematical foundation of the Osterwalder—
Schrader results. Our aim is to find the additional suitable condition which allows to
prove that the extended Osterwalder—Schrader axioms thus obtained are then indeed
equivalent with the Wightman axioms.

One of the Osterwalder—Schrader axioms is the positivity condition. If we con-
sider the simplest case and neglect the space variables we can write the positivity
condition in the form

Ta’t jode(tJrs)Wqﬁ(s) > 0. (1.1)
0 0

Due to [3, Lemma A] the positivity condition (1.1) for the distribution f(¢) €
D'(R,), where R, is the open positive semiaxis, implies the condition in R,

m+n
zaman‘;t—m+ﬁf(t) >0, (12)

for all finite sequences of the complex numbers a,. Corollary C from [3] implies
that the distribution f(¢) € D'(Ry), satisfying the condition (1.2) for all terminat-
ing sequences of complex numbers a,,, is the restriction to the semiaxis of a func-
tion A(x + iy) analytic in the tube R, + iR. To explain the difficulties which one
encounters in this way in proving the Osterwalder—Schrader theorem we cite here
an extract from the remarkable paper [3]: “The Euclidean Green’s functions satis-
fying the Osterwalder—Schrader postulates can be shown to be restrictions of the
functions analytic in the whole Wightman causal domain and to satisfy the positiv-
ity condition there in a sense to be presently explained. The author has, however,
not been able to show the tempered growth of those analytic functions near the
real Minkowski space boundary and believes at present that this is impossible to
achieve without further assumptions on the growth properties of Schwinger func-
tions s, with respect to the index n. This is suggested by the fact that in order to
reach the real Minkowski space by analytic completion for a given s, an infinite
number of steps are required, each of which involves the other functions s, via the
Schwartz inequality with higher and higher values of m.” Our way of proving the
equivalence theorem doesn’t use the condition that the Euclidean Green’s functions
are analytic functions. Following the Osterwalder—Schrader idea we consider the
Euclidean Green’s functions to be distributions.

S. Bernstein [4] called a function exponentially convex if it satisfies the posi-
tivity condition (1.1). We shall prove that a tempered distribution f(¢) € S'(Ry) is
exponentially convex iff the tempered distribution g(¢) = f(—t) € S’(R_) is abso-

lutely monotonic, i.e. if
m

d
() z 0 (1.3)

holds for all m = 0, 1,.... The following counter-example f(¢z) = exp{¢} shows that
this theorem is wrong for distributions in D'(Ry). In [4] S. Bernstein also studied
the absolutely monotonic functions. It is natural to try to generalize the Bernstein
result. We shall prove that if for a distribution f(¢) € D'(R,.) the distribution g(¢) =
f(—t) € D'(R_) is absolutely monotonic then

1) = :foe—’s du(s) . (14)



Equivalence of Euclidean and Wightman Field Theories 3

where the positive measure u(s) has tempered growth. The measure u(s) explicitly
depends on the distribution f(¢). It is the sum of two limits of the special distribu-
tions constructed from the distribution f(¢z). By using the generalized Bernstein the-
orem it is possible to obtain a new inversion formula for the Laplace transformation
of tempered distributions with supports in the closed positive semiaxis. Our weak
spectral condition on the Euclidean Green’s functions requires that some of the lim-
its needed for the inversion formula exist for any Euclidean Green’s function with
even number of variables. We shall prove that the initial Osterwalder—Schrader ax-
ioms [1] and the weak spectral condition are equivalent with the Wightman axioms.
A new result may be derived immediately from the revised Osterwalder—Schrader
theorem. The Wightman axioms are equivalent to the initial Osterwalder—Schrader
axioms [1] and one half of the continuity condition [2], namely the condition that
any Euclidean Green’s function with an even number of variables is a Laplace trans-
form of a tempered distribution with support in the positive semiaxis with respect
to the time variables.

In the next section we study absolutely monotonic distributions and prove a
generalization of the Bernstein theorem [4]. We then obtain a new inversion for-
mula for the Laplace transformation of the tempered distributions with supports
in the closed positive semiaxis. The third section is devoted to a study of ex-
ponentially convex tempered distributions and tempered distributions satisfying the
Osterwalder—Schrader positivity condition which includes the space variables. In the
fourth section the revised Osterwalder—Schrader theorem is proved.

2. Absolutely Monotonic Distributions

Let D(R,) denote the subspace of D(R) of functions with support in the positive
semiaxis Ry = [0,00), given the induced topology. Similarly D(R_) denotes the
subspace of D(R) of functions with support in the negative semiaxis R_ = (—o0, 0],
given the induced topology. If the function ¢(x) is in D(R_) then the function
¢(—x) is in D(R ).

Since the topology of the space D(R..) is induced by the topology of the space
D(R) for a given distribution f € D'(R,) there exists a natural number N such
that the estimate

d*¢

dxk

I(fsP) =C  sup 2.1)

xR}, 0<k<N

holds for every function ¢(x) € D(R) with support in the interval [0, 1]. Using the
estimate (2.1) and the identity

d* Ny Mkt | T N, — d 22
SO aen = T (M=) oo @2)

j=1

for a natural number £ it is easy to show that for any integer N = N the inequality

k
(x5 ) coen

holds for every function ¢(x) € D(R) with support in the interval [0,1]. We de-
note by N(f) the minimal integer N; such that the distribution x¥1 f(x) € D'(R})

M f(x), pO))| = €1 sup (2.3)

xERL,05k<N
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satisfies an inequality of type (2.3) for every function ¢(x) € D(R) with support in
the interval [0, 1]. Inequality (2.3) implies the inequality

N(f)zN (x%> (24)
dx

for any distribution f(x) € D'(R}).
Let O(x) denote the Heaviside step function.

Lemma 2.1. For every distribution f(x) € D'(Ry), for any function ¢(x) € D(R)
and for every integer N = N(f) the limit

lim (£ (x), 000) exp{—ox~'}p(x) (25)

defines an extension [x" f1(x) € D'(R) with support in the positive semiaxis R,.
Proof. Lemma 2.1 follows from the estimate (2.3) and [5, equality (14)].

The distribution f(x) € D'(R_) is said to be absolutely monotonic if for all
natural numbers m = 0, 1,... the distribution Zx”{ (x) is positive.

If a function ¢(x) € D(R) then for sufficiently large positive ¢ depending on
supp ¢ the function ¢(x + ¢) € D'(R_).

Lemma 2.2. Let the distribution f(x) € D'(R_) be absolutely monotonic. There
exists a number Lo_l[f] such that for any function ¢p(x) € D(R),

lim (/@96 ~0) = L' [/] [ (), 26)
k

lim #* (Q(x), Px — t)) =0, k=12,.... 2.7)
t——00 dx

Then the distribution (—x)~' f(x) is well defined as an element of D'(R_) and is
also absolutely monotonic. Furthermore one has L (=)' f(x)] = 0.

Proof. Let the function ¢(x) € D(R) be nonnegative and with support in the interval
[a,b]. The function f(z;¢) = (f(x), p(x — t)) is defined on the semiaxis (—oo0, —a].
It is infinitely differentiable. Since the distribution f(x) is absolutely monotonic the
nonnegativity of the function ¢(x) implies

%f(t;d)): <f1:{(x),¢(x—z)> >0, n=0,1,.... (2.8)

Hence for every n = 1,2,... we get

12 gn

dn g
il (9) =20 '[fd—ynf(y;dﬁdy

n

dn—l d —1
dy"'l S ) =2 — Ff(t; P, (2.9)

< 26! [
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where 1 < min(0, —a). Due to the inequalities (2.8) the function f(; ¢) is nonneg-
ative and non-decreasing on the semiaxis (—oo, —a]. Therefore the limit (2.6) exists.
Then it follows from the inequality (2.9) for n = 1 that the limit (2.7) equals zero
for £ = 1. Using induction and inequality (2.9) it is easy to prove the equalities
(2.7) for k = 1,2,... and for any nonnegative function ¢(x) € D(R).

Let ¢p(x) € D(R) be real and set M(¢p) = sup, cg|P(x)|. Let h(x) € D(R) be a
nonnegative function equal to one on the support of the function ¢(x). The function
¢(x) is the difference of the nonnegative functions 1/2(M(¢)h(x) £ ¢(x)). This
decomposition implies the equalities (2.7) for the function ¢(x) since the equalities
(2.7) are valid for nonnegative functions from D(R). The claim (2.7) for arbitrary
¢(x) € D(R) follows by considering the real and imaginary part of ¢(x) separately.

Consider a nonnegative function A(x) € D(R) whose integral is equal to one.
Then any function ¢(x) € D(R) may be rewritten as

o0 d
B = h) | 601y + 0., (2.10)

where Y(x) € D(R). The limit (2.6) exists for any nonnegative function from
D(R). Hence the decomposition (2.10) and the equality (2.7) for £ = 1 imply the
equality (2.6).

If the distribution f(x) € D'(R_) is absolutely monotonic the distribution (—x)~"
f(x) € D'(R_) is also absolutely monotonic. It follows from the relations (2.6)
for the distributions f(x) and (—x)~' f(x) combined with the identity (—x)~'t =
—(=x)""(x —1t)— 1 that

lim_ (=) £, bl — 1)

o0

= 13107 @) [ xdd - 15" [ deodx. @)

On the other hand since the limit (2.6) for the distribution (—x)~'f(x) exists the
limit (2.11) may only exist when the constant Ly (=)' f(x)] equals zero. This
concludes the proof of Lemma 2.2.

For a function ¢(x) € D(R) and k£ = 1,2,... we introduce the function
P = —((k = DY [ (x = p) T Py)dy (2.12)

and for k = 0 we define ¢®(x) = ¢(x). The infinitely differentiable function (2.12)
equals zero on the positive semiaxis whenever ¢(x) € D(R_). Our notation is rea-
sonable since d"—):,qﬁ("")(x) = U= (x) for [ < k.

Consider a nonnegative function A(x) € D(R) with the integral equal one and
having support in the positive semiaxis. For every T < 0 we introduce the infinitely
differentiable function with compact support

x—=T
hr(x) = [ h(y)dy. (2.13)
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Lemma 2.3. Let the distribution f(x) € D'(R_) be absolutely monotonic. Then
for any function ¢p(x) € D(R_) and for any integer k = 1,2,...,

dk 0o
im (—1) (d—ju),hr(xw(—"’(x)) =(f(0).6() ~ Lg'[f1 | dx)dx, (2.14)

where the constant Ly '[f] is given by the equality (2.6).

Proof. For any integer k = 1,2,... the definitions (2.12) and (2.13) imply the fol-
lowing relation

k—1

dk d
(Ec%(x),hr(xw‘-“(x)) =- <Wf<x),hrm¢("“("))

dxk—1

k—
- (d S (x),(h(x—T)—h(x))cp““(x)) . @15)

Due to the definitions the supports of the functions h(x) and ¢(~¥)(x) are dis-
joint. Hence we have A(x)¢p(~F(x) = 0. Applying the equality (2.15) k times we
get

dk
(-1 (Eé(x),hr(x)w—’”(x))

k=1 drf o
= (f(x), hr(x)p(x)) + ZO(—I)” <d—(X),h(x—T)¢( p )(X)) . (2.16)
p:

xP

Since the functions /4(x) and ¢(x) have compact support, for sufficiently large mod-
ulus of the negative number 7" we obtain

h(x—T)_f x=»)""'o(n)dy =0, (2.17)

where the integer p = 1,2,.... It follows from the relations (2.6),(2.7),(2.12) and
(2.17) that

k=l arf _ oo
lim 3 (=1)? (-——(x),h(x— T)qs(—p—”(x)) =-Ly'[f] [ é(x)dx, (2.18)
T——o00 =0 dxP N

where the constant Lj '[f] is given by the equality (2.6).

The definition (2.13) implies that the function Ar(x) is equal to one on the
support of the function ¢(x) € D(R_) for the sufficiently large modulus of the
negative number 7T, since the integral of the function A(x) € D(R;) is equal to
one. Now equality (2.14) is a consequence of the equalities (2.16) and (2.18)
concluding the proof of Lemma 2.3.
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For a distribution f(x) € D'(R_) we define a functional on the Schwartz space
S(R) by the following relation:

(L' 1xn,T), $(x)) = (f (), L [p)(—x5m, T)

n+lf |
= (n) ™' ((=x)" ZoriT &) O(=x)hr(x)p(—nx"")), (2.19)

where 7 is a positive integer and the function Ar(x) is given by relation (2.13). It
is easy to show that the tempered distribution L '[f](—x;n,T) € S'(R) is positive
and its support is contained in the positive semiaxis.

Proposition 2.4. Let the distribution f(x) € D'(R_) be absolutely monotonic. Then
in the topological space S'(R) the limit

Jim tim L7'[f)(=x;n,T) = L' [f1(-x) (2.20)

exists. The tempered distribution L7'[f](—x) € S'(R) is positive and its support
is in the positive semiaxis.

Proof. Let us multiply and divide the function ¢(x) on the right-hand side of the
equalities (2.19) by the same polynomial (1 + x)V

(LI'fU=x;n,T), Pp(x)) = (n')_'fdx(_x)n+N(f)+ldn+1f(x)
‘ o ’ ’ dxn+l

N
x (—x)N N1 x)hr(x)(—%l) Pp(—nx""y, (221)

where we recall that N( /) is the minimal integer N; such that the inequality (2.3)
is satisfied. The relation (2.2) for Ny = 1 implies

: : n d d
(ap ML ) e (H (le,;Jrl—j)) T ).

Due to the inequality (2.4) and Lemma 2.1 the positive distribution (2.22) from
D'(R_) is extended to a positive distribution from D’(R) with support in the
negative semiaxis. This extension is defined by the limit analogous to the limit
(2.5).

For sufficiently large positive integer n the function (—x)¥="¥U)=1 hy(x)(n —
x)~V is infinitely differentiable for N > N(f). It is positive on the negative semi-
axis. Now the positivity of the extension of the distribution (2.22) implies the
following estimate for the integral (2.21):

(L' U=x3n,T), p(x))| < Cn,r(N)sglg(l +x)V[px)] . (2.23)
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Here the constant C, 7(N) depending on f is given as

,,T(N)_(nv)-' lim JJdx(= —x) VU ”'i]i;{ (x)
x O(=x)exp{anx™ }(=x)V N hr(x)(n — x)7V
= 1in+10(L;1[ F1(=x;n,T), exp{—ax}(1 +x)~") (2.24)

and N > N(f). We denote by |- |y the norm on the right-hand side of the
inequality (2.23). We define Hy to be the Banach space completion of the space
S(R) with respect to this norm. Due to the inequality (2.23) for N = N(f) + 1 the
tempered distribution L '[f](—x;n,T) € S’(R) is continued to the linear continuous
functional L '[f](—x;n, T)° on the Banach space Hy(sy+1. Now the relation (2.24)
may be rewritten as C,7(N) = (L7'[f1(—x;n, T),(1 +x)™"), where N > N(f).
Let us assume for a moment that for any integer N > N(f') the limit
lim lim C,r(N) (2.25)
n—o0 T——00
exists and is finite. This assumption and the inequality (2.23) for N = N(f) + 1
imply that the family of linear continuous functionals L '[ f](—x;n, T )¢ parametrized
by n and T on the Banach space Hy(s)+1 is uniformly bounded. In view of rela-
tion (2.24) the existence of the limit (2.25) is equivalent to the convergence of
the sequence {LI'[f](—x;n,T)°} on every function (1+x)"" € Hy(sy+1, where
N > N(f). We claim that this set is dense in the Banach space Hy(s)4+i. Then
by the Banach—Steinhaus theorem [6, Sect.3.7] the sequence of linear continuous
functionals L '[f](—x;n,T)° on the Banach space Hy(s)+1 weakly converges to
the linear continuous functional on Hy(ry41. Therefore the sequence of tempered
distributions L '[f](—x;n,T) € S'(R) weakly converges to a tempered distribu-
tion in S’(R). Hence due to [6, Sect.3.7] the sequence of tempered distributions
L7'[f1(—x;n,T) converges in topology of the space S’(R). Now it follows that the
tempered distribution L '[f](—x) = L7 '[f1(—x; 00, —o0) € S'(R) is positive and
its support is in the positive semiaxis since these properties are stable under limits.
Let us first prove that the set of the functions (1 4 x) N =%=1 %k =0,1,...,
is dense in the Banach space Hy(s)+1. For any function ¢(x) € S(R) the func-
tion ¢(¢) = P(tan? t)(cos r)~2N+1) is continuous on the open interval (—7/2,7/2).
Since ¢(x) € S(R) the function (,b(t) may be extended to a continuous function
on the closed interval [—m/2,7/2] by setting g{)( n/2) = gb(rc/2) = 0. Hence the
Weierstrass theorem implies that d)(t) may be approximated by a trigonometric
polynomial Y b,, exp{2mit} on the closed interval [—/2,7/2]. Since the function
qg(t) is even it may be approximated by a trigonometric polynomial > b,, cos 2mi.
The function cos2mt is the polynomial of the variable cos’t. Therefore for every
positive ¢ there exists a polynomial 3 a,, cos?” ¢ such that the modulus of the func-
tion (Z)(t) — > ancos®™t on the closed interval [—n/2,7/2] is less than & Due to
the relation cos®” ¢t = (1 + tan?#)™" this implies that

sup(1 4+ )V h(x) — S apn(1 +x)™ND=m=1 < ¢, (2.26)

x=20

Thus the set of functions (14 x)"V/)=%=1 k =0,1,..., is dense in the Banach
space Hy(s)+1, since the space S(R) is dense.
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At last let us prove the existence of the limit (2.25) for every integer N > N(f).
Since by assumption A(x) € D(R, ) for sufficiently large modulus of the negative
number 7 we have A(x — T) € D(R_). Using the definition (2.13), the identity
(2.2), the estimate (2.3) and in analogy to the derivation (2.15) we can rewrite the
expression (2.24) for sufficiently large modulus of the negative number 7T in the
following form:

n—1
Cur ) = Byr (W) = ()™ & (=1

X ka(x) h(x — T) (x"+N(x—n)'N) (2.27)
dxn—k > dx k > .

where the constant

B,7(N)= lim (d—f(x), O(—x) exp{ox ™" }hr(x) g n(—x"" )) (2.28)
a—+0 \ dx
and the function
dn
Znn(x) = ()~ i Y =)y (229)

It follows from the identity (2.2) that

—ndk n+N —N k . d
W(x (x—n)y")= H(""’l—]—y@)

J=1

(T4 ») ™Mt - (230)

Now it is easy to show that the expression (2.30) is bounded on the closed negative
semiaxis. Hence the absolutely monotonicity of the distribution f(x) € D'(R_) and
the relations (2.7), (2.27) imply that

”Af n+N —N
lim ‘(d,,A(HMX s A(x (x—m) ))1

(dn k . /\)
C 11m (x),h(x — T)(—x)

dxn— k
=k (n—k)!
— R A l T m
C O ik —myl rm (=T)
P, L /‘f
(d —(x),h(x = T)(T — x)”_k_”'> =0, (2.31)
im Cor(N) = lim B, 7(N). (2.32)

Let us prove that the numbers B, r(N) for N > N(f) form a Cauchy sequence
when n — 00,7 — —oo. In view of the equality (2.32) it implies the existence of
the limit (2.25). If T, < T}, then for the sufficiently large modulus of the negative
number 77 the nonnegative function /Ar,(x) — hr,(x) € D(R_) and by the positiv-
ity of the distribution Z—i(x) € D'(R_) the relation (2.28) implies the following
estimate: '

1Brr,(N) = B (N)| = (f(x),h(x = T1) — h(x = T2)) sup v @l (2.33)
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In virtue of relation (2.6) the first multiplier in the right-hand side of the inequality
(2.33) converges to zero when 7,7, — —oo. Due to the positivity of the distribu-

tion ‘j,—)’:(x) € D'(R_) we find from the relation (2.28),

[Brp 1(N) = By 1 (V)] < Jim (%m, O(—x) exp{or™ ' Phr(o)(1 —x~" )—”‘”-')

x sup(1 + )Yy v(x) = g v (X)) - (2.34)

x=0

We denote the first factor on the right-hand side of the inequality (2.34) by A(T).
The numbers A(7T) form a Cauchy sequence when T — —oo and consequently the
numbers A(T") are uniformly bounded on the negative semiaxis. The proof of this is
exactly analogous to that of the inequality (2.33). If we can prove that the functions
(2.29) converge in norm | - |y(/)+1 to the function

—1

Yoow@) = (N — D)~ [ e dr (235)
0

when n — o0, then the inequalities (2.33) and (2.34) show that the numbers B, 7(N)
form a Cauchy sequence when n — oo, T — —o0.
By the definition (2.29) we get

_ (4N il (L)
) = e 2 Y e ar Nk

—1 —1
(n+N)X @ th) N—1 N
= ATy NN = m Y (2.36)
AVuI(N — 1)! ¢

The inequality ¥ ~'e™" < x~V~1¢=2 holds on the interval [(n~' + x)~',x~'], where
x,n > 0. It implies the following estimate:

-1

X
sup (1+x)VUHL [ N=lemtgy < p= 1N (2.37)

1=x<o0 (n=T4x)—!

Here we use the inequality (1 +x)YU)+1x=N=1 < 2¥U)+! yalid on the semi-
axis [1,00) for N = N(f). The maximal value of the function t"*'e™ on the
positive semiaxis is equal to ((N + 1)e™')"*!. Hence by using the inequality
(1 4+ x)VOHL < N+ for 0 < x < 1 we obtain

—1

. X .
sup (1+x)VUHE [ Nolemtgr < p=2VDH((N 4+ eV (2.38)

0<x<l1 (1= )1

For any positive number x and for a natural number n > 0 we have the
estimate (n~' +x)~! < n. Then the equalities (2.35), (2.36) and the estimate (2.38)
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imply that
1 N(f)+1 nn!
0;1;1;( +x) Yoo, N(X) — mxn,wm

< 2V (N - D)™ [n_'((N—f— De™ YW 4 [ 1+ 52 ds
0

x sup (1+H)V e —(1 - m—')';] , (2.39)
0<i1<o0

where the function x| is equal to x" for x = 0 and it is equal to zero otherwise.

It follows from the equalities (2.35), (2.36) and the estimate (2.37) for N > N(f)

that

RNt n"n!
l;;lfoo( +x) Xoo,N(X) — an,N(x)
< 2VOOH(N = 1Yy ! [n_l+N_' sup |e_’—(1—tn"')1|} . (2.40)
0=t<o0

For any natural number n > 1 the function x| is differentiable everywhere. The
maximal value of the function exp{—¢} — (1 —m~')" on the positive semiaxis is
at the point aq satisfying the equation exp{—ao} = (1 —aon~")""". This equation
implies

sup e —(1—tmn ") | =[e™® — (1 —apn™ V| = n"'age™ < (ne)™".
0st<oo
(241)
For natural numbers k and n > 1 the maximal value of the function #¥(e™" — (1 —

tn~')") on the positive semiaxis is at the point a satisfying the following equation:

kai "' (e™ — (1 —aqun™" Y1) = af(e™ — (1 —an™ ") ") (2.42)
If ay < k+ 1 the inequality (2.41) implies the estimate
sup tle™ — (1 —m™ ") | < (k+ 1)f(ne)™". (2.43)
0<i<oo

If @y = k+ 1 by using the identity (2.42) we get

sup e —(1—m "Y' | =07 (1 +n""k)ay — k) afPem%
0=1<o0

< n '@ e % < nT N ((k+2)e7 ). (2.44)

In order to get the first inequality in (2.44) we used the inequality (1 + n~'k)a; —
k > 1 valid for a; = k + 1. If in addition one uses the fact that

nn!
lim ——— =1,
n—oo (n+ N)!
it follows from the estimates (2.39), (2.40), (2.41), (2.43) and (2.44) that the

functions (2.36) converge in norm | - |y(s)41 to the function (2.35). Therefore
Proposition 2.4 is proved.
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By the definitions (2.19) and (2.20) the tempered distribution L7 '[f](—x) €
S’(R) is positive and its support is contained in the positive semiaxis. Now
Theorem 2 from [7, Chapter 2, Sect.2.2] implies that a positive tempered distri-
bution is given by a positive measure. This positive measure has tempered growth
and its support is in the positive semiaxis.

Theorem 2.5. For any absolutely monotonic distribution f(x) € D'(R_) the fol-
lowing representation

() () = L[/ _70 $(x) dx +_T LS p)dp [ e rydx  (245)

is valid for any function ¢(x) € D(R_). Here the positive number Ly /1 is given
by the relation (2.6), the positive measure L7'[ f1(— p) with tempered growth and
support in the positive semiaxis is defined by the relations (2.19), (2.20).

Proof. Let the distribution f(x) € D'(R_) be absolutely monotonic. Then in view
of Lemma 2.3 the relation (2.14) holds for any function ¢(x) € D(R_) and for any
integer k = n+ 1, where n is a natural number. Note that

n+1
(=1 ! (d n+{(x) hr(x)p="" l)(x))

dn+lf
= (1)~ ((—x)” o (AL [§)(—nx ! )) (2.46)
with
0
L@)x) = [ (14+n""xp)'dp(y)dy . (2.47)

—nx—!

Here we have taken into account that the function ¢(x) has support in the negative
semiaxis.

Due to the inequality (2.23) for N = N(f) + 1 the tempered distribution L. '[ 1]
(—x;n, T'), defined by the equality (2.19), may be continued to a linear continuous
functional L '[f](—x;n, T)° on the Banach Hy()+1. Let us prove that the function
(2.47) converges as n — oo in norm | + |y(s)+1 to the Laplace transform of the
function ¢(—x). It is straightforward to show that

0
[ by dy — Lul)x)

N(f)+1

f lg()ldy sup (1+x)NDH e — (14 n~lxp)|.  (248)

0sx<oo

The right-hand side of the inequality (2.48) is majorized by the sum

NOFE (N(f) + 1)
=0 KIN(f)+1-

ol f 1ol dy sup et = (14 a7l (249)
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Due to the estimates (2.43), (2.44) the sum (2.49) converges to zero as n — oo.
Thus we have proved that the right-hand side of the equality (2.46) converges to

0
LI'fN=x), [ eVdp(y)dy). (2.50)

Now the relation (2.14) implies the equality (2.45), concluding the proof of
Theorem 2.5.

For O an open set in R”,S(0) denotes the subspace of S(R") of functions with
support in the closure O, given the induced topology. For example S(R_) denotes
the subspace of S(R) of functions with support in the negative semiaxis, given
the induced topology. Similarly S(R; ) denotes the subspace of S(R) of functions
with support in the positive semiaxis, given the induced topology. It follows from
Theorem 2.5 that every absolutely monotonic distribution f(x) € D'(R_) may be
extended to a tempered distribution in S'(R_).

We recall that a tempered distribution g(¢) € S’(R_) is called absolutely mono-
tonic if it satisfies the conditions (1.3) for all m =0, 1,....

Corollary 2.6. The tempered distribution f(x) € S'(R) is the Laplace transform
of a tempered distribution with support in the positive semiaxis if and only if there
exists a natural number k such that

(=) *f(=x) = gi(x) — ga(x) (2:51)

where the tempered distributions g;(x) € S'(R_), j = 1,2, are absolutely mono-
tonic.

Proof. Due to Theorem from [6, Sect.3.8] a tempered distribution with support in
the positive semiaxis may be written as

k—1 d’"
glx) = > (X (2.52)
m=0
where ,,(x) are measures with tempered growth and with supports in the positive
semiaxis.
It is well known that (m!)~'(:L)"*!x" = 5(x). Hence the relation (2.52) implies

k [k=1
gox) = = [ Xk —m— D)7 A ()| (2.53)
dx m=0
where * denotes the convolution of two tempered distributions with supports in the
positive semiaxis. If we represent the measure in the right-hand side of the equality
(2.53) as the difference of two positive measures with tempered growth and with
supports in the positive semiaxis we get

dk
g(x) = W[V'(x) —va(x)] . (2.54)

Taking the Laplace transform of the equality (2.54) and dividing by x* we obtain
the equality (2.51), where x is replaced by —x.

It is straightforward to show that the equality (2.51) and Theorem 2.5 imply that
the tempered distribution f(x) is the Laplace transform of a tempered distribution
with support in the positive semiaxis.
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Let x denote a point in R* with coordinates (x%,x',x%,x%) = (x,x). A point in
R* will be written as x=(X1,...,%p), X, € R*. We will use the following open set
Ri" ={xe R4”|xf >0, j=1,...,n}

Theorem 2.7. Let the tempered distribution f(x) € S’(Ri”) be the Laplace trans-
form with respect to the time variables of a tempered distribution with sup-

port in the closure ﬁi". Then there is the natural number K such that for any
integers k > K, 1 < jy <---<ji<n, 1 <1 =n and for all test functions

¢,(x) € SRY), j € {ji,.. ,Jl} $i(x) ESMRY), 1 i< n, i%ji,..., Ji, the fol-
lowing limit exists:

—k
Jd*xL;! [( H| /,,,) f] 0 ()_C)il;[l bi(xi)

—k
/
— : li d4n 0
N gy nllifgo,n,el Ty T/—}r—noo,T,ER f * (n}_:‘[]xlm) f('E)
n
X H ¢i(xl HL ()bjm 0 (xjm:nm>T ) (255)
i:],i$j| ,,,,, Ji
with x —( X)se jm) and

(9 n+1
L' [¢lo(xsn, T) = (n!)™! (@) ()"0 (—x")p(n(x") "', x)), (2.56)

where the function hp(x°) is given by the equality (2.13).
The limit (2.55) defines the inversion formula for the Laplace transformation:

n ! k I —k
<f(9_c), Hl¢,»(x,~))=fd“"x (H1 ai> L [( Hlx}i,> f] (x)
= m= ]m m= 0

X ({ dyy, ... ({ dy;, exp { E X, yf,,.}

n

!
x(I_Il@m(y;’m,xjm)) I ¢ix) 257)

N

for all functions ¢;(x) € S(R ), i =1,...,n, and for any integer k > K.

Proof. Theorem from [6, Sect. 3.8] implies that a tempered distribution with support
. —4n .
in the closure R, has the following form:

p m
_ 2 o, 2.58
9(») |m;§<—1 (az) Em(Y) (2.58)

where we use the standard multiindex notations and p,,(y) are measures with tem-

pered growth and supports in iin In analogy to the proof of Corollary 2.6 the
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relation (2.58) may be written as

I% m
Lo 0\
g =1 — o) ) @59
- (sl;ll ayﬁ) |m| <K—1, /20: I"(/) =0 (aX) B Z
]

. . ==4n .
where v,(y) the measures with tempered growth and supports in R . Let us in-
tegrate the distribution (2.59) with a test function which is the product of the

functions: exp{—x! yf}qﬁj(yj) d;(y) € S(R’), j € {ji,....ji}, and exp{—x")?}
i(x%,y,), ¢ x) e S(R ), 1 =i < n, i%j,...,j;. Let us divide the resulting inte-
gral by (x? Xp X)) x% )X If the distribution f(x) is the Laplace transform of the tempered
distribution (2.59) with respect to time variables we get

/ -k n n
( H}x?,,,) J < I dx?) d3"xf<a_c>( [1 (X, ) I i)
Ji

m= IEWE TPy} m=1

!
=fdv(yl,...,yz)eXP{—Zx;’-,,,ym} : (2.60)

m=1
where the measure v(yy,..., y;) with support in (R, )*/ is defined by

de(J’l,uw)’l)‘//(ylw~~,J’l)

0
- > JadvmW(), -5 9)) <~@>

[m|<K— lmo— :m =0

m

I=|,f#=j] ..... JI

X I:( 1:[]¢/,71(yj,,,)> ( fl fdxlo CXp{—X Y }¢ (xwyz >:| . (261)

The measure v(yy,..., y;) is the difference vi(y1,..., y1) — v2(y1,-.., y;) of two pos-
itive measures with tempered growth and supports in (R, )*/. Then the left-hand
side of the equality (2.60) is equal to

f[dvl(yl,an’/)—dvz(J’l,--‘»J’I)]eXp{ Z ,,,,)/m}' (2.62)

m=1

The expression 2. 62) considered as the function on (R_)*’, is the difference
f1(x0 Xjisens “) — f2(x0 T x;)l) of two absolutely monotonic with respect to each
variable dlstrlbutlons from S/((R_)Y*N.

The arguments of the proof of Proposition 2.4 lead to the existence of the limit
(2.55) for any test function which is the product of the functions: l,bj(xo)qﬁj(xj
where ;(x°) € S(R), ¢;(x) € S(R®), j = jis-osji; and ¢,(x,) € SRY), 1 <i <
n, i#+ji,...,j;. Since the weak convergence in S’ implies the convergence in
the topology of the space S’ (see [6, Sect.3.7]) the limit is a multilinear func-
tional, continuous in each variable. Now the nuclear theorem [7, Chapter 1, Sect. 1,
Theorem 6] implies the existence of the distribution LJ '[(]—[m . jm)‘K [l o(x)

and the equality (2.55) for any test function which is the product of the func—
tions ¢;(x,) € S(RY), j = ji,....j1, and ¢i(x;) €SRL), 1 i S n, idji,...rjs
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We use this set of the functions in order to avoid cumbersome notations. For the
special case / = n the notations are simple: LC“[(H[ x0)~K f10(x) € S"(R*) and

m=1"m
its support is in ﬁi". The equality (2.55) is valid in this case for any test function
P(x) € S(R™).

For the absolutely monotonic tempered distribution g(x) € S’(R_) the tempered
distribution (—x)""g(x) € S'(R_) is absolutely monotonic for any natural number
m. It is therefore possible to divide the expression (2.62) by (x) ...x})[ Y—K and to
prove the above results for any integer £k > K. For the integer £k > K Lemma 2.2
implies that the limits of type (2.6) are equal to zero. We now apply the arguments
of the proof of Theorem 2.5 to obtain the equality (2.57), concluding the proof of
the theorem.

3. Exponentially Convex Distributions

Motivated by the discussion of S. Bernstein [4] for functions we call a tempered dis-
tribution f(x) € S(R, ) exponentially convex if it satisfies the positivity condition
(1.1) for any function ¢(x) € S(R;).

Proposition 3.1. For any exponentially convex tempered distribution f(x) € S'(R,)
the tempered distribution f(—x) € S'(R_) is absolutely monotonic.

Proof. Let us introduce the convolution function
P px)= [ Plx— y)p(y)dy. (3.1)

For ¢(x) € S(R}) Lhe function ¢ * ¢(x) € S(Ry). The condition (1.1) may be
rewritten as (f(x),¢ x ¢(x)) 2 0. Let F[¢](p) be the Fourier transform of the
function ¢(x) € S(Ry). The definition (3.1) implies the equality F[¢ * ¢](p) =

Flol(—p)F[91(p).
By FS(R;) we denote the space of all functions y/(z) analytic in the open upper

half plane and infinitely differentiable in the closed upper half plane such that the
seminorms of the form

ﬂ(z)[ (32)

sup (14 |z])" o

Imz=0

are finite for all positive integers m and n. The topology of FS(Ry) is given by
the set of seminorms (3.2).

Let us prove that the Fourier transformation defines an isomorphism between
two topological spaces: S(R,) and FS(R,). The Fourier transform F[¢](x) of a
function ¢(x) € S(R;) has an analytical continuation F[¢](z) into the open upper
half plane. The function F[¢](z) is infinitely differentiable in the closed upper half
plane. The inequality y* exp{—yt} < C(k)t~*, valid for ¢t > 0, y = 0 implies the
following estimate:

. d"F ) ko
sup x"'y"zv[?)](x—l-zy) <C sup (1+) ka=1

x€R, y=0 >0,0=/<k

dk|—/
ELRA0)
(3.3)
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Therefore the Fourier transformation defines a continuous mapping of the space
S(R;) into the space FS(R;). For a function y(z) € FS(R,) its restriction (x)
to the real axis belongs to the Schwartz space S(R). A straightforward application
of Cauchy’s theorem shows that the inverse Fourier transform F~'[y/](p) of the
function y(x) may be rewritten for any y > 0 as

o0

F7'Yl(p) = @m)~"e? [ exp{—ipx}(x +iy)dx. (3.4)

— 00

Since any seminorm (3.2) is finite we get F~![y](p) =0 for p < 0 by letting y
in (3.4) tend to infinity. Hence F~'[y/](p) € S(R;). The inverse Fourier transfor-
mation is a topological isomorphism of the Schwartz space S(R). Any seminorm of
the Schwartz space S(R) on the subspace FS(R. ) is majorized by a corresponding
seminorm of the type (3.2). Thus the inverse Fourier transformation is a mapping
of the space FS(R,) into the space S(R;.).

For any natural number k£ and for any number « > 0 we define the function

Flra(z) = (o + /i)Y exp{—a( 1 + z/i)'*} (3.5)

with
(a+z/i)? = (* + (a + y)")* exp{—i/2 arctan[x(a + y) ']},

which is holomorphic in the open upper half plane. Due to the estimate Re(l +
z/i)'/? = (|z|/2)"?, valid in the closed upper half plane, the function (3.5)
belongs to the space FS(R.). Hence its inverse Fourier transform y,(x) belongs
to the space S(R.), as does the function y,(x —¢) for any positive number ¢.
Therefore the convolution function ¥, * y,(x — 2¢) = yu( + —¢) * yu( - — t)(x) be-
longs to the space S(R,) for any 1 = 0. Now the positivity condition (1.1) for the
exponentially convex tempered distribution f(x) € S'(R,) implies the inequality
(f(x), %, * yu(x —2t)) =2 0 for any ¢t = 0. Integrating this inequality with a non-
negative function 1/2¢(2¢) € S(R;) we obtain

(S, Oy * 22) * D(x)) 2 0. (3:6)

In view of the definition (3.5) we get F[y,](—x) = F[x,](x). Now it is easy to
show that

(O * X)) * Px) = (271)_'_Ofo dpe” " FI) p)F 1)) - (3.7)

When o — +0 the functions F[¢](z)(F[x.](z))* converge to the function (z/i)
F[¢](z) in the topology of the space FS(R, ). Then the left-hand side of the equality
(3.7) converges to the function ‘Z{—f’(x) in the topology of the space S(R;) when
o — +0. In the limit & — +0 inequality (3.6) therefore gives

iy (2L
(=D (S0 ) 2 0. (38)

It follows from the inequalities (3.8) for arbitrary natural numbers & and for arbitrary
nonnegative functions ¢(x) € S(R, ) that the tempered distribution f(—x) € S’(R_)
is absolutely monotonic.
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A distribution f(x) € S’(Ri) is said to satisfy the Osterwalder—Schrader posi-
tivity condition, if for any function ¢(x) € S(Ri),

Jd*d*yf(x"+ y°,x — y)p(x)p(y) = 0. (3.9)

Therefore the Osterwalder—Schrader positivity condition (3.9) is the condition
of exponential convexity with respect to the time variable and it is the condi-
tion of positive definiteness with respect to the space variables. By using the proof
of Proposition 3.1 and the proof of Theorem 1 from [7, Chapter 2, Sect.3.1] it is
possible to show that the Fourier transform Fy[f](x°,x) with respect to the space
variables of the distribution f(x) € S’ (Ri ), satisfying the condition (3.9), satisfies
the following condition:

a n
(—5;0) FIf16%%) = 0 (3.10)
for any natural number n =0, 1,....

Lemma 3.2. Let the tempered distribution f(x) € S’ (Ri) satisfy the Osterwalder—
Schrader positivity condition (3.9). Then for any function ¢(x) € S(R*),

lim (f(x),p(—x° — ,x)) = [Ly'[flo(x)d>x T(ﬁ(xo,x)dxo, (3.11)
(=00 R3 )

where the tempered distribution L "f lo(x) € S'(R*) is positively definite, and
for any natural number k = 1,2,...,

k
lim tk< <a%) f(x), p(—x° — t,x)> =0, (3.12)

{——00

If the tempered distribution f(x) € S’ (Rj_) satisfies the Osterwalder—Schrader pos-
itivity condition (3.9), then the tempered distribution (x°)~' f(x) € S'(Ri) satisfies
the inequalities (3.10) and the limits (3.11), (3.12) for this distribution are equal
to zero.

Proof. Let the Fourier transform Fy[¢](x°,x) with respect to the space variables
of a function ¢(x) € S(R*) be a positive function. Then by the straightforward
application of the inequalities (3.10) and by the proof of Lemma 2.2 we can prove
the relations (3.12) and the existence of the limit (3.11).

Due to Theorem 2 from [7, Chapter 2, Sect.2.2] the inequalities (3.10) imply
the following estimates for any function $(x) € S(R*):

a n
K(W> f(x),qb(—xo,X))‘éC sup (14 [x|H)?|F[¢1(% %),  (3.13)

x0<0,xeR3

where the numbers C and p depend on the natural number n =0, 1,2,.... Let a(x)
be an infinitely differentiable nonnegative function with compact support and let it

be equal to one into some neighborhoods of zero. For a function ¢(x) € S(R*)
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we define M(¢p) = sup |Fx[¢](x)|. The difference of the two following nonnegative
functions from S(R*):

Fx[¢1n](x) = exp{m™' (" + (x*)"H}0(—x")a(m ™" )M (),
Fx[$anl(x) = exp{m™' (" + (x")™)}
X O(=x")a(m ™ x)(M(¢) — Fx[$](x)) (3.14)

converges as m — oo to the function Fy[¢](x) € S(R*) in the norm (3.13). Due
to the inequality (3.13) this now implies the relations (3.12) and the existence of

the limit (3.11) for any function ¢(x) € S(R*).
Let A(x°) € S(R_) be nonnegative with integral equal to one. Any function
(x) € S(R* ) may be represented as
0N T 400 o, W
d(x) = h(x") [ O, x)dy’ + 2 5(x), (3.15)

s Ox

where the function ¥(x) € S(R* ). The existence of the limit (3.11) and the equal-
ities (3.15) and (3.12) for £k =1 provide the equality (3.11) for any function
d(x) € S(R*). By virtue of the inequality (3.10) for n = 0 the tempered distri-

bution L, "f ],0(x) is positive definite. The proof of the last part of Lemma 3.2
follows the arguments of Lemma 2.2.

In analogy to (2.12) for any function ¢(x) € S(R*) and for any integer k =
1,2,..., we define

¢ ) = —((k — HH™! T(x‘) — o0 x)dy’ (3.16)

and qbi?))(x) = ¢(x). The infinitely differentiable function (3.16) equals zero for
x% > 0. It is easy to see that (f)%)’(ﬁigk)(x) = d)if)_k)(x) for [ < k. Let the nonneg-
ative function 47(x%) be given by the relation (2.13) for some nonnegative function
h(x") € D(R_) having the integral equal one.

Lemma 3.3. Let the tempered distribution f(x) € S’ (Ri) satisfy the Osterwalder—

Schrader positivity condition (3.9). Then for any function ¢(x) € S(R™) and for
any integer k = 1,2,...,

k
im_((505) S0 0000

T——o0
= (f(x), (=x",x)) — f}Lo—'[f]xo(X) Tqﬁ(xo,X)dxo, (3.17)
R —o0

where the positive definite tempered distribution L "f Jo(x) e s (R*) is defined
by the equality (3.11).

The proof of Lemma 3.3 is exactly analogous to that of Lemma 2.3 and can be
omitted.
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For a tempered distribution f(x) € S’(Ri) satisfying the Osterwalder—Schrader

positivity condition (3.9) we define a functional on the space S(R*) by the following
relation:

(Lo [T T, d(x)) = (f () L [@loo (x5, T))

n+1
=(n!)"<(x0)" (— d ) f(xo,X),O(XO)/IT(—XOW("(XO)_',X)>, (3.18)

0ox0
where n is a positive integer and the function h7(x°) is given by the equality

(2.13). It is easy to prove that the tempered distribution Fy[L '[f].0( + ;n, T)](x)
is positive and its support is in the closure of RY.

Proposition 3.4. Let the tempered distribution f(x) € §’ (Ri) satisfy the
Osterwalder—Schrader positivity condition (3.9). Then in the topological space
S'(RY) the following limit exists:
lim lim L7'[f1o(e;n,T) =L "[flo(x). (3.19)
n—oo I——oco
The tempered distribution Fx[L7'[f1,0( - ))(x) € S’ (R*) is positive and its support
is in the closure of RY.

Proof. The number N(f') is defined by means of the estimate similar to the esti-
mate (2.3). A result analogous of Lemma 2.1 is valid for the tempered distribution

fix)es (Ri). By using the inequalities (3.10) and Theorem 2 from [7, Chapter
2, Sect. 2.2] it is possible to prove the estimate similar to (2.23), namely

(L' o n, T), (x))|
S Cur(N(H)+ 1) sup (1 + YDA+ xDP|F[¢l(x)] . (3.20)

x020,xeR3

The arguments analogous to those of the proof of Proposition 2.4 allow us to replace
the constant C,7(N(f)+ 1) by a constant independent of the numbers » and T.

The inequalities (3.10) and Proposition 2.4 imply that the limit (3.19) exists on
every test function from S(R*) whose Fourier transform with respect to the space
variables is a nonnegative function. Let a(x) € D(R*) be nonnegative and let it be
equal to one into some neighborhoods of zero. For a function ¢ € S(R*) we define
M(¢) = sup [Fy[¢](x)|. The difference of the two nonnegative functions from S(R*)

Fx[iml(x) = a(m_l,r)M(¢) >
Fyloml(x) = a(m™'x)(M(¢) — Fx[¢](x)) (3.21)

converges as m — oo to the function Fy[¢](x) € S(R*) in the norm (3.20). Since
the constant C,, 7(N(f) + 1) in the estimate (3.20) may be replaced by the constant
independent of the numbers »n and T this implies the existence of the limit (3.19)
for every test function from S(R*). Therefore due to [6, Sect. 3.7] the sequence of
tempered distribution L '[f],0(x;n, T) converges in topology of the space S’ (RY).
It follows now from the inequalities (3.10) and the definition (3.18) that the tem-
pered distribution Fy[L'[f]0( - )(x) € S"(R*) is positive and its support is in the
closure of RY.
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A straightforward application of the arguments of the proof of Theorem 2.5
leads to the following theorem.

Theorem 3.5. Let the tempered distribution f(x) € S'(RY) satisfy the Osterwalder—
Schrader positivity condition (3.9). Then the following representation:

(f ) = [XL5 [f1o(x) | dpP(p%x)
R3 —00

a0 | dexpl—x" (% %)) (3.22)
R4 —00

is valid for any function (f)(x)ES(Ri). Here the positive definite tempered
distribution LO_'[f]Xo(x) € S'(R?) is defined by the equality (3.11) and the tem-
pered distribution L7'[f],0(x) € S'(R*) is defined by the relations (3.18), (3.19).
The distribution F[L7'[f],0( - )](x) € S’ (R*) is the positive measure with tem-
pered growth and support in the closure of Ri.

4. Revised Osterwalder—Schrader Theorem

We deal with the theory of one Hermitian scalar field. By using the results below
and Chapter 6 of the paper [1] it is possible to formulate the extended Osterwalder—-
Schrader axioms and to prove the revised Osterwalder—Schrader theorem for theories
containing spinor fields.

We use some notation from the papers [1] and [2]. We define the follow-
ing open sets in R*: R* = {x € R4”|x?+, >x), j=1,...,n—1} and Ry ={x€
R"|x,#x, 1 <i < j < n}. For O an open set in R*", the space S(0) is defined
above. On S(R*") we define two involutions

f*(xl"'~’xli):f(xn""axl)a

Hf(x|,...,x,,):f(0x|,...,9x,,), (41)
where 0Ox = (—x°,x) and f means complex conjugation. The space S(R4<") is in-
variant under the involution f — 0/*. Let f € S(R*), R € SO, be an element
in the rotation group, a € R* and n € P, be an element in the group of all per-
mutations of n objects (the letter S, will be used elsewhere). Then we define
fwry and fT by fpy(xi,....x0) = f(Rx; +a,...,Rx, +a) and f™(x,...,x,) =
S Gn(rys - - Xam))-

We recall the Osterwalder—Schrader axioms [1] for the Schwinger functions

(Euclidean Green’s functions). The set of the Schwinger functions {s,} is a
sequence of distributions s,(xi,...,x,) with the following properties:

EO. Distributions.
so=1, s, € S'(RY")

and

(S, f) = (Sm Hf*) (42)
for all functions f € S(R*).
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El. Euclidean invariance.

(Sm f(a,R)) = (Sn’ f) (43)
for all R € SO4, a € R* and f € S(RY").

E2. Positivity.
> (Snim; 01 @ fu) 20 (4.4)

n,m

for all finite sequences of the functions f, € S(R*' N Ri” ), where the function
(fRG)x15. s Xnem) = f(X15evvsXn)g(Xnt1s--- s Xntm) is defined for all functions
fe S(R*") and g € S(R*™). The relation (4.2) is a consequence of inequality (4.4).

E3. Symmetry.
(s> /™) = (s, f) (4.5)
for all permutations = € P, and for all functions f € S(Rg").

E4. Cluster property.
tl_i)rgo(sn+ma an* ® (gm )(ta,l )) = (Sp, Hf: )(Sma gm) (46)

for all f, € S(R” NRY), g, € SR NRY"), a =(0,a), ac R’
Let us consider the restriction of the distribution s, € S’ (Rf;”) to test functions
from the space S(R4<” ). Then the translation invariance (4.3) implies

Sn(X1,. .3 Xn) = Su—1(X2 — X150, X0 — Xn—1) s 4.7)

where the distribution S,_(x) € S’(Ri("_”). We note that for a function g of
the form g(xi,...,Xu41) = f(x2 — X1,...,Xp41 — X,,) the definitions (4.1) imply the
equality Og*(xi,...,%,11) = (0, )(x2 — X1,..., X441 — X,), Where the involution

Opf(x15...,%0) = f(=0xy,...,—0x,) (4.8)

leaves the space S(Rj_") invariant.
Into the inequality (4.4) we substitute the sequence consisting of a single func-
tion
$l(xl)¢m(x2_xla~~~,xm+l _xm)» m > 0

Jm1 (K15 Xmp1) = {_ (49)
¢l(xl )7 m=0 )

where the functions ¢ € S(Ri) and ¢, € S(Ri’” ). Then by using the definitions
(4.7) and (4.8) we can rewrite the inequality (4.4) for m = 0 in the form (3.9) and
for m > 0 in the following form:

[ @*xd* ySmi1(Op P x — 0y, d)  (x)P1(¥) 2 0. (4.10)

Here we have introduced the distribution
f d4xSn+m+l(fn,x’ Sm)i(x) = f d4(n+m+l)xsn+m+l(£)fn ® f1® fu(x), (4.11)

constructed from the distribution S, n+1(x) € S’ (Ri("“"“)) and the test functions
fu € SR, fr € S(RI™). For n =0 or m = 0 the distribution (4.11) is defined in
an obvious way.

The inequalities (4.10) show that the distributions Sau4i(0,¢;,,x, ¢n) are
extremely significant. We formulate the new axiom exactly for these distributions.
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ES5. Weak spectral condition.

Let Syi1(x) € S'(RI®™"), m = 1,2,..., be any distribution defined by the relation
(4.7). Then there is the natural number K such that for any integers £k > K, 1 <
I < m and for all test functions y(x) € S(R*), i=1,...,1, Yi(x) € S(Ri), j=
I+1,...,m+ 1, the following limit exists:

—k
i
lim lim / d“<2"'+”x(Hx?x2m+2_,~) Som1(x)
i=1

ny.,ng—oo,m €L Ty,.,Tj——o00,T,ER

.....

QO @@ Ymlo o€+ 3n.1))"1x), (4.12)

with

! m
(L' ®--~®¢m]x? X?@;Q,D)= <HLZ‘[1M]X?(xi;n,,E)>< I1 t//,(xi)> ,

,,,, 1=I+1
(4.13)
and where the function L7 '[{/].o(x;n, T) is given by the equality (2.56).
Theorem 2.7 clarifies the relevance of this weak spectral condition.
Let us recall the Wightman axioms [8] for Wightman distributions. The set
of Wightman distributions {w,} is a sequence of distributions with the following
properties:

RO. Temperedness.
wo =1, w, € S/(R*) and
Wn, f) = (Wn, [7) (4.14)

for all f € S(R*).
RI1. Relativistic invariance.

(Wa, fla, 1)) = (Wn, f) (4.15)
for all vectors a € R*, for all Lorentz transformations A4 € L! and for all functions
1 € S(R*™), where the function fi, 1y(x) = f(A~'(x; — a),..., A" (x, — a)).

R2. Positivity.
> Wi £ ® fun) 2 0 (4.16)

n,m

for all finite sequences of the functions f, € S(R*). The relation (4.14) is a con-
sequence of inequality (4.16).

R3. Local commutativity.
For all natural numbers n > 0 and j = 1,...,n — 1,

Wn(xla"~9xj+]7xj7"',xn) = Wn(xh~ "xj’xj-f-l""’xrl) (417)

if the vector x;,| — x; € R* is spacelike:
J J p:

— (0 0y2 3 i i\2
()41 = X X1 — X;) = (xj+1 _xj) =D ie1 (x;+1 —x}) < 0.
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R4. Cluster property.

}ll)n;o Wiam (X150 v o5 Xns Xng1 + la,... »Xntm + Aa) = wy(xy,... s X Wi (X 15+ - o> Xntm)
(4.18)
for all natural numbers n,m > 0 and for all spacelike vectors a € R*.

RS5. Spectral condition.
For all natural numbers n > 1 there exists a tempered distribution W,”, €8’

(R*"=1) with support in 7:", where 7, is the closed forward light cone, such
that

n—1
wa(x) = [d*"= D pW (p)exp {i Zl (P> (xjt1 —x;))} . (4.19)
J=

Now we are able to formulate the revised Osterwalder—Schrader theorem.

Theorem 4.1. To a given sequence of Wightman distributions satisfying RO-RS,
there corresponds a unique sequence of Schwinger functions with the proper-
ties EO-E5. To a given sequence of Schwinger functions satisfying EO-ES, there
corresponds a unique sequence of Wightman distributions with the properties
RO-RS5.

Proof. We start from a relativistic field theory given by a sequence of Wightman dis-
tributions, satisfying the axioms RO-R5. Due to Theorem 3.5 from [8] the Wightman
distribution w, is the boundary value of the Wightman function wy(z,...,z,) =

Wy_\(z2 —z1,...,2y — zn—1 ), Where the function W,_(z|,...,z,—1) is analytic in
the tube 7, = {zy,...,z4—1|Imz; € V., i = 1,...,n — 1}. The Wightman function
wy(z1,...,2,) 1s Lorentz invariant (Lorentz covariant for the theories of arbitrary

spinor fields). The Bargmann—Hall-Wightman theorem [8, Theorem 2.11] implies
that the function W,(z,...,z,) allows a single valued L. (C) invariant (L, (C) co-
variant for the theories of arbitrary spinor fields) analytic continuation into the
extended tube T, = Uye, (c)AT,. Using Theorem 3.6 in [8] we conclude that the
function wy(zy,...,z,) has an L,(C) invariant, single valued, symmetric under
the permutations analytic continuation into the domain IT} = {zy,...,z,| (zz2) —
Za(1)s -+ -+ Zn(n) — Zz(n—1)) € T,_, for some permutation n(1),...,n(n) of the numbers
l,...,n}. (For the theories of arbitrary spinor fields this function has an L;(C) co-
variant, single valued analytic continuation into the domain /7,¥ with obvious sym-
metry properties under the permutations.) The set /7 contains the set of Euclidean
points E, = {zy,...,z,|Rezl =0, Imz; =0,z #z; for all 1 <k j < n, k+j}.
The restriction of the Wightman functions to Euclidean points defines the Schwinger
functions

Sp(X1y.0oyXy) = w,,((ix(l),xl ),...,(ixg,x,,)) . (4.20)

The derivation of the extended Osterwalder—Schrader axioms EO-ES5 from the
Wightman axioms follows the arguments given in [1] and Theorem 2.7.
Conversely, let {s,} be a sequence of distributions satisfying the extended
Osterwalder—Schrader axioms EO-ES. If we substitute into the inequality (4.4) the
sequence consisting of a single function (4.9) for m = 0 we get the inequality (3.9)
for the distribution S(x). Due to Theorem 3.5 this distribution is the Laplace trans-
form with respect to the time variable of a tempered distribution with support in

the closure R, . Let us substitute into the inequality (4.4) the sequence consisting
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of two functions f,(x) and f,1(x) of type (4.9) with the same function ¢;(x).
Then we obtain the following inequality:

Jd*xd* yS{¢n, u}(x = 09)1(x)1(») 2 0, (421)
where the distribution
S{u> P} (x) = S{bm, pn}(x)
= Somt1(0p P> X b)) + S20s1(0p by, %, 1)

+ Sm+n+l (0p¢;z,x’ ¢n) + St (Opd):axa ¢m) . (4.22)

This definition may be easily modified for the case n =0 or m =0,
S{4 P (x) = S{m, A}(x)
= Sount1(Op 5%, ) + 1181 (x)
+ A8 1(Bp s X) + ASp1 (%, ) (423)

where A is a complex number. The equality (4.22) implies the relation S{¢,, ¢, }
(x) = 482,41(0,¢},x,¢,). Hence the inequality (4.10) is the particular case of
inequality (4.21) for m = n. It follows from the definitions (4.22),(4.23) that
the distribution (4.11) is a linear combination of the distributions (4.22) and
(4.23)

St 1(Dms X, n) = 1/2S{¢m de);}(x) + i/2S{¢m iepd);r}(x)

—(] + i)/2S2m+l(¢ln>xa 0p¢:1) - (1 + i)/2S2n+l(0p¢:’x’ d)n) . (424)

In particular for m =0 or n =0 and ¢y =1 we get
Su1(x, ) = 1/28{1,  }(x) + 1/28{i, pu }(x)

= (1 +)/28011(6p P, %, ) — (1 +)/281(x) (4.25)

Sn1(Pn,x) = 1/28{1, 0, }(x) + i/28{1, 6, ¢ }(x)
= (1 4+ D28 1(Pn X, Op ) — (1 +0)/251(x) . (4.26)

The inequalities (4.21) imply that for any function ¢, € S(R%) every one of the
four distributions, depending on the variable x, in the right-hand side of the equal-
ity (4.25) is proportional to a distribution from S’ (Ri) satisfying the Osterwalder—
Schrader positivity condition (3.9). Due to Lemma 3.2 the limits (3.11) and (3.12)
are equal to zero for the distribution (x*)~%S,1(x, ¢n) € S (Ri) if the integer £ >
0. It follows from Proposition 3.4 that for the distribution S, (x) € S’ (Ri("H)) the
limit (2.55) exists for the integers / =1, j; =1, K = 0. By definition the support
of the distribution L;'[(x?)"‘S,,H]Xo(xl,...,x,,+|) with respect to the first variable
x; is in the closure R, . Theorem 3.5 and Lemma 3.2 imply that for all functions
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Y € S(R ), i=1,...,n+1, for any integer k > 0 the following relation holds:

n k
J a8, (x) f[: i) = [ ¥ x (_@_) L) ™ Spl o (@)

ax?
n+l1
x [ dy) exp{—x} ]\ (), x1) Q Vi) . (427)

In view of the equality (4.26) all above results are valid for the distribution

Sus1(¢n,x) € S'(RL), where the function ¢, € S(RY").
The weak spectral condition ES implies the existence of the limit

i tim [ 4% xS @) 22 i goim 1) (T nu-(xi)) O
i=2

m—oo T——oo

x (( @W,(xzn+z_,)) 20 ) L Wb Comirm, T)) (4.28)

for some positive integer k and for all functions ;(x) € S(R*), Yi(x) € S(Ri ), i =
2,...,n+ 1. Here the function L7 '[Y1],0(x;m,T) is defined by the relation (2.56).
The linear functional (4.28) with respect to the function . (x) € S(R ) is a
tempered distribution in the space S’(R* 1). It satisfies the Osterwalder—Schrader
positivity condition (3.9). Similar arguments may be applied for the distributions
S{1, 0,(TT \s(x:))* }(x) and S{1,i0,(IT;_,¥i(x:))*}(x) in the right-hand side of
the equality of type (4.26). Thus the limit (2.56) (L '[(x?)~ "S,,+1] o(x) (H"“L1
1(x,))), the existence of which is proved above, for some positive 1nteger k and for
all functions ¥ (x) € S(R*), yi(x) € S(R ), i=2,...,n+ 1, has the decomposition
of type (4.26) into four distributions with respect to the function l//,,+1(x) € S(R ).
These distributions are proportional to the distributions from S’(R* ) satisfying the
Osterwalder—Schrader positivity condition (3.9). Now Proposition 3.4 implies that
for the distribution S,(x) € S'(RI"™") the limit (2.55) exists for [ =2, j, =
1, j,=n+1 and for some positive 1nteger k. Due to the definition the supports
of this limiting distribution L '[(xJx2, )~ S,,+1] 0,0 ](x) with respect to the first
and the last variables are in the closure R, . Tllleoerm 3.5, Lemma 3.2 and the
relation (4.27) imply that for sufficiently large positive integer £ and for all functions
Yi(x) € S(Ri), i=1,...,n+ 1, the following relation holds:

f d4(n+l)xSn-{»l(LC)"ltll l/11()‘71)
i=1

2

" 0
= [d" H)x(a 90x0

k
) l[(9513Cn+1) kSn+I] 0.0, (x)fdyldyn+l
n+l

xexpd— ¥ <O wGhx) | T . (4.29)
i=1,n+1 1=1,n+1 i=2

By using the weak spectral condition E5 and the equalities (4.24) it is possible
to prove step by step that the limit (2.55) exists for the distribution S,.;(x) €
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S’(Ri("“)), for /=n+1 and for some positive integer k. By definition the
support of this limiting distribution L7 '[(TT"*/x%) %S, 11, ,0(x) with respect to any
variable x; is in the closure ﬁi Since the weak convergence in the space S’
implies the convergence in the topology of the space S’ (see [6, Sect.3.7]) the

limit (L7'[(T,x%)~ kS,H.;]xo(x) (H”*‘.p,(x,))) is continuous in each function
Yi(x) € S(R*). Hence the nuclear theorem [7, Chapter 1, Sect. 1, Theorem 6] implies
that L7 '[([Tx0)~ "S,,H]xo(x) € §"(R*"*1)_ Its support is in the closure R, R

i=1 Xi
The application step by step of Theorem 3.5 and Lemma 3.2 gives for suﬂicwntly
large positive integer & and for all functions ¥;(x) € S(R ), i=1,...,n+1 the
following relation:

fd4(”+”xS,,+1(3_c) "Ii—f U(x,)
1=1

pYas k et —k
— fd4(n+l)x (5____> Lc_] ( H xl()) Sn-H (-E)
xl Xn+1 =1 0

n+1 n+1
x [dy...dy), | exp { —;x?y?} ( [I[ t//i(y?,x,)) : (4.30)

Therefore for any n = 1,2,... a distribution S,(x) € S’ (Ri") is the Laplace transform

of the tempered distribution from §’(R*") with support in the closure ﬁin
Now the derivation of the Wightman axioms RO-RS5 from the Osterwalder—
Schrader axioms EO-E4 follows the arguments of the paper [1].
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