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Abstract: The fast dynamo growth rate for a C¥*! map or flow is bounded above by
topological entropy plus a 1/k correction. The proof uses techniques of random maps
combined with a result of Yomdin relating curve growth to topological entropy.
This upper bound implies the following anti-dynamo theorem: in C*° systems fast
dynamo action is not possible without the presence of chaos. In addition topological
entropy is used to construct a lower bound for the fast dynamo growth rate in the
case R,, = oo.

1. The Kinematic Fast Dynamo Problem

Magnetic dynamo theory involves the study of the generation of magnetic field
in astrophysical objects such as planets and stars. One star of particular inter-
est, of course, is the sun, which exhibits vigorous magnetic field activity on time
scales much shorter than the magnetic diffusive time. Kinematic fast dynamo theory
attempts to gain some understanding of the non-diffusive processes that might be
involved by addressing the question of what sort of fluid motions can induce expo-
nential growth of magnetic field at high magnetic Reynolds number. This is one of
a large class of singular problems with important physical implications for which
there is a need for a better understanding of the limiting behavior of complicated
processes. Natural questions that arise are: what if any relation holds between the
limiting and singular limit solutions, and what information about the limiting pro-
cess can be gained from the singular limit problem? In this paper we consider a
conjectured growth rate bound of Finn and Ott (1988) based on stretching properties
of the fluid flow and prove a slightly generalized version of it.

The equations of dynamo theory are those of incompressible MHD (see Roberts
(1967)). Denoting the magnetic field by B and the fluid velocity by u the magnetic
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induction equation

%?H-VB:B-VHRLVZB, V-B=0 (1)
can be derived from Ohm’s law and the Maxwell equations (using the standard
MHD approximation of neglecting the displacement current JE/0t). R,,, the mag-
netic Reynolds number, is a dimensionless parameter measuring the relative strength
of advective to diffusive processes. Requiring V - u = 0 and setting the fluid density
p =1 the fluid momentum equation is

Ju 1 1

E%—u-Vu:—Vp+E(VXB)xB+EV2u, (2)
where My, the Alfven Mach number, is a dimensionless parameter measuring the
typical balance between fluid and magnetic energy and R, the fluid Renolds number,
is a dimensionless parameter measuring the typical balance between fluid advection
and diffusion. Equations (1) and (2) are supplemented by the appropriate boundary
and initial conditions.

We will make the kinematic dynamo approximation of setting M, = oo (i.e., the
magnetic energy is assumed small). As the Lorentz force (V x B) x B is quadratic
in B this may perhaps be justified as a linearization of (2) around B = 0. Then
the fluid momentum equation (2) is decoupled from the magnetic field and so the
fluid velocity may be considered to be prescribed independently of B (thus the term
kinematic). Equation (1) is now a linear equation for B. The object of kinematic
dynamo theory is to find linear dynamo instabilities, that is, to determine for a given
R, which if any choices of u result in exponential growth of B for some initial
conditions By. For our purposes, given u(x,¢) we define kinematic dynamo action
to occur when

1
p(R,) = Tlim 7 In [|B(x,T;Rp)ldx > 0, 3)

where V' is the region containing magnetic field.

This paper addresses the kinematic fast dynamo problem (Vainshtein and
Zel’dovich (1972)). A velocity field is defined to be a kinematic fast dynamo if

lim p(Ry) > 0. 4)

(We assume that this limit exists; in principle one might instead use liminf or
lim sup.) Motivation for this definition comes from the solar magnetic field which
shows activity (e.g. the 22 year solar cycle) on time scales much shorter than the
diffusive time scale (~ 10'° years). Hence the solar dynamo apparently functions in
some sense independently of diffusion. The object of kinematic fast dynamo theory
is to characterize velocity fields that support dynamo action without direct use of
diffusion. Definition (4) states roughly that dynamo activity should not cease in the
limit of the diffusive term becoming small compared to the advective one.

2. Statement of Result and Discussion
Finn and Ott (1988) proposed that the kinematic fast dynamo growth rate of a

steady or periodic flow is bounded above by the topological entropy of the flow.
A proof in the C* case was announced by Vishik (1992). In this paper we prove
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a more general result using in a simple way standard techniques from dynamical
systems.

Theorem 1 Let u and By be divergence free vector fields supported on a compact
domain % C RY. We assume that u is of class C**' and By is C* for some k = 2.
Let £ be the time 1 map of the flow generated by w, and let B(X,t;R,,) be the
solution of Eq. (1) with initial conditions By(x). Then

f
lim sup lim sup ln le(x n; Ry)ldx < h(f) + — r( ) (5)

Ry—o0 n—oo

where h(f) is the topological entropy of f (restricted to D) and
.1 1
r(f) = lim - In max ||Df"(x)|| .
n—oo N xeD

This upper bound is also valid for R, = cc.

None of the arguments to be presented depend on dimension (of course the
higher dimension are not physically relevant). We also note that a number of con-
ditions in Theorem 1 are easily relaxed or modified. For example, u may be time
periodic, and R can be replaced by d-dimensional torus (in which case, addition-
ally, By need only be continuous), etc. See Sect. 7.

We state separately a version of Theorem 1 for maps, since maps have become
popular models for fast dynamos (e.g. Bayly and Childress (1988), Finn and Ott
(1988), Gilbert (1993), Soward (1994)). Let f be a diffeomorphism of R? and define
a velocity field uy = >_°° _ (6(¢ — n)f). Then at R,, = 0o, Eq. (1) has the formal
solution

n=—00

B(x,n+ 1) = (£B)(x,n) = VI '(x)) - BE ' (x),n) .

This is the Cauchy solution, or in the language of dynamical systems, the pushfor-
ward of B. Now let {p,,¢ = 0} be a family of probability densities on R? with p,
tending weakly to po = 6(0), the delta function at 0, as ¢ — 0.

Theorem 1. Let £ be a C* volume preserving diffeomorphism of R with f =1d
outside a compact domain &, and let By be as in Theorem 1. For n = 1,2,..., we
define B,1 = B(x,n+ 1;Ry) to be the convolution of 1.B, with p,—.. Then the

conclusions of Theorem 1 hold.

The case of particular interest here is when p. is a d-dimensional Gaussian
density with isotropic variance ¢. Then B, is the formal solution to (1) with u = vy
and R,, = ¢~! as above.

Certain remarks are in order here. First, positive topological entropy implies
chaos in a topological sense —this will be further discussed in the next section. Thus
Theorems 1 and 1’ are essentially anti-dynamo theorems; if u(x) (or f(x)) is C*
and not chaotic then u(x) (or f(x)) is not a fast dynamo. Second, in the case k = oo
the upper bound can be achieved by Anosov systems (Arnol’d et al. (1981), Bayly
(1986), Vishik (1989), Collet (1992), Gilbert (1993), Oseledets (1993)). Next, the
two well known fast dynamo flows of Soward (1987) and Gilbert (1988) are not
C*,k > 2 and are not covered by Theorem 1; singularities in the field of Jacobian
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matrices are needed in an essential way. (In such cases the methods of this paper
cannot be applied.) Lastly, in addition to the result of Vishik mentioned at the
beginning of the section, we mention that Oseledets (1993) has derived an exact
growth rate for C*> maps on the 2 torus. His methods rely on special properties of
2-dimensional magnetic fields (Zel’dovich (1957)).

The proofs of Theorems 1 and 1’ are based on three basic ideas. First, magnetic
field lines at R,, = oo are material curves, and the magnetic field grows because of
stretching of these material curves. Thus the field growth rate is bounded above by
the material curve growth rate, at least for R, = co. Here we emphasize that we
refer to the growth rate of curves of finite extent. As noted by Finn and Ott (1988)
infinitesimal line elements, i.e., tangent vectors, grow more slowly in general, and
their growth rate does not necessarily bound the magnetic field growth rate. The
second idea, due to Yomdin (1987), is that when a map is iterated the growth
rate of a material curve is bounded above by topological entropy plus a possible
correction due to a lack of smoothness. This bound can be understood heuristically
by discretizing a section of curve with a large number of points. The growth rate
of the curve is approximated by the growth rate of the number of points needed to
resolve the curve to a given tolerance, which in turn is, roughly speaking, bounded
by the topological entropy (see Sect. 3). But also, between the fine discretization,
lack of smoothness in the map or flow can cause the curve to locally “crinkle”
in such a way as to increase the growth rate by as much as »/k. The third basic
idea is to exploit the fact that diffusion of the magnetic field can be accomplished
by adding noise to the underlying dynamical system. This allows us to consider
random maps and to use a randomized version of Yomdin’s arguments. We show
that a small amount of noise does not increase the topological entropy. Thus, in the
limit, the same upper bound on magnetic field growth holds. (The introduction of
noise as an analytical tool for studying fast dynamos can be found in Molchanov
et al. (1985) and Klapper (1993); it has also found use as a numerical method
(Klapper (1992)).)

To further highlight the relationship between topological entropy, the growth
rate of material curves, and the fast dynamo problem, we prove the following lower
bound for magnetic field growth at R, = oc:

Theorem 2. Let & be a compact domain in R® and let £: 9 — 2 be a C"*(a > 0)
volume preserving diffeomorphism of 9. Then¥q =2 d — 1 (Vg = d — 2 if f is the
time 1 map of a flow) we have

1
sup liminf — In [|B(x,n; 00)|?dx = A(f) ,
BO n—oo n @

where h(f) is the topological entropy of f and the supremum is taken over all C*
divergence free vector fields By with compact support.

We remark again that flows are considered steady; a periodic flow in dimension
d can be regarded as a steady flow in dimension d + 1.

The organization of the paper is as follows. Section 3 provides a brief intro-
duction to the relevant facts of topological entropy. In Sect.4 we prove Theorems
1 and 1’ in the special case that R,, = oco. While not of direct physical significance
this case provides an opportunity to emphasize the first two basic ideas of the proof.
Section 5 extends the results of Sect. 4 for maps from R,, = co to R, — 0o com-
pleting the proof of Theorem 1’. Section 6 is concerned with those technical details
necessary to extend our methods from maps to flows and thus finish the proof of
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Theorem 1. Section 7 contains remarks concerning the range of applications of
the presented results to fast dynamos and related problems, and Sect. 8, which is
independent of the rest of the paper, contains a proof of Theorem 2, the R, = oo
lower bound.

The authors thank J. Watkins for conversations related to Sect. 6 and A. Gilbert
for helpful comments.

3. Topological Entropy

For the convenience of readers not familiar with this subject we present here two
equivalent definitions of topological entropy. For further details and background on
this section see Walters (1982). The first definition, due to Adler et al. (1965),
is based on open covers (hence the adjective topological). Let 2 be a compact
topological space, and let o be an open cover of &. Define H(a), the topological
entropy of a, by H(o) = InN(a), where N(a) is the smallest cardinality of any
finite subcover of o. Given f: 2 — 2 a continuous map, i(f, o), the entropy of f
relative to o, is defined to be

n—1 A
h(f, ) = lim lH(\/f_'oc> .
n—oon 1=0

Here '« is the open cover consisting of those sets f'4 such that 4 is an element
of o, and the join oV f of two open covers o and f is the open cover consisting
of all sets of the form 4 N B with 4 € o, B € f. Finally, the topological entropy of
the map f is defined by
h(f) = suph(f,a) . (6)
4

The significance of positive topological entropy can be intuitively understood in
the following manner. Consider a cover o with a finite number of elements and let ¢/
be an element of \/:';()If_’oz. Then O is of the form 4; Nf'4,N---N f_("_l)A,"_l
for some 4; € o, ie, x € O iff x € 4,,f(x) € A,-z,...,f"*l(x) €4, _,. We think
of the trajectories of x and y as indistinguishable with respect to « if f'(x) and
f'(y) fall in the same element of « Vi. The number N (\/g"lf_ ‘o) then measures the
number of trajectories of length » that are pairwise distinguishable with respect to
the labeling system given by «, and positive entropy tells us that this number grows
exponentially with n. We take this to be an indicator of chaos. Positive topological
entropy in differentiable dynamical systems is often detected through the presence
of horseshoes (e.g. using Melnikov methods). In dimension 2, it has in fact been
shown that essentially all of the entropy of a system is carried by horseshoes (Katok
(1980)).

Next we give a second definition of topological entropy due to Bowen (1971) for
a continuous map f: 2 — 2, where (2,d) is a metric space. We again assume that
2 is compact (although this definition can be adapted to non-compact situations).
First we define a new metric d,, dependent on f, by

dy(x,y) = max d(f'(x).f'(y)) . (7)

Now, given ¢ > 0 and an integer n = 0 we say that a set S C & (n,¢)-spans & if
Yy € 2 3x € S such that d,(x,y) = ¢. In other words for any y € & there is some
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x € S such that the trajectories of x and y over # iterations of f are indistinguishable
to resolution ¢. Let 7,(¢) be the smallest possible cardinality for any (7, ¢) spanning
set. Then 7,(¢) measures the number of different trajectories of length # to resolution
e. In terms of the metric d,,7,(¢) is the minimum number of balls b(x,n;¢) of
radius ¢ defined by

b(x,n;e) = {y : du(X,y) < ¢}

needed to cover 2. We now define the topological entropy to be

1
h(f) = }1_% lim sup . Inzy,(e) . @)

n—o0

In the previous language, this is the growth rate in n of the number of distinct
trajectories measured at finer and finer resolution ¢. For compact spaces it is eas-
ily shown that for any metric d that induces a given topology definition (8) is
independent of that metric and equivalent to the open cover definition.

We now state without proof (see Walters (1982)) some properties of topological
entropy that will be of use later:

Property 1. A(f™) = mh(f).

The quantity diam(«), the diameter of «, is defined to be the supremum of the
diameters of the elements of a.

Property 2. If o, is a sequence of open covers of & with diam(a,,) — 0 as n — oo,
then

h(f) = lim A(f,a,) .
Property 3.
7,(¢) £ card (\/f’ia)

i=0
where diam(a) < &

The notion of entropy generalizes to random maps. Let C(Z,2) be the set
of continuous maps from Z to & and let v be a probability measure on C(Z, ).
Define g =g,0---0g, og,, where g, = Id and g, € C(2,9) (and define g~ =
g logs'o--og ). We note that the definitions (6) and (8) generalize to se-
quences ® = {g;,8,,8,,...} chosen iid with distribution v, where f' is replaced by
g and 1, is calculated using balls b(x,7;¢) defined by

b(x,n;e) = {y : d(g”(x),g"(y)) <& 0 =i =< n}. ©)

In particular the limits exist and are nonrandom (i.e., independent of w) (Kifer
(1986)).

When working with random maps of R?, problems could arise with the use of
topological entropy since R? is not compact. Note however that Bowen’s definition
continues to make sense if we limit our attention to orbits that originate from
a compact set 2. When considering (non-random) maps f defined on all of RY
but with f(x) = xVx ¢ &, we denote the topological entropy of f restricted to ¥
by h(f|2).
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4. Growth of Magnetic Field at R, =

We begin with the R, = oo case of Theorem 1 (which, as will become evident,
is identical to the R, = oo case of Theorem 1’). Let f be the time 1 map of the
flow u, and let the initial conditions By be a C* vector field supported on 2. When
R,, = 0o, the solution to Eq. (1) is given by

B(x,n) = J(f~"(x), m)Bo(f""(x)) ,

the Cauchy solution, where J(f7"(x),n) is the Jacobian matrix of the time »n map
of the flow evaluated along the trajectory of the point f~"(x). We will abbreviate
J( - ,n) by Df"( - ) (and in general D' denotes the tensor of /" order derivatives).
Since for R, = oo the magnetic field is a material vector field, it is reasonable
to suggest that the field growth rate p(R,, = co) is related to the growth rate of
material curves. This is the subject of Claim 1.

Define a C* curve 6 in 2 to be a C¥ map ¢:[0,1] — 2 and let ||a||; =
max, <;<x||D'a||. We will often confuse ¢ with its image and use /(¢) to denote
the length of the image.

Claim 1. If R,, = oo, then for every C* initial condition By,

n—oo n—00

lim sup — ln f]B(x n)ldx < lim sup ! In [sup L(£" a)] (10)

where the supremum is taken over C* curves e : [0,1]1 — & with ||o|; < 1

Proof. Using the Cauchy solution this is equivalent to showing that

limsup ~ ln f[Df" Bo(x)|dx < lim sup — ln [sup /(f"o)]
n

nH—00 n—00

Choose a C* vector field By with support contained in 2. The natural way to
demonstrate this inequality would be as follows: divide £ into a number of flux
tubes (or flow boxes) of By and track the stretching rate of these tubes. Having done
this we can bound the growth rate of the magnetic field by the maximum stretching
rate of a flux tube, which is in turn bounded by the maximum growth rate of a
material curve. Unfortunately, this argument is problematic because dividing By into
flux tubes becomes difficult near null points of By. Instead we will use the following
trick to accomplish much the same plan: Let X be an arbitrary constant vector field
on R with |X| = 100 max |By(x)|. Then neither X nor By — X has null points and

lim sup % In [|Df" By(x)|dx
g

h— 00

< limsup %ln <f|Df" X(x)|dx + [|Df" (By — X)(x)ldx)
7

n—o0 17

= max {lim sup —In f|Df" X(x)|dx,limsup — ln JIDE" (By — X)(x)[dx} .
n—oo N n—oo N g

In fact, both X and By — X point so uniformly in one direction that we may think
of the active region & as being contained in a single flux tube. More precisely, let
By =X or By — X, and let P be any hyperplane roughly perpendicular to X. For
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X € P, let o be the integral curve of B, with 6,(0) = x. Choose large enough
so that 2 is contained in I' = {y = ax(s) for some x € P and [s| < r9}. Then

limsup — lanDf" Bo(x)|ldx < lim sup — ln f|Df" Bo(x)|dx

n—00 H— 00

1
=limsup —In [ /(f"6x)dF(x) < lim sup — 1 In <sup {(f"o'x)) ,

n—oo N A=I'NP n— oo xed

where dF is the flux (or transverse measure) of B, across 4 and 6y is understood
to be defined on [—ry,ro]. We here have used the fact that By is divergence free
and thus the total flux is independent of the choice of cross-section.

To finish it remains to observe that the right side of inequality (10) remains
unchanged if the supremum is taken over curves & defined on intervals of length
< C and with ||6]|x < C for a fixed C. This is true because by subdividing and
reparametrizing, each ¢ can be decomposed into ¢ =6 U --- U0 ,, where each o;
is normalized according to the requirements of claim 1.

Next we relate the growth rate of material curves to topological entropy follow-
ing Yomdin.

Claim 2.
r(f )

n—o0

lim sup %ln (sup /(f”a)) < W)+ —
c

where & is as in Claim 1 and r is defined as in the statement of Theorem 1.

Proof. This is a slightly stronger statement than that made by Yomdin (1987) but
it follows immediately from Yomdin’s proof. The idea is as follows: let

b(x,n;¢) = {y: d(f'(x),f'(y)) <¢ 0 =i < n},

so that 7,(¢) is the smallest number of sets of this form needed to cover &. Given
a curve o, let
V(f,6;¢) = sup /[f"6 N b(x,n;¢)] .
XEY
Then
(/(f"6) £ 1,.(e) - V(f,0;¢) .

In other words we distinguish between 2 types of growth. The growth rate of
7,(€), i.e., topological entropy, bounds the growth rate of /(f"e¢) as detected up
to resolution ¢ (uniformly in @), whereas local crinkling—crinkling that occurs in
smaller scales but which can in principle pile up exponentially fast—is measured
by the growth rate of V(f,a;¢). Yomdin proved that

()
Tk

=0 p—oo

1
lim lim sup . In {sup V(f,a;s)} =
c

if f is C*. Appendix A contains an outline of his argument. [J

Claims (1) and (2) together prove the R,, = oo cases of Theorems 1 and 1.
We close this section with a discussion of growth rates of finite material curves
versus growth rates of infinitesimal line elements. Let ¢ : [0,1] —» 2 be such a
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curve, and suppose for the sake of argument that for almost every s € [0, 1],
1
lim - In|Df"6¢’(s)| = 4.
n—oo n
Integrating, we obtain
‘ 1L 1!
A= lim — [In|Df"6¢'(s)|ds < liminf —In [ |Df"6’(s)|ds
n—oo n 0 n—oo n 0

= liminf ! In/(f"e) .
n—oo n

If the vectors Df"a’(s) converge to their eventual growth rate nonuniformly for
different s, then the above inequality could be strict. This is in fact generally the
case: metric entropy, which for volume preserving diffeomorphisms is the sum of the
positive Lyapunov exponents, is almost always strictly smaller than the topological
entropy. This means that the growth rate of a curve is often dominated by stretching
at exceptional points.

As far as the dynamo problem goes, it has been observed that Lyapunov expo-
nents do not necessarily bound the growth rates of magnetic fields. The proof of
Theorem 2 will shed further light on how field growth rates are tied to growth rates
of curves, which in turn are tied to the growth rates of infinitesimal line elements
at certain exceptional points.

5. Upper Bound on the Growth Rate for Maps in the Limit R,, — oo

In this section we complete the proof of Theorem 1’. The main point of consider-
ation is the growth rate of curves under the action of random maps most of which
are small perturbations of f. We show that in the zero-noise limit this growth rate
has the same upper bound as that for growth of curves under the action of f.
Denote by Q the set of C¥ volume preserving diffeomorphisms on R? and let f €
Q2 be such that f is equal to the identity outside of the compact domain . We con-
sider a one parameter family of probability measures v, on Q with n = 0 such that

1. |D'g|| £ C,1 £1 Lk, for v, a.s. g, where C is a constant independent of #;
2.¥9 > 0 we have v,{g: |lg—fllox <} = 1asn—0.

(The C* norm of h, |[h||x, is defined to be max [[D*h[[,0 < s < k, and should not
be confused with the norm ||h||; = max ||D*h||,1 < s < k). For a given B, define
B,,, by

B, = K{(Dan_l,,,)Vu(dg) :J(Dg("’Bo)vf;(dgl,...,dg,,),

where .g(") =g,0- - 0g,Vy =V, X - x v,. The aim of this section is to prove the
following:

Proposition 1. Let v, and B, , be defined as above. Then

r()

1
lim sup lim sup ;ln JIBuyldx < h(f) + T

n—0 n—o00 R

where h(f) is the topological entropy of f restricted to 9.
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To prove Theorem 1, let v, be the distribution of f+ @, where @ is a
d-dimensional vector distributed according to p,. Then

B, ,(x) = [(DEB,_; )t (y)p,(y — x)dy .

If in addition p, gives a distribution consisting of d dimensional vectors with inde-
pendent gaussian entries of variance 27, then B, ,(x) formally solves the magnetic
induction equation (1) with the J-function flow defined in Sect. 2.

We begin the proof of Proposition 1 with the following observation:

JBuyldx = |

R4 (73

[ Dg"Bydv;
er

dx < [ ( f[Dg(")Boldx> dv;
Qr \Z

and, by identical reasoning to that used in the previous section,

. 1 . 1 .
lim sup ;ln [ [1Dg"Boldxdv; < limsup = In [ [|Dg" Bo|dxdV]

n—oo on g n—oo N onr

1
= lim sup - In [ (f/(g"ox)dF(x)> vy,
4

n—00 on

where I' is a flux tube of some vector field B, (that depends only on By) and 4
is a transverse section of I'. Moreover we can interchange limits again to obtain

J ( ff(g<">ax)dF(x)> dvi=[ ( Qf f(g(%x)dv;;) dF(x)

Qr \4 4

< F(d)sup [ /(&"a\)dv;,
xea gn

where F(A) is the flux of By through 4 (a constant). For the rest of the proof let
us assume that & is enlarged to contain I and that f =Id in a neighborhood of
the boundary of . The proof is then reduced to the following claim:

Claim 3. Given ¢ >0, 3ng >0 such that Yy < no 3N such that Yn = N and
Vo : [0,1] — 2 with ||o|ly < 1,

f/(gno.)vz(dgn) § en(h(f)+r(f)/k+5£0) .

Proof of Claim 3.
Step 1. Preliminary choices.

(a) For each ¢ > 0, let o, be a covering of R by (round) balls of diameter < e.
We assume that o, is uniformly spaced so that

(i) no element of o, intersects more than C,; other elements of «,, and

(ii) 37(¢) > 0 such that ¥x € R?, the /(¢)-ball centered at x is contained in
some element of a, (i.e., Z(¢) is a Lebesgue number for o).

The subcollection {4 € o, : AN P +0} will be denoted by a,|2.
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(b) We choose ¢ > 0 such that
1) A(f1D,0:) < h(f]|2) + ¢, and
(i) if g(x) = (1/e)g(x/e), then for v,-ae. g ||D'g,|| < ||Dg,| for I =1,....k

((i) is possible by Property 2 in Sect. 3, and (i1) is possible because of our first
requirement on v, (see also Appendix A)).

(c) For a sequence (g, ...,g,) with g, = Id, we will estimate /(g"ea) by
/(g"e) < w(g",e) - V(g™ 050),
where 7,(g",¢) is the minimum number of sets of the form
b(x,g"se) = {y € R : d(g"(x),g"(y)) < e 0 =i < n}
needed to cover 2 and

(g™, 656) = sup /(g"a N b(x,8";6)) .

XEY

(d) There are 2 types of g’s that will result in different estimates for t and V. They
are those “near” f and those “far away;” we distinguish between them through the
use of the parameter . For > 0, let

Q={gcQ:|f-gle < B}.
A suitable choice for § will be determined later.

Step 2. Estimation of t. The main point here is that sufficiently small noise does
not increase the growth rate of distinct trajectories (and large noise is too rare to
be of importance).

(a) Let ng be chosen so that
1 nyg—1
—InN | V7 (|2)] < h(f|2)+ 2¢,
no 0

and let %, be a subcollection of \/g"”lf_"(occ) that covers & and achieves the
minimum cardinality. The number ny will be fixed throughout, and we will be
thinking in terms of blocks of maps {g,,...,g,} of length ng. A block is called a
good block if g, € QyVi; it is called a bad block if at least one g, ¢ Q.

(b) If necessary we move the elements of «, slightly so that for any 2 elements
A and B of \/8‘)_I f'(a;), either AN B=*0 or their closures do not intersect (i.e.,
they do not touch along the boundary). We assume [ is sufficiently small so that
if {gl,...,gno} is a good block, then there is a 1-1 correspondence between the
elements of \/go_lf_’(ac,;) and those of Vg"“l g~(a,) and, moreover, the sub-
collection of \/3* ™' g=")(a,) corresponding to %, covers 2.

(c) Let gy,8,.8,,... be given (and fixed for the rest of this step). For j = 1,2,...
we will pick a subcollection %, of \/J®~' g=()(a,) which covers %. The rules for
constructing %; from %, ; are as follows: let [Ay,...,4(j—1)n,—1] represent an
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element of €;_,, i.e, 4; € o, and ApNg= A4y N---Ng=U=Dm=Dg s in
%;—1. Then

Case 1. {8(;_1)ys---+8jmo—1} is @ good block and A(j1),,—1 C Z. In this case we
may attach any [A(,—1)uy,--.,4;ny—1] in €g to the given sequence and consider the
resulting sequence as an element of %;. (Of course, many of these elements may
be empty.) In this case the random maps are acting very much like f.

Case 2. {8(;_1ynys--->&my—1} is good and A(j—1y,—1 ¢ Z (i.e., previous noise has
caused a drift out of 2). In this case we attach a sequence of the form [4,...,A4],
where A N A(;—1)ny—1 #+0. The number of such elements is < C, (see Step 1(a)(i)),
and since f = Id outside of &, we know from Step 1(a)(ii) that if f is sufficiently
small, then for every X € 4(;_1),,—1,34 € o, such that g, ), 0-- 08, ), X€
AYi=0,...,n0 — 1.

Case 3. {8(;—1yy>---+8jmo—1} 1s a bad block (i.e., a large noise event occurs in
this block). In this case we may attach sequences of the form [By,...,B,, 1] where
g((j—l)no_l)A(/—l)nO—l N Bo=+0, g((/_l)no)BO N By +0, g((j—])n0+])Bl N By +0, etc. The
number of these new elements is difficult to control; however large noise events are
rare.

Note that the %, so obtained is a cover for 2, i.e., every possible trajectory has
been accounted for.

(d) We view the sequence of maps g,&;,---,8,,~ as a concatenation of no-
blocks.

Claim 4. For some Cy independent of j we have for almost every sequence
glagz"n’

card%; < eno(h+2z;0)rl+enocor,“ ’
where I’ f is the number of good blocks and T . the number of bad blocks among
the first j blocks.

Proof. We proceed by induction, counting at the j stage the maximum number of
sequences that can be attached to each sequence in %,_,. In Case I, this number
is < e"*2%) by 2(a). In Case 2, this number is < C; (see Step 1(a)), which we
may assume is < "2 if pg is chosen sufficiently large. In the last case, since
there is a uniform Lipschitz constant v, a.s., we have that for every 4 € o, g4 is
contained in a ball of fixed radius. By Step 1(a), this ball intersects < e0 elements
of a, for some Cy. O

We conclude Step 2 by noting that using Property 3 of Sect. 3, 7,,,(gV"0),¢) <
card ¢, < the number in Claim 4.

Step 3. Estimation of V.

(a) The crucial observation is that Yomdin’s proof (see Appendix A) works
equally well for compositions of random maps, and that the estimates involved
depend only on the /™ derivatives, 1 < # < k, of these maps. Let gy,g,,... be
such that Vi, |D'g,|| < C,1 <1 < k (condition 1 on v,). Assuming the scaling
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condition in Step 1(b) and that ng is sufficiently large, we see from the argument
in Appendix A that

1 .
— InV(gV"),g5¢) <

1 .
—— In||Dg"|| + &
Jno kjno

Vj = some jj.

(b) Claim 5.
V(g(/no), o 8) é en()rf(l‘(f)/k—f'z&o)enocl I"l._

>

where C| is a constant independent of j and {g,}, and I’ j+ and I'; are the number
of good and bad blocks respectively among the first j blocks of length n.

Proof. Write

1 . 141 i
— In||Dgt"|| < = 3" — In||Dg{("’ ,
o n ||DgV"|| < j > o n || g((z~l)t10+l)||

1=

(ing) e :
where g((iﬁl)no 41y denotes the composition g, ©-+-0g;_i), ;- Assuming that 8

is sufficiently small, we have (1/ny)In IIDgE(’;'f\’L)l)nO+1)|| < (1/ng) In || DE™|| 4 &9 <

r(f) + 2e0 if {8, _1yngs1>---+8my—1} i @ good block. In general all we can say for

a bad block is that IIDgx:'O_)”nO)|| < C)° for some Cy. [
Step 4. The count. Summarizing, we have shown that for vf;’ -a.e. 8,8,
and sufficiently small #, if we partition this sequence into blocks of length ny,
then the contribution to the t-term of the j™ block is < e"0"+20) for a good block
and < 0™ for a bad one. Also the j® block contributes < e™"(Dk+2%) to the
V-term for a good block and < €10 for a bad one. Since the blocks are i.i.d., we
conclude that
E(/(g(jno)a)) é [Pger10(h+r/k+480) +PbeC2no]j ,

where E(/(g!/"0)6)) is the expected value of /(g\/")g), P, is the probability of a
good block, Py is the probability of a bad block, and C; = Cy + C). This bound is
clearly < e/moUit7/k+5%) if P, is smaller than some 7, and such a circumstance can
be guaranteed by choosing # small enough so that 1 — (v,(£5))" < 7. U

6. Upper Bound on the Growth Rate for Flows in the Limit R, — oo

In this section we adapt the methods of Sect.5 to flows, thereby completing the
proof of Theorem 1. Consider again the magnetic induction equation

?;:B-Vu—u-VBJrk—I;VZB, (11)
where u is a CK*! k > 2 divergence free vector field with compact support on R?.
For simplicity of notation write n = 1/R,,. In order to use the methods of Sect. 5,
we need to produce a family of probability measures {v,,n = 0} on Q, the space of
C* volume preserving diffeomorphisms of R, so that {v,} satisfies the conditions
at the beginning of Sect. 5 and also such that given By, B, , = [ Dg(")BOdv{; is the
solution of (11) with initial conditions By.
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We will describe two different ways of obtaining {v,}, one using stochastic
flows and the other a product formula for operators. Since the techniques involved
are fairly standard, we will state the results here and outline the proofs in the
appendices.

6.1. The Stochastic Differential Equations Approach. Let u be as above. (For
technical reasons this method requires that u be of class CH1* for kb = 2, 0 > 0.)
Consider the SDE

dX, = udt + /25 db, (12)

where b; is standard Brownian motion on R?. From the theory of stochastic flows
(see e.g. Kunita (1990)) it follows that X(X,#; @) can be chosen in such a way that
for each (fixed) w, ¢ — X ,, is a continuous path in the space of C* diffeomorphisms
of RY.

Lemma 1. Given an initial condition By, define
B(x, 1) = E[DX, (X, ,(x))Bo(X; ,(x))] -

Then B(x,t) is the soultion of (11) with initial condition B,.

(Remember that D( - ) here as elsewhere in this paper refers to spatial deriva-
tive, i.e., derivative with respect to X.) See Appendix B for a proof.

Let v, be the distribution of X,—; . It follows from the Markovian prop-
erty of the solution of (12) that the distribution of X, ., is the same as that of
g,0---og,, where the g’s are iid with law v,. Condition 1 at the beginning of
Sect. 5 follows from the fact that the Brownian term has constant coefficient. Con-
dition 2 is a standard fact about stochastic flows (see e.g. Kunita (1990)). Theorem
1 now follows by the arguments of Sect. 5.

6.2. The Product Formula Approach. We now consider the product formula con-
struction. Let NV, be the time ¢ propagator of the equation

o
2 ey .Vu-u-V
5 — - Vu—u-Vy
(the Cauchy solution) and M, the time ¢ propagator of the diffusion equation
ox
=L =gy,
a VI

We approximate the solution of (11) after time ¢ by the product formula BO(.,1)=
(M3Ns)/°1By, where By is the initial magnetic field and ¢ is the size of each time
step. The convergence of this scheme, a standard result, is the subject of the fol-
lowing lemma:

Lemma 2. For fixed t and n

lim [|B(x,¢) — BO(x,0)|ldx =0,
5—>0Rd

where B is the solution to Egq. (11).
The proof is sketched in Appendix C.



Rigorous Bounds on Fast Dynamo Growth Rate 637

Let us now return to calculating with maps. For fixed 6 = 1/m, m a large integer,
let v, ; be the distribution of

g = (¢s + wu(d))o - 0o(ds + w1(0)),

where ¢ is the flow generated by u and the w;(9) are d-dimensional random vectors
with i.i.d. Gaussian entries of mean 0 and variance 2y#0. An easy calculation shows
that

BO(-,n) = [(Dg"Bo)! s(dg,,....dg,).
Qn

We need the following lemma controlling the uniform dependence on # of v, s as
0 — 0 to finish the proof:

Lemma 3. For given ¢ > 0

lim lim v, 5{g < llg = Pillee < e} =1.
This statement takes the place of the previous Condition 2. The proof can be
found in Appendix C.
We further make the following claim:

Claim 6. Given ¢, > 0, 39 > 0 such that for any fixed n < no, AN, € Z* and
n
0y > 0 such that Yn =z Ny, 6 < 0,,if6:[0,1] = Zisa C* curve with ||a||p < 1,
then
f/(g(n)a.)vg’é(dgn) < en(h(f)+r(f)/k+5t:0) )

The proof is identical to that for maps provided 7y is chosen small enough to
assure that the probability of occurrence of a “bad block™ is sufficiently small. The
existence of such an 1 is guaranteed by Lemma 3.

To complete the proof of Theorem 1, we first replace a given initial condition
By by By as in Sect. 4. Then we argue as in the paragraphs preceding Claim 3 in
Sect. 5 that for arbitrary #, J, and n,

JIBO(x,n)ldx < Csup [/(g"a)dV] 5
R4 ¢ |

where C depends on By but not on 1, 0 or n. Let ¢y > 0 be given and let < ng
be as in Claim 6. We now estimate the growth rate of [ |B(x,n)|dx as n — oo for
this fixed ». Temporarily fix # = N, where N, is as in Claim 6. We choose ¢ < ¢,
such that the difference in Lemma 2 is less than 1. (Note that 6 must be allowed
to depend on n since there is no uniformity in this approximation as time tends
to c0.) It then follows from Lemma 2, our estimate on [ |B(5)(x,n)|dx above, and
Claim 6, that

f]B(X,n)|dx <1+ Cen(h+r/k+5r:0) )

Rd

7. Further Remarks
The range of applicability of Theorems 1 and 1’ can be extended in several im-

portant ways. We note first that while we have been assuming that the map f or
flow wu is deterministic, the results also hold under mild restrictions for random
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maps and flows such as the “renovating flow” dynamos (Zel’dovich et al. (1988),
Gilbert and Bayly (1992)). The extension to random systems of the key steps of
the R,, = oo results, namely definitions of topological entropy and line stretching
and the Yomdin upper bound, can be found in Kifer (1986) and Kifer and Yomdin
(1988). The arguments contained in this paper also extend to random distributions
in a straightforward manner. Furthermore the bound of Theorem 1 applies for any
R, with h(f) replaced by A(g), where the distribution of g consists of Gaussian per-
turbations of f with variance 2R,,'. Secondly the proof is easily modified to apply
to periodic boundary conditions—the main difference is that Case 2 of Step 2(c)
in Sect. 5 is no longer necessary. Furthermore for periodic boundary conditions By
need only be continuous; diffusion will smooth the field after an arbitrarily small
time. (The same argument cannot be used for the original case because of appar-
ent technical difficulties arising from unboundedness of the domain). We note also
that u may be time periodic. A periodic flow in R? can be embedded as a steady
flow in RY x § C R™!. In this case diffusion acts only in the RY directions. In
principle bounds involving topological entropy can also be given for more general
time-dependent flows.

Certain restrictions of Theorems 1 and 1’ should be noted as well. As has already
been seen, for technical reasons we assume the initial field is contained in a bounded
region. In addition we assume that the diffusivity is constant in space. From the
point of view of this paper, a non-constant diffusivity would result in spatially
varying noise. Thus diffusion could stretch the magnetic field and in principle have
a direct role in the dynamo process. For the same reason issues concerned with fast
dynamo action surrounded by an insulating region (Hollerbach et al. (1995)) are
not addressed here.

The techniques of this paper can also be applied to the evolution of a passive
scalar gradient field. The equation for the evolution of a passive scalar quantity
0 is

a0 I,

a:*“ VB—PeV 0, (13)
where the Peclet number Pe is a dimensionless parameter measuring the relative
strengths of advective and diffusive processes. Taking the gradient of (13) we get

a _ T L 2
Z(V0) +u - V(V0) = ~(Vu) VO + 5-V(V),

where (Vu)” is the transpose of Vu. When Pe = oo this equation is identical in
form to the time evolution equation for a field of material area elements. To see
this, let b x ¢ be a material area element. Abbreviating d/dt = 0/t +u - V, by
volume preservation we have for any material vector a,

d 7 d
O-Z(a-(bxc))-—a- (Vu)(bxc)—i—a(bxc) .
Since a was arbitrary we obtain

d _ T
Zi—;(bxc)— (Vu)' (b xc).
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As a Yomdin inequality holds for area elements as well as line elements, it can be
shown that at Pe = co,

lim Lin [|VOldx < h(f) + 28|
n—oon k

where, as before, f is a C¥ map (or time 1 integration of a steady or period 1
flow). This result might be interpreted as requiring A(f) + 2r(f)/k > 0 as a necessary
(although not sufficient) condition for efficient mixing at large Peclet number. If
k = oo then in fact chaos becomes a necessary condition for efficient mixing.

8. Proof of the Lower Bound

The proof of Theorem 2 uses some basic techniques from smooth ergodic theory.
These techniques are standard to workers in the subject, but without a substantial
amount of notation and preliminaries it is difficult to make precise statements. In-
stead of giving a formal proof we will elucidate the main geometric ideas, referring
the reader interested in technical details to an expository article (Young (1995)) or
Pesin’s original paper (Pesin (1978)). An argument similar to ours has been used
by Newhouse (1988). Throughout this section let f be as in Theorem 2.

Idea 1. Measures maximizing entropy

If p is an f-invariant Borel probability measure on &, let h,(f) denote the metric
entropy of f with respect to it (see Walters (1982) for a definition). In much the
same way that topological entropy measures chaos in a topological sense, metric
entropy measures randomness in the sense of probability. The following variational
principle is well known:

h(f) = sup h,(f) .
I

The supremum is taken over all f-invariant probability measures; it is also adequate
to only consider ergodic measures.

Our first step is to pick (and fix throughout) an ergodic measure u with 7,(f) >
W(f) — &. More likely than not, u is a singular measure, i.e., it lives on a set of
0 volume. The purpose of this proof is to show that points that are typical with
respect to u, exceptional as they may be from the point of view of volume, may
have a significant influence on the growth rate of [ |B,|9dx.

Idea 2. Lyapunov exponents and special coordinates

According to a theorem of Oseledets (1968), there exists a set of numbers 4,
> ... > A, with multiplicities m,...,m, respectively such that at p-a.e. x the
tangent space 7y% splits into TyY = E\(X)® - D E,(x) in such a way that
Vv € E,‘(X)

n—o0

1
lim —In|Dfyv] = 4;.
n
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These numbers are called the Lyapunov exponents of (f, u). The subspaces E;(x)
vary measurably with x —they vary continuously if we are willing to disregard a set
of arbitrarily small measure.

In general Lyapunov exponents are asymptotic growth rates, but there are point
dependent changes of coordinates due to Pesin (1978) that allow us to see f locally
as small perturbations of linear maps with eigenvalues exp(/;). More precisely, at
u-a.e. x there exists a differentiable change of coordinates @y : Ny — Uy, where N,
is a small neighborhood of 0 in RY and Uy is a small neighborhood of x, with the
properties that

1. @4(0) = x and DP(0) carries the splitting R"' @ --- P R™ to Ey(X) D -+ P
E(x);

2. if fy : Ny :— Niy is the representation of f in~ the new coordinates, then fy is C!
near Dfy(0) and Dfx(0) is a linear map with |Dfx(0)v] ~ exp(4, £ ¢&)|v] Vv € R™,

It should be noted that these change of coordinates distort distances by arbitrarily
large amounts (depending on X) and that there are various technical problems of
which one ought to be aware when working with them (see e.g. Young (1995)).

Idea 3. The influence of u-typical points on dynamo growth

We will assume in this paragraph that we are working in our special coordinates
so that locally f resembles a linear map with multipliers exp(4,) of multiplicity m,.
In fact for a typical x let us think of Uy as a product of the form U} x Uj, where
Uy is a disk contained in BE,(x), 4, = 0, and Uj is a disk contained in ®F;(x),
2i < 0. As before let b(y,e;n) = {z: d(f'y,f'z) < ¢¥0 < i < n}. Consider y very
near the center of Uy and assume that diam Uy = ¢. Then b(y,¢;n) =~ C x UJ for
some C with cross-sectional area ~ exp(—n . /lfm,-), /lfr = max(4;,0). (This is true
exactly if f is locally linear; in our coordinates the nonlinearities are mild.)

Next let h = h,(f). A property of metric entropy is that given any set U
of positive measure, for n sufficiently large there exists O(exp(nh)) points in U
that are (m,é¢)-separated, i.e., 3x),...,X; € U, k ~ exp(nh), such that b(x;, e n)N
b(xj,e;n) =) whenever i+ ;. We pick these points in Uy very near x and let
Ap = U, b(xi,¢;n).

To complete the proof we now exhibit a vector field By with the desired growth
rate. All that we really require of By is that in Uy it points roughly in the direction
of Ei(x). Then if ¢ = dimU}Y, we will have

[|DE"Bo|9dx ~ e . (Lebesque measure of Ay)
An

~ eq/",ln . e—(E/"_’J'mi)nenh > enh
and so .
liminf — In [|B,|%dx = h. (14)
no g

If & = 0 there is nothing to prove. If & > 0 then & < A4} m; by Ruelle’s inequality
(1978) so A; > 0. The same reasoning tells us that (f, x) must have a strictly
negative exponent; hence any ¢ = d — 1 will work in (14). If f is the time 1 map
of a flow then in addition to the negative exponent there is a zero exponent and so
q = d — 2 suffices. [
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Appendices

A. Outline of the Proof of Yomdin’s Theorem

We present here a proof of Claim 2 following Yomdin (1987). The proof uses
the following approximation lemma which allows one to renormalize after each
iteration:

Lemma 4. Let b(x; 1) and b(x;2) be the balls of radius 1 and 2 around a point
x in R?. Let f:b(x,2) — R? be a C¥ map with |D*f|| < M, 1 < s < k, and let
6:[0,1] — b(x;2) be a C* curve with ||a||y < 1. Then there exist a constant
Kk of the form k = uM'* (with u depending only on k and d) disjoint intervals
I,..., 1. C[0,1] such that

L. (foo) 'b(f(x);1) C UL C (Foo)'b(f(x);2),
J

2. If Y, is an affine contraction mapping [0, 1] onto I;, then
ID(Fosoy)] <1, 1<s<k.

Lemma 4 deals with the approximation of C¥ maps by polynomials and has
nothing to do with dynamics. We will omit its proof.

Consider now f as in Theorems 1 or 1’. We define a map f by blowing up f to
f = (1/e)f(ex). For ¢ sufficiently small,

max ID*f|| = (|Dff| = [IDA]] . (15)

Choose ¢ such that (15) holds. Given a C* curve ¢ define a C¥ curve 6 by blowing
up 6 to 6 = (1/¢)6 and assume for the moment that ||6]|; < I. We now apply the

lemma to f and 6 to get the maps y; and thus see that for any X,
(6 nb(x,1;1)) £ «,

where k = u(k,d)||Df]|'/¥. We now repeat this process again and again, defining a
new curve ¢ from the previous curve ¢ by ¢’ =foéoy; (summing over all the
,’s). Then for any x,

(6 N b(x,n;1)) < K.
This implies that

lim sup % In[/(f"6 N b(x,n;¢))] < Inpu(k) + % In || DA|, (16)

which is in the direction of the desired result.

We remark first that in the process of blowing up o, ||D*6||; increases for
s > 1. We may however subdivide 6 into shorter curves 6, in such a way that, after
reparametrizing, each &; satisfies ||6,]|x < 1. The number of subdivisions depends
only on k£ and ¢ (and not on ).
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To go from (16) to the desired result, we use the standard trick of working with
a power of f. Let & be given. Select ¢ > 0 and an integer p so that

L (1/p)Inp(k) < (1/3)zo.

2. (1/kp")In ||DEF'|| < r(£) + (1/3)eo for p/ = p.

3. f# = ” blown up by 1/¢ has property (15).

4. (1/p)h(f?; ) < h(f) + (&o/3). Here the ¢ in A(f?;¢) refers to the ¢ in defini-
tion (8).

Then for n = 1 (with b(x,n;¢) calculated using the map f?),

1
limsup — In(f%6) = — 11m sup ln/(f"po')
n—oo NP P n—oo

I\

;h(f" ;8) + ; lim sup ln [£((f7Y'e N b(X,n;¢))]

n— 00

h(f)+Q+ &

IIA

independent of choice of 4, as was to be shown.

B. Details on Stochastic Flows

Proof of Lemma 1. Since X,,, is in fact C3, B(x,?) as defined in Lemma 1 is at
least C? in x so the right side of (11) is well-defined. For (Xo,%) € R? x [0,00)
let
B(x0, 1 + 1) — B(xo, %)

; .

B .
8_t(x0’ h) = tl_l>%l+

We will show that V(xo, fy) this limit exists and is equal to the right side of (11). (To
conclude that 0B/dr really exists we will observe that as ¢ — 0 the convergence
is in fact uniform in ¢, for fy in any finite time interval. This fact together with the
continuity of # — 0B/0t(Xo,ty) proves that 0B/dtt = 0B/ot~ Viy > 0.)

To study dB/dt™, consider the backward derivative process associated with (12).
More precisely, consider

{dY, = —udt + 2ndb,, Y(0) = xo

(17)
dJ, = —Du, J(0) =1d

on R x GL(R,d), and introduce the function
f(Y,J)=J 'B(Y,1).
Then using the fact that X, ! and Y, have the same distributions, we have for 7 > 0,

B(xo, f0 + #) = E[(DX,0)X_; o (x)BX -0 (X0), f0)] = E(f(Y(2), J(2))) ,

so that
B

.1
5 = Jim S EM(Y(2), 3(1) — f(x0, 1d)] .
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Note that f is C2. Ito’s formula tells us that

Lo LI/ of of —u
V(). (1)) ~ f(xo, 1) = n[ s + | [(Wﬁ) ' (—Du)]ds

Lof
+ /21| ==dbs .
Of&Y

Let us call the three terms in this equation (i), (ii), and (iii). Then E(iii) = 0. since
(i) and (ii) are ordinary integrals, one verifies (using the uniform boundedness of
B(x,%),u, and Du, and standard large deviation estimates for the trajectories of
(Y(¢),Jd(t))) that

1
lim —E(@i) = n(V*B)(Xo, )
/—0t ¢

and
1
lim —E@(i) = (B - Va— VB - u)(Xq, %) . O

t—0+

C. Details on Operator Splitting

Proof of Lemma 2. This is a standard and well-known result of operator splitting
arising in slightly different forms in many different contexts. For completeness we
outline here a proof using a particularly simple argument found in Chorin et al.
(1978) p. 209.

Define the operator K, = M, o N,, where N, is the time ¢ propagator of the
evolution equation
0
—x=x-Vu—u-V
= X
(we assume u is C¥*!, k = 2) and M, is the time ¢ propagator of the evolution
equation

J 2
=V

Let F; be the time ¢ propagator for

0
Ex:x-Vu—u-ijLanx.

The object is to show that in the limit 6 — O, th/él converges to F, for any ¢.

Two basic properties are necessary to demonstrate convergence. First consistency
requires that
d

d
—K,
dr !

=_F
=0 dt !

t=0

Consistency follows immediately from the limit

d
+ =M,

1 1 1 d
~Kix—x)=-MNg—x)+-Myg—2)— ("‘Nz
t t t 1=0 dt

dt

)
t=0
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as t — 0. The second property required, stability, is boundedness of Ké’/ Tass—0
for small 7. Stability can be shown, for example, by expanding the Green’s function
for K(g’/ % for small z. We will not carry out the expansion here although, in fact,
this argument can be found as part of the proof of Lemma 3.

Using consistency and stability it is then easily shown that (F, —K([st/o])x con-
verges to O for small 7. The convergence for arbitrary T then follows from a com-
pactness argument.

Proof of Lemma 3. We will show for sufficiently small # and large m that the two
equations

x=u, x(0)=x,
m

Xy =u+ > a;0(t — j/m), %,(0) =X,
=1

where a; are iid d-dimensional Gaussian random variables with mean 0 and vari-
ance 2#/m, have solutions that remain uniformly close pointwise in X¢ as m — oo
with probability approaching 1 as # — 0. The higher derivatives are left to the
reader.

First we consider the linearization of X, — X around the trajectory x(#),x(0) =
Xo. That is, we consider the equation

&= (Vu)é + i}a,a(t — jjm). (18)

j=

The first task is to estimate the first passage time for |€|, i.e., to estimate the
probability that |&| = ¢ occurs first at time #. Now Eq.(18) can be integrated to
yield the solution

[tm]
c(t) = X%J(X(j/m)+§(j/mxl—j/m)a;, (19)
j:

(showing that |&| is uniformly bounded with high probability). Let a = sup||Vu]|.
Then ||J(x(j/m) + E(j/m),t — j/m)|| < e*. The probability of first passage of the
sum (19) of Gaussian random variables is less than or equal to the first passage
probability of the sum of Gaussian random variables

[tm

]
él(l‘) = e“Z a;.
=1

In the limit of m — oo the probability f(z,¢) that || exceeds z > 0 is given by
(Feller (1957))

ze* x\2
f(Z,t) — e (e Y- /4nt )
3

In particular for ¢ > 0

2

2 -5
VT

fm'E ) =

where § = e*n~%/2, which goes to zero as n — 0.



Rigorous Bounds on Fast Dynamo Growth Rate 645

Now a straightforward computation (using the first 3 derivatives of the flow
generated by u) gives the result

x,(1) — x(t) = &) + O(|¢]),

which we have argued is small with high probability in the limit # — 0.
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