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Abstract: We describe mirror manifolds in dimensions different from the familiar
case of complex threefolds. We isolate certain simplifying features present only in
dimension three, and supply alternative methods that do not rely on these special
characteristics and hence can be generalized to other dimensions. Although the mod-
uli spaces for Calabi-Yau d-folds are not "special Kahler manifolds" when d > 3,
they still have a restricted geometry, and we indicate the new geometrical structures
which arise. We formulate and apply procedures which allow for the construction of
mirror maps and the calculation of order-by-order instanton corrections to Yukawa
couplings. Mathematically, these corrections are expected to correspond to calculat-
ing Chern classes of various parameter spaces (Hilbert schemes) for rational curves
on Calabi-Yau manifolds. Our mirror-aided calculations agree with those Chern
class calculations in the limited number of cases for which the latter can be carried
out with current mathematical tools. Finally, we make explicit some striking rela-
tions between instanton corrections for various Yukawa couplings, derived from the
associativity of the operator product algebra.

1. Introduction

Calabi-Yau threefolds were originally introduced into string theory to provide six
compact spatial dimensions which complement four Minkowski spacetime directions
to yield a consistent ten dimensional background for string propagation. From a
more general perspective, Calabi-Yau threefolds can be target spaces for two di-
mensional supersymmetric (N = 2) conformally invariant nonlinear sigma models
with c = 9-this number arising from three times the complex dimension of the tar-
get space. Such superconformal field theories have interesting applications to string
backgrounds and critical systems, and have led to some striking predictions in math-
ematical physics. In the latter category, the recent conjectures [1], evidence from
numerical studies [2], explicit construction [3], and applications [4,5] of mirror
symmetry are indications of a deep mathematical structure that, at present, is best
understood from the physical viewpoint. We take that viewpoint throughout this
paper.
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The focus on c = 9, as mentioned, has its origin in the string theoretic appli-
cations of Calabi-Yau manifolds. The mathematical physics applications, however,
are of interest in the more general setting of c — 3d corresponding to Calabi-Yau
d-fo\ds. It is the purpose of the present paper to study mirror manifolds for more
general values of d. There are a couple of motivations for this study. First, there
are some aspects of mirror symmetry which are incompletely understood, even from
the physical viewpoint. It is one of our hopes that by studying mirror symmetry
for general dimension, the special features of dimension three can be suppressed
and hence allow focus on the true (dimension independent) mathematical and phys-
ical characteristics responsible for mirror symmetry. Second, mirror manifolds in
dimension three have proven themselves to be a powerful calculational tool. In par-
ticular, by making use of the mirror manifolds constructed in [3], the authors of
[5] and [6,7,8] showed that the number of rational curves of arbitrary degree on
certain Calabi-Yau threefolds - a number which cannot, in general, be effectively
determined with current mathematical methods1 - could be predicted with relative
ease by making a calculation on the mirror. There are two special features of di-
mension three in this regard. First, rational curves (world sheet instantons) on a
generic Calabi-Yau threefold are isolated whereas they arise in continuous families
on higher dimensional Calabi-Yau manifolds. The analog of calculating the number
of rational curves of a given degree on a Calabi-Yau threefold is the calculation
of properties of Chern classes of the parameter spaces of such curves in the higher
dimensional case. These parameter spaces are subspaces of the so-called Hίlbert
schemes of rational curves of a given degree. (These Hubert schemes are analogous
to the Grassmannian which parameterizes rational curves of degree one.) We will
see that the integers associated with these characteristic classes, for rational curves
of arbitrary degree, are easily predicted by a calculation on the mirror manifold. For
the calculations associated with degree one and degree two curves, our predictions
have been confirmed by Katz [9], who made explicit Chern class computations.
For degree higher than two, however, the Chern class computations become very
difficult and our predictions have not yet been verified.2 A second distinction is that
whereas there is one type of Yukawa coupling (for each of the (c,c) and (a,c)
rings) on a threefold there are many more in the higher dimensional case. Each of
these couplings probes part of the chiral and antichiral primary field ring structure
and has an instanton expansion interpretable as above. We will see that associa-
tivity of the operator product algebra gives rise to striking relations amongst these
instanton expansions. Mathematically, these relations can likely be established by
making use of the degeneration argument invoked by Witten in [12].

The above discussion, of course, only applies to Calabi-Yau manifolds for which
we have a mirror partner. General physical reasoning lends credence to the conjec-
ture [1] that essentially all Calabi-Yau manifolds come in mirror pairs (see [13] for
a review). To date, the only proven constructions of mirror manifolds3 are those
given in [3] and hence we shall focus on this subset of Calabi-Yau manifolds. For
this purpose we briefly recall the main result of [3].

1 See note added in proof.
2 However, very recently Ellingsrud and Stramme have generalized their earlier work [10] and

have verified some of our predictions for degree three curves [11].
3 The constructions of [3] are the only ones for which the conformal field theories are known

to coincide. The many interesting proposed generalizations of this construction [14] have some
supporting evidence, such as correctly predicted relations among Betti numbers, but no proof of
equivalence.
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Let W be a Calabi-Yau J-fold realized as a Fermat hypersurface in a weighted
projective space of dimension d + 1, which we denote by W(CP J + 1 (following the
conventions of the physics literature). Let G be the maximal group of diagonal scal-
ing symmetries acting on the homogeneous WCP^+ 1 coordinates which preserves
the holomorphic <i-form on W. Then W and M = FF/G constitute a mirror pair.
Furthermore, as explained in [3,13] a point crucial to the analysis of [4,5] and to
our study here, is that although the explicit arguments for constructing mirror pairs
[3] are tied to special points in moduli space (the Fermat points), deformation argu-
ments allow us to move away from such points via changes in either the complex
structure or the Kahler structure4. We therefore are able to construct families of
mirror pairs by deforming from the Fermat point [3].

In Sect. II we study some aspects of the moduli space of Calabi-Yau ί/-folds
from a covariant viewpoint. Our purpose in this discussion is not to be complete,
but rather to indicate the ways in which the moduli spaces for higher dimensional
Calabi-Yau manifolds differ from the three dimensional case. In particular we note
that these moduli spaces have certain special properties which can be viewed as a
generalization of the known properties in the three dimensional case, although not all
features of that case generalize. We give procedures for the derivation of the Picard-
Fuchs equations governing the behavior of the period maps which involve complica-
tions that are not present in the well studied case of d = 3. In Sect. Ill we calculate
the generalized "Yukawa couplings" (higher point functions) which naturally arise in
this analysis (for a variety of examples) and then apply the methods of [6] to derive
mirror maps and hence an instanton expansion. These higher point functions will fac-
tor into (sums of) products of three-point functions. We show that the associativity
of the operator product expansion gives rise to relations amongst these three-point
functions (the "conformal bootstrap equations") which translate into striking impli-
cations for the associated instanton expansions. In Sect. IV we rephrase the analysis
of Sect. II in a form better suited to the incorporation of mirror symmetry and ex-
plicit calculations. This approach naturally yields the fundamental Yukawa couplings
(three-point functions) which we relate to the calculations in the previous section.
In Sect. V we give the mathematical interpretation of the instanton expansions found
in Sect. IV (which is most easily done in the language of topological field theory).
Full justification of the interpretation requires a topological field theory argument
along the lines of [15] which is presented in an appendix. In Sect. VI we state our
conclusions.

2. Calabi-Yau Moduli Spaces for d > 3

Work over the last few years [16-19] has established that the moduli spaces for
Calabi-Yau threefolds are special Kahler manifolds. We recall the definition of
these. Special Kahler manifolds are Kahler manifolds of restricted type, meaning
that the Kahler class of the metric on the manifold Jί is an integral class, hence it
is the first Chern class of some line bundle which we shall denote by if. A Kahler
manifold of restricted type is special Kahler if there exist coordinates on Jt and

4 Technically it might be difficult to establish this statement for all but local deformations in
the moduli space. We stress, however, that the results presented in [4,5] and here all rely on our
deformation reasoning applying globally in the moduli space.
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a gauge choice on i f such that the corresponding Kahler potential K is given by

with <g a holomorphic function of the local complex coordinates za. As discussed in
[5], this is equivalent to the statement that the Kahler potential has a holomorphic
prepotential.

One can also think of special geometry as providing an additional restriction on
the Riemann tensor beyond those implied by Kahlerity. This more covariant formu-
lation requires the existence of holomorphic sections κaβy of if 2 ( ®3

such that

where Gχj is the Kahler metric on Jί. It follows that

(2.3)

When Jί is the moduli space of complex structures on a Calabi-Yau threefold
the structures of special geometry are realized as follows [17,19]. A section of if is
a choice of a holomorphic 3-form Ω(z) on the Calabi-Yau space Mz corresponding
to the point z G l ; the Kahler potential is

e~κ = J Ω AΩ (2.4)
Mz

the sections κaβy are the Yukawa couplings and may be written

κayε(z) = / Ω Λ dΛdydεΩ . (2.5)
Mz

The essential point is that the Yukawa couplings and the Kahler potential on Jί
are both determined by the single holomorphic function ^ , and they depend holo-
morphically on parameters. (This point will be important later.) There is a similar
structure on the Kahler moduli space [18].

Special geometry was first defined as a consistency requirement arising in the
study of N — 2 supergravity [20]. String theory associates N = 2 supergravity mod-
els to Calabi-Yau threefolds; it thus followed that moduli spaces of Calabi-Yau
threefolds must exhibit this structure. When we discuss Calabi-Yau manifolds of
dimension larger than three string theory leads to no such association and indeed, as
we shall see, moduli spaces will not be special Kahler. In heuristic terms, whereas
special geometry implies that the Kahler potential and Yukawa couplings are deter-
mined by a single holomorphic function, a number of holomorphic functions (as-
sociated with the independent kinds of Yukawa couplings) determine these features
in the higher dimensional setting.

2.1. Mathematical Preliminaries. We now turn to a study of the moduli space Jί
of complex structures on a Calabi-Yau d-fold M. We denote by Ω(z) a chosen
holomorphic J-form on the Calabi-Yau space corresponding to the point z in J(.
As in [17,21], Ω is naturally thought of as a section of the Hodge bundle 2tf over
Jί (the fibers of which are Hd(M,(£)). As the parameters z vary, Ω(z) spans a
holomorphic line bundle if C Jf whose first Chern class is the Kahler form on
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Jt? (The fiber of S£ at a point z is the corresponding subspace Hd>°(Mz) within
Hd(M,(E).) We derive differential equations for the periods of Ω(z) (over a suitable
family of cycles to be discussed), called Picard-Fuchs equations, in a manner similar
in spirit to [17,22,23].

To do so, we make use of the fact that if s is a (p,q) form valued section of
Jf, its covariant derivative contains (p — l,q+ 1) valued pieces. By successively
taking covariant derivatives and isolating the appropriate piece at each stage, we
can construct a sequence of maps6

Hd,o ^ Hd-\Λ _> v Hu-\ __> Ho,d _^ 0 < ( 2 .6)

In [22,23] this sequence of maps, applied to an initially chosen section Ω(z) of j£f,
was used to generate the Picard-Fuchs equation for a Calabi-Yau threefold. We
will find that for one-parameter families we can extend this result to d > 3.

The first map in (2.6), as shown in [17], is constructed from the covariant
derivative D = V + ω, where V is the flat metric-compatible connection7 on J-f,
and ω is a correction term characterized by the property that D acts covariantly on
sections of if. Applying this map to a chosen section Ώ, we find that the compo-
nents of the one-form DΩ span Hd~l*l(M)9 providing the basis for an iteration of
maps as in (2.6). The connection V will be discussed in greater detail in Sect. IV;
here we list the following properties which we will use.

(1) V is a flat holomorphic connection compatible with the metric on Jf
given by

(η\ψ)=ίd2jηΛψ. (2.7)
M

(2) In its action on Jf, V is constrained by the property that it maps $Fp to

^P-\ 0 τ*(Jί), where <F? = @p>>pH
p''d~p'. (This property is known as Griffiths

transversality.)
(3) The correction term ω can be computed using the chosen section Ω as

ω = -dlog(Ω|Ω) . (2.8)

Since if is a line bundle, the covariant derivative D = V -h ω admits another
interpretation - it essentially coincides with the metric connection on the tensor prod-
uct bundle ffl ®J£~l. This is seen as follows. The metric connection Q)^ on 5£
has the property

3)<e (/Ω) = dfΩ - fωΩ (2.9)

with ω as in (2.8); the dual bundle if~ι will have a connection £ ^ - i satisfying

χ χ +fωΩ~ι . (2.10)

5 The bundle J f Θ i f " 1 has fibers which can be canonically identified with H°(M,Λ°T) φ
Hι(M,ΛιT)θ--θHd(M,ΛdT). As pointed out by Strominger [17], these fibers can also be
identified with Hd(M,(£); however, that identification is not canonical. Our treatment thus differs
from [17] in considering Ω as a section of Jtf and not jtf 0 if.

6 We shall see later that this procedure corresponds to generating a partial basis for the chiral
ring of the associated conformal field theory by successive operator products of the marginal fields.

7 We use the term "connection" in the sense of Koszul: a connection V on a bundle $ is a
map V : $ -> $ 0 T*(Jί) which satisfies the Leibniz rule V(φe) = φV(e) + (dφ)e.
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If we write a section of Jf 0 if"1 in the form α ® ί ] " ' (with α a section of
then we find

) 0 β ~ ' , (2.11)

so that &;%'^<£-\ is calculated in terms of the covariant derivative D. It is thus
natural to consider the sequence of maps in (2.6) as coming from a corresponding
sequence of maps among subbundles of Jf ® J^~\ and this is the route we will
follow in the next subsection.

The subbundle i f C Jf gives rise (upon tensoring with J^~ι) to a subbundle
Θ C #e 0 5£~λ isomorphic to the trivial bundle, whose fibers are H°(M,Λ°T). This
subbundle comes equipped with a canonical section H (the constant function 1 on
the moduli space). To calculate ^ r ^ ^ - i ( l ) , we must write 11 = Ω® Ω~ι, and we
then find

1 -1 . (2.12)

This is independent of the choice of Ω.
Notice that in this description the a priori arbitrariness in the choice of Ω

becomes irrelevant. This gives a nice resolution to an uncomfortable apparent
asymmetry in one aspect of mirror manifolds, as we now briefly mention.

The symmetry between the "vertical" cohomology ® n / / ~ p onM and the "hor-
P M

izontal" cohomology ®pHM~p'p on its mirror M has often been emphasized. On

closer inspection, though, there lurks an uncomfortable asymmetry between these

two structures: there is a canonical section of H~° which naturally enters the discus-

sion- namely the constant section 1. On the other hand, there is no canonical choice

of section of H^° which is the mirror cohomology group of H~ . The resolution

of this apparent asymmetry which we present here is based on two observations.

First, at a more fundamental level, mirror manifolds respect a symmetry which

exchanges 0 p i F ( M , y l T * ) with 0p//^(M,yl^Γ). The former is canonically iso-

morphic to (&nH~p while the latter as we have discussed, is canonically isomorphic
P M

to Jf (8) if"1. For p = 0 each of these does have a canonical section, namely, 1.
Second, as we have just calculated, the covariant derivative which we use to realize
(2.6) is also independent of the choice of Ω. Hence, in this description everything
is manifestly mirror symmetric.

2.2. Picard-Fuchs Equations. Following the basic strategy outlined above, we now
consider successive derivatives of 1, attempting at each stage to isolate the compo-
nent of pure type (p,q) for the smallest possible value of p.s An invariant way of
describing this procedure is to introduce an additional correction term ωp with the
properties that (1) ^:^^^-ι 4- cop acts covariantly on sections of άFp <g) if"1, and
(2) ί&xQtf-x + ωp maps <ΨP <g> if""1 to ( J ^ 0 i f " 1 )- 1 . By Griffiths transversality,
it follows that {β^^<£-\ + ojp)(χ) must precisely pick out the (p - \,q + 1) piece

8 Note that we are using "(/?,#)" a bit loosely here; we have shifted to a calculation within
J£?~\ and so the phrase "type (p,q)" is actually meant to indicate a section of Hq(M, ΛqT).
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Above we observed that in the first step of (2.6) we in fact produce a basis for
the cohomology group Hd~λ'λ. In subsequent steps this nice property will no longer
hold (as pointed out in [17]). The components of successive derivatives of Ω will
span a subbundle of Jίf that we will term the primary horizontal subspace. This is
most easily understood in J f 0 i f ~\ where it comprises the subspace generated by
successive cup products of the elements of H{(T(,Jί)); we will restrict our attention
to this subspace. Thus, to verify at each step that we have correctly projected to
(έFp 0 if"1 )"L we will check that components along the elements of a basis for the
primary subspace constructed in previous steps vanish. The metric (2.7) restricts (by
the Hodge-Riemann bilinear relations) to a nondegenerate pairing on the primary
subspace, so we will use this to compute these projections.

To avoid cluttering the notation, we will drop the subscripts and let D denote
the covariant derivative on Jf Θ i f " 1 0 i " Γ ( i ) (with the appropriate value of
n determined by context) derived from @%-<$cj>-\ by adding an appropriate number
of Levi-Civita connection terms. The first step in (2.6) is realized quite simply as
χ θ ) = Dt\ let us show that this is of pure type. To determine the (ί/,0) component
we use the metric compatibility to evaluate

(Ϊ|X(1)) = δ(ϊ\l) - (Dϊ\t) = 0 . (2.13)

The inner product (|) on Jf ^ i f " 1 is the one derived from (2.7);(2.13) thus
equates one-forms. The first term is trivially zero. To see that the second term
vanishes, recall that 11 is a holomorphic section of a holomorphic bundle on which
D is a holomorphic connection. Thus writing X^ = χi 0 Ω~ιdzy we have seen
that χi is purely of type (d — 1,1). In fact, of course, the components of X^
span H](T), realizing the Kodaira-Spencer isomorphism between this cohomology
group and the fibers of T(JM).

At the next stage we again set X ( 2 ) = DX^X\ A computation essentially identical
to (2.13) shows that X{2) has no (d,0) component. To determine the (d - 1,1)
component we compute the inner products with our basis

I X ( 1 )) - (DβDzί I Z ( 1 ) ) . (2.14)

In the first term, 3) is the metric connection9 on Γ*(e/#) Θ T*(Ji) and the tensor
on which it acts is calculated to be the Kahler metric yielding zero. In the second
term we can use once more the holomorphicity of 11 to obtain a commutator term

{[Dβ,Dz\ϊ\X}{)). (2.15)

This commutator of covariant derivatives is just the curvature of the bundle in which
they act-in this case because Jtif is flat we obtain the curvature of if"1. Since this
does not change type, the previous calculation shows that this term also vanishes.
Hence, in the sense used above, X ( 2 ) is of pure type (d - 2,2).

We note here that for d = 3, the above steps suffice [17,22,23] to compute the
differential equation. The reason is that in this case we already have in hand a basis
for Z/1'2, given by the complex conjugate of our basis for // 2 j l . Expressing ^

in terms of X^ we can complete (2.6) by considerations similar to those above.
This, of course, will not suffice for d > 3. This does point to one difficulty we will

9 This connection is not holomorphic. For further details on manipulating connections such as
this one, see Appendix A.
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encounter, however. The components of the forms generated in realizing (2.6) will
by definition span the primary subspace, but in general they will not be linearly
independent.

We now attempt, therefore, to continue by setting X ( 3 ) = DX^2\ The above
reasoning ensures that besides the desired (d — 3,3) part, the only other possible
component is of type (d - 2,2). To probe for the latter we compute

which equals

^ ) ( 2 1 7 )

Let us deal with the second term in (2.17) first. Quite generally, any expression of
the form _

(DΛDsι...DSkt\X«-»_ι) (2.18)

vanishes identically if X^ ~x' is of pure type (d — k + \,k — 1). To prove this, we
commute the Z)α successively to the right. Examination of each of the resulting
terms shows that they are all of at most type (k - 2,d - k + 2) and hence yield
zero inner product. Using this result we see that

Y^\ — O7) lγQ γ
zβ Xybε) ~ &*\X

Λβ
 Xyδ

Now, this expression is generally nonzero and hence X^ is not of pure type
(rf-3,3). We can, however, search for some tensor 5 e Γ ( Γ ( J ) 2 0 Γ ( J ) 2 )
such that _

* ϊ = S$φ . (2-20)

with S so chosen that DX^ is of pure type (d — 3,3).10 In general it is not clear
how to construct such an 5, since this requires untangling the linear dependence
of the components of X ( 2 ) mentioned above. (In the case d = 3 it was found [23]

using the expression for X^ in terms of X(ιK) However, in the particular case of
interest to us here, for a one-parameter family, it is not difficult to proceed; we
restrict attention to this case now. The Greek indices all take but one value, and
will occasionally be omitted. Then the simple solution is S = ^ ι

One can now continue in this fashion as follows (in our special case). Reasoning
as above, we need to define X{k) = DX{k~ι) = D(S(k-{)X{k-{}) with S chosen so
that (X(k~χ) \X^k~1^) is covariantly constant. Then the arguments of the preceding
paragraphs will show that X^ is of pure type. The solution for S given above
extends as

S(k)= (^(χϊk)\χ(k^yl (2.21)

This procedure thus realizes the sequence (2.6) and terminates of course at the
(d + 1 ) s t step, yielding a differential equation of this order for 11 or equivalently for
Ω and hence its periods. This is the Picard-Fuchs equation, in a form very similar
to that obtained in [23] for d — 3:

D(S(d~l)D) (S{3)D)S{2)DDt = 0 . (2.22)

This can only determine S up to covariantly constant factors.
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2.3. Analogs of Special Geometry. As mentioned earlier, for d = 3 it is well known
that Calabi-Yau moduli spaces are special Kahler manifolds which, for example, can
be characterized by (2.2). The moduli spaces for Calabi-Yau manifolds for d > 3
do not satisfy (2.2) but they do respect particular constraints on their respective
Riemann tensors as we now briefly indicate.

For arbitrary d we have (recalling that V is a flat connection on Jtf)

X™ , (2.23)

simply expressing the curvature of D as it acts on the bundle 2fP 0 ̂ ~x 0 Γ % # )
of which X^ is a section. Solving for the Riemann tensor we thus have

Rφl = GaβGfs + GάGfβ + eKf ^)DlP« 4 ' ' ' (2 2 4 >

where as earlier we have written X^ = χa (g) Ω~] dz*. The last term on the right-
hand side would, in the notation of the previous subsection, be written after inte-
gration by parts as

(^Fl-O, (2-25)
in which form this equation recently appeared in [24].

We wish to find a constraint on the Riemann tensor which is written explicitly in
terms of the higher dimensional analog of (2.5). This requires an explicit evaluation
of the integral on the right-hand side of (2.23). In the case of d — 3 this is easy
to do since D^P is pure type (1,2) and is readily expressed in terms of χψ (and

similarly for the complex conjugate situation which also arises in (2.23)). When
the tensor S ( 2 ) (as described above) exists, this can be explicitly carried out in a
similar manner for d = 4 and leads, after some algebra, to

Rφϊ = G*-βGfs + G*τG^ + eKBa'~/r5'^y>*y*n>Ts ' ( 2 2 6 >

where B = S ( 2 ) and K is the Yukawa coupling defined in any dimension d by

*«,...«, = jΩAdaι --d«da. (2.27)

Written in this way we see the similarity to d = 3, the main difference being the

tensor B (which is essentially the inverse of (χf^\χ^)) taking the place of G^

(which arises from the inverse of (χ« |χ« )).

In the case of a one-parameter family where the tensors S^ exist and the
analysis above is valid, we can explicitly compute (again omitting the indices)

B = eκ/(2G2 - R). (2.28)

Thus
(R-2G2)2 = e2Kκκ. (2.29)

The Hodge-Riemann bilinear identities ensure that 2G2 - R is positive and hence
we find (replacing the index placeholders)

^α^-2G^-^|^α α |. (2.30)
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The approach can be pursued further. This can be done by explicitly evaluating
the right-hand side of (2.24). Alternatively (and somewhat easier to calculate) one
can pursue the direct analog of the three (or four) dimensional calculation and
consider [D^D-βX{ j) with j = [d - l]/2 as before. Since XU) is a section of 3tf ®

<£~x ® T*(Jty the commutator involves sums of terms involving the Riemann
tensor and the metric on moduli space. The advantage of operating on a section
of this particular bundle is that for this value of j the action of Z)α pushes us
over the "half-way" point, thus allowing us to reexpress the result in terms of the
complex conjugate basis (as discussed earlier). This facilitates direct calculation of
the constraint on the Riemann tensor. For example, in the case of a one-parameter
family with d = 5 we find

2G2 -RJ- (2G2 -R)2 = 3(G - G-ιR), (2.31)

where R is the Riemann tensor and G is the metric on moduli space. In general
when one attempts to evaluate the right-hand side of (2.24) in terms of the Yukawa
couplings the expressions become complicated for large d.

3. Yukawa Couplings, Series Expansions and Factorization

In the previous section we described some general structural features of moduli
spaces for Calabi-Yau manifolds in general dimension d. Our aim is to apply
mirror symmetry to these manifolds, and to this end we will in this section introduce
the physical theories related to the geometrical constructs. We will then compute
the correlation functions of marginal chiral primary operators in a set of models
and exhibit the series expansions predicted for these functions by mirror symmetry.
Finally, we will show how these functions are predicted to factorize in terms of more
fundamental correlators and extract some highly nontrivial predictions regarding this
factorization. Computing the fundamental couplings will require the introduction of
some additional structure and this will be the subject of the next section.

Given a Calabi-Yau space M equipped with a complex structure, Kahler metric
and #-field, we can define two different topological field theories. The description of
the previous section is well-suited to a discussion of the B model (in the terminology
of [25]). In this theory the observables are naturally described by the space

(3.1)
p,q=0

where T is the holomorphic tangent bundle to M. The correlation functions of
the model are computable exactly in terms of geometrical quantities. Given Θι G
HPi(ΛqiT) the correlation function vanishes unless Σ P> = Σtfi = d and when
nonzero is given by

(0! Os) = J α , . , / i Λ Λ Θs A Ω , (3.2)
M

where the notation means tangent indices are contracted with Ω and the forms
cupped together. Deformations of the complex structure of M are related of course
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to the observables corresponding to Hι(T). (These are the marginal operators.) The
nonzero correlators of these can be rewritten as

{X^---X^) = κ3ι...aj =jΩΛDaι ...DajΩ, (3.3)
M

a quantity which was seen to play a role in the discussion of Sect. II.
There is a second topological field theory associated to a Calabi-Yau manifold

M, the A model of [25]. For clarity below we rename the Calabi-Yau manifold to

M, but we stress that it is not necessary to change the manifold in order to define
the A model. In this theory the observables naturally correspond to the de Rham
cohomology ofM. The parameter space of this model is a complexification of the
Kahler cone ofM; all relevant quantities are completely invariant under variations
of the complex structure. The correlation functions in the A model are defined as
sums over homotopy classes of maps from the worldsheet (which we take in all
cases to be simply (CP1, other topologies have recently been considered in [24]) to

M. In each class the contribution may be shown to localize on holomorphic maps,
and the contribution of each such "instanton sector" is weighted by the exponential
of the pullback of the Kahler form ofM (evaluated on the fundamental class of the
worldsheet). These series are expected to have a finite radius of convergence about
a "large radius limit" point deep in the interior of the Kahler cone; the leading term
is the intersection matrix ofM. The nonzero correlators of marginal operators X^
can be written

M

-f instanton corrections , (3.4)

where Ω is a completely antisymmetric tensor field needed to normalize the topo-
logical correlation functions. In familiar applications a particularly natural choice for
the latter data on M has been made: namely, a completely antisymmetric tensor field
which is constant on the Kahler moduli space. Although not usually emphasized,
we point out that, while natural, this is a choice and mirror symmetry predicts that
there is a corresponding choice for the data on M such that (3.3) and (3.4) are
equal.11

The instanton contributions to (3.4) from nontrivial sectors are related (as we
discuss in detail in Sect. V) to certain characteristic classes of the moduli space of
holomorphic maps of the appropriate homotopy type, and the extraction of explicit
results on these has been one of the most successful applications of mirror symmetry.
This application is based upon the following fact: If M and M are mirror manifolds,
then the A model constructed from M is isomorphic as a topological field theory to
the B model constructed from M. In more detail, this means that mirror symmetry
implies the existence of a "mirror map" from the complexified Kahler cone of M
to the moduli space of complex structures on M, and at each point a mapping
of the spaces of observables in the two models, such that these maps preserve
the correlation functions of the topological field theory.12 In practice, to study the

11 A similar observation has been made independently by Distler [26].
1 2 In fact, as is well known, this statement is weaker than the strongest one implied by mirror

symmetry - which implies in fact an isomorphism of the superconformal σ models based upon M

and M, but this version is sufficient for all of our applications here.
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properties of rational curves on a manifold M one constructs the mirror manifold M
and computes the B model correlation functions as we will do below. One then finds
the location in moduli space of the "large complex structure limit" point (mirror to
the large radius point), about which one expands the correlators. To interpret the
coefficients of the expansion one must expand in coordinates related by the mirror
map to the coefficients of the Kahler form on M in terms of a fixed basis for
H2(M). We will find these coordinates using an Ansatz for the mirror map, first
proposed in [5] and recently explained in [24]. These points will be discussed in
more detail in the sequel.

3.1. The Computation. We now present a class of examples for which we perform

the computations explicitly. All of these will be one-parameter families of Calabi-

Yau manifolds (i.e. hd~lΛ(M) — 1). In particular, for simplicity, we will consider

families M\ of Calabi-Yau hypersurfaces constructed as follows. Let W\ be a

hypersurface in (£Ψd+ι determined in terms of homogeneous coordinates zι by the

P(z;φ) = zf+2 + +2$ϊl - (d + 2)φzλz2 • "Zd+2 = 0 . (3.5)

equation1 3

This defines a family of Calabi-Yau manifolds with hι>ι(W) = 1. Define M(

φ

d) by

the quotient construction

M^ = wld)l(Έd+2)
d. (3.6)

By the arguments of [3], the family M^ lies in the "mirror" parameter space, and

indeed one verifies that hd~x'x{M) — 1 [27]. The parameter ψ is a coordinate on

the space of complex structures on M^\ In terms of the mirror manifold Mψ it
fd\

serves as a coordinate on the complexified Kahler cone. Note that Mψ is a defor-

mation of W\ , so computations on M will yield information about rational curves

on W.
The expression (3.3) demonstrates that the numerical value of K depends both

on the choice of Ω and on the coordinate system (in the language of previ-
ous sections K is a section of if2 <S) Sym(Γ*Θί/)). As we have discussed, a nec-
essary ingredient for the application of mirror symmetry in this context is to
discover the correct map between φ and t, where the former is our parameter
on the complex structure moduli space of M and the latter denotes a coordi-
nate on the Kahler moduli space of M. Choosing a particularly convenient gauge
for Ω

z\dz2 Λ Λ dzd+\ + cyclic permutations
ίl — ψ — , w ' )

1 3 We note that one could easily extend our analysis to include cases involving weighted projec-
tive spaces (which even for the case of hypersurfaces with A1'1 = 1 become quite numerous with
increasing d).



Mirror Manifolds in Higher Dimension 571

the techniques of deformation theory allow us to compute f%..,̂  quite simply [28]

H(Φ) Ξ d e t ( έ & ) = «d+O(rf + 2)) ' + 2 (l-^ + 2 ) . (3.8)

A more natural parameter on the moduli space is z = φ"^d+2\ and these quantities
can equally well be expressed in terms of z. In order to obtain information about
rational curves on W^ we need to find the correct coordinate t in terms of φ
or z.

To find this we consider the periods of the holomorphic d-form Ω along a set
of ^-cycles locally constant up to homology, wι = J] Ω(z). We restrict the y/'s
to lie in the primary horizontal subspace of homology, which by definition is
the annihilator of the orthogonal complement of the primary horizontal subspace
of cohomology (introduced in Subsect. 2.2). To find the periods in terms of φ
we will make use of the fact that they satisfy - as discussed in Sect. II - a set
of differential equations, the Picard-Fuchs equations. For a one-parameter family
this is an ordinary differential equation with regular singular points at boundary
points of the moduli space. The monodromy of the locally constant homology
cycles (in the primary subspace) about these degeneration points is reflected in
the monodromy of the solutions. In particular, the boundary point corresponding
to large radius of W^ is a singular point of "maximally unipotent monodromy"
[29]. This implies [6] that a set XΠQ,W\,...,W(J of local solutions can be found so
that mo is single-valued, and each ratio of successive solutions mi+\/vjj has the
form

—:logz + single-valued function (3.9)
2πi

near the boundary point.
We then use

^ , (3.10)
UJQ

to specify the mirror map; the coordinate q in terms of which we perform power
series expansions is then represented as q = e2πιt. Note that under transport about the
singular point we have / —•> t + 1. This form of the mirror map was first advanced
by Candelas et al. [5], formulated as described here in [29], and recently explained
in [24].

For the case at hand the required Picard-Fuchs equations were derived by Lerche
et al. [30]. The Picard-Fuchs equation is seen to be a generalized hypergeometric
equation (recall z = φ^d+2>

(3.11)
d+\

: Yl ( zdz -\—
H V d +

The singular point of interest is z = 0. Using the method of Frobenius (see [31])
we find the following series expansions for the solutions (as the reader can verify
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with a straightforward computation)

d+l / j

+ 1 '

d
W\ = tΠolθg(z) + ——

OW w=0

where

(3.12)

(3.13)

is the Pochhammer symbol. Note that (3.12) yields explicit expressions for the
power series coefficients using elementary properties of Gamma functions.

The required series expansion for K is then obtained by inverting these to express
z as a series in q and then inserting (3.8) (taking proper account of the change of
coordinates from ψ to z). In Table 1 we give the first few terms in these series
expansions of κtt...t for d in the range four to ten. Notice that, as expected, the
series all involve integer coefficients. However, it is not immediately clear how
to give geometrical interpretations to these integers. The key to the explanation is
to recall that these d-point functions must factor into sums of products of three-
point functions. As we will see in the next section, the three-point functions can
be directly calculated for the B model, and the corresponding A model three-point
functions have an immediate geometrical interpretation which we shall describe. The
power series shown in Table 1 will factor into other power series which explicitly
represent these three-point functions.

3.2. Factorization and Three-Point Functions. In the previous subsection we com-
puted the J-point Yukawa couplings and found their series expansions. As men-
tioned there, the objects for which we have an immediate geometric interpretation
are the three-point functions of the A model; this interpretation will be discussed in
detail in Sect. V. In this subsection we will describe the three-point functions and
relate them to the correlators computed above; Sect. IV is devoted to an algorithm
for computing the three-point functions.

One of the defining properties of a topological field theory is the factorization
property exhibited by its correlation functions. In the present context this means
that all of the correlators can be written in terms of the nonvanishing two-point and
three-point functions. Underlying this is the fact that the operators in a topological
field theory form an associative, commutative graded ring on which the correlation
functions determine a trace function [32,33]. This is manifest in the B model; the
form of (3.2) shows that multiplication in the ring is just the sheaf cup product.
(This ring structure on Hβ coincides with the "(c,c) ring" of the superconformal
theory.) In the context of the A model (where we get the "(<z,c) ring" or "quantum
cohomology ring") this property is less obvious and will lead, after interpreting the
instanton expansion coefficients in terms of rational curves, to some unsuspected
properties of the latter.

The ring structure implies the existence of a topological version of the operator
product expansion, in the form

/ } . (3.14)
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Our notation here is that a superscript (y) indicates that the corresponding operator
is in Hi(M,ΛJT) (for a B model computation; the grading property is universal but
not always as obvious) and the subscripts are labels. Using (3.14) it is possible to
express a correlator in terms of correlators with fewer fields. In turn, the expansion
coefficients C ^ themselves may be expressed in terms of the two-point and three-
point correlators.

This comes about as follows. The two-point function determines a nondegenerate
metric on HB (of (3.1))

η*β = ΨVήP) (3 i5)

The properties of (3.2) guarantee that for arguments (9 of pure type, η^β is nonzero

only between complimentary types i + j — d,14 The metric η depends holomorphi-
cally on the parameters and is flat. In fact, it is possible to choose a basis which
varies so that ηΛβ is constant. For a one-parameter family, we can restrict attention
to the primary horizontal subspace which is one-dimensional in each graded piece.
We can then certainly choose our normalizations so that η^ui) — cδι+J\d, where c is
the degree of the variety.15

In a similar manner, the three-point functions determine maps

Y{ : Hι(M,ΛιT) x Hj(M,ΛJT) x /^~ / W(M,/L c /~ ί~ /Γ) -> <C (3.16)

given in terms of some basis for HB by16

-J)} — (j(iJ)η(ι+j,d-ι-j) _ c£{hj) (3.17)

Because η is invertible, we can use this to express C^' ̂  in terms of Y. This is
the sense in which all correlators are determined by the two-point and three-point
functions. There is an obvious symmetry YJ — Yj = γf~ι~j among these functions.
The associativity of the ring of local operators leads to some less obvious relations
which we now discuss.

We now turn to the final goal of this section: to show that a complete set of
three-point functions is provided by those which involve at least one element in
Hι(M, 7), i.e. the Y,1. The essential idea here is that a four-point function can be
factored into (sums of) products of pairs of three-point functions in up to three
distinct ways by using the associativity of the operator product expansion. To il-
lustrate this point, consider, for example, a four-point function (Θ^Θ^Θ^Θψ)
on a Calabi-Yau sixfold. By factoring this four-point function in the two distinct
possible ways we have

^ ; ( 3 . 1 8 )
p, σ p,σ

1 4 The metric η differs from the metric G discussed in Sect. II, even when restricted to the
subspace of Hg corresponding to marginal deformations; the relation between these two was the
subject of [34].

1 5 If we try to suppress this degree c by a change of basis, then for d even, in the middle
cohomology group Hcl/2>d/2 we would have to leave the realm of integral cohomology and allow
a square root as a coefficient. For this reason, we stick with this almost-standard normalization.

1 6 For the special case of one-parameter families in which we focus only on a single element in
each HP(M,APT) we use the same symbol for the map and its image in C (for specially chosen
normalization of the arguments).
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Thus we have

yΛ^,(l,lV^(2,2)σ (2,4) _ y ^ £ O>2)p£,(i,2)σβ, (3,3) /^ jcn

p, a pyo

We see from this equality that if we know the metric η and the operator product
coefficients C ( 1 ? 1 ) and C ( 1 ' 2 ) , then associativity gives us a set of linear equations
for the coefficients C^2'2\ In the normalization discussed above we can make this
more explicit and find

Using (3.17), (3.20) gives a relation

γ2 = (γ})2/γ{ . (3.21)

This same reasoning is readily used to show that for arbitrary d (in the primary
horizontal subspace) we have

γ! =JUγi+k /JUγk ( 3 2 2 )
k=0 I k=\

We thus see that all Yukawa couplings YJ

X are determined in terms of those which
contain at least one member of Hι(M,T).

As discussed above, the 7/ are interpretable as three-point functions on the mir-
ror M involving elements of Hι{M,AιΓ\ HJ(M9Λ>T*)9 and Hd-i-J(M9Λ

d-ι-<>T*).
These three-point functions have instanton expansions whose coefficients depend on
the rational curves onM. The identities in (3.21) (and their straightforward general-
izations to higher dimensional moduli spaces) thus provide various relations among
the numbers associated to rational curves. These relations provide a sensitive con-
sistency check on our methods (as we shall see).

4. The Mirror Map and Three-Point Functions

As discussed earlier, the arguments of [3] establish an abstract isomorphism between
the moduli spaces of complex structures on M and Kahler structures on M and
between the associated Hubert spaces which preserves the correlation functions.17

A full understanding of mirror symmetry, and certainly its application to computing
properties of rational curves, involves the explicit form of these isomorphisms. As
mentioned in the previous section, an Ansatz for the so-called "mirror map" between
the moduli spaces was proposed (and verified in an example) in [5]; this has since
been checked in many other examples and has recently been explained in [24].
This map provides naturally a part of the required isomorphism between the Hubert
spaces HP(M,APT) and HP(M,ΛPT*), since the tangent directions to moduli space
are related to the subspace of marginal operators (recall this is simply the subspace
at the first nonzero grading). This isomorphism was used in the previous section
to relate correlators of these operators in the two models, and the fact that the
series of Table 1 yield integer coefficients is a signal that we have performed the
mapping correctly. As we have seen, however, these correlators are in some sense

17 The argument in [3] establishes this up to possible global considerations.
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secondary objects derived from the more fundamental three-point couplings; it is
to these fundamental objects that a geometrical interpretation (in the A model)
may be given. These however necessarily involve non-marginal operators, so we
will need to extend the mirror map to a complete isomorphism between the Hubert
spaces. In the special case of Calabi-Yau threefolds, mapping the space of marginal
operators in fact suffices to extract all of the required information. As mentioned
in Sect. II, complex conjugation generates from a basis of these a basis for the
entire space; performing this operation in both spaces leads to two bases related
by mirror symmetry. In other cases, however, constructing bases (as sections over
moduli space) which are mapped to each other by mirror symmetry requires more
structure. We will supply this structure and give a systematic method for finding
such bases and hence exploiting mirror symmetry. We will focus our attention
on one-parameter families of Calabi-Yau d-folds although the extension to higher
dimensional moduli spaces should be relatively straightforward.

As a brief summary for the rest of this section, we note that our approach
is, roughly, as follows. The mirror map, as discussed in Sect. Ill, determines a
coordinate (the ratio of periods) on the moduli space of complex structures on
M related by mirror symmetry to the natural coordinate on the space of Kahler
structures on M. Our goal is to use this information, which essentially gives us
mirror symmetric bases of Hι(M, 71*) and Hι(M,T) to construct mirror symmetric
bases of HP(M,ΛPT) and HP(M,/\PT*). In essence, we construct such bases by
beginning with elements in the Hx cohomology groups and generating the primary
subspace by successive operator products of these. On M we will relate this to
an integral basis of HP'P(M,Έ). On M, we find a systematic approach using the
Gauss-Manin connection.

4.1. The Gauss-Manin Connection and the Choice of Basis. The Gauss-Manin
connection V was introduced in Sect. II as the flat holomorphic connection com-
patible with the metric on Jf\ This connection can also be defined by the follow-
ing important property. As we move around in the parameter space of complex
structures of M, the decomposition Hd(M,<L) = Q)pH

p>d~p(M,(E) varies since the
meaning of a (p, q) form depends upon the complex structure. We can, however,
also consider a topological basis of Hd(M, (C) (for example, the duals of topological
homology cycles in //^(M, (C)) which does not vary with the complex structure. The
Gauss-Manin connection measures the variance of the former basis with respect to
the latter. To see this explicitly, let y\,...,yk be a topological basis of /^(M,(C)
and consider α(z) to be a holomorphically varying element in ίFp. Then, we can
write

with {y*} being the dual basis of {yμ} in Hd(M,<E). We define the action of V
to be

( U (4.2)

In other words, the Gauss-Manin connection is defined by demanding that the topo-
logical sections yμ are flat sections. Then, covariant differentiation turns into ordinary
differentiation with respect to the parameters of the complex structure moduli space.
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We will momentarily see that the Gauss-Manin connection plays a crucial role in
finding and implementing the extended mirror map.

We now, once again, specialize our discussion to the case f̂/1'1 = hι~ = 1 and

to the primary horizontal and vertical subspaces of W'd~J(M, C) and //7'7(M, (C)
generated by these one-dimensional spaces. Our goals are to

1) find a map from the moduli space Jίc^ of complex structures on M
parameterized by the complex coordinate z to the "Kahler" moduli space Ji1^

M

parameterized by the complex coordinate t and to
2) find the explicit isomorphism between ®pHP>P(M,<C) and @pH^d~P{MX)

such that the A model Yukawa couplings (Θ^Θ^^Θ^) as functions of t are equal
to the B model Yukawa couplings (Θ^Θ^^Θ^) as functions of z (for corresponding
basis elements) once we express t in terms of z using the mirror map.

To this end, we first note that there is an especially convenient basis for the

primary vertical subspace of φ> HP>P(M,(C). It can be described as eo,e\,.. .,ed,

where each ep is the integral generator of HPiP(M,<C) which is the Poincare dual
of a submanifold of complex codimension p. (We in fact take ep of the form
e\ U Uβi (with p terms).) As discussed earlier, it is this basis which gives
rise to the simplest geometrical interpretation of three-point correlation functions.
Goal (2) will be achieved if we can find the mirror image of this basis in
Hd(Mz,<£). Moreover, since the Kahler moduli space of M is locally isomorphic to
Hι(T~) = Hι'ι(M)9 the generator e\ of Hι'ι(M) determines a natural coordinate t
on the Kahler moduli space. (The Kahler form will be written as te\.) So we can
actually achieve both goals (1) and (2) by finding the appropriate analogous basis
in Hd(Mz,(D), since the analog of e\ can be used to specify a coordinate.

To motivate our solution to this question, let's look more closely at the primary

vertical sub-basis eo,eu...,ed of φ / ? // / ? ' / ? (M,Z). We have, in this basis,

η{ι'j) = (ei,ej)=cδi+j9d9 (4.3)

where c is a specific constant, the degree of M, calculated by integrating e\ U
• Uei (with d terms) over M.1 8 Also note that we clearly have e\ed — 0. Our
basis, therefore, satisfies the following three features:

j - \ =c~λA)_λ{t)en

3)

where we have used AXj_x(t) to denote the A model Yukawa coupling

as a function of t.19

1 8 In odd dimension we could change basis to get rid of this constant, but in even dimension
doing so would introduce the square root of the degree as a coefficient, which could provide a
good basis for real cohomology but not for integral cohomology.

1 9 These functions coincide with the function Yj_ι of Subsect. 3.2; we introduce the notation

Aλ

j_ι here and Bι

/_ι below in order to emphasize when these functions are being calculated on

the A model of M, and when on the B model of M.
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Of course, property (1) follows from (2), but writing it in this manner will
be useful shortly. In particular, we interpret (1) as follows: the operator product
of e\ and βj-\ is a functional multiple of ey, with the multiplier depending on
the parameter in the Kahler moduli space. We note that on the A model side these
properties do not uniquely single out a basis; rather, they are properties characteristic
of a set of bases, amongst which is the basis of integral generators.

We now mimic these properties on the B model side; we will see that a slightly
stronger version of these properties, when combined with an analysis of the mon-
odromy, does determine an essentially unique basis.

We will formulate our basis for the B model bundle in such a way that both the
basis and the correlation functions manifestly have a holomorphic dependence on
moduli. As has been recognized since the work of Griffiths [35], there is an inherent
conflict between choosing bases of pure (p,q) type, and choosing bases which vary
holomorphically with moduli. (This is why we introduced the bundles 3Fp rather
than working directly with Hp'q(M) in our discussion of the Gauss-Manin con-
nection, since the άFp's are the holomorphically varying objects.) Although the first
choice might appear at first sight to be better adapted to a study of mirror symmetry
(since we usually work on the A side with bases of pure type), the holomorphic
dependence of B model correlation functions is difficult to see if calculations are
made in a non-holomorphic gauge. So we adopt the second strategy, and abandon
pure type in favor of holomorphically varying bases. At the end of the analysis,
we can obtain a basis of pure type by simply projecting to the appropriate (p,q)
pieces.

At a single point in the moduli space, the B model three-point functions

B)_x : H\M, T) x HJ-hd~J+ι x Hd~JJ -> <C (4.4)

have a natural description in algebraic geometry coming from "variation of Hodge
structure": they describe what is called the "differential of the period map." In fact,
identifying Hι(M, T) with the tangent space to the complex structure moduli space at
the point corresponding to M, this three-point function describes the (p — l,q + 1)
part of a derivative (with respect to parameters) of a family of (p,q) forms (taking
p — j — 1 and q = d — j' -\- 1, say). The Gauss-Manin connection introduced above
reproduces this derivative information while preserving holomorphic dependence.
The result of a "pure type" differentiation may differ from the Gauss-Manin answer
by some terms of lower type, but all such terms vanish after wedging with a
(d — p+ \,d — q — 1) form and integrating (the prescription for calculating the
three-point function).

Let us fix a holomorphic vector field ζ in the moduli space in such a way that
the directional Gauss-Manin derivative VξΩ produces a chosen initial basis vector
oc\(z) in Hd~1'1. Then one can show that the following two operations are identical:

i) taking the directional Gauss-Manin derivative V^ and projecting onto the
(p,q) term in the result, for largest q,

ii) taking the operator product with the (chiral, chiral) field oc\ of charge (1,1)
corresponding to ξ.

This fact can be established in conformal field theory by the methods of [19]
along with the nonrenormalization theorem of [36] which establishes the equality
between operator products amongst (chiral, chiral) fields and standard mathematical
wedge products.
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The operation (i), however, does not respect holomorphicity (as a function of
the moduli space coordinate), as we have noted. Holomorphicity requires that we
do not project the result onto the term of highest antiholomorphic degree. On the
other hand, agreement with the conformal field theory operator product demands that
we do. It appears that essentially all correlation functions, though, are insensitive to
these additional lower order terms which are responsible for holomorphicity. Hence,
by including these terms we gain the benefit of holomorphically varying elements
(as we do on the A side) without altering the values of correlation functions. Thus,
the central assumption of our analysis is that we construct the basis on the B side
by imposing the same three conditions as on the A side with the replacement of the
operator product by the action of the (unprojected) Gauss-Manin connection.20

That is, we build our basis of the horizontal subspace of φ Hp"d~~p{M, (C) by

beginning with α0 = Ω, and then seeking {α,} such that

I 7) V α i α y _ ! =c-λB)_λ0Ln

2') (α/,0,-) =cδi+j%d, and

3') V a i «, = (),

where c is an appropriately chosen constant (which will correspond to the degree
of the mirror variety). Note that Bι

0 is constant, and equal to the degree c, so
that Vαiαo = αi provides the link between the directional derivative Vαi and the
form αi. We also note that were we to use the projected Gauss-Manin derivative,
condition 3' would be trivial (as is its counterpart condition 3). However, because
we use the (unprojected) Gauss-Manin derivative, which does not yield results of
pure type, our B model conditions are somewhat more stringent than their A model
counterparts. This will manifest itself in the solutions to these conditions being
essentially unique, unlike the case on the A side. (At first sight it might appear
asymmetric to begin with oco = Ω since on the A side we begin with eo = 1. This
is just an artifact of our working in ffl rather than in Jf φ i f " 1 , as we have
discussed earlier, in which Ω can be thought of as 1 = Ω ® Ω" 1 . In fact, we will
shortly find it convenient to essentially divide by Ω in a similar manner).

To find a basis meeting these conditions it proves convenient to introduce a set of
topological homology cycles yo,y\,...9yd spanning the primary horizontal subspace,
such that the cup product pairing on the dual cohomology cycles y* satisfies

0 if μ + v > d£ (45)

(there is no constraint on the values when μ + v < d). We can then express our
basis αz in terms of the yμ by writing the "period matrix"

P = {Piμ)= ί /a,-! . (4.6)

(Indices on matrix elements run from 0 through d). We claim that we can achieve
constraints (2') and (37) by performing row operations to put this matrix in

2 0 A basis consisting of forms of pure type can then be obtained from the basis we construct by
simply projecting each basis element to the appropriate (p,q) piece.
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upper triangular form with the diagonal entries being all one, that is, achieving the
conditions

J«, = {° * ! ! " . (4.7)
yμ (I it I μ

The row operations we allow include adding one row to a later row, and multiplying
a row by an arbitrary holomorphic function of z. (It is clearly necessary to allow
this last step, if we are to achieve JΛ αz = 1.) These row operations effectively

alter the basis {α7}, but they do preserve the property αy £ 3Fd~*. Note that the
use of holomorphic bundles gFd~i was crucial here, since we must allow arbitrary
holomorphic functions as multipliers.

To see that (1') holds for this new basis is straightforward. Writing

(4.8)

we find

This is an element of 3Fd ; , and so must be a linear combination of α 0 , . . . ,α y .
It follows from (4.7) that the coefficient of αo in the linear combination should
agree with the coefficient of yj m (4.9), but this is zero. That being the case, the
coefficient of αj in the linear combination should agree with the coefficient of y*
in (4.9), but this too is zero. Continuing to argue in this way we find that Vα,α7_i
must simply be a multiple fj-\(z) αy . In fact, the multiplier is easily seen to be

/y_ l (z) =-£•/«,_,. (4.10)

Condition (37) holds as it translates into the covariant derivative of the last row
of the matrix vanishing-this is clearly true as the last row of the matrix is constant.
To check condition (27), first note that because we have preserved the condition
α7 G ̂ d~J, by considering types in the wedge product we find

(αf,α7 ) = 0 if i+j<d. (4.11)

Thus, we may assume i + j ^ d. We then calculate

For any term in this last sum which is non-zero, we must have

d ^ i + j S μ + v S d (4.13)

(using (4.7) and (4.5)). Thus, all inequalities are equalities, and we find

(otl9θίj) = YJδμiδvj{cδμ+vj) = cδι+Jid , (4.14)
μ,v

as required.
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(As one final check, we can evaluate the three-point function

B)_x = (ociocj-ioid-j} = fj-ι(z)(ocj,ad-j} =c fj-i(z) , (4.15)

so / ; _i(z) = c~]Bj_x as asserted in (I')-)
Notice that in performing row operations to make the matrix P upper triangular

with Γs on the diagonal, the only manipulation which affected the top row divided
it by J Ω(z), thereby making the (0,0) entry in the new matrix equal to 1 and

the (0,1) entry equal to (/ Ω(z))/(Jv Ω(z)). As the derivative of the top row with

respect to t is the second row, and since the (1,1) entry is 1, we directly see that

in our new basis, Vαj = dt with

This is precisely the same coordinate Ansatz used in [5] and established in [24]
as being mirror to the integral generator of H2(M); we see here that this form
of the mirror map emerges from our three conditions. Although our conditions
on the A side do not uniquely specify a basis, as we discuss below, our slightly
stronger conditions on the B side, combined with monodromy properties, make the
basis essentially unique. Since our procedure on the B side has picked out the first
element of this basis to be the known mirror of an integral generator, we expect
that the same is true for the other elements of the B-basis, as desired.

Having now satisfied the characteristics of the A model basis for the primary
vertical subspace of @pH

p>p(M,ΊL) with the B model basis of the primary horizon-
tal subspace of φ Hp'd~p(M, (C) (under our central assumption discussed above),
we now must ask ourselves about the uniqueness of this procedure. The first point
to make about uniqueness is this: any basis which satisfies our conditions (I7),(2')
and (3') must also satisfy (4.7) for some choice of homology cycles yμ. This can
be seen as follows. We start with an arbitrary basis yo,...,yd of the primary hor-
izontal subspace and form the period matrix (4.6) with respect to that basis. We
then perform column operations on this matrix to put it into upper triangular form
with Γs on the diagonal, but this time we restrict ourselves to using constants as
multipliers for the columns. (This has the effect of changing the basis yμ, using
linear combinations with constant (complex) coefficients. Under such a change, the
y's will remain a basis of the primary subspace of Hd{M, (C).) We are aiming for
the condition (4.7), but since we have restricted our allowed multipliers it would
seem problematic to achieve J αz = 1.

However, conditions (1') and (3') come to our rescue. First, (37) implies that
the bottom row of P is constant. Therefore, by suitable constant-coefficient column
operations we can put the bottom row in the form

(0 0 ••• 0 1 ) . (4.17)

It then follows from (1') with j = d that every entry but the last one in the penulti-
mate row is constant. Again applying constant-coefficient column operations (which
do not involve the last column) we can achieve for the bottom two rows:

0 0 ••• 0 1 * \
0 0 ••• 0 0 1 ' ( '
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where * is an unknown quantity. Continuing in this way row by row produces
(4.7).

Although this argument eliminates the apparent arbitrariness of using the condi-
tion (4.7) to achieve (I 7), (27) and (37), it still leaves us with a procedure that is not
unique-the starting set of cycles {yμ} used to produce the basis {α7} is not unique.
We can, however, make this choice essentially unique by going to a boundary point
in the moduli space of the B model. As discussed in [5,29], the cycles yμ have
nontrivial monodromy about boundary points in this moduli space. We also know,
from the A model, that at a large radius boundary point we have the identification
of t and t + 1. Thus, consistency of the mirror map will follow if the monodromy of
the γμ is ensured to yield (fnΩ(z))/(fγQΩ(z)) -> (fγιΩ(z))/(fγQΩ(z)) + 1. This is
sufficient to almost uniquely fix the cycles and hence our procedure for generating
the mirror map, as we shall now show.

On the A model side, the physics is the same at t + 1 as it is at t, and the
quantity q = e2πιt serves as the natural parameter (near the boundary) on the true
moduli space of physical theories. On the B model side, our monodromy property
effectively means

L «(*) 1
^ _ = - t o g z + /(z) (4,9)

for some single-valued function f(z): the "£" type parameter is JΛ Ω(z)/ /, Ω(z)

while the ' '#" type parameter is the exponential of this. Our directional derivative

Vαi (which is being identified with the mirror of the operator product with e\)

behaves like j-t = q j - near the large complex structure limit. In particular, since

the three-point functions

Jq^ioij^A^j) = c~x • /,_,(?) = c- 1 ^ / α , - , (4.20)

have expansions of the form

fly-i,o + fly-i.i a + aj-\,2 q2 + (4.21)

(consisting of a topological term plus quantum corrections), we see that whenever
tf7_i?o + O, the quantity j - / . α ; _ i must have a pole at q = 0: the leading term in

its Laurent expansion will be c aj-\^q~x. Thus the period /Ί α7_i will have the

form

J α ;_i = c ' <2y_i9o logg -+- single-valued function . (4.22)

Now we know that the topological terms in these three-point functions cannot
vanish, since they give the degree of the variety, which is nonzero. Thus, every
entry in the first superdiagonal of the period matrix has a log q type monodromy.
This is a very strong property, called maximally unίpotent in [29].

In the presence of maximally unipotent monodromy, we need a basis jo,...,yd
such that the monodromy action takes the form

lμ »-» 7μ+ Σ mμvJv (4.23)
\'<μ
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for some constants mμv. Moreover, our basis should satisfy (4.5); these two prop-
erties together fix the y/s up to scalar multiples.

Notice that although our procedure for generating the mirror map and the
appropriate basis in the B model required that we start with αo equal to some
holomorphic three form Ω(z), in reality the particular initial choice of Ω is ir-
relevant, as we quickly indicated earlier. Directly we see this as our three con-
ditions lead us to rescale αo by 1/ Jv Ω(z). Alternatively, we could rephrase all
of our analysis along the lines of Sect. II in which we work in the context
of ffl ( g ) ^ " 1 rather than Jf. As discussed in that section, the analysis can be
phrased as starting with the canonical section 11 of Θcffl C^i^"1, thus ensur-
ing that the results do not depend on any initial choice of Ω. This approach
is closer, in fact, to our A model description because in that setting we choose
e0 = t and, furthermore, because the fibers of #f 0 if"1 are canonically isomor-
phic to HP(M,ΛPT). The latter, as we have discussed, is the precise geomet-
rical description of the (c,c) ring, just as HP(M,ΛPT*) is that for the (α,c)
ring.

It is worthwhile reemphasizing that the basis elements αz which we have de-
rived here are generally of mixed type. This is due to our implicit requirement
that the basis be holomorphically varying over moduli space. It is straightforward
to see that it is only the (p,d — p) part with largest p contained in each αz that
contributes to correlation functions. Thus, if we are willing to sacrifice holomor-
phic variation we can eliminate the lower order pieces. Such a B model basis
would more closely match the A model analysis. Alternatively, we could mod-
ify the A model basis to behave more like the holomorphically varying B model
basis.

There is an added bonus to our procedure beyond naturally generating the mir-
ror map and mirror bases. The fundamental three-point functions Yj (and their
associated instanton expansions) can be directly extracted from the matrix (4.6).
This is easily seen by noting that the three-point function Yj can be expressed
as

Y}(<x.uoij90Ld-/-])= J (xd-j-\ Λ Vα,α7 . (4.24)
Mz

Substituting in the basis which puts P into upper triangular form, we directly cal-
culate that

Y] = c - d,(PJJ+ι). (4.25)

Let us reemphasize that these three-point functions, although calculated on Mz, are
now to be thought of as three-point functions on Mt{z). Since we have carefully
extracted the mirror map and identified the bases of cohomology on both sides,
(4.25) can directly be interpreted as an instanton sum as in (4.6).

We apply this formalism to specific examples in the next subsection.

4.2. Holomorphic Picard-Fuchs Equation and Three-Point Functions. We now
employ the discussion of the last subsection to calculate all of the three-point
functions and their associated instanton sums for the independent set of Yukawa
couplings Yj for the mirror manifolds built on the M, introduced in Sect. III.

In practice, we carry out the procedure of the last subsection as follows. We

have M\ described by Eq. (3.5), where we are using the coordinate z = ψ-(d+2) on

the moduli space. One can directly check from the Picard-Fuchs equation (3.11)
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that the only point in the moduli space with maximally unipotent monodromy
is the point z = 0. We adapt the methods of [6] to do our calculation at that
point.

We take as our initial basis of the horizontal subspace of J^ 0 the d-forms

αo = Ω, oc\ = zdzΩ,..., oίd = (zdz)
dΩ .

The differentiation operator zdz acts on this basis via a matrix of the form

(4.26)

A(z) =

/ 0

\B0(z)

1
0

\

0 1
Bd(z))

(4.27)

where the Bj(z) are determined from the Picard-Fuchs equation (3.11) as follows
[6]. Write the Picard-Fuchs operator in the form

d+\ i

={z- \){zdz)
d+ι (4.28)

and divide by z — 1 to produce the operator

d

y=0 7 l
(4.29)

Then the entries in the bottom row of the matrix A(z) are the quantities Bj(z) =
Cj-^rz. Note that Bj(Q) = 0, so that the methods of [6] can be directly used to solve
the equation.

For any homology cycle γ in the primary horizontal subspace, the vector

f zdzΩ
\

(4.30)

is a solution to the matrix equation

zdzw(z) = A(z)w(z) . (4.31)

Most of these solutions are multiple-valued; the multiple-valuedness can be ac-
counted for in advance as follows. Our desired basis of homology cycles yo,> >,yd
will have the property that / Ω is single-valued, and

2πi- = logz + single valued function . (4.32)
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We take the corresponding vectors Wj(z) which are solutions to (4.31) and arrange
them as columns in a matrix Φ(z). This matrix of multiple-valued functions satisfies
the equation zdzΦ(z) = A(z)Φ(z). In addition, there is a matrix S(z) with single-
valued entries such that

Φ(z) = S(z) z (4.33)

where zA(0) denotes e^
z)A(0) = / + (logz)Λ(O) + £(logz)2Λ(0)2 + • . The equa-

tion satisfied by S(z) is

zdzS(z) + S(z) A(0) = A(z)S(z) (4.34)

(see [6]).
In our case, the matrix A(0) takes a particularly simple form

A(0) =

/O 1
0 1

0

o)

(4.35)

which leads immediately to

zA(0) _

(I

\

logz

1

iτ(logz) •••

logz

1

iτ(logz)

l^W^ogzY

logz
1

\

/

(4.36)

Also thanks to the special form of A(0), Eq. (4.34) can be written as

zdzσj(z) = A(z)σj(z), (4.37)

where σo(z),...,σd(z) are the columns of S(z) (setting σ_i(z) = 0). Solutions to
Eq. (4.37) can then be found by power series techniques.

The next step is to put the solution matrix Φ(z) into upper triangular form with
Γs on the diagonal by means of row operations. Since zA<<0>) is upper triangular with
Γs on the diagonal, it suffices to put S(z) into upper triangular form with Γs on the
diagonal. This is a straightforward manipulation with power series, and produces a
matrix S(z). We then have

^Siz)^ (4.38)

where P is the period matrix (4.6).
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Using (4.36) and (4.38), we deduce that Pjj+\ = logz -f SjJ+\. (Our matrix
indices still run from 0 through d.) Thus, the Yukawa coupling is given by (4.25),

Yj = c (1 + zdzSjj+ι) zdzt, (4.39)

where c is the degree. (The factor of zdzt is present to change from zdz gauge to
dt gauge.) Since 7j = c, we can solve for the change of gauge

zdzt = X—^- (4.40)

l+zS zSo,i

and find that

1 + z t % + ' (4.41)1 + zdzS0, l

This is then expressed as a power series in q\ the results of these computations are
displayed21 in Tables 2 and 3 (which cover the cases 4 ^ d ^ 10).

4.3. Factorization and the Other Yukawa Couplings. Armed with the Yukawa
couplings Yj, we can give a second expression for the d-point functions which
were calculated in Sect. Ill, by using the factorization rules. We first calculate

καα...α = JΩ Λ £>α DaΩ = (Θ{1) Θ{V))

= C{lΛ)(Θ{2)Θ{l) Θ{{)) = C{UV)C{2Λ)(Θ{3)Θ{1) - • - Θ{x))

(4.42)

As pointed out in Eq. (3.17), we have C ( / ' ; ) = c~ιYj. Using this, and the relation

c w e find

Kα,.. « = ( c - y - 2 Γ 1

ι y 2

1 . . . 7 j _ 2 . (4.43)

The ί/-point function can then be calculated from the three-point functions
given in Tables 2 and 3; when one does so, one finds precisely the same se-
ries for d-point functions as given in Table 1. This remarkably delicate factor-
ization property of the d-point function power series provides strong evidence
that we have not only correctly found the coordinates to use in the mirror map,
but we have found the correct bases for the entire horizontal subspace which
maps to the integral, topological basis of the vertical subspace under mirror
symmetry.

The three-point functions Yj can also be used to generate other Yukawa cou-

plings Yj w i thyφl , using formula (3.22). We have explicitly calculated these, and

displayed the answers in Tables 2 and 3 (for 4 ^ d ^ 10) along with the Yj's

calculated previously.

21 The tables express the couplings as series in qι/(\ — qι), from which the power series expan-
sions themselves are easily derived.
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5. Mathematical Interpretation and Comparison of Instanton Sums

In the case of d — 3, the use of the series expansion of κy_]y2y3 to predict the
numbers of rational curves on the mirror is by now well known [37,33]. For d > 3,
in addition to the existence of more than one kind of Yukawa coupling, there is one
other important new consideration. Holomorphic curves are no longer generically
isolated as they are for d — 3, but rather come in continuous families. Thus, the
integers which arise in the series expansions of Yukawa couplings no longer count
numbers of curves per se. In this section we will give a mathematical interpretation
of these integers, describe what can be calculated by directly using that mathematical
interpretation, and compare with our predictions from the mirror analysis.

We need to describe the instanton contributions to our three-point functions,
regarded as correlation functions in the A model of [25]. We start with three
of our chosen basis vectors eι G//' ' , e, eHhj and βί/_/_/ G Hd~ι~hd~ι~1, and
fix three points P\ =0, P2 = 1 and P3 = oc on the worldsheet Σ = (TIP1. We
choose explicit complex submanifolds //,, H} and //</_,__, of complex codimen-
sion /, j \ and d — i — j , respectively, which are Poincare dual to the cohomology
classes. We form local operators (Cίii)(P\), tf;ί/)(P2), and Θ{d~ι~l)(P3) which have
delta function support on maps Φ : Σ -» M for which Φ(P\) G H, (or Φ(P2) G H},
or Φ(P3) eH(ί-,-j in the other cases). The three-point function (C;{l)Cn{j)(fid~'~f))
can be written as a sum over cohomology classes of maps Φ. We index those
classes by specifying η, the class of the image of the map, and m, the degree of the
map. We perturb the complex structure on M to a generic almost-complex struc-
ture, and we let Φ/7M? be a typical map in its class. Then the three-point function
should be written as [37]:

(^(%(%(ί/-/-/)) - Σe^Φ'n't{K)#(^»), (5.1)

where

^\n 'η = {pseudo-holomorphic maps Φ : Σ —* M of degree m and class η

such that Φ(PX) e H,, Φ(P2) e Hn Φ(P3) e //,/_,_,} . (5.2)

(The coefficients in (5.1) are closely related to the "Gromov-Witten" invariants of
M.) As it stands, formula (5.1) is somewhat problematic, since the moduli spaces
of holomorphic maps Σ —* M which are not one-to-one (i.e., those with m φ 1) fail
to have the expected dimension; thus, the set Ĉ ,/7'./7 of maps satisfying the stated
conditions is not finite when m > 1. There is a cure for this, however, in the form of
a "multiple cover formula1' which for threefolds was conjectured in [5] and proven
at the level of physical rigor in [15]. We extend this formula to the present context
in Appendix B. Using it, we can rewrite our expression using degree 1 maps only:

(5.3)

In the one-parameter case the homology classes will be labeled by Έ+ and we can
rewrite (5.3) as

(<H.>ί.</><r.«/—») = (cce,,-,-,) + Σ T A ' / / ( / ) , (5-4)
/>o ' ~ CI
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where q = eκ is the single parameter, / is the degree of a homology class f//, and22

(It is necessary to separate out the degree 0 "constant" maps when writing (5.3),
since they are not included in the multiple cover analysis, but lead rather to the
"topological" term ( e ^ £</_,_,•).)

Equation (5.4) provides the basis of comparison between the instanton expan-
sions of A model correlation functions, and the series expansions we have found
for the B model correlation functions on the mirror manifold. In particular, if we
write the B model series expansions from the previous section in the form of (5.4)
(as was done in Tables 2 and 3), we can read off the predicted values for the
invariants nιj{l). It is gratifying to observe that all calculated coefficients are in fact
integers.

The actual calculation of the numbers nιj(l) using classical techniques in
algebraic geometry - necessary if we wish to check the predictions - is a challen-
ging task. There are two principal difficulties. First, the moduli spaces ^\^
may fail to have dimension zero (even though m = 1) for a particular choice of
complex structure on M. Zero-dimensional moduli spaces can sometimes be ob-
tained by perturbing the original complex structure, but in general it is necessary to
pass to a nearby almost-complex structure in order to guarantee the correct dimen-
sion [38,39,40]. Doing so allows the number nιj(l) to be calculated in principle,
but in practice it is not known how to carry out the calculation in terms of the
almost-complex structure. Techniques for calculating Πj(l) directly on M (even
when ^ / ' ^ has the wrong dimension) have been pioneered by Katz [41], but these
techniques do not yet apply in complete generality. In fact, satisfactory definitions
of the numbers nιj(l) (which stay purely within algebraic geometry) are not yet
known.

The second difficulty occurs even when no perturbation of complex structure
is necessary. Simply put, the evaluation of the numbers nl

;(l) using the classi-
cal tools of algebraic geometry is a very hard task, and effective methods are
not known except in the simplest cases.23 To calculate nl

}{l), one first describes

^i / as an intersection of certain subvarieties in a moduli space of curves. (This
is the translation of (5.2) into algebraic geometry.) The number of points in the
space should then be found using the standard techniques of algebraic intersec-
tion theory. However, those techniques require a compact moduli space, and the
moduli space at hand is not compact. It can be compactified by adjoining points
corresponding to certain "limiting" curves of other types-the resulting compact
space is known as a Hubert scheme. The delicate part of the computation is to
properly account for the portion of the answer which comes from the limiting
curves, and this requires knowing the structure of those curves in detail. As / in-
creases, the types of limiting curves which must be considered grow more and more
complex.

2 2 The notat ion «' ;(/) is chosen to match that of [9].
2 3 See note added.



Mirror Manifolds in Higher Dimension 591

For 1=1 and 2, these difficulties can be overcome, and Katz [9] has checked
the predictions in Tables 2 and 3 for / = 1 and 2 (that is, the coefficients of - ^

and -Λ-Ί\ obtaining agreement in each case.24

The associativity relations (3.22) now imply some relations among the numbers
n^l) which had not been observed in the mathematics literature. It is likely that
the geometric explanation of these relations in terms of four-point functions which
has been put forward by Witten [12] can be used to give a complete mathematical
proof of these new relations. (The subtleties in that proof would again involve issues
of compactifying moduli spaces appropriately.) Katz [9] has directly proved these
relations in the case / = 1.

6. Conclusions

Our focus in this paper has been an analysis of some aspects of mirror sym-
metry for Calabi-Yau manifolds whose complex dimension is greater than three,
the previously studied case. We have found that a number of new issues arise.
First, the geometric constraints characterizing the associated complex structure
and Kahler moduli spaces differ from the threefold case, in which they have usu-
ally been referred to as the "constraints of special geometry." The analogue of
special geometry in the higher dimensional case (for one-parameter families) can
be summarized by a general constraint valid for all dimensions including three-
Eq. (2.24)-but the explicit evaluation of this constraint in terms of the Riemann
curvature tensor and the Yukawa couplings is certainly sensitive to the dimension.
We have explicitly worked this out for one-parameter examples in the case of di-
mension four and five. Second, whereas there is one type of Yukawa coupling
(in each of the A and B models) in the case of dimension three, the number of
Yukawa couplings rapidly grows as a function of the dimension. By making use of
the associativity of the operator product algebra, we identified a fundamental subset
of couplings on which all others are functionally dependent. Third, whereas the
exploitation of mirror symmetry in the case of threefolds only requires understand-
ing a preferred set of moduli space coordinates ("special coordinates"), in higher
dimension we require more structure: a preferred basis of (part of) the cohomol-
ogy ring. We have presented an efficient algorithm for generating such bases (in
one-parameter models), making use of the Gauss-Manin connection. Furthermore,
we have shown that our procedure naturally reproduces the special coordinates dis-
cussed in the three dimensional setting as well as giving a calculationally tractable
procedure for generating the independent set of Yukawa couplings. Fourth, in di-
mension three, rational curves on a Calabi-Yau manifold are generically isolated
whereas in higher dimension they come in families. This requires a reinterpretation
of the instanton expansion of Yukawa couplings in higher dimension in terms of the
characteristic classes of the parameter spaces of rational curves. We have done this
and explicitly carried out such calculations for one-parameter Calabi-Yau manifolds
of complex dimension at most ten. In the limited number of cases in which such
characteristic classes can be effectively calculated using conventional mathematical
methods, we find agreement. The calculational power of mirror symmetry is thereby
once again affirmed.

2 4 Very recently Ellingsrud and Stramme have also verified some of our predictions for 1 = 3

[11].
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Appendix A. Some Remarks on Covariant Derivatives

The analysis of Sect. II involved several times a need to differentiate sections of

(non-holomorphic) bundles of the form F = /(g) if"1 0 (T*)p 0 (Γ*) q 0 5 f 0

if , where Γ is the holomorphic tangent bundle of the moduli space M. Since
each factor occurring in this bundle is itself either holomorphic or antiholomorphic
there is a natural covariant derivative we can define on the tensor product. Namely,
on each component factor we define the complex metric connection and we extend
this to a covariant derivative on the product by the Leibniz rule. More specifically,
if Q is a holomorphic bundle with Hermitian fiber metric ha^, there is a unique
connection which is compatible with the metric, i.e.

d(s\ή = (Ds\t) + (s\Dt), (A.I)

where s and t are local smooth sections of Q and the inner product ( | ) is that
given by h, and which agrees with ordinary ~d differentiation in the (0,1) direction.
The connection ω satisfying these conditions can be written

ω = (dh)h~ι. (A.2)

Clearly this construction also works for an antiholomorphic bundle by demanding
agreement with partial differentiation in the (1,0) direction. (One must take the
complex conjugate of the formulas.) Quite generally, if we have connections on each
of n bundles A\,...,An9 then the sum of these connections provides a connection on
the product bundle A\ 0 <&An. Hence, by using the complex metric connections
or their complex conjugates on each individual factor, their sum is a connection on
V. Of course, this connection, while compatible with the metric, no longer agrees
with partial differentiation in either the (1,0) or (0,1) directions.

It proves instructive to explicitly write out one consequence of metric compati-
bility. Let s and t be sections of V. Metric compatibility implies

d(s\ή = da(s\ήdz' + 'd-MW = (JDs\t) + (s\Dt)

= ((DW+Df><ι)s\t) + {s\(DU0+D°>ι)ή . (A3)

Now, we can decompose the equality above by type to get

dα(s\t) = iWs\') + QPί**) ( A 4 )
and its complex conjugate. From (A.4) we then have

dα$\t) = (Dlfis\ή + {s\Dlfit), (A.5)

where D1>0 in the first term on the right-hand side is a covariant derivative acting
on sections of V.

Implicit in the above discussion is that the symbol ( | ) is the inner product on
V. More generally, we can replace this inner product on V by an inner product
just on Jf3 0 if, (I )#(g>^ Then, (s\t)#&#> is a section of {T*)p 0 (Γ*)* and we
similarly have

Dlf(s\ή # Θ i , = (Dl'os\ή + {s\Dl'°ή . (A.6)

It is important to bear in mind that in (A.6) the meaning of the derivative is
determined by the object on which it acts. Explicitly, the Z)1'0 on the left-hand side
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acts on sections of (T*)p (g) (J7*)^; the first on the right-hand side acts on sections
of V while the last acts on sections of V. We have repeatedly made use of (A.6)
in Sect. II.

Appendix B. The Multiple Cover Formula in Higher Dimension

Let X be a Calabi-Yau d-fold. Our derivation of the multiple cover formula roughly
follows Sect. 4 of [15], but there are some new twists in higher dimension. We will
make some general position assumptions during the derivation which seem to us
quite reasonable, but which lack a complete justification at present. As with the
earlier formula [15], though, the success of the predictions made with this method
gives us confidence that the formula is indeed correct.

Let Jf be a fixed component of the Hubert scheme of X, which parametrizes a
family / : ^ —> ffl of rational curves on X with the property that Tχ\c = &c(2) θ
0 c ( - l ) Θ 0 c ( - l ) θ @c(d~3) for the general curve C in the family. Let Mξ be
the moduli space for holomorphic maps Φ : C P 1 —» X which are degree m covers
of the rational curves parametrized by Jf7. We wish to evaluate the contributions
to three-point functions ($(<)#(/)$(^-'-/)} m a d e by Mf. Since Mf has the wrong
dimension, we will need to calculate the top Chern class of a certain bundle.

We would like to describe the family <& in terms of the sheaf /* Θ% (1). We can-
not do so directly since the map / : ^ —» J^ may fail to have a section. However,
we can always find a generically finite map g : Jf —> J^ such that the pulled-back
family ^ has a section. (Take Jf to be the zero-locus of a multi-section of / , for
example.) We shall do so, and eventually arrive at the conclusion that the contri-
bution to the three-point functions are independent of m; this latter statement will
then hold for Jf as well a s ^ .

We thus replace Jf by Jίf and assume that / : ^ —> ffl has a section so that ^
can be described in terms of Y := f*Θψo(X) as follows: over a Zariski-open subset
J-fo C Jf7, this sheaf restricts to a locally free sheaf Ψ§ of rank two, and the (CP1-
bundle JP(^o) is birational to ζ€. In fact, by blowing up Jf, we may assume that ΨQ
has a locally free extension over all of J f. We shall do this, and shall also replace ^
by the projectivization of that locally free extension. After making those birational
modifications of our data, we arrive at the situation in which i^ = f^Θ^(l) is
locally free, and <€ = Ψ{Ψ). The modifications we have made can be expected
to be located outside of the subspace in which the calculation of the three-point
functions is localized. There is a natural map i : ^ —• X, and we treat the pullback
ι*(Tx) of Tx to # as coinciding with Θ^(2) θ Θ^{-\) θ Θ<e(-l) θ Θ®(d~3\ This
also holds generically, and the places where it fails can be expected to be located
outside of the crucial subspace. (These are our general position assumptions.)

To describe a point in M^\ we must specify the image curve, and specify a ratio
of two relatively prime degree m polynomials to define the map. We compactify
the moduli space using graphs of maps, motivated by the work of Gromov [38] (cf.
also [15]). To construct the graph compactification, we first extend from pairs of
relatively prime polynomials to arbitrary pairs of polynomials, obtaining the space
M := P(Sym m i^Θ SymmY^). The graphs of the maps can then be naturally taken
in the space

Z := CP 1 x ( # x . r M) (B.I)
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with the closure Γ of the universal graph Γ described by the equation

or equivalently

/ Σ a.x'/-' - s Σ, b.x'y1"-' = 0, (B.3)

where [x,y] are homogeneous coordinates on C P 1 , [s,t] are homogeneous coordi-
nates^ on a fiber C of ̂ , and [ao,...,am, bo,...,bm] give the coordinates in a fiber
of M —> Jf. Counting degrees in (B.3), it follows that the line bundle associated
to Γ can be written as

<P(Γ) = μ (<PCP,(/n))®v ((P«(l))(8>π*(%(l)), (B.4)

where μ : Z —» (CP1, v : Z —» ̂  and π : Z —> M are the natural projection maps.
The tangent bundle 7> determines a bundle^ ^ : = ( / o v)*(7>) on Z, which re-

stricts to the bundle S\γ on the graph-closure Γ. Following the methods developed
in [42] and [15], we must calculate the top Chern class of the bundle Rιπ*($\γ)
whose fibers are the obstruction groups for the moduli problem. We will do this by
using the short exact sequence

U —> Φ{ — 1 ) —> Φ —> ό \γ —> U . ^r>.3J

It is convenient to write $(—Γ) — ̂  0 π*(^(—1)) . Then we have

= v*(%(2) Θ ^ ( - 1 ) Θ 2 Θ Θfd~3)),

(B.6)

We compute the cohomology of these bundles on a fiber S of π. Such a fiber
can be written in the form S = CP 1 x C, with C the image of the correspond-
ing map (one of the curves in the family ^ ) . When restricted to S, our bundles
become

δ\s = (v|5)*(0c(2) Θ ^c(- l )® 2 θ Θ®id-3)),

2 ) θ 2 0 ί ? c ( - l ) θ ( r f " 3 ) ) . (B.7)

It is easy to calculate the spaces of global sections:

H°(S,δ\s) = H°(C,Θ(2) θ ^ ( - l ) θ 2 θ Θw~3)) ^ €d ,

H°(S,P\s) = {0}. (B.8)

We can also compute / /2 ' s using Serre duality and the canonical bundle formula

Ks = (μU)*(0Cpi ( " 2 » ® (vU)*(Φc(-2)) . (B.9)

The results are that H2(S,$\sY is isomorphic to

H°(S, (μ|5)*(fl?CTi (-2)) 0 (v | 5 )*(0 c (-4) θ Φ c ( - 1 ) 0 2 θ Θc{-2)w~3)))

= {0}, (B.10)
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and that H2(S,^\s)* is isomorphic to

H°(S9(μ\sT(<!>cψi(>» ~ 2)) Θ (v|5)*(0c(-3) Θ Of θ ^ c ( - l ) θ ( ί / " 3 ) )

\ ( 9 ^ { m - 2) θ 0CTi(*i - 2))) * C2 w~2 . (B.ll)

This last calculation can be done as a bundle calculation, not just fiber by fiber.
Doing so gives a natural isomorphism between (i?2π*#")*, and R°π*(£, where

<S := μ\(9^x{m - 2) θ 0Cp»Ow ~ 2 ) ) - ( B 1 2 )

Because Z is a product of CP 1 and <β x.# M, the bundle R°π*@ is trivial, being
canonically isomorphic to

To complete our calculation, we note that Riemann-Roch tells us that χ(S, \)
d and therefore that hι(S,$\s) = 0. As a consequence, we find that Rλπ*$ —
R2π*$ = 0, and that Λoπ*<? is locally free of rank d. We also find that the short
exact sequence (B.5) gives rise to a long exact sequence whose nonzero terms split
into two exact sequences:

0 -> R°π^ -> 7?°π*(<%) -^ Λ ^ ^ ^ - Γ ) ) -> 0,

0 -» Λ 1 ^ ^ ^ ) -^ ^ 2 π*((f(-Γ)) -> 0 . (B.14)

It then follows from the projection formula that

- 2) Θ ©CTi(w - 2))* 0 % ( - l ) .
(B.15)

We now see that the top Chern class C2m-2(β}π*(β\γ)) coincides with

and so is a class whose intersection with every fiber of M —> ffl is a linear space
of dimension 3.

The contribution of Mf to the three-point function (φWφ(j)β(d-ι-j)) j s c a j c u _
lated by an integral

£et Λej A ed^-j Λ c 2 m _ 2 ( ^ π * ( ^ | r ) ) , (B.17)
M

where the e's are the induced classes on M, with delta-function support on those
maps which take a fixed basepoint_P to a fixed cycle H. These integrals localize
on a finite number of fibers of M —>• Jf, and in each such fiber the last term
c2m-2(Rιπ*($\τ)) serves to reduce the integral to an integral over C P 3 . Each delta-
function support condition has the same cohomological effect on C P 3 regardless
of the value of m, so we recover the same instanton contribution for m > 1 as
for m = 1, namely, the number of points in J f whose corresponding rational curve
meets the stated conditions. Summing over m, we get a term of the form qι/(l — qι)
times the m = 1 instanton number, as asserted in (5.4).
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Note added in proof. After this paper had been submitted for publication, we received a preprint
from Kontsevich [43] (as well as the related preprint [44]) which presents a new method - purely
within algebraic geometry - for calculating some invariants which "count" numbers of rational
curves. It is not yet known that these invariants agree with the ones obtained by deformation to a
nearby almost-complex structure. However, it should soon be possible to verify that many of our
predictions — perhaps all — agree with calculations made by Kontsevich's method.
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