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Abstract: The hyperbolic conservation laws with relaxation appear in many phys-
ical systems such as nonequilibrium gas dynamics, flood flow with friction, vis-
coelasticity, magnetohydrodynamics, etc. This article studies the long-time effect of
relaxation when the initial data is a perturbation of an equilibrium constant state.
It is shown that in this case the long-time effect of relaxation is equivalent to
a viscous effect, or in other words, the Chapman-Enskog expansion is valid. It is
also shown that the corresponding solution tends to a diffusion wave time asymp-
totically. This diffusion wave carries an invariant mass. The convergence rate to
this diffusion wave in the Z^-sense for 1 ^ p ^ oo is also obtained and this rate
is optimal.

1. Introduction

We consider the following model of hyperbolic conservation laws with relaxation
[5,8]:

ut + f(u9Ό)x = 09 (1.1)

v t + g ( u , v ) x = h ( u , υ), — o o < x < o o , t > 0 . (1.2)

A concrete physical model is the following flood flow with friction:

ht + (hu)x = 0 ,

(hu\ + ίhu2 + 9-^-\ = (ghtanoc- Cfu
2) ,

where h is the height of the water, u, the velocity, g, the gravitation constant,
α, the inclined angle of the river, and C/, the friction coefficient of the river. Other
physical models include the nonequilibrium gas dynamics, the viscoelasticity, the
magnetohydrodynamics, etc. [8].
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System (1.1) (1.2) is assumed to be strictly hyperbolic, i.e. the matrix
d(f,g)/d(u,v) has two real and distinct eigenvalues λ\(u,v) < λ2(u,v). The corre-
sponding left/right eigenvectors are denoted by lj(u,v)/ri(u,v)9 i = 1,2, respectively.
We assume the relaxation term h(u,v) to satisfy the following condition [5]: there is
a smooth function v*{u) such that h(u9v*(u)) = 0 and

^ ^ < 0 (1.3)
OV

for all (w, v) under consideration. The states (w, v*(u)) are called the equilibrium
states. Assumption (1.3) means that the equilibrium states are stable. To have non-
trivial coupling of Eqs. (1.1) and (1.2), we further assume

System (1.1) (1.2) has been studied by Liu [5]. There, the nonlinear stability of
weak, smooth travelling waves and rarefaction waves have been rigorously analyzed
by the energy method. Liu also argued via the Chapman-Enskog expansion that the
effect of relaxation is closely related to a viscous effect when the solution is near
a constant equilibrium state. This article provides a rigorous proof to his argument.
We show that the long-time effect of relaxation is equivalent to a viscous effect when
the initial data is a perturbation of a constant equilibrium state. Further, we show
that the corresponding solution tends to a diffusion wave [2] time asymptotically.
This diffusion wave carries an invariant mass. The convergence rate to this diffusion
wave is also obtained and this rate is optimal.

Without loss of generality, we may assume the constant state considered to be
the zero state and we may further assume £>*(0) = 0.

2. Two Observations

To study the effect of relaxation, we first see the following two observations.

2.1. Chapman-Enskog Expansion. When υ = ι>*(w), system (1.1) and (1.2) are
reduced to

«/ + /•(«)* = 0 , (2.1)

where /*(w) = f(u,v*(u)). This is called the equilibrium equation. When v + v*(u)
but close, we expect that the solution of system (1.1) (1.2) propagates according to
the equilibrium equation with a correction coming from the fluctuation v\ =
v — v*(u). To see this correction, we perform the following Chapman-Enskog
expansion [5]. Let v = v*(u) + v\. Substitute this into (1.2) to obtain

vt + g(u,v)x = h(u,v)

This gives v\ ~ h~ι(vt + gx). We further expand vt + gx about (0,0) and neglect
all higher-order terms to obtain an expression of v\ in terms of ux:

vι ~ h~\vt+g(u9v)x)

guux

Jv
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Here and after, the functions hv,gu,λi, etc. are evaluated at (0,0), Λ* = f*(0\ and
k stands for h~ι. In the derivation above we have used that ut ~ —λ*ux. This is
due to the assumption that u propagates mainly along the equilibrium direction
dxjdt = λ*. Substitute this approximation of v\ into (1.1); we obtain

~ ut + f*(u)x + (fυvχ)x

~ ut + f*(u)x -vuxx ,

where
v = (λ* - λ{χλ2 - λ*)/k . (2.2)

We notice that the reduced equation

ut + f*(u)x = vuxx (2.3)

is well-posed for v > 0. To have a nontrivial influence of fluctuation to system
(1.1) and (1.2), it is natural to make the following stability assumption:

v > 0 ,

or equivalently,
λx < λ* < λ2 . (2.4)

Thus, the fluctuation v\ produces a diffusion effect on the equilibrium equation under
the stability assumption and the assumption that all higher-order nonlinear terms are
less important.

2.2. Linear Analysis. We can take another viewpoint to see the effect of fluctuation.
We linearize system (1.1) and (1.2) about (0,0) to obtain

+ (fu f Λ ( u \ _ f o o

v / r \9« 9vJ \v

Or equivalently,

The solution operator etR has the following Fourier representation:

27T

with
/ /• s\ / n n\

(2.5)

The spectral representations of R(iζ) and etR^ are

7 = 1

--ΣeVjWPjVξ), (2.6)
7=1
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respectively. Here, μj(iξ) is the eigenvalues of R(iξ)9 Pj(iζ), the projection oprerator
to the corresponding right eigenvectors η(iξ), i.e. Pj = η> <g> /,-, and lj is the left
eigenvector. From a direct calculation and by using the stability assumption (2.4),
we find that for any ξQ > 0, there exists a constant β > 0 such that

Reμj(iξ)^ -β, 7 = 1,2 (2.7)

for |<f| ^ £o Thus, the fluctuation with frequency \ζ\ ^ ξo decays exponentially. For
low-frequency fluctuation, i.e. \ξ\ « 1, μj(iζ), j = 1,2 have the following asymp-
totic expansion:

(2.8)

. (2.9)

Formula (2.9) indicates that low-frequency fluctuation in the r2 direction decays

exponentially. However, in the r\ direction, the Fourier inverse of etμ^1^ is the
kernel of the following diffusion equation:

ut + λ*ux = vuxx ,

which in turn decays only algebraically. Thus, the long-time, long-range effect of
relaxation is equivalent to a viscous effect in the linear sense.

From the above two observations, we expect the Chapman-Enskog expansion to
be valid in the sense of large time. This means that system (1.1) (1.2) and Eq. (2.3)
are expected to be equivalent time-asymptotically.

3. Main Theorem

It has been shown in [1,2,4] that the time-asymptotic solution of (2.3) is a diffusion
wave, which is the self-similar solution of the following Burgers equation carrying
a constant mass m — J uo(x)dx:

This diffusion wave has the following exact expression:

T{ξ) =

-Ulnψ(ξ))' ifb = rt'(O)*O

J e-y'4dy + e-bm/4 J
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Since J u — θ dx = 0, we may let u = θ + zx. By a simple calculation, it is natural

to let v = ι;*(0) - X" 1 0* + w. We substitute them into (1.1) and (1.2) to obtain

zt + fuzx+fvw = Hι , (3.2)

W/ + 0I/ZJCΛ: + 9υWχ = * « ^ H- Ai W + H2 , (3.3)

where
~ ~ 1 ~ 2

H\ = Hi +H} ,
~ ~ 1 ~ 2

H2= H2+ H2+ H2x ,

, (3.4)

|0**l + Ifel + \θθt\), (3.5)

H2

UH2

2,H2 = O(\θ\ + |zx | + M)( |z x | + M ) (3.6)

We shall measure the initial perturbation by

δ = m + Σ \\Dl

xz(0)\\ + E p > ( 0 ) | | + 112(0)1^ + ||w(0)||£i . (3.7)
1=0 1=0

Here, || || is the abbreviation of || \\L2, and z( ί ) , the abbreviation of z( ,t).
Our main theorem is stated as follows.

Theorem 1. Suppose the initial perturbation δ<ζ 1, then there exists a unique global
smooth solution (u,v) of (I.I) and (1.2). Further, let θ be defined by (3.1), then the
solution converges to the equilibrium diffusion wave (0,ι;*(0)) time asymptotically
with the following rate estimates: for 1 = 0, 1, 2,

\\Dx[u(t)-θ(t)]\\LP=O(l+t)~1-1^^, 1 ^ p S oo ,

||D^ [v(t) - ^(fl(O)] | | ^ = 0(1 + t)-ι-*+τp9 2 £ p ^ oo .

The proof of Theorem 1 follows easily from an a priori decay estimate of z and w in
the Z2-sense, which is the main task of this article. Thus, we shall prove Theorem 1
at the end of this article. To describe such an a priori estimate, we define the
following notations: given any T > 0, define

I N I I r = sup Σ ( i + 0 1 / 4 + / / 2 1 1 ^ ( 0 1 1 > (3.8)
O = t = T 1=0

\\\w\\\τ= sup Σ 0 + 0 3 / 4 + / / 2 P > > ( 0 | | , (3 9 )
O^t^T 1=0

and

where | |oo stands for the sup-norm. Our main task is to prove the following
a priori estimate.

ε(T)= sup έ(i^β(0loo + |^+1z(0|oc + |Z)>(0loo) , (3.10)
O^t^T 1=0
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Proposition 1 (A priori estimate). If ε(T) of (3.10) and δ of (3.7) are small, then

I I W H Γ + I I H I I Γ ^ C (3.11)

for some constant C which is independent of T.

We shall break the proof of Proposition 1 into the following two steps:

1. energy and decay estimates for the linearized equations,
2. energy and decay estimates for the nonlinear equations.

4. Proof of the A Priori Estimate

4.1. Decay Estimate for the Linearized Equations. In this section, we study the
decay of solutions of the linearized equations

Zt+fuZχ+fυW = 0 , (4.1)

w, + guzxx + gυwx = huzx + hvw . (4.2)

Proposition 2 (Energy estimate). The solution (z(t),w(t)) of the linear equations
(4.1) and (4.2) has the following energy estimate: given any t > 0, any integer
I ^ 0, we have

\\D'xz(t)\\2+ | | D ί + 1 z ( 0 | | 2 + \\D'xw(t)\\2 + / | |Z>ί+ 1z(j)| |2 + | |Z>ί W ( S ) | | 2 ds
o

S C ( | | φ ( 0 ) | | 2 + | | ^ + 1 z ( 0 ) | | 2 + \\Dl

xw(0)\\2) (4.3)

for some positive constant C independent of t.

Proof Substituting w of (4.1) into (4.2), we obtain the telegraph equation:

ztt + (λ\ + λ2)zxt + λ\λ2zxx + k(zt + λ*zx) = 0 .

Changing the variable to ξ = x — λj and using (2.2) we obtain

ztt + (λι +λ2- 2λ* )zξί - kvzξξ + kzt = 0 . (4.4)

f(4Λ)zdξ gives

^ (fztz+k- \\z\A +kv \\zξ\\2 - \\z,||2= λfz,zξ ,

where λ = λ\ -f λ2 — 2A*. Applying the Cauchy-Schwartz inequality on J ztzξ, we
obtain

/(4.4)z( ί/<J gives

^ ( ^ 2 2 ) 2 o ( 4 6 )
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We choose γ > 0 to satisfy

Then 7(4.5)+ (4.6) gives

£t(%\\*\\2+U\*\\2+%\\*d2)+$\\*>\\2

at \ Z Z Z I Z z, ui

We integrate this equation in t from 0 to t and apply the Cauchy-Schwartz inequal-
ity to handle J ztz. In this process, we require γ to further satisfy

- < - , (4.8)
k ~ 4

then we obtain

4 4 2 n \2 2 /

(4.9)

We can change the variable ξ back to x to obtain

ιiz(oιι2 + IMOII2+ ikωii2+/ ikωii2 + ii^ωii2 ^
0

Here, we have used that

for some positive constants C\ and C2. This is followed from chain rule. Similarly,
we also have from (4.1) that

\\w(t)\\2-cλ\\zx(t)\\2ύ QlMOII^IKOII'+CilMoil 2 .

Thus, we can further convert | |z f | | of (4.10) in terms of ||w|| and | |z x | | to obtain

2 2 2 + / i k ω u 2 + ιiw(^)[|2 dS
0

This proves the lemma for / = 0. Notice that (Dι

xz,Dι

xw) satisfies the same equation,
therefore (4.3) also holds for / > 0. |

Proposition 3. Let (z(t), w(t)) be the solution of (4A) and (4.2) with initial data
(z(0), w(0)). Then there exist constants β > 0, C > 0 such that

(4.11)
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and

+ \ \ D ' - 1 Z ( 0 ) \ \ 2 + H ^ - ' 2

(4.12)

for l~2i\, O^kiίl — 1. Here, the constant C is independent of t.

Proof The solution (z(ί), w(ί)) of (4.1) and (4.2) has the following Fourier re-
presentation:

w{ξ,t) ) - e \w(ξ,0)

where R(iξ) is given by (2.5). We use (4.13) and the Parseval equality to estimate
| |D^z(O| | 2 and ||Z>i—1 >v(ί)||2 . In the integration in the Fourier space, we break

the integral f dξ into /m<(* ^~^~ S\ξ\>ξ dζ, where ξo is a small positive number
to be chosen later. For \ξ\ > ξ0, we have from (2.6), (2.7), (4.13) and the Parseval
equality that there is a positive constant β such that

+ \\Dl-'w(0)\\2) •

For \ξ\ < ξo, lj(iξ) and η(iξ) have the following asymptotic expression:

nι(iξ)=(0

ι)+O(\ξ\).

We denote the dominating terms of lj (iξ)/rj(iξ) by Ij/rj, respectively and define

P°j = rj 0 /y. We then choose ξo so small that when \ξ\ ^ ξo we have

Re(-v + O( | ί | ) ) < - α and Λβ(-*

for some constants α > 0 and β > 0. Then from (2.8) and (2.9) we have

(4.14)

for 1̂1 < ξ0. Now, from (2.8), (2.9), (4.13) and (4.14) we have

/ \(ίξ)ιz(U)\2dξ^ J \e^^(iξ)ιz(ξ,0)\2dξ
\ξ\<ξo

\ξ\<ξo
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Here, we have chosen β ^ k and absorbed the term eH^* into e~^. We extend
the domain of integration from \ξ\ < ξo to the whole line. Then

I S\\G(t)*Dl

xz(0)\\2

Z Ct-W-'* \\φ(0)\\lι >

II <Ξ CΓ^-'+k \\Dkz(0)\\2

ϋ +CΓι'2-ί+k\\Dk

xw(0)\\2

Ll ,

III S Ce-^(| |^z(0)| | 2 + \\Dι~' w(0)||2) .

Here, G(x, t) is the heat kernel -^e^-^^'K Similarly,

/ \(iξ)'-ιw(ξ, t)\2 dξ £ J \
\ξ\<ξ° \ξ\<ξa

/ \(iξ)'-ιw(ξ, t)\2 dξ £ J \A't*iξ'&.z(ξ,0)\2

£'*(& 0)|2)

= 1+11 + 111 .

The terms /, // and /// have the same estimate as above. Summarizing the above
estimations, we obtain

\\Dxz{t)\\2,\\Dχ-
λw(t)\\2 ίi

+ Ct-l'2-'+k(\\Dk

xz(0)\\2

L,

+ CΓi'2-l+k\\Dkz(0)\\2

Ll .

This formula together with the energy estimate (4.3) gives (4.12). Next, we prove
(4.11). We represent (z(ί), w(0) by

fz(ξ9t)\ _ ίm(z(ξ,0)\

\w(ξ,t)J ~e \w(ξ,0)J ' ^ΛD)

where

\(iζ)2gu iζgv) \iζhu hυ J

Notice that R(iξ) = N-\iξ)R(iξ)N(iξ), where N(iξ) = (lj> °Λ. Therefore,

R(iξ) and R(iξ) have the same eigenvalues. From (2.7) and (4.15) we have

/ (\z(ζ,t)\2 + \w(ξ,t)\2)dξ^

For \ξ\ < ξo, the eigenvectors of R(iζ) have the following asymptotic expansion:

Uiξ) = (l,-h-1fv) + O

Uiξ) = (0,1)+ O(\ξ\),
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By a similar calculation as above we obtain

||z(0||2 ^

These formulae together with the energy estimate (4.3) gives (4.11). |

4.2. Energy Estimate for the Nonlinear Equations. In this section, we give an
a priori estimate for the solution of the nonlinear equations (3.2) and (3.3). Let us
assume the solution (z(ί), w(ί)) of (3.2) and (3.3) to exist in [0, T], where T > 0
is an arbitrary number.

Proposition 4. Let us assume the solution (z(t), w(t)) of (3.2) and (3.3) to exist
in [0, T] and assume ε(Γ) 0/(3.10) and δ 0/(3.7) to be small Then there exist
constant β > 0, C > 0, which are independent of T, such that we have for t G
[0, T],

z(s)\\2 + \\Dι

x w(s)f) ds

+ c je-2β('-s)ίl]Diχθ{s)f + \lD'χZ(s)f + | |D/-i w ( s ) | | 2 \ d s . ( 4 . 1 6 )

0 V '

Proof. When ε(T) is small, we can solve w from (3.3) in terms of z, and zx:

w = - / Γ ' ί z * + fuZx) + f»~XHl + O(\θ\ + \z,\ + \zx\)z, + O(\θ\ + \z,\ + \zx\)zx.

(4.17)

Substituting this into (3.2) and changing the variable from x to ξ—x — λ*t9 we
obtain

ztt + Oil + h - 2λ*)ztξ - kvzξξ -zt=K, (4.18)

where

K = K\ + K2

Ki = A,z, + BiZξ, 1 = 2, 3, 4 ,

Λ , Bf - O(|θ| + |Z / | + \zξ\), i = 2, 3, 4 . (4.19)

Let V denote for (5,, 3^) and let us define

1=0
p(T) = sup Σ (lV'β(0|oo + |V/+1z(0|oo) • (4.20)
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We claim that the statement of this proposition is equivalent to the following state-
ment:

+ ||V/+1z(0)||2)

Cfe-2β(t-s)(\\Vιθ\\2 + ||V7z||2) ds , (4.21)

provided p(T) and δ are sufficiently small. The proof of this claim is basically
followed by the following lemma.

Lemma 1. There exist constants Q, i = 1,2, 3,4 which are independent of T such
that

S P(T) ύ C2ε(T),

dp>ίβ| | g ||Vzβ|| £C2\\Dι

xθ\\,

\\Dι

xw(t)\\ + ||Dί+1z(O|| ύ C3(\\VMz(t)\\+ε(T)\\Vιθ(t)ή ,

and

for 0 <z t S T, provided ε(T)<ζl or ρ(T)<l .

This lemma can be proved directly by (3.2), (4.17) and Lemmas Al and A2. We
omit the details.

Now, we perform the energy estimate for (4.18) as follows. From Lemma 1,
we may assume p(T) to be small. Let us abbreviate it by p. Let y be the constant

satisfying (4.7) and (4.8). Then /V7(4.18) (yψz + ψzλdξ gives

j t (§l|V'z||2 + i||V'z,||2 + y HV'zdl2) + l

~JJ^Vlzt ' Vlzdξ

Further, J^ e~2β{t~s\4.22)ds for any β ^ 0 gives

1 . ^ _ ^ I v i i 0 fίV | , _ _

.fe-W-'H-βkγWV'zωf-
0 V
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5Ξ γe-^'f\Vιzt(O) V'z(O)| dξ + γf\Vιzt(t) • Vιz(t)\ dξ

+ 2fa J fe-2β«-s)\Vιzt{s) V'z(5)| dξ ds
o

+ J Je~2β{t-s)\VιK (yV'z + V'z,)| Jξ ώ .
o

Here, we have used integration-by-part and the Cauchy-Schwartz inequality. Now,
we require γ to satisfy (4.7), (4.8) and γ ^ | . Further, we choose )S to satisfy

and

Then we obtain

l

g Ce-2 / f t(| |V'z(0)| |2

o

+ / / e ' ^ ' ^ W i S : (yV'z + V'z,)| <ίξ ̂ 5 . (4.23)

o

We claim that the last term on the right-hand-side of (4.23) has the following

estimate:

j je-m-s)\^iK . ( y V ' z + V'z,)| dξ ds
o

^ Cp(||V'z(0||2 + ||V/+1z(/)||2)

+ f e-W-'HΪ\\V'zt{s)\\2 + C(p + p)||V/ + 1z(ί)||2) ds
0 \δ /

\\2 + \\Vιz(s)\\2) ds . (4.24)
o

Once this claim is proved, we can choose β to be small and adjust p to be small
enough so that the first two terms on the right-hand-side of (4.24) can be absorbed
into the left-hand-side of (4.23). Thus, (4.21) is proved. Hence, it remains to prove
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(4.24). We need the following lemma.

Lemma 2. Let Ah Bh i = 2, 3, 4 be defined by (4.19). Then

M/loo, l^ loo ύ C

Also, we have

| |V / + 1 6>| |

where C is constant independent of T.

The proof of this lemma follows from Lemmas Al, A2 and (3.1) directly.
Now, we prove (4.24). We recall that K = K\ + K2 + K^t + K^ξ. From Lemma 2,

and

HV'll l iv ' l lk l + liv'fizllkίloo + I^UIIV^H +

Hence,

JV% (yV'z + Vιz,)\ dξ S C\\V'Kι ||(||V'z|| -

fC(| |V'0| | 2 + | |V'z||2), (4.25)

+V'z,)| dξ ^ C||V'^2||(||V'z|| + \\ψz,\\)

S Cp(\\V'θ||2 + llV'zll2 + | |V'+ 1z| |2). (4.26)

Next, we estimate f \Vι(δ,K3 + dξfU) (yVιz+ \7ιzλ\dξ. We recall that Kt =

AiZ, + BiZξ, i — 3, 4. We shall only compute the term / Vιdt(Aτ,zt) V'zdξ in de-
tail. The rest terms can be handled similarly. We have

V'δ,(Λ3z() = A'^'zu + Ay'zιξ + L.O.T.,

where A'3, A" satisfy (4.19), and L.O.T. are the lower order terms. By Lemmas 2,
Al and A2, the L.O.T. have the following estimate:

\\L.O.T.\\ g cfliv'θH + liv'+'ziixfrioo + |zβ|oo)

W'zdξ = jt!AW'zt • V'z - fA'yV'z, • V'z - jA'^V'z,)

ί jjΛ'.V'z, V'z + CpllV ÎKUV'zll + ||Vzz,||)
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/4 'V^ V'z ί jtMVιzξ V'z + Oip^V'ziWiWV'z^l + IIV'zll)

• V'z, = \jtSAW'ztf - \

- ^

/4 'V'z / ξ V'z, = - I / 4 ' { ( V ' z , ) 2 = O(p)| |V'z,| |2 .

After computing / I V ' δ / ^ z ^ ) V'z|rf^, •••, J^'dξ(B4zξ) V'z(rfξ by a similar
way, we reach

(yV'z + V'z,)| J£

||V'z||2 + II V / + 1z||2)

f(AV' V'z + 5V'z V'z + C(Vιz)2 + DVιz Vzξ + E(W!zξf)j ξ V'z + 5V'z, V'z + C(Vιzt)
2 + DVιzt Vzξ + E(W!zξf)dξ

(4.27)

where A, • • •, E satisfy (4.19). Combining (4.25), (4.26) and (4.27), we obtain

' + 1 z | | 2Cp||V'+1z

J(AV' V'z + BV'z V'z + C{V'zf + DVιz Vιzξ + E(V'zξf)j J ξ V'z + BV'zt V'z + C{V'z,f + DVιzt Vιzξ + E(V'zξf)dξ .

(4.28)

Finally, J^e~2β('~s)(4.28)ds and using integration-by-part and that |i|oo, ,|^|oo
= O(ρ), we obtain (4.24). |

4.3. Decay Estimate for the Nonlinear Equations. In this section, we give the
a priori decay estimate for the solution of the nonlinear equations (3.2) and (3.3).
We need the following two lemmas [2].

Lemma 3. The diffusion wave θ has the following estimate:

\\D'xθ(t)\\LP = O(δ)(l + t)-ϊ-ί+τ-p, / ̂  0 .

The proof of this lemma follows easily from the exact expression of θ.

Lemma 4. Let α, β, y be positive numbers. Then

J e-β{t~s\\ + s)~y ds = O(l+ 0 " α (4.29)
o

if* S 7,
t/2

f (1 + t - s)-β(l + s)~y ds = O(l+ 0 ~ α (4.30)
o

ifoi ^β, α ̂  β + γ-l, yΦhorifa < β, α ̂  jS + y - 1 , y = l ,

/ ( I + t - syβ(l + s)~y ds = O(l + 0 " α (4.31)
t/2
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Proof of Proposition 1. Let us assume the solution (z(t), w(t)) of (3.2) and (3.3)
exists in [0, T],T > 0 and ε(T)<ξl. We use the following integral representation
to estimate \\D'xz(t)\\ and WD^

_(z\t)

w

From Proposition 3, we have

* ( 0 ϊ _ jRVx)

(4.32)

t
\\Z{ + \\\2 <? r 1 Γ s,—2β(t—s)(II IT i | 2 i | | π I J l | 2 \ j n

lF(OII = c J e vll^ill + IIAc/22il J a s
0

+ C / ( 1 + ί - ^ - 1 / 2 ( 1 1 ^ 1 ^ + \\DχH2fLl) 9 (4.33)
0

and for / ^ 1,

||flίz(0||2, H^- \ )
0

t/2 t/2

+ c S(i + t-srι'2-'\\H,\\2

Ll + c Ki + t-sr^-'mwi,
0 0

+ C /(I + / - sT^WD'-Ή, \\l +cj(l+t- s)-5'2\\D'-ιH2\\2

L, .
1/2 t/2

(4.34)
Here,

Hi =ίl\ +H\+H\+H\

= O(\θ\3 + \θθx\ + |θ,, | + Θ2

X + \θxt\ + \(θ2)t\)

|zx| + H)( |z x | + H ) , (4.35)

x\ + \w\)(\zx\ + \w\). (4.36)

Let us abbreviate | | |z | | | + | | |w|| | by M. By using (4.35), (4.36), (3.8) and (3.9),
and applying Lemmas 3, Al and A2, we obtain

\\D%\\ ^

\\D'XH2\\ ϊ O(δ + M)(\\D!

x

+iz\\ + \\D'xw\\) ,

^ 0(1 + sΓυ2-'/2M(δ + M) ,

\\Hι\\Lι ^ \

\\H2\\υ ί
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We apply the energy estimate to handle the term ||Z>J+1z||2 +

J e-2n-'\\\DJ+ιz(s)\\2 + \\Dι

xw(s)\\2)ds
o

\\D'xz(s)f + \\D'-1w(s)\\2)ds

By (4.33), (4.34) Lemma 4, and the estimations of Hi above, we obtain

\\Dι

xz(t)\\2 S C(l + t)~ι/2-ι(δ + M(δ + M))2, 0 S I ύ 3,

HZλ̂ wίOH2 ^ Cίi + O " " 1 7 2 " ^ ^ ^ ^ ^ ^ ) ) 2 , i S i S 3.

From (3.8) and (3.9), we obtain

M2 ^ C(δ + (δ + M)M)2 .

Thus, we have

M S C

for some constant C which is independent of T, provided δ and ε(Γ) are small
enough. This completes the proof of Proposition 1.

Proof of the Main Theorem. The local existence and uniqueness of the smooth
solution of (3.2) and (3.3) are followed from the energy estimate with β = 0. The
global existence is followed from the local existence and the a priori decay estimate.
The ZAdecay rates of z and w are obtained by interpolation. These proofs are
standard. For reference, see [3]. Finally, the convergent rate obtained in Theorem 1
is the same as the optimal convergent rate to diffusion waves for scalar conservation
laws [2]. Thus, this rate is optimal.

Appendix

We list two well-known lemmas which are used in the paper. For reference,
see [6].

Lemma Al. Ifu,veHιΠ L°°, then

\\Dι

x(uv)\\ s

Lemma A2. Suppose N is smooth function in the neighborhood of 0 and v £
H1 nL°°. Then there is a constant η depending on N and constant C(η) such that

\\Dι

xN(v)\\ S C(η)\\Dι

xυ\\ ,

provided |ι;|oo ^ η.
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