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Abstract: Let G be a Lie group. For any Abelian subalgebra f) of the Lie algebra
g of G, and any r e I) Λ ί), the difference of the left and right translates of r gives
a compatible Poisson bracket on G. We show how to construct the corresponding
quantum group, in the C*-algebra setting. The main tool used is the general de-
formation quantization construction developed earlier by the author for actions of
vector groups on C*-algebras.

Introduction

Let G be a connected Lie group with Lie algebra g, let H be a closed connected
Abelian subgroup of G with Lie algebra ί), and let r G ί) Λ ί). Given this data, there
is a simple way to equip G with a compatible Poisson bracket in Drinfeld's sense
[Dl, D3]. But according to Drinfeld's outlook, compatible Poisson brackets give
precisely the "directions" in which one can hope to quantize a Lie group to obtain a
quantum group. We will show here that, for the data given above, there is a natural
way to carry out this quantization so as to construct the corresponding quantum
group, within the framework of C*-algebras. This quantization will be a preferred
quantization in the sense of [GS1, GS2, Gq], meaning that the comultiplication will
be unchanged - only the pointwise product of functions on G will be changed,
into a non-commutative product. In the monograph [Rf 2] I developed a general
construction for the deformation quantization of any C*-algebra in the direction of
any Poisson bracket coming from an action of IR/ for d ^ 2. It is this construction
which we will employ here to produce our quantum groups.

In [Rf4] I have described the details of this construction for the case in which
G is compact, where there are some very substantial simplifications. This provided
some new examples of compact quantum groups. Here we will see that our construc-
tion yields some reasonably interesting non-compact quantum groups which do not
seem to have been constructed before. Since non-compact quantum groups have been
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difficult to construct [Wr4, Wr5, Wr6, Wr7, WZ, PW, BS, B l , B2, Rfl, Vnl , Z],
any new examples seem valuable at this point.

But our construction also seems to be a significant corner of the general theory
of quantum groups. As suggested in [Rf4], our construction can also be used to
deform quantum groups themselves into new quantum groups. The details for com-
pact quantum groups have been worked out by S. Wang [Wa3]. (See also Sect. 14
of [GS1].) But at present, in contrast to the compact case [Wr8, Wai , Wa2, Vn3],
no definitive set of axioms seems yet to be known for what one should mean by
a non-compact quantum group within the C*-algebra framework (e.g. from which
one can derive the existence of a Haar measure - but see [Vn4, BS]). Thus it
is not presently clear how best to formulate the statement of a general process of
deforming a non-compact quantum group, and so we will not attempt to treat this
situation here.

A significant virtue of our construction is that we are able to directly deform the
pointwise product on a Frechet algebra of functions which includes many smooth
functions. For most quantum groups which have been constructed up to now one
does not know how to do this. Indeed, even for the fundamental example of quantum
SU(2) [Wr2, VS], it seems not to be known how to find a suitable Frechet algebra
of functions on which the pointwise product can be deformed - the algebra of
representative functions which one usually employs seems unlikely to be complete
for any topology nicely related to the smooth structure of the Lie group SU(2).

Another virtue of the general quantization construction developed in [Rf 2], and
so of the construction given here, is that, in a suitable sense discussed in part in
[Sh], it preserves the symplectic leaves of the associated Poisson bracket. Recently
Sheu [Sh] has made the striking observation that it is impossible to construct a
preferred deformation quantization of SU(2) which preserves the symplectic leaves.
This indicates an interesting potential obstruction to using possible variations of our
construction to obtain other quantum groups.

There is an interesting obstacle to our construction. For many cases the range
of the comultiplication will not consist of norm-continuous vectors for. the action of
H which our construction employs. This causes technical difficulties. We are able
to overcome this obstacle, but only at the cost of letting the comultiplication lose
some contact with the smooth structure of G. Elsewhere [Rf6] we have shown that
the range of the comultiplication will consist of norm-continuous vectors for our
action of H exactly when H is what we call a SIN-subgroup of G. In this special
case we can maintain direct contact with the smooth structure, and show that there
is a Frechet quantum group underlying our C* -quantum group. We plan to treat this
matter elsewhere [Rf 7].

As discussed in the introduction of [Rf4], our construction is related to the twist-
ing construction first introduced by Drinfeld. We will not repeat here the discussion
of the literature given in [Rf4]. We will just mention the following related papers
which have come to our attention more recently. A recent preprint of Zakrzewski [Z]
is closely related to the present work in ways which will be indicated below. The
paper [AST] contains a purely algebraic analogue for GLn of our construction. (See
especially their Theorem 4.) Purely algebraic versions also play a role in [TV1, TV2]
and antecedent papers they reference. A more abstract twisting construction, taking
place at the level of the group Fourier algebra, using unitary dual cocycles, has been
introduced recently by Landstad and Raeburn [LR]. This construction has been em-
ployed very recently by Landstad [L] to construct quantum groups which largely
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coincide with the ones constructed here. His techniques, while very much related to
ours, are formulated fairly differently. Because he works initially with the Fourier
algebra and the group von Neumann algebra (in ways related to the dual quantum
groups of Sect. 6 of [Z]), he does not face the technical obstacle involving smooth
functions which is alluded to above. Thus his definition of the comultiplication is
quite clean. But the Fourier algebra is a somewhat abstract object, which makes lit-
tle contact with the smooth structure of the underlying Lie groups. Thus Landstad's
approach has the disadvantage that it will probably be awkward to use it directly
for considerations of non-commutative differential geometry (though his avoidance
of smooth functions permits him to also treat groups which are not connected Lie
groups). Landstad provides a rich collection of specific examples, some of which
go somewhat beyond the considerations given here. Much of Landstad's article is
concerned with obtaining more concrete descriptions of his quantum groups in terms
of function algebras more closely tailored to his various classes of examples. Even
more recently, the relationship between Landstad's approach and the theory of Kac
algebras has been nicely elucidated in [V].

In the first section of this paper we give the Lie algebra background for our
results, and in the second we construct the quantum spaces for our quantum groups.
The comultiplication for our quantum groups is constructed in Sect. 3, and shown
to be coassociative in Sect. 4. Important information about the range of the comul-
tiplication is obtained in Sect. 5. In Sect. 6 we briefly examine the coidentity and
coinverse (antipode) for our quantum groups.

1. The Lie Bialgebra Background

In this section we briefly review certain well-known [Dl, D3, Tkl, Tk2, Z] Lie
bialgebra considerations which lie behind our construction. These considerations
provide motivation for what follows, but we will not use specific facts from this
section (though we will use some of the notation introduced here).

We denote by ad the adjoint representation of g on itself, as well as the corre-
sponding representation on the space g Λ g of anti-symmetric tensors. We denote by
ad* the coadjoint representation of g on the vector-space dual g*. By a 1-cocycle
for ad with values in g Λ g we mean a linear map φ from g to g Λ g satisfying

φ([X, Y]) = adbK<Kr)) - ady(<K*))

for I J e g . The pair (g,ψ) is called a Lie bialgebra [Dl, D3, Tkl, Tk2] if φ is a
1-cocycle such that the dual map, φ*9 from g* Λ g* to g* is a Lie algebra product
on g*, that is, satisfies the Jacobi identity. Drinfeld [Dl, D3] showed that the Lie
bialgebra structures on g are in bijection with the compatible Poisson brackets on
the simply-connected Lie group G corresponding to g, that is, the brackets for which
the group product is a Poisson map. Drinfeld indicated that the compatible Poisson
brackets give the "directions" in which we can hope to quantize the Lie group into
a quantum group. At the level of universal enveloping algebras ^ ( g ) , Reshetikhin
[Re] has indicated how to carry out this quantization. But at an analytical level we
seem to be far from understanding how to carry this out in general, although there
have been some notable successes, described in some of the papers listed in the
introduction.
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Among the cocycles are the coboundaries, that is, the maps φ for which there
is an r G g Λ g such that φ{X) = adχ(r) for all l e g . Then φ* is a Lie algebra
product on g* exactly if

1/12, ^13] + [r\2, ^23] + l>13, Γ23] (1.1)

is an ad-invariant element in the 3-fold tensor product of ^ ( g ) with itself [D2, Tkl,
Tk2], where 7*12 — r® 1, etc. The corresponding Lie bialgebra is then said to be a
coboundry Lie bialgebra. If (1.1) is in fact = 0, then this equation is the classical
Yang-Baxter equation, and the Lie bialgebra is said to be triangular. The Lie bracket
on g* is determined by

for μ, v G g*, where the brackets denote the duality between g and g*. It is easy
to express the corresponding compatible Poisson bracket on G in this case. Let λ
and p denote left and right translation on G. Then x \-* λx{r) and x 1—> px(r) can be
shown [D2, Tkl, Tk2] to be Poisson brackets on G (in the triangular case), and

x h-* λx(r) - px(r) (1.2)

turns out to be the desired compatible Poisson bracket.
Now let ί) be an Abelian subalgebra of g. Then any r e I) Λ ί) satisfies the

classical Yang-Baxter equation. The corresponding triangular Lie bialgebras are the
ones which lie behind the considerations of this paper. Let r denote the linear map
from g* to g determined by

(r(μ),v) = (r,μ<g>v) .

Note that r(μ) G i) for all μ G g*. It is not difficult to show that the Lie bracket on
g* for the corresponding φ is defined by

(This fits well with the corresponding Lie group structure on the Poisson dual given
in Eq. 14 of [Z].) From this it is easily shown that [g*,g*] C ί)-1 and that [fy-^g*] =
{0}, so that g* is a 2-step solvable Lie algebra.

It is also not difficult to show that tr(adμ) = tr(adr~(μ)). Recall [Vr] that the Lie
group G will be unimodular exactly if tr(adχ) = 0 for all X G g. Then we see that
if G is unimodular, so will be the Lie group corresponding to g* (the Poisson dual
to G). In particular, for compact G as in [Rf4], the corresponding Poisson duals
will always be unimodular, as mentioned there.

2. The Quantized Space

Let G, g, H, f) and r be as above. We can assume that H is closed (connected), for
if it is not, we can replace it by its closure, enlarging ί) accordingly, but leaving r
unchanged. We denote the exponential map from ϊ) onto H C G by η. Let V = ϊ) Θ t),
and let A — CΌo(G), the C*-algebra of continuous complex-valued functions on G
which vanish at infinity, with sup-norm || ||oo To have some uniformity with the
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notation of [Rf 2, Rf4] we will denote elements of \) by letters such as s, t, u, v.
Define an action, α, of V on A by

(<Hstu)f)(x) = f(*l(-s)xη(u))

for ( J , M ) E V and x G G. (The minus sign in — s has little significance here - we
include it only in anticipation of the discussion in [Rf 7] where we need to relate
α to actions of some non-commutative subgroups of G, and also in anticipation
of perhaps someday being able to treat cases in which H itself is not Abelian.
But see the conjecture at the end of Sect. 1 of [Z].) On ί), and so on V9 we fix
an arbitrary positive definite inner product, which we denote by a dot. Then for
any skew-symmetric operator J on V we are exactly in position to apply the main
construction of [Rf 2] to produce the deformed C*-algebra Aj. To orient the reader,
we mention that at the level of smooth functions the deformed product x j is defined
by

(/ XJ Q)(x) = I I(otj(s,u)f)(x)(ot(ί,v)g)(x)e(s t + u - v). (2.1)

Here, as later, e(r) — e2πιr for r G R, we omit the ds, etc., and this integral must
be interpreted as an oscillatory integral [Rf 2].

The algebra Aj is a suitable quantization for the space G, in the direction of a
Poisson bracket coming from J and α (see [Rf 2]). But without further hypotheses
there is no reason to expect it to relate well to the group structure of G. If we
examine the formula (1.2) for the compatible Poisson bracket on G, together with
the definition of α as a combination of left and right translation, we see that we
need to have J of the form K θ (-K), where K is a skew-symmetric operator on
f). (The minus sign here is crucial.) Thus K is our version in the present context of
the earlier r G ϊ) Λ ϊ). More specifically, the dot product gives an isomorphism from
ί)* to ϊ), and if we follow this by K we obtain a map from ψ to \) which will be
the r of the previous section. Alternatively, we could from the beginning take K
to be a skew map from ί)* to ί), so that J goes from F* to V, and proceed as in
Sect. 1 of [Rβ].

3. The Construction of the Deformed Comultiplication

Let A denote the usual comultiplication for A, defined for / G A by

If G is not compact, Δf will not vanish at infinity, but rather will be in the alge-
bra Cb{G x G) of bounded continuous functions on G x G. Let A® A denote the
completed C*-tensor product, so A ®A — C^G x G). Then Q ( G x G) is exactly
the multiplier algebra, M(A <8>A), of A <g>A. (See [Pe] for multiplier algebras.) Thus
A maps A to M(A ®A). What we would like to show is that, when we deform the
product on A to obtain Aj, we do not need to deform Δ, but rather that Δ, at the level
of functions, determines an algebra homomorphism, Δj, from Aj to M(Aj ® Aj\
which will be the comultiplication for our quantum group. The calculation done
early in Sect. 2 of [Rf4] which shows that at least at the level of functions this
works for compact groups, holds here in general only at the heuristic level (see also
[Z]). We will not pursue this here since a stronger approach is needed anyway if
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we are to extend to the C*-algebras. Now Λj ®Aj can be obtained from A ®A by
using the action α (g> α of V Θ V (Proposition 2.1 of [Rf4]). To obtain Δj we need
to consider α 0 α as an action on M(A ®A) = Cb(G x G) in the evident way. Now
in general α 0 α will not be a strongly continuous action on Cj,{G x G). Closer
examination of the situation [Rf6] then reveals an interesting obstacle, namely that,
even for / E C^°(G), in general Δf will not be a norm-continuous vector for the
action α 0 α (and derivatives of zJ/ need not be bounded). This causes difficulties
when one tries to manipulate oscillatory integrals such as (2.1) to show that A de-
termines an algebra homomorphism Δj with the desired properties. Thus we will
need to take a somewhat more complicated route.

We also notice another feature with which we must deal. The algebra Aj 0 Aj
can be defined in terms of the action α ^ α o f F x VonA^A. But Aj is defined in
terms of the action α of V. Since different groups are acting here, it does not make
sense to ask whether A is equivariant, and so we cannot directly invoke ίunctoriality
to produce Δj. This too means that we need to take a somewhat more complicated
route, which we now begin to describe.

We will let G x# G denote the quotient of G x G by the equivalence relation
(xw,y) ~ (x,wy) for w E H. This comes from an evident free and proper action of
H on G x G, and so G x# G is a locally compact Hausdorff space for the quotient
topology. Note also that the product on G gives a well-defined continuous map from
G xHG onto G.

The quotient map from G x G onto G xH G, and the map from G xH G onto
G just indicated, are not in general proper (in the sense that preimages of compact
sets are compact). Thus they do not give homomorphisms between the correspond-
ing algebras of functions vanishing at infinity. Rather they give "morphisms", where
we recall [Wrl, VI, Wr4] that a morphism from a C*-algebra A to a C*-algebra
B is a homomorphism, say θ, from A into the multiplier algebra M(B) of B such
that B = Θ(A)B (closed span of products), or equivalently, such that for one, and
hence for any, bounded approximate identity {β;} for A we have θ(eχ)b —> b for
all b E B. Because of our need to work on subalgebras where group actions are
strongly continuous, we remark that to construct a morphism from A to B it suf-
fices to construct a homomorphism, satisfying the above condition on approximate
identities, from A into any C*-algebra, M, containing B as an essential ideal (i.e.
such that if FB = 0 for F E M, then F = 0), since we will have an identification
M C M(B).

Although, as noted, A is not equivariant in a convenient way, our basic tool
will be the fact that our deformation process preserves equivariant morphisms. The
ingredients for proving this are mostly contained in Proposition 5.10 of [Rf2], and
that proposition would have been more felicitously formulated as exactly the fact
that deformation preserves morphisms. But it wasn't, so we state this here, and
indicate how the proof follows from Proposition 5.10.

3.1. Theorem. Let A and B be C*-algebras, and let α and β be (strongly con-
tinuous) actions of a vector group V on A and B respectively. Let J be any
skew-symmetric operator on V. Let β denote the extension of β to an action on
M{B) (which need not be strongly continuous). Let θ : A —» M{B) be a morphism
from A to B which is equivariant for α and β. Then θ determines a well-defined
homomorphism, θj, from Aj to M(Bj), which is a morphism (still equivariant)
from Aj to Bj.
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Proof Let M denote the C*-subalgebra of M(B) consisting of norm-continuous
vectors for β, and let D — Θ(A). Because θ is equivariant and α is strongly contin-
uous on A, it is easily seen that D C M. Since β is strongly continuous on M, the
functoriality of deformation (Theorem 5.7 of [Rf 2]) gives us a homomorphism θj
of Aj into Mj, which is still equivariant by Theorem 5.12 of [Rf2]. Since β carries
D into itself, the functoriality together with Proposition 5.8 of [Rf 2] shows that θj
factors as a surjection from Aj onto Dj followed by an inclusion of Dj into Mj.

Note that B is an essential ideal of M, so that Bj is an essential ideal of Mj by
Proposition 5.9 of [Rf2]. Thus Mj C M(Bj). Since θ is a morphism, D contains
an approximate identity with the properties related to B noted earlier. Then Dj
will contain an approximate identity with the same properties related to Bj, by
Proposition 5.10 of [Rf2]. It follows that θj is a morphism. D

We recall [Wrl, VI, Wr4] that morphisms can be composed to give morphisms.
To be specific, let θ be a morphism from B to C. Then θ lifts [I, VI, Wrl] to a
unique unital homomorphism, θ, from M(B) to M(C). If φ is a morphism from
A to B, and so a homomorphism from A to M(B), then θ o φ is a homomorphism
from v4 to M(C) which one can easily check is a morphism to C. We will denote
composition of morphisms by juxtaposition, so θφ in this case.

3.2. Proposition. Let oc, β and y be actions of a vector group V on C*-algebras A,
B and C, with extensions a, β and y to the multiplier algebras. Let J be a skew-
symmetric operator on V. Let φ be a morphism from A to B which is equivariant
for α and β, and let θ be a morphism from B to C which is equivariant for β and
γ. Then θ o φ is equivariant for α and γ, and we have

(θφ)j = θjψj .

Proof One readily checks that θ is equivariant for β and γ, so that θ o φ is
equivariant for α and γ. Thus (0 o φ)j (= (θφ)j) is a well-defined morphism by
Theorem 3.1. Let M and N denote the subalgebras of norm-continuous vectors
in M(B) and M(C) for β and y respectively. Then φ carries A into M, and θ
carries M into N. Thus at the level of the smooth subalgebras we clearly have
(θ o φ)j = θj O ψj. By continuity this holds at the C*-algebra level. But from
Theorem 3.1 we see that this means exactly that (θφ)j = θj(pj. D

From now on we will often omit the bars on θ, β, etc., when this should not
cause confusion.

Now note that the comultiplication A can be factored as A = ΞΓ. Here Γ is the
morphism from A — Coo(G) to B = CΌo(G x# G) defined by

where x,yeG and (x,y)~ denotes their equivalence class in G x# G; and Ξ
denotes the injective morphism from B to A §§ A — C^G x G) defined by

(ΞF)(X,y)=F((x,yΓ).

This factorization of A corresponds to the factorization through G X// G indicated
earlier for the product on G. We will often write F(x,y) instead ofF((x,y)~\ etc.,
when this should not cause confusion.
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Define a (strongly continuous) action, β, of V on B by

Clearly Γ is equivariant for the actions α and β. It follows from Theorem 3.1 that
Γj is well-defined as a morphism from Λj to Bj.

Now consider the action α ® α of F x F on A®A. By means of Ξ we can
identify B with a subalgebra of M{A ®A). Let y be α <g> oc but viewed as an action
on B. A little computation shows that it carries B into itself exactly because H is
Abelian. Furthermore, y is strongly continuous, because it comes from an evident
action of V on G xH G. Clearly Ξ is equivariant for y and α <g) α. Let L = J Θ J
on F x F. It follows from Theorem 3.1 that Ξx, is a well-defined moφhism from
Bι to (A®A)L, and it is injective by Proposition 5.8 of [Rf2].

We must now see how all this relates to Aj. By Proposition 2.1 of [Rf4],
applied just as in Corollary 2.2 of [Rf4], we see that (A ® A)L = Aj ® Aj. (The
tensor product for which Proposition 2.1 of [Rf4] is stated is the minimal tensor
product, but Aj is nuclear by Theorem 4.1 of [Rf 3], so all CMensor products agree
here.) Thus we can view Ξ/, as an injective morphism from Bι to Aj (&Aj.

Let W = V x F, and let Wo = {(0,M,M,0) : u G ί)} , a subspace of W. Because
of the definition of B, it is clear that W$ is in the kernel of y as an action on B.
Let P denote the projection of W onto the orthogonal complement of WQ9 SO that
y = y oP as actions on B. Then by Theorem 8.11 of [Rf2] we have Bι = Bpip
under the evident identification of smooth element. But a quick calculation shows
that

PLP(s, u, t, v) = (Ks, 0,0, -Kυ).

In particular, if we let Q denote the orthogonal projection onto W\ — ί) x {0} x
{0} x ί), we see that Q(PLP)Q = PLP. We are thus in a position to apply Theorem
8.7 of [Rf 2] to the restrictions of y and PLP to W\. But these restrictions, under the
evident identifications, are just the β and J of earlier. Thus Theorem 8.7 of [Rf 2]
tells us, for the evident meaning of the superscripts, that:

3.3. Lemma. With notation as above, By

L — Bj.

Here the sign = , rather than just = , is appropriate, since, as seen from [Rf 2]
and Proposition 1.1 of [Rf4], the subalgebra of y-smooth vectors in B will be a
dense subalgebra of both sides, the C*-norms on both sides will coincide on this
dense subalgebra, and each side can be viewed as just the completion of this dense
subalgebra for this norm.

It follows from Lemma 3.3 that we can view Γj as a morphism from Aj to Bι.
Thus it can be composed with ΞL.

3.4. Definition. We let Δj denote the morphism

Δj = ΞLΓj

from Aj to Aj

It is this Aj which we will show is a comultiplication for Aj. It is easily seen
that if H is a SIN-subgroup [Rf6] for G so that the range of A is contained in
the algebra of norm-continuous vectors for o ί ^ α , then for smooth / the deformed
product of Ajf, as defined above, with smooth functions in A (8) A will be given
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by the expected oscillatory integral. But in the more general case it seems difficult
to give a direct definition of the product of Δjf with smooth functions in A ®A.
For example, if f,g,h G C£°(G), it is not in general clear whether the element
(Δjf) Xj (g ® h) of the C*-algebra Aj ®Aj can be represented by a function on
G x G, much less one which is smooth in some sense. Note that if K = 0 then all
our products are just the pointwise products, but if F G (A 0A)00 for α (g> α and if
/ G A°°, it will not be true in general that (Δf)F G (A®A)°°.

This loss of control over the smooth structure will make it awkward to use Δj
when considering the non-commutative differential geometry of Aj as a quantum
group, unless G is a SIN-subgroup.

Nevertheless, let us examine briefly what Definition 3.4 says about how to com-
pute Δj. Let / G A°°, and let F G (A ® A)°° where as above this means smooth
for α (g) α. How, operationally, do we compute Δj(f) x^F? Suppose we are given
ε > 0. We want an algorithm for finding a function in (A ®A)°° which we know is
within βll/lljH^IU of the element Δj(f) XLF in the C*-algebra Aj ®Aj. We pro-
ceed as follows. By Proposition 2.17 of [Rf2] we can choose in B°°y (i.e. smooth
for y) a bounded approximate identity {En} for the C*-algebra B which is also a
bounded approximate identity for the Frechet algebra B°°y, and hence also for B°°β.
By Proposition 4.13 of [Rf2] the En's will then also form a bounded approximate
identity for the C*-algebra BL = Bj. Since ΞL is a morphism, we can find an n such
that

\\ΞL(En)xLF - F\\L ^ (ε/2)||F||£ ,

where the product is in M((A ®A)L). Because the C*-norm on (A ® A)ι is domi-
nated by suitable Frechet seminorms (Proposition 4.10 of [Rf 2]), one can effectively
choose En by examining various derivatives of En and F.

Now at the C*-algebra level Δj(f) xLF will be the limit of the ΞL(Γj(f) Xj
Em) XLF a s m increases. Quantitatively, we will have

\\Δj(f) xLF - ΞL(Γj(f) xj Em) xL F\\L = \\Δj(f) xL (F - ΞL(Em) xL F)\\L

S\\f\\j\\F -ΞL(Em)xLF\\L.

For the En chosen earlier, this is ^ (ε/2) | |/ | | j | |F | | L . Now Γj(f) Xj Em will be a
well-defined function in B°°β, but it may not be in B°°y. (Consider K = 0.) However,
we can approximate it in Bι by elements of B°°y, for example by smoothing it in
the standard way. (E.g. see the proof of Lemma 5.7 below.) That is, we can find
φf G B°°y such that

\\Γj(f)xjEm - φf\\L < (6/2)11/11., .

Again this can be done effectively by examining suitable derivatives. Then Ξ(φ/)
will be a function in (M(A ®A))°° (i.e. smooth for α <g) α), so that Ξ(ψf) XLF
can be computed by the oscillatory integrals used in [Rf 2], and is a function in
(A §§ A)00. This function meets our requirements, since by the estimates above

\\Δj(f) xLF - Ξ(φf) xLF\\L g
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4. The Coassociativity of Δj

This section is devoted to proving:

4.1. Theorem. With notation as above, Aj is coassociative, that is,

(4.2)

Here / denotes the identity map on Aj. Equation (4.2) must be interpreted
in terms of the composition of morphisms. Thus, Δj (g> / is easily seen to be a
morphism from Aj &Aj to Aj ® Aj ®Aj, and so lifts to a unique homomorphism,
(Aj ®/)~, between the multiplier algebras. Then Eq. (4.2) means that

(Aj®IΓ °Aj = (I® Aj)- O ΔJ , (4.3)

an ordinary composition of homomorphisms.
The verification of (4.3) must use the definition of Δj as ΞLΓJ, and so will

require several steps. In view of the definition, it is natural enough in connection
with Aj 01 to consider the algebra B ®A = C^G xH G x G). On this algebra
we have the actions y ® α and β <g> α. From Proposition 2.1 of [Rf4] together with
Lemma 3.3 above we immediately obtain

(5®Λ)£|*=(5®Λ)f\ (4.4)

A similar result holds for A®B.
Our approach to verifying (4.3) involves relating matters to the space G x #

G xH G. The following commutative diagram of morphisms will guide our progress:

\Γ /Ξ \/w
Coo(Gx//G) Cooi

Γ0/\ /I 0 Ξ
Coo(Gx / / Gx / / G)

We must examine how various actions and deformations relate to this diagram.
Let C = Coo(G XH G xH G). O n C w e have the evident actions which we will

denote, with only small abuse of notation, b y α ® α ® α = y 0 α = α(8)y, and β 0 α.
It is fairly clear from Lemma 3.3 that we will have

and indeed arguments just as in the proof of Lemma 3.3 verify this. But by the
same arguments we also obtain

Cβ

L

m = Cβj , (4.5)

where now β must be viewed as given by

(βMΦ)(x,y,z) = Φ(η(-s)x,y,zη(u))

for Φ G C. With this understanding, we thus have

CZ = C* . (4.6)
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Now in view of the definition of Aj, the left-hand side of (4.3) will involve

(Γ/0/ΓoΞi, (4.7)

which is a morphism from Bι to Bι 0 Aj. But Γj was initially defined as a mor-
phism to Bj, and so we can view (4.7) as a morphism to Bj ®Aj. Then notice that
both Bι and Bj 0 Aj (= (B ®A)ι)9 as well as the intermediate algebra (A®A)ι
where the composition takes place, are all defined in terms of actions of V x V.
So it now makes sense to inquire about equivariance. And indeed, examination
quickly shows that Ξ and Γ 0 7 are equivariant for these actions. It follows from
Proposition 3.2 that

(Γj 0 / ) - o ΞL = ((Γ 0 / ) - o Ξ)L (4.8)

as a morphism to Bj <
Now let Γ 0 7 denote the morphism from B to C defined by

(involving equivalence classes). Then Γ 0 7 is clearly equivariant for α (8) α and
jS 0 α. Let / 0 Ξ denote the morphism from C to 5 ® v4 defined by

It is easily seen that / ® Ξ is equivariant for β 0 α on both C and
Furthermore,

(((Γ <8>/Γ o Ξ)F)(x, j;,z) = (ΞF)(xy,z) = F(xy,z)

for F G 5, while

((/ 0 Ξ Γ o (Γ 0 ϊ)F)(x, y,z) = ((Γ 0 /)F)(x, j;,z) - F(xy,z) .

Thus as morphisms,

From Proposition 3.2 it follows that

((Γ 0 7)Ξ)Z = ((/ 0 Ξ)(Γ 0 Ϊ))L = (7 0 Ξ)

Putting all of this together, we obtain

(Γj 01)ΞL = (7 0 Ξ)L(f 0 7)L . (4.9)

In exactly the same way we have

(7 0 Γj)ΞL = (Ξ 0 7M7 0 Γ)L (4.10)

for the evident meaning of Ξ 0 7 and 7 0 Γ.

Let us now see how these relations help us to prove coassociativiry. We have

( 4 , 01)Δj = (ΞL 01)(Γj 0 7)ΞLΓ y ,

which from (4.9) is

(4.11)
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But BL =Bj by Lemma 3.3, and CL = Cj by (4.5), and so (Γ®Ϊ)L = ( Γ <g> ϊ)j
since they agree on a dense subalgebra of smooth elements. We are using here the
fact that Γ <g)/ is equivariant for β on B and C. Then by Proposition 3.2,

In much the same way / C8) Ξ is clearly equivariant for γ ® α on C and
so from (4.4) and (4.6) we obtain (/ <g> Ξ)z, = (/ ® Ξ)LΘJ. Furthermore, a mo-
ment's thought shows that ΞL <g)I = (Ξ <g> I)L®J on (5 0^4)zφj . Consequently by
Proposition 3.2 we have

(ΞL ® /)(/ 0 Ξ)L = ((Ξ

Putting these equalities into (4.11), we find that

(Δj ® I)Δj = ((Ξ 0 /)(/ (8) Ξ)) L Θ J ((Γ 0 / ) / > , (4.12)

where the composition of morphisms is taking place at CL®J = Cj.
In exactly the same way we find that

(4.13)

But a trivial computation shows that

(Ξ ® / ) ( / ® Ξ) = (/ <8> Ξ)(Ξ 0 / ) , (4.14)

with both sides sending Φ £ C to the function Φ((x,y,z)~) on G x G x G. Another
trivial computation shows that

(Γ (8) Ϊ)Γ = (/ 0 Γ ) Γ , (4.15)

with both sides sending / £ ,4 to the function f(xyz) on G xH G X// G. (Note that
this is the place where we use the full associativity of the group product on G.) By
means of (4.14) and (4.15) we see that (4.12) and (4.13) coincide. This completes
the proof of Theorem 4.1.

5. The Range of the Comultiplication

There is a further property which one requires of a comultiplication in the non-
compact case. In our setting this property states that

(closed span of products). Properties of this type were probably first discussed
extensively by Vallin [VI], though he does not require quite this much. Property
5.1 has recently become one of the key axioms in a general definition of compact
quantum groups, and seems likely to play a corresponding role in the non-compact
case. See [Wr8, Vn3, BS, Wai, Wa2]. Here we will treat explicitly only the first
of the equalities in 5.1, since the treatment of the second is very similar. These
equalities have two aspects, namely a containment and a density. The main difficulty
is the fact that ΔJ(AJ) is not an α 0 α-invariant subalgebra. Note also that the
expressions in (5.1) do not have especially attractive algebraic properties.
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Let D = Coo(H\G). The map (x9y)~ ι—»Hy = y gives an injective moφhism
from D to B. Note that D is then carried into itself by both β and y (extended to
M(B)), and that these actions are strongly continuous on D. Because large subspaces
of the domains of these actions act trivially on D, we find from arguments as in
the proof of Lemma 3.3 that

DL=Dj, (5.2)

and that by Proposition 1.11 of [Rf2] the product on this algebra is given by

(φ Xj ψ)(y) = / φ(yη(-Ku))ψ(yη(v))e(u v)

for φ, φ smooth in D. This is just the deformed product for the action of H by
right translation on D. The corresponding morphism from Dj to Bj is injective by
Proposition 5.8 of [Rf 2], and in what follows we will usually identify Dj with the
corresponding subalgebra of M(Bj) = M(Bι).

The usefulness of D for our present purposes stems from the following observa-
tions. We of course have A®D = C^G x (H\G)). But the map (x, y)~ ι-> (XJ/, y)
is easily seen to be a homeomorphism from G x # G onto G x (H\G). We let
Ω denote the corresponding algebra isomorphism from A®D onto B, defined for
Φ G A ® D by

(ΩΦ)(x,y) = Φ(xy,y) .

Notice the relationship with the formula for the fundamental multiplicative unitary
operator [BS] given in the first equation after Proposition 2.5 of [Rf4]. Notice also
that for / G A and φ G D we have

(Ω(f ® φ)){x,y) = (Γf)(x,y)φ(y) = ((Γ/)(l ® φ)\x,y).

Thus (ΓA)(l (g)D) — Ω(A <S> D), where on the left we mean as usual the closed span
of products. Since Ω is an isomorphism, we obtain in particular:

5.3. Lemma. With notation as above, (ΓA)(l ®D) = B.

We seek a similar result for the deformed algebras. Let M denote the subalgebra
of M(B) on which β is strongly continuous. Notice that ΓA and 1 ® D , as subalge-
bras of M{B), are carried into themselves by β, and that in fact they are contained
in M (and the inclusions are morphisms to B). We now see that the following
proposition is pertinent:

5.4. Proposition. Let a be an action of a vector group V on a C*-algebra M,
and let J be a skew-symmetric operator on V. Let B, C and D be ^-invariant
C* -subalgebras of M such that CD C B. Then inside Mj we have

CJDJ C Bj .

Proof We clearly have C 0 0 / ) 0 0 C B°°, where the notation means α-smooth vectors.
Then for c G C°°, d G D°° the function (u,υ) ι-> aJu(c)av(d) o n F x F has values
in B°°. By the definition of Xj it follows that at the level of Frechet algebras
cxjd eB°°. But this will then also be true at the C*-algebra level. Continuity
then gives the desired result. D
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Since Γ is equivariant for α and β, we have (ΓA)j = ΓJ(AJ)9 and so from
Proposition 5.4 we immediately conclude that

We would like to show that we actually have equality here. This requires a more
specific analysis. Let α also denote the action of V on D C M(A\ so that

(<*(S,u)<p)(x) = φ(xη(u)).

Then we have the corresponding outer tensor product action, α 0 α, of F 0 F on
A®D, and the corresponding inner tensor product action, α El α, of V on ^ 0 D.
A simple calculation shows that Ω is equivariant for α ED α and /?. Consequently

f α ^ £^ via Ωj. Now at the level of multiplier algebras we have

> l ) = Γ / for f e A ,

Ω(l (g) φ) = 1 0 φ for φ e D .

Thus to show that (ΓJ(AJ)) Xj (1 ®Dj) = Bj it suffices to show that within
M((A 0 £>)/) we have Aj Xj Dj = (A ® D)j.

One might expect this to be a particular case of Proposition 2.1 of [Rf4], but
it is not. To see what the issue is, let α and β be actions of V on any two C*-
algebras A and 5, and let J and ^ be any skew-symmetric operators on V. Then
we have the outer tensor product action α 0 β of F x F on 4̂ 0 #, and Proposition
2.1 of [Rf4] tells us that (A 0 B)JΘK =Aj®Bκ. Note in particular that Aj 0 1 and
1 0Bjζ commute within M((A ®B)J^K).

However in our present situation we do not expect Γ(Aj) and l ^ D j to com-
mute. What is going on here is that if, in the general situation just above, we restrict
α 0 β to a subspace Z of F x F, and if we let L be a general skew-symmetric oper-
ator on Z, then (A ® B)L will not in general have a tensor product decomposition as
algebras, and, within its multiplier algebra, Aι and Bι will not in general commute.
In particular, all this will apply when A = B and β — α, but where we use the inner
tensor product action α ED α. Thus what we need (and will also need later) is:

5.5. Theorem. Let α and β be actions of vector groups V and W on C*-algebras
A and B respectively, and let ^ be a C*-tensor product such that oc® β gives
an action of V x W on A®B (which will then be strongly continuous). Let Z
be a subspace of V xW, and let γ be the restriction of α 0 β to Z. Let L be a
skew-symmetric operator on Z. Then within M((A 0 2?)D w e naυe

(A 0 B)y

L = ( 4 0 1) xL (1 0 B\)

(closed span of products).

Proof. Note that γ gives evident actions on A and B, viewed as the subalgebras
A ® I and 1 0 B of M{A 0 B). Thus the above assertion makes sense. Let π and p
denote the canonical projections of F x W onto F and W respectively, restricted to
Z. Let 4̂°° and B°° denote the smooth subalgebras for α and β respectively. Denote
by 0 α the algebraic tensor product. Thus A°° ®a B°° is contained in the smooth
subalgebra (A®B)°°y for γ. For a e A°° and b e B°° we have
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where p and q range over Z. This is

= / ocπLp(a) 0 βpq(b)e(p q) = / (α 0 β)(πLp,Pq)(a 0 b)e(p q) .

This suggests that on the smooth subalgebra, (A® B)°°> for α 0 jS, with its Frechet
topology, we define an operator TL by

= J(OL 0 β){πLpφq)(c)e(p

Note that this is well-defined by 1.4 of [Rf2].

5.6. Lemma. The operator TL is continuous for the Frechet topology of {A ®B)°°,
and is invertible, with inverse T-L, which is continuous.

Proof The semi-norms which define the Frechet topology (see [Rf 2]) are defined in
terms of derivatives with respect to the action α 0 β, and these derivatives commute
with the action. It then follows rapidly from 1.4 of [Rf2] that Tι is continuous, as
is Ύ-ι for the same reasons.

Examination of the integrals for T^LTL suggests that we consider

f
I (α 0 β)(-πLs,pt)(tt 0 β)(πLp,pq)(c)e(p q + S t) ,

J

where variables of integration range over Z. Application of 1.4 of [Rf 2] shows that
this is well-defined. If we argue as near the beginning of the proof of Theorem 2.14
of [Rf 2], we find that this integral is indeed equal to T-L(TLc). But we can rewrite
the integral as

r

(α 0 β\nL(p-s), p(q+t))(c)e(p q + s 0 ,

and this is seen to be equal to c by means of the change of variables p ^ p + s,
t H-» t - q, justified as at the end of the proof of Theorem 2.14 of [Rf 2]. By inter-
changing L and — L we see that we also have Tι(T-ιc) = c. D

We now need the following fact (which is also needed to make the proof of
Proposition 2.1 of [Rf4] complete):

5.7. Lemma. Let oc and β be (strongly continuous) actions of Lie groups G and
H on Banach spaces A and B. Let 0 denote some Banach cross-norm such that
α 0 β gives an action of G x H on A <g> B. Then A°° ®β B°° is dense in (A 0 B)°°
for the Frechet topology.

Proof This is just a variation on the proof of Proposition 1.1 of [Rf4]. Suppose we
are given c G {A® 5)°°, ε > 0, and X G ̂ (g) and Y G ̂ (ί)). The strong continuity
of α <S) β on the Frechet space (A (8) B)°° (see the appendix of [Sc]) tells us that we
can find φ G C™(G) and φ G Cc°°(//) such that

The proof then continues along the same lines as that of Proposition 1.1 of
[Rf4]. D
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We now complete the proof of Theorem 5.5. Since A°° 0 α B°° is dense in
(A®B)°°, and Tι is continuous with continuous inverse, it follows that
TL{A°° ®aB°°) is dense in (A®B)°°. Now (A ® B)°° is dense in A 0 5 as usual,
and the inclusion is equivariant for y. It follows from Proposition 1.1 of [Rf4]
that (A®B)°° is dense in (A<g>B)°°y for its Frechet topology. Consequently
TL(A°° ®aB°°) is dense in (A®B)°°y. But TL was denned exactly so that for
a e A°° and b G B°° we have

(In fact, TL is related to the "braided" mathematics of [GM, M], and in particular
to the map in the second paragraph of Sect. 4 of [GRZ]. Our {A®B)'L can be
viewed as a "twisted" tensor product.) It follows that the algebraic linear span
(A°° 0 1) xL (1 0 5°°) is dense in (A ®B)°°y. But (A®B)°°y is dense in (A®B)L

by definition. The assertion of the theorem follows immediately. D

When we apply this general theorem to our earlier particular situation, we obtain:

5.8. Corollary. With our earlier specific notation,

Now we have seen in Lemma 3.3 that Bj = BL. The morphism ΞL is injective
by Proposition 5.8 of [Rf 2], and through it we will now identify Bι with its image
under ΞL, so with a subalgebra of M((A ®A)L).

5.9. Proposition. With notation as above,

BL xL(

Proof. One can easily verify that the map (x,y)*-+ ((x,y)~,y) from G x G to
(G X// G) x G is proper, that is, preimages of compact acts are compact. It is also
injective. Consequently, it gives an actual homomorphism, 9C, from B <g>A onto
A 0 A. We have used earlier the actions y®α on B 0 A and α 0 α on A 0 A. These
are actions of different groups, so 3C cannot be equivariant for them. But let Z be
the subspace {(u,v,v): u,υ <E V} of V x V x V, and identify Z with V x V in the
evident way. Let δ denote the restriction of γ 0 α to Z. (Note that δ is not quite an
inner tensor product of actions.) Then it is easily verified that 3C is equivariant for
δ on B 0,4 and α 0 α on A ®A. Consequently, by Theorem 5.7 of [Rf2] we obtain
a homomorphism, t%Ί, of (B x A)δ

L to (̂ 4 0 ^ ) ^ , which is surjective by Proposition
5.8 of [Rf 2].

Now 5 0 1 and 1 ®A can be viewed as subalgebras of M(B®A) which are
carried into themselves by <5, and on which δ is strongly continuous. By arguments
such as those used earlier, it is easily seen that (B 0 1) | = B\ 0 1, and (1 ®A)δ

L =
. But for F smooth in B and / smooth in A we have

%L{(F 0 1) xL (1 0 /))(χ,7) = ((F 0 1) xL (1 0 f))((x,y)~,y)

I= J F(x,η(-Ks)yη(-Ku))f(η(-t)yη(v))e(s • t + u • v)

where we have used Proposition 1.11 of [Rf2] to reduce the integral. Thus at the
algebraic level before taking closures we have

BL xL (1 ®Aj) = %L{(B 0 \)L XL (
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Since Θ£L is surjective, we see that the proof of Proposition 5.9 will be complete if
we know that {B (&\\ XL (1 <&A)ι is dense in (A <S> B)^. But this follows immedi-
ately from Theorem 5.5. D

5.10. Theorem. With notation as above

(ΔJ(AJ)) xL (1 ®Aj) =AJ®AJ = (AJ(AJ)) xL (Aj <8> 1)

(closed span of products).

Proof. Since the evident map from D to M{A) is a morphism, we have Aj = DJAJ
by Theorem 3.1. But Dj = DL as seen above. Thus

xL (1 ®Aj) = AJ(AJ) xL ((1 ®Dj) xL (

= (ΔJ(AJ) xL (1 ®DL)) xL (1 ®Aj). (5.11)

Now the morphism which sends D as l(g)£) to M(A®A\ sending φ G D to
(x, JO (-> φ(.y), clearly factors through the morphism Ξ from B to A ®A, namely by
sending φ to (x,y)~ »-> <?(.?)• This factorization is clearly equivariant for α 0 α and
its restrictions to B and (1 ®D). By Proposition 3.2 this factorization holds for ΞL.
If we identify Dι with its image in M{Bι), this says that

ΞL(F) x L (1 0 φ) = ΞL(F xL (1 0 φ))

for F G Bι and φ £ DL. From this we see that (5.11) is equal to

(ΞL(ΓJ(AJ) xj (1 ®Dj))) xL (

which by Corollary 5.8

= ΞL(Bj) xL (1 ®Aj) = £ L xL

which by Proposition 5.9

The proof of the other equality is similar. D

6. The Coidentity and Coinverse

Let π denote the restriction map from A = CΌo(G) onto E — C^H). Now a clearly
defines also an action on E, and π is equivariant. Thus π determines a surjection
from ^(j onto Ej by Proposition 5.8 of [Rf 2]. But H is Abelian, and so the action
on E can be expressed as (&(SiU)f)(x) — f(η(—s -f- w)x). From this it is easily seen,
as discussed before Proposition 2.4 of [Rf4], or much as in the proofs of Lemmas
3.3 and 5.6, that the deformation of E is trivial, i.e. Ej — E. Thus πj is a surjection
from Aj onto E. The map πj ® πj is onto E <g>E, and so lifts to a map between
the corresponding multiplier algebras. We want to compare (πj 0 τij)Δj and AEπj,
where ΔE is just the usual comultiplication for E = CΌo(i/).

In view of the definition of Aj, we should examine

(πj 0 πj)ΞL = (π (g) π ) z Ξ z = ((π 0 π)Ξ)^ .
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Since BL=Bj, and Ej = E so that (E ® E)L = E ® E, we will have

((π ® π ) Ξ ) £ = ((π 0 π)Ξ)j

at the level of smooth elements, and so at the C*-algebra level. Thus

(πj 0 πj)Δj = ((π 0 π)ΞΓ)j - ((π 0 π)J)j = {ΔEπ)j = ΔEπj .

Once we have discussed the coidentity and coinverse for Aj, it will be clear that
they also are compatible with πj, so we will have obtained:

6.1. Proposition. The group H (qua the Hopf algebra E) is a subgroup of the
quantum group Aj (that is, E is a quotient Hopf algebra of Aj).

Let ε° denote evaluation of elements of E at the identity element of H, so that
ε° is the coidentity on E. Let ε = ε° o πj. Then ε is a continuous multiplicative
linear functional on Aj.

6.2. Proposition. The functional ε on Aj is a coidentity for Aj, that is,

(ε 0 id)Δj = id = (id 0 ε)Δj .

Proof We prove the first equality, the proof of the second being similar. Of course

(ε 0 id)Δj = (ε° 0 id)(π/ 0 id)ΞLΓj .

But πj 0 id = (π 0 id)χ in the evident sense, while (π 0 iά)LΞL = ((π 0 iά)Ξ)L.
Now Bι = Bj by Lemma 3.3, and it is easily seen from above that (E®A)ι —
(E®A)j for i d 0 α . Consequently (π 0 id)z,Ξ^ = ((π 0 id)Ξ)y. Since ε° 0 id is
really ε° 0 idj, which is (ε° 0 id)/ for id 0 α, we have

(ε 0 id)Δj = ((ε° 0 id)(π

But (ε° 0 id)(π 0 id)zl = (ε 0 id)J = id. D

We now turn to consideration of the coinverse (or antipode). Just as with Δ
and ε, it does not need to be deformed at the level of functions. We denote it by
S, and it is defined on functions by (Sf)(x) = f(x~ι). By exactly the arguments
on p. 477 of [Rf4], but applied to A = Coo(G) rather than C(G), one sees that S
determines an anti-automorphism of Aj (which we will still denote by S). Clearly
S2 = I. By chasing through the definition of Δj it is easily seen that

(S 0 S)Δj = σΔjS ,

where σ is the "flip", determined by σ(a ®b) = b® a. This is the first property
usually required of a coinverse.

In the purely algebraic setting, the main property required for S to be a coinverse
is that

mj(I 0 S)Δj = lε = mj(S ® I)Δj , (6.3)

where mj is the product on Aj, and i is the unital homomorphism from C to Aj.
But, as is well-known, and mentioned in [Rf4], this causes serious difficulties in
the C*-algebra framework because mj will not in general be continuous (or every-
where defined) on Aj ®Aj. (For one way around this, using operator spaces beyond
C*-algebras, see [ER].)
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In the C*-algebra context, where we cannot use (6.3), the usual route is to

introduce Haar measure, and then require that S satisfy suitable properties with

respect to Haar measure, as discussed towards the end of Sect. 4 of [Rf4]. For our

present situation, the Haar measure on Aj will just be the Haar measure on G,

suitably extended. It will be an unbounded weight on Aj. The main work which is

needed to establish this is to extend Theorem 4.1 of [Rf4], which deals with invariant

states, to the case of semi-invariant unbounded traces. This is quite technical. So it

seems best to deal with this, and its relation to S, elsewhere. Since the Haar measure

is needed for the discussion of the fundamental multiplicative unitary of [BS], we

defer this too. (We take this opportunity to mention that near the end of the proof of

Theorem 4.1 of [Rf4], the argument that if μ is faithful then so is μj, is, as written,

correct only for tracial states. But it is easily repaired by replacing the K there by

the space of those c £ Aj for which μj(c* Xj c) = 0. This is only a left ideal in Aj,

but that causes no difficulty for the proof. Also, in the discussion of representations

in Sect. 5 of [Rf4], some additional argument, along the lines given in [Wr3], is

needed to see that the representations for the group G give representations for the

quantum group C(G)j which are non-degenerate.)
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