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Abstract: In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian
matrices the probability that an interval of length s contains no eigenvalues is
the Fredholm determinant of the sine kernel S™(*Z) o v e r this interval. A formal
asymptotic expansion for the determinant as s tends to infinity was obtained by
Dyson. In this paper we replace a single interval of length s by sJ, where J is a
union of m intervals and present a proof of the asymptotics up to second order.
The logarithmic derivative with respect to s of the determinant equals a constant
(expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory
function of s (zero if m = 1, periodic if m = 2, and in general expressible in terms
of the solution of a Jacobi inversion problem), plus o(l). Also determined are
the asymptotics of the trace of the resolvent operator, which is the ratio in the
same model of the probability that the set contains exactly one eigenvalue to the
probability that it contains none. The proofs use ideas from orthogonal polynomial
theory.

I. Introduction

The sine kernel

- y)

arises in many areas of mathematics and mathematical physics. There is an extensive
literature on the asymptotics of the eigenvalues of Ks, the operator with this kernel
on an interval of length s, as s —» oo, for example [4,6,12,15], and asymptotic
formulas of various kinds have been obtained. Some of these derivations were rig-
orous, others were more heuristic. The Fredholm determinant of this kernel, i.e., the
operator determinant det(7 — Ks), is of particular interest. In the bulk scaling limit
of the Gaussian Unitary Ensemble of hermitian matrices it equals the probability
that an interval of length s contains no eigenvalues.
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The asymptotics of Fredholm determinants of convolution kernels k(x — y) have
a long history. (The history of their discrete analogue, Toeplitz determinants, is even
longer, beginning with the 1915 paper [16] of Szego.) If the Fourier transform k
of k is smooth and less than 1, and if k satisfies some other conditions, then for
the corresponding operator Ks one has as s —> oo,

logdet (/ - Ks) = cx s + c2 + o ( l ) , (1)

where c\ and c2 are explicitly determined constants [10]. One can generally sharpen
this, and even find an asymptotic expansion if k is sufficiently small at infinity. (For
the analogous refinements for Toeplitz determinants see [7,20].) An example is the
Fredholm determinant which gives the probability of the absence of particles in
an interval for the impenetrable Bose gas. Conjugating the operator which arises
there with the Fourier transform converts it to a convolution operator of the type
described. The asymptotics of this Fredholm determinant were obtained in [8]. (See
also [11]. It should be mentioned that these authors considered as well the asymp-
totics of determinants where k > 1 on a full interval. The general theory alluded
to above gives no information at all in such cases.)

If k < 1 but is not smooth the asymptotics are different. If k has only jump
discontinuities, then (1) becomes [3]

log det (/ - Ks) = a s + c2 logs + c3 + o ( l ) , (2)

where c\, c2 and c3 are again explicitly determined constants. Even for some cases
where k < 1 is violated at finitely many points a similar relation holds [1]. But
for the sine kernel k is the characteristic function of the interval [—1, 1] and so
the condition is violated on a set of positive measure and the situation is more
complicated.

To see the significance of the condition k < 1 in the context of the sine kernel
we introduce a real parameter λ and consider

oo

det(I-λKs)= Π 0 - ^ 4 ω ) , (3)

where λ\(s) > λ2(s) > are the eigenvalues of the sine kernel on an interval of
length s. These eigenvalues are all positive and less than 1 and as s —» oo they fill
up the interval [0, 1], i.e., all points in the interval are limits of eigenvalues and no
other points are. (In general the eigenvalues fill up the interval between inf k and
sup k when k is real-valued.) When λ < 1 all factors in (3) are bounded away
from 0 and the determinant simply approaches 0 exponentially. (The asymptotics
are given by (2).) When λ = 1 the kth factor will tend to 0 for each k, even ex-
ponentially, with the result that the determinant tends to 0 much more rapidly than
when λ < 1. And when λ > 1 the determinant will actually equal 0 for a sequence
of s's, the solutions of λk(s) — λ~ι. (One can see this change of behavior in the
results of [13], where a special case of the expansion obtained is that of the loga-
rithmic derivative of this determinant; for λ > l a sequence of poles appears.) The
present paper deals exclusively with the transitional value, λ = 1. (In the literature
one often finds 1/π as the transitional value. We have incorporated the π into the
kernel.)
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The asymptotics of the determinant for the sine kernel were probably first
investigated by Dyson [5]. He derived the asymptotic formula

\ogdst(I-Ks) = -j-l\ogs + 3ζr(-l)+^log2 + o(l) (4)

by applying a scaling argument to a known asymptotic formula for Toeplitz
determinants [19], and then using inverse scattering techniques to complete this
to an asymptotic expansion. In 1980 Jimbo et al. [9] showed that the logarithmic
derivative of this determinant satisfies a second-order differential equation which is
reducible to a Painleve V equation. The asymptotic expansion can also be obtained,
starting from (4), by substituting a formal expansion into the equation and succes-
sively solving for the coefficients.

Another quantity of interest from the random matrix point of view is

tvKs(I-Ksy
ι ,

which in the same model equals the probability that an interval of length s contains
precisely one eigenvalue, divided by the probability that it contains none. (There are
similar but more complicated formulas for any finite number of eigenvalues [14].)
The asymptotics of this were derived in [2], where

(5)

was obtained by scaling an analogous result for Toeplitz matrices, which in turn was
proved by exploiting its connection with orthogonal polynomials, whose asymptotics
were known. This formula was then extended to a complete asymptotic expansion
by using the differential equation.

These asymptotic results were not rigorously proved by the methods described.
In [21], by studying the asymptotics of a continuous analogue of orthogonal
polynomials, we were able to give a proof of (5) and of the first-order asymp-
totics in (4),

actually the slightly stronger

l K )logdet(IKs) + O(l). (6)

Refinements of these results are not the subject of this paper, but rather the extension
from the one interval case to several intervals. Thus a single interval of length s is
replaced by sJ, where J is a fixed union of intervals. Even these asymptotics are
quite elaborate and involve hyperelliptic integrals and the Jacobi inversion problem
for Abelian integrals.

We continue to denote our operator by Ks, and it is understood that it now acts
on sJ. We shall show that as s —> oo,

~ logdet(/ -Ks) = cλs + c2(s) + o( l ) , (7)
as
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where c\ is a constant and C2(s) is a certain bounded oscillatory function of s, and
that

trKs(I-Ksy
ι = ί^(c4( s ) + 0 ( s - ί ) ) , (8)

where c3 is another constant and c4(s) is another bounded oscillatory function.
The constants c\ and C3 are explicitly computable but the determination of the
functions C2(s) and C4(s) requires the solution of a Jacobi inversion problem.
(At least this is the case with this method. It is possible that a different approach
might lead to simpler representations.) If J consists of m intervals then there is a
curve, parametrized by s, in the m — 1-torus T™"1^ and two real-valued functions
defined on Jm~ι. These functions, when restricted to the curve, are c2(s) and c4(s).
When m = 2 they are periodic, and we can write down an integral representation
for the period.

Here is how we obtain the asymptotics. For the sequence of monic orthogo-
nal polynomials Pn{z) associated with a weight function w on the unit circle, the
square of the Z,2(w)-norm of Pn is the ratio of two consecutive Toeplitz determi-
nants associated with w. The asymptotics of Pn gives information on the asymp-
totics of this ratio of determinants. Analogously the asymptotics of the continu-
ous analogue of these polynomials, which we shall denote by R(x), determine the
asymptotics of the logarithmic derivative of the Fredholm determinant. The un-
derlying weight function for R(x) will be the characteristic function of the com-
plement of J in R, so we have the continuous analogue of the polynomials or-
thogonal on a union of arcs. The asymptotics of orthogonal polynomials such as
these were obtained in [18] and the ideas of this paper were used in [21] and
are used here. We find an entire function which comes close to satisfying the
characteristic property of R given in (9) below by first finding another function
(which is not entire, or even single-valued) which has this property exactly (the
function hs in Lemma 4), and then we approximate this by an entire function. The
entire function we find in this way will necessarily be a good approximation to
R. This gives a weaker form of (7) at first. It is strengthened by exploiting its
relation to a certain extremal problem. Some details will be omitted here since
the complete details for the analogous orthogonal polynomial case can be found in
[18].

We obtain (8) by using a representation, which is essentially contained in [9],
for the resolvent kernel of Ks in terms of R(x). There are analogous representations
for a large class of kernels like the sine kernel [8,17].

In [9] it was shown that for general J the Fredholm determinant is governed by
a system of partial differential equations with the end-points of J as the indepen-
dent variables. The dependent variables are the values of the function R(x) at the
end-points of J, and the logarithmic derivative of the Fredholm determinant has a
simple representation in terms of these values. We do not use this representation
but rather the one alluded to above (formula (10) below), which makes its asymp-
totics, at least by this method, more accessible. Nevertheless, our results may give
a hint of what the asymptotics of the solutions of the system of equations might
involve.

The author wishes to thank Craig Tracy for introducing him to the subject of
random matrices, and in particular to the problem of asymptotics for the several
interval case.
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II. The Function R(x)

We shall denote the Fourier transform by a circumflex, as usual,

oo

/(*):= feix'f(t)dt,
— OO

and write Ss for the space of Fourier transforms of functions in L2(— s, s). This
consists of entire functions which are 0 ( V I m x ' ) and whose restrictions to the real
line R belong to L2. We also write E for the complement of J in R and Ω for the
complement of E in C.

Lemma 1. There exists a unique function R(x) e e~ιsx + $s such that

J ( R ( x ) - e~isx)g{x)dx = Jg(x)eisxdx for all geSs. ( 9 )
E J

In terms of this function we have the representations

l o g d e t ( / - J ^ ) = -\J\ + - f \R(x) - e~ISX\2 dx, (10)
ds π πJ

E

where \J\ is the measure of J, and

tΐKs(I -Ks)~] = ImfR'(x)R(x)dx. (11)
71

Remark. The set e~ιsx + Ss is analogous to the set of monic polynomials of a
given degree, and (9) implies that R(x) is orthogonal on E to a dense subset of
Ss, those functions which are Fourier transforms of smooth functions on [s, s]
vanishing at —s. (The integral expressing the orthogonality is a principal value
integral at infinity.) Thus R(x) is analogous to a monic polynomial of a family
orthogonal on a union of circular arcs. The identity (10) is the analogue of the fact
that the square of the norm of the monic polynomial is the ratio of two consecutive
determinants.

Proof Write
sin s (x — y)

Ks(x,y):=
π(x- y)

and denote by Ks the operator on all of R with kernel Ks(x, y)χj(y). Our deter-
minant and trace are the same for this kernel as for the other. We define

R(x) := (I - Ksy
ι e~isx .

Since Ks(x, y) is real-valued this definition may be written in the equivalent form

R(x) - fKs(x,y)R(y)dy = eιsx .
j

To obtain (9) we use the fact that Ks(x, y) is the kernel of the projection op-
erator from />2(R) to Ss\ this is so because the Fourier transform of ύnsx/πx



164 H. Widom

equals the characteristic function of [s, s]. This implies that R(x) G e~ιsx + Ss and
that

fg(x)Ks(x,y)dx = g(y)
R

for any g G Ss. If also g G L\ (R) then multiplying both sides of the previous iden-
tity by g{x) and integrating over R give (9) in this case. The extension to general
g is straightforward.

To obtain the uniqueness assertion of the lemma observe that the difference
between any two functions R satisfying (9) belongs to Ss and is orthogonal on E
to SSi and so it vanishes on E. Since Ss consists of entire functions, this difference
must be 0.

Next, we use the facts that the left side of (10) is equal to the trace of

(/ - Ks)'λ K's and that the kernel of K's is

- cos φ ; - > > ) = - R e e ^ " ^ ,
π π

from which it follows that

tr (/ - Ks)'1 K's = - Re / R(x) eιsx dx .
71

 J

If we apply the identity (9) to the function g(x) = R(x) — e~ιsx it gives

/ \R(x) - e~isx\2 dx = jR(x)eisxdx - \J\,
E J

and this establishes (10).
To obtain (11) we express the resolvent kernel Rs(x,y), the kernel of the op-

erator KS(I — Ks)~λ, in terms of R(x). If M denotes multiplication by x then the
commutator [M, Ks] has kernel

—χe

isx e-'ιsy - e~isx eιsy).

It follows from this upon left- and right-multiplying by (/ — Ks)~ι that the com-
mutator [M,(I -Ks)~ι] has kernel

R(x)R(y)-R(x)R(y)

2πί

From this we see that for x, y G J

2πι(x - y)

and so

Rs(x,x) = — \mR'(x)R{x),
π

which gives (11). D
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III. Green Functions, Neumann Functions and a Reproducing Function for E

In [21], where J = [-1,1], E = (oo,- l ] U [l,oo) and Ω = C\E, the procedure was
to show first that (9) holds if R(x) is replaced by the sum of the two limiting values
on E of the function

h(x) := (12)

defined in Ω with appropriate branches of the square roots. Notice that R(x) and
h(x) have the same asymptotic behavior as x —> oo in Ω. One approximates h(x)
by an entire function, for which (9) holds approximately, and then deduces that this
function must be a good approximation to R(x).

The function y/x2 — 1 in (12) was chosen to be that branch of the square root
which is analytic in Ω and asymptotically equal to x as x —* oo in the upper half-
plane. Its imaginary part vanishes on E and equals |Imx| + (9(1) in Ω, and so
is a kind of Green function for Ω. We begin by constructing its analogue for
general

J = U [*k, βk].
k=l

Let

q(x)=
k=\

and let \fq(x) denote that branch which is analytic in Ω and asymptotic to xm as
x —> oo in the upper half of Ω. This has purely real limiting values on E. Let p(x)
be the monic mth degree polynomial determined by the m equations

Then define

G0(x):=j-4==dy, (x G Ω).

(13)

(14)

This is multiple-valued when m > \ because of the presence of the intervals
[βk,oίk+ι] (k = m~ 1) o n e might integrate around and get a nonzero result. If
Ck is a curve going around this interval and none of the others then the periods

ACk Go = § P(y) dy (15)

are purely real, so that Im Go(x) is a single-valued harmonic function in Ω. The
conditions (13) guarantee that Im Go(x) —> 0 a s x - ^ ^ .

For some real constants a\ and a2 we have

as x t oo .
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Here the notation x f oo means that x —> oo in the upper half-plane of Ω. (Similarly
x I oo will mean that x —> oc in the lower half-plane of Ω.) The integral

p(x)
-\\dx

equals —nia\. But it follows from (13) that it is also real. Hence a\ — 0 and so

as x ΐ oo . (16)

It follows readily that

G0(x) =

oo+O/ p(y) - 1 \dy-a.χ

where a\, the expression in brackets, is purely real. We now define

G(x) := G0(x) - ax .

G(x) has the same Green function characteristics as G0(x) and has the behavior

as x t oo . (17)

Since Go is purely imaginary on J, we have GQ(X) = —GoCO, a n d s o from the
above we deduce

G(x) = -x-2aλ + —
x

\ I as x l o o . (18)

The function eιsG^ is multiple-valued and analytic in Ω and has single-valued
absolute value. Such a function can be thought of as a section of a holomorphic
line bundle over Ω, but instead we proceed as follows. Denote by J^ the set of all
(single-valued) analytic functions / in the complement of (—oo, oί\] U [βi,oo) in C
for which the limits

lim
f{x + iε)

o+ f{χ - iε)'
(19)

are constants of absolute value 1. Each such function continues to a multiple-valued
function in Ω with single-valued absolute value. Two functions in J4? are said to
belong to the same class if the corresponding limits (19) for them are the same. A
class is denoted by Γ and the set of classes can be identified with the m — 1-torus.
We denote by Jf (Γ) the functions of class Γ. Occasionally we shall allow our
functions to have poles. An example is the exponential Green function Φ(x, x0)
described below. We shall write our classes additively, and so each will be an
element of Ύm~ι := (R/2nZ)m~l. If Γo is the class of eιG(x\ then sΓ0 is the class
of eisG(x\ This is our curve in T™"1.

Next we have to find an analogue of the second factor in (12). There will be
many, one for each class SΓQ, and so we will find one for a general class Γ. We
begin by recalling the characteristic properties of the Green and Neumann functions
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for Ω. Given xo, Green's function with pole at xo, denoted by g(x, xo), is harmonic
for x e Ω, except at x0 where it has the singularity log |x - xol"1, and it has limit 0
as x —• E. Denoting by g(x, xo) its (multiple-valued) harmonic conjugate, we define
the exponential Green function by

( , o )

Neumann's function N(X,XQ,X\) is harmonic except at x = xo and x = x\, where it
has the singularities log |(x - xi )/(x - xo)|, and on E

= 0

dnx

Here d/dnx denotes the two derivatives normal to E. We set

Ψ(x, x0, x i) : = eP&xo'Xri+mX'XO'Xi).

This has a simple pole at x = xo and a simple zero at x = x\9 unless the two are
equal, in which case the function equals 1. The function Φ(x,xo) is multiple-valued
with single-valued absolute value, and is determined only up to an arbitrary constant
factor of absolute value 1. The function *F(x,xo,xi) is single-valued but determined
only up to an arbitrary nonzero constant factor. The analogue of the second factor
in (12) will be built out of these functions.

Lemma 2. The function 1 + p(x)/q(x)2 is nonzero {i.e., has nonzero limits ) on
E and has m — 1 zeros in Ω.

Proof. We know that

Im(x + G(x)) = 0 on E . (20)

From (17) and (18) we deduce that

lim Im(x + G(x) ^ 0 .
x—>oo

Therefore

Im(x + G(x)) > O i n Ω . (21)

If

had limit zero at some point of E this would contradict (20) and (21) since at a
critical point an analytic function maps a local half-disc to a full disc.

For the second statement let Q be the contours in (15) and C = C_ U C+, where
C_ starts at — oo — Oz, goes around ot\, and ends at — oo + 0/, while C+ starts at
oo + 0/, goes around βm, and ends at oo — Oz. All the contours are described so
that the parts below E are traversed to the right, the parts above E to the left. We
find that

q(x)J \ yjq(x)

This and the argument principle establish the lemma. D



168 H. Widom

Denote the zeros of 1 -f p(x)/q(x)2 by xι*y...9xm_*. It follows from a discus-
sion in [18] that for each class Γ there are unique points x i , . . . ,x m _i, and unique
numbers ε j , . . . ,ε w _i each equal to ± 1 , such that

m-\

Π Ψ(x,xk*9xk) ^0 onE
k=0

(with an appropriate normalization of the Ψ's) and such that

(22)

kr(x) := x 1 +
p(x) m-\

Ψ(x,Xk*,Xk)Φ(x,Xky er. (23)

The Xk are given by the solution of a certain Jacobi inversion problem. The details,
which we shall not present, can be found in Sect. 6 of [18].

One possibility, which occurs for certain Γ, is that all Xk = xk* so the Ψ's don't
appear at all. In general, though, they do appear and the zeros of 1 -f p(x)/q(x)2
are cancelled by the poles of the product of the Ψ's. The zero Xk of Ψ(x,xk*,Xk)
is cancelled by the pole of Φ(x,Xk)ε/c if ε* = 1 and reinforced to a double zero if
βfc = — 1. So there is no extra multiple-valuedness introduced by taking the square
root. Observe, though, that we have not quite defined kr because of the nonunique-
ness of the exponential Green and Neumann functions. We make them unambiguous
by the requirements

N(x,xk*,xk)9N(x,xk*9xk)9g(x9xk*9xk) -* 0 as x | oc ,

and then choose the square root so that kp(x) —* 1 as x f oo.
Our eventual replacement for h(x) will be

(24)

(25)

Lemma 3. Suppose ψ e has the behavior

ψ(x) = £ + o ( __ ] as x 1 o o , ψ(x) = θ ( -
x \x J x

as x I oo .

Then

§kf(x)ψ(x)\dx\ = —πic.
E

Remark 1. The conjugate-analytic function kr belongs to the class — Γ so that
kΓ(x)ψ(x) is single-valued in Ω. The notation §E- \dx\ indicates that E is not
oriented but is taken twice, using the two limiting values of the function.

Remark 2. It is because of this characteristic property of kΓ, reminiscent of that of
reproducing kernels, that we call it the "reproducing function" associated with Γ
and Ω: integrating φ against kr yields the constant determining the behaviour of φ
as x I oo.

Proof. Let jr(x) be the function obtained by replacing each ε# by — ε* in (23).
Then

\jr(x)\ = \kΓ(x)\ onE (26)



Fredholm Determinant of the Sine Kernel 169

and, by (22),

jr(x)kΓ(x) is real-valued on E with the same sign as 1 H . (27)

From the fact that Im(x -f G{x)) is zero on E and positive in Ω it follows that

has positive limit on E from above and negative limit from below. Alternatively, if
we denote the "upper" (resp. "lower") part of E by E+ (resp. E~), then

( P(x) \ ί 1 o n E+

sgn 1 + - 7 = = {
\ Vq(χ)J l - i onE-.

Hence, from (26) and (27),

__ f 1 on E+

kΓ kΓ = kΓ jr x <
[ - 1 onE~,

since both sides have the same absolute value and are positive on E. Dividing by
kr we see that the integral in the statement of the lemma equals

§jΓ(x)φ(x)dx,
E

where now E is oriented so that E+ is traversed to the right, E~ to the left. Observe
that jr £ J4?(—Γ) and so jr(x)Φ(x) extends to a single-valued analytic function in
Ω. Moreover

cx -\r U\X ) as x \ 00 ,
(28)

O(x~2) a sx |cx)

(the second because 1 + p(x)/y/g(x) = 0(1/x) as x I 00). The integral is equal to
the limit of the sum of the integrals over two semicircles, one in the upper half-
plaine and one in the lower, as their radii tend to infinity. By (28) the integral over
the lower semi-circle tends to 0 while the integral over the upper tends to —πic. D

Now recall that we define hs(x) by (25).

Lemma 4. Suppose g(x) is single-valued and analytic in Ω and satisfies

eisxg(x) = - + <9( — ) as x] 00, e~ιsxg(x) = O ( -) as x [ 00 .
x \x / \xJ

Then
§hs(x)g(x) \dx\ = -πic .
E

Proof. Write the integral as

§ksφ)e'sG^g{x)\dx\.
E
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The second factor belongs to class SΓQ and by (17) and (18) has the properties of
φ(x) in the statement of Lemma 3. The assertion follows. D

IV. Asymptotics of R(x)

Define, for x £ E,
h±(x) := lim hs (x -j- zε).

0±
We shall deduce from Lemma 4 and the first statement of Lemma 1 that R is well
approximated on E by h+ + λ_. To do this we first replace h+(x) + h-(x) by an
entire function with the same general behavior as R and which is close to h+ + h-
on E. Such a function will be e~isx + q(x), where

,—«* m+oo, p t y ( v

*(*):= V^ / £ - ^ * (29)
with α < min(0, Imi) . (We have dropped the subscript s in the notation for the
function hs.) To prove that we do get a good approximation we derive an inte-
gral representation for q(x) which requires deforming the path of integration in a
somewhat involved way, as well as the analytic continuation of h(y).

Recall that the exponential Green functions in (23) have absolute value 1 on E
and by (22) the product of exponential Neumann functions is positive there. Thus
both of these continue to the Riemann surface obtained by joining Ω to a copy Ω in
the usual way, by indentifying E± in Ω with Eτ in Ω. Similarly G(y) continues into
Ω and its continuation has negative imaginary part there. The resulting continuation
of h(y) is not single-valued because of the presence of branch points at the α# and
βk. We shall deform our path of integration to a system of contours, all lying in Ω
where Im G(y) < 0, and all lying in the upper half-plane where the factor eιsy is
small.

Before stating the main lemma we describe the contours Ai9 (i — l,...,2m).
If i = 2k — 1, then At begins by running vertically from α* + zoo to α̂  -f- zΌ; it
makes two infinitesimal counterclockwise circuits of α& and then runs vertically
from (Xk + zΌ back to α̂  + zoo. If z = 2k then A( begins and ends at βk + zoo but
goes around /?*, when it gets to it, clockwise instead of counterclockwise. Except
for one infinitesimal loop around each point of dJ, these contours lie entirely in the
upper half-plane of Ω, and so have the sought properties.

The function h{y) in the integrand below will be a continuation of the original
h(y). (This will be clear during the course of the derivation.) It can be described as
that continuation of h which, at the initial points of the contours Au is the function
obtained by continuing our original h from below E across it into the upper half-
plane; on the rest of the At we take the continuation along A\ of this one.

Lemma 5. For x £ E we have

2m (_] y+1 pisyh( vΛ

e-* + q(x) = h+(x) + A_(JC) + e"sx £ K—^- J — ^ dy . (30)

Proof. The path of integration in (29) may be deformed to the union of the contours
C and Ck which occur in the proof of Lemma 2 (all described so that E~ is
traversed to the right and E+ to the left) plus an infinitely large semi-circle in the
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upper halfplane traversed clockwise. Since eιsyh(y) — ^- ή- O(\y\~ι) as y \ oo the
integral over the semi-circle equals — π/, and so

Ϊ 2S τ¥
Z ΔUl c u C i U - U C m _ ! y X

Suppose now, for deflniteness, that x G (—oo, αi), and consider C_, the left part of
C, which goes from — oo - 0/, around αi counterclockwise, and then to — oc -f 0/.
We move the upper part of C_ through (—oo,αi) into the lower half-plane and
the lower part of C_ through (—oo,αi) into the upper half-plane. The result is
a contour which runs from OL\ -f /oo to αi, around αi counterclockwise, and then
down to ot\ — /oo, with h(y) in the integrand replaced by its continuation. If we
keep in mind how G(y) and kr continue we see that the continuation of h(y) from
the lower half-plane to the upper satisfies

while its continuation from the upper to the lower satisfies

1

This shows that the deformation is valid if we add to the integral the integral over an
infinitely large quarter-circle in the lower half-plane, which is -π//2, as well as the
contributions from the pole at y = x, which is passed twice during the deformation.
It follows from this discussion that if we replace C_ by this new contour, which
we call Bu then we must add

~+ePxh+(x) + eisxh-(x)

to the right side of (31). Next, the contour C\, which runs counterclockwise around
[βi?#2]? we deform by pushing its upper part down through (β 1,0(2) into the lower
half-plane and its lower part up through (βi,0C2) into the upper half-plane. Both
continuations of eιsyh(y) are bounded at 00 and the result is that we can replace C\
by —B2 +i?3? where B2 (resp. #3) starts at β\ -f /oo (resp. α2 -f /oo), loops around
βι clockwise (resp. ot2 counterclockwise), and ends at βx — /oc (resp. α2 - /oo).
During this deformation no extra terms are picked up. We continue analogously with
the remaining contours Q and then end with C+, the right part of C, deforming it
as we did C_. [The reader is advised to draw a picture.] Another integral over an
infinitely large quarter-circle is picked up during this last deformation. The result
at this stage is

2m (_] y+1 pis

eιsx q{x) = -1 + eιsx h+{x) + eιsx λ_(jt) + Σ ^ — / — ψ dy . (32)

Finally the lower parts of B\ and — B2 can be joined into a single contour, and
the part of this new contour which runs from αi to /?i in the lower half-plane can
be pushed up through (αi,βi) into the upper half-plane, resulting in the contour
A\ — A2 as in the statement of the lemma. This deformation is valid since G(x)
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continues to have negative imaginary part during it. The remaining contours are
deformed similarly, and this completes the demonstration of the lemma. D

Lemma 6. We have, as s —* oo,

/ \e~isx + q(x) ~ h+{x) - h-(x)\2dx = O(s~ι) .
E

Proof. We must show that the norm in L2(E) of the sum in (30) is O(s~2). Con-
sider the integral over A\, which can be written as a single integral parameterized as
y = αi + it, t ^ 0. (The integral over the infinitesimal loops around αi vanish.) For
each δ > 0 the integral over / ^ δ is bounded by a quantity which is exponentially
small in s, uniformly in x9 times O{{\ + M)""1), so the L2(E) norm of this part of
the integral is exponentially small. In the neighborhood of t = 0, ImG(αi + it) is

asymptotically a negative constant times tϊ (see the remark below), while

\k,r0ί0ίι+it)\ = O{Γ^). (33)

(This last comes from the behavior of 1 + p/^/q.) Since for y £ Λ\,

=o

we see that this part of the integral is bounded by a constant times

δ

-.,! + .) * < 3 4 )

for some η > 0 and it is a simple exercise to show that the L2(R) norm of this is

O(s~2). The other At are treated in a similar manner. D

Remark. Since the function ksr0 in (33) depends on the parameter s we have
to know that the estimate holds uniformly in s. The reason it does is that the
Green and Neumann functions appearing in (23) are smooth, uniformly in their
parameters, away from their poles in the Riemann surface ΩU Ω. (See, for example,

Lemma 4.1 of [18].) The local coordinate for the surface near x ~ αi is (x — αi)2

and it follows that ksrQ and G(x) are smooth functions of (x — αj)2. This shows

that (33) holds uniformly in s and also accounts for the \ft in the exponent of the

integrand in (34).

Lemma 7. We have, as s —> oo,

/ \R(x) - h+{x) - h_(x)\2dx = O(s~ι).
E

Proof. The integrand equals

(R(x) - h+(x) - A_(*))(β-to + q(x) - h+{x) - A_(

- h+(x) - h_(x))(R(x) - e-to - q(x)).
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Let us look at the last term. It follows from Lemmas 1 and 4 that the integral over
E of the first factor times the complex conjugate of the Fourier transform of any
smooth function in L2(E) vanishes, and by continuity that Fourier transform does
not have to be of a smooth function. Now R(x) - e~ιsx is the Fourier transform
of a function in L2(E), and so is q(x)\ it is easily seen from its definition (29)
that q(x) is an entire function of exponential type s and it follows from Lemma
6 that it belongs to L2(R). Thus the integral over E of the second term above
vanishes. By Lemma 6 and Schwarz's inequality the integral of the first term is

O(s~ϊ) times the square root of the integral we started with. This establishes the
lemma. D

This is all we shall need for (7) and the reader interested only in this can
go on to the next section. A few more estimates will be needed for the proof
of (8).

Lemma 8. (a) e~lsx + q{x) = h(x) + O(s~3^2) uniformly on compact subsets of Ω.
(b) For every ε > 0 there exists a neighborhood of dJ in which q(x) = 0{eεs).

Proof There is a modification of (30), proved in the same way, which holds for
x 6 Ω: the sum h+{x) + /z_(x) is replaced by h(x) and the contours Aj are adjusted
so as to avoid x (or the compact subset of Ω in which they may lie), but they still
lie in the upper half-plane of Ω. This is easily seen to give assertion (a). It follows
as a special case of this that if δ is sufficiently small then q(x) = 0{eεs) on the
circular arc

x = <*k + δeιθ, - — < θ < — .

For the rest of the circle we use the continuation of (30), as originally stated, from
x e E onto that arc and obtain a similar estimate. Since q is analytic inside the circle
it is O(eεs) in the full disc. A similar argument applies, of course, to neighborhoods
of the βk. D

Lemma 9. (a) R(x) = h(x) + O(s~2eslmG^) uniformly on compact subsets of the
interior of J.

(b) For every ε > 0 there exists a neighborhood of dJ in C in which
R(x) = O(eεs).

Proof The function

η(x) := \(R(x) - e~is* - q(x)) e'sG^\2 (35)

is bounded and subharmonic in Ω and it follows from Lemmas 6 and 7 that its
boundary function satisfies

Hence, from general considerations, η(x) — O(s~ι) uniformly on compact subsets
of Ω. Combining this with the estimate of Lemma 8(a) proves our first assertion.
(Observe that the error term in the statement is exponentially large and so dominates
the term e~ιsx.) To prove the second we replace G(x) in (35) by the analogous
function where J is replaced by J minus small neighborhoods of its boundary
points. We then get an estimate for R(x) - e~ιsx - q(x) also in a neighborhood of
dJ, apply Lemma 8(b), and deduce the second assertion. D
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V. Demonstration of (7)

Let us first evaluate asymptotically the integral

J := / |Λ+(JC) + A_(JC) - e~isx\2dx . (36)
E

It can be written as

/Mx)(A+(*) - e~isx)dx + /AI(JC)(A-.(Λ) - e~ιsx)dx

- f(h+(x)eιsx + h-(x)eisx - \)dx + J(h+(x)h-(x) + h_{x)h+(x))dx .

Since this is real it equals the real part of what is obtained by replacing the third
integral by its complex conjugate, so the above equals

Re \§Hx)(h{x) - e~ιsx)dx -
KE

Jj)e-isx - \)dx

say. Thus */ = Re(/i +^2)- We shall evaluate J\ exactly and show that J>2 is

Evaluation of J\. We write our integrals over E as limits as r —>• CXD of the cor-
responding integrals over ^ := E Π [—r,r]. These integrals can be combined, and
we obtain

Jλ = lim \ §h(x)(h(x) - le'^dx + 2r\-\J\. (37)

l ^ )

Now we can almost, but not quite, apply Lemma 4 here with

g(x) = A(JC) - 2^-"*.

The problem is that this function does not satisfy the first hypothesis of the lemma,
but we shall just modify its proof. Recall the notation there; for convenience we
drop all subscripts Γ. We have

§h(x)(h{x) - 2e~isx)dx = §j(x)eisG{x\eisG{x)k{x) - 2e~ιsx)dx
Er Er

= I j(x)(k(x)-2eis(G(x)-χ))dx,
c+uc-

where C+ and C~ are semi-circles described clockwise in the upper and lower half-
planes, respectively, joining — r and r. Since j(x) and k(x) are O(x~ι) as x [ 00
and Im(G(x) — x) > 0 there, the integral over C~ tends to zero as r —> 00. As for
Cr

+, both j(x) and k{x) tend to 1 and x | CXD, and are even analytic there. Suppose

j(x) = 1 + ^ + 0 f 1 ^ , k{x) = 1 + ̂  + 0 f 1 ) as x ΐ oc .
x V xι ] x \xι
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If we use (17) then we find that the integrand equals

X X

as x I oo. Hence the integral over Cf equals — 2r + π(2a2s + i(jo — ko)) -\- o(l) as

r -* oo and (37) gives

J\ = 2πa2s + πi(jΌ - ko) - \J\ ,

whence

ReJ^i = 2πa2s + πlm(&o —jo) ~ \J\

Observe that

ko = limx(A:(x) — 1) = limxlogA (x),
x|oo xfoo

and similarly for j(x). Thus

k(x)
Im(̂ co - 7o) = lim x arg — - .

x-^oo+Oi j(χ)

Now j(x) is obtained from k(x) by changing the signs of the ε̂  in (23), so that

Recalling the normalizations (24) we deduce that

m-\

Im(*o - 7o) = Σ ^ lim x g(x, xk),
£_0 x—>oo+0/

and so
/ w - l

\J\ =2πa2s + πΣ£k lim xg(x,xk) (38)
Ϊ^OO+OZ

that J2 = 0(s~ι): Since G0(x) = -G0(x) and G(x) = G0(x) - ΛI we have,
with an obvious notation,

t2ιs(G+(x)+aι)h+(x)h.(x) = k+(x)k.{x)e

Again we use the facts that the product of the exponential Green and Neumann
functions in (23) is smooth, uniformly in s, and that the local behavior of the other
functions arising here is determined locally. In particular &+(x)&_(x) is Odxl" 1) at
infinity, in fact for each n its nth derivative is Odxl""" 1 ), and it has the behavior

of (x — (Xk)~ϊ neat α# and analogous behavior near β^. The function G+{x) has the
behavior of x near infinity by (17), and

G'(x)=-^L
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which is positive on E+. It follows easily from these facts that if φ(x) is any C°°
function with compact support which is identically 1 on a neighborhood of dJ then

/(I - φ(x))k^)k-(x)e2ιsG+(x)dx = O(s~n)
E

for any n, while

has the behavior of

o Vϊ

where ψ is a C°° function with compact support. Such an integral is O(s~ι).

Recapitulation: We have shown that J>, the integral in (36), equals

m-\

2πa2s-{-πΣεk n m xg(x,Xk) — \J\ + O(s~ι).

In particular J> = O(s) and so from Lemma 7 we get

f\R(x)-elsx\2dx = S + O(l),

and this and (10) give

d
-π— logdet(/ - Ks) = J + \J\ + 0(1).

If the error team O(l) here were o(l) we would have established (7) with

m-\

c\ = 2a2, c2{s) = Σεk lim xg(x,xk). (39)

As it stands, of course, we have only proved the weaker statement

~~ds

Conclusion: Here is how to get the stronger statement. The details of the analogous
argument for orthogonal polynomials can be found in [18].

It follows from (9) that

fg(x)e*sxdx R(χ)-e-

for all g £ Ss, the norms being that of the space L2(E), and that this becomes an
equality when g(x) = R(x) — e~ιsx. From this and (10) we deduce

d I frg(x)eιsxdx\2
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Denote the maximum on the right by Mo. It follows from Lemma 4, in the form

J(h+(x) + A_(JC) - e-«*)g(x)dx = fg(x)eisxdx
E J

(first for Fourier transforms of smooth functions in L2(—s,s) and then by continuity
for all such functions), that

Mo S J\h+(x) + h-(x)-e~ιsx\2dx.
E

The right side is just what we have called J and so we know that

Mo S πcλs + πc2(s) - \J\ + O(s~ι) . (40)

Now we modify the extremal problem by replacing \\ g \\ by the norm of g
in L2(E,ws) where the weight function w^(x) is equal to 1 except on the 2δ-

neighborhood of dE, equal to q(x)~ΐ in the ^-neighborhood of dE and, say, linear
in between. Denote by Ms the corresponding extremum for the weight function w§.
Clearly

MsSM0. (41)

There exist reproducing functions analogous to kr in (23) for any weight func-
tion satisfying quite general conditions, so that \dx\ in the statement of Lemma 3
can be replaced by w&(x)\dx\. The extra ingredient is the introduction of a certain
nonzero function in Jtif whose absolute value on E equals w<$. We then proceed ex-
actly as before, defining the analogous hs by (25) and q by (29). The main point is

that because w§ has the behavior of q(x)~ϊ near dE the corresponding reproducing

function kp has the behavior of q{x)ϊ, with the result that the factor t1^4 does not
appear in the denominator in (34). This improves the error estimate in Lemma 6
to O(s~2) in this case, and so in the end we obtain

Mδ = πcιs + πc2,δ(s)~ \J\ + O(s~ι),

where c^C?) is the function in (39) associated with the weight function w$. Because
of the continuity of this function in the class Γ as well as the weight function w>,
we deduce that for any ε > 0 there is a δ such that

Ms ^ πc\s + nc2(s) - \J\ — ε -f o(\).

Putting this together with (40) and (41) gives the desired result. (The details of a
similar argument for orthogonal polynomials can be found in Sect. 9 of [18].)

If J is a single interval of length 1, say J = [— | , | ] , then G(x) = Jx2 — | ,

and we find that c\ — 1/4, c2 = 0. Thus (7) in this case is (6) with the improved
error term o(l). Notice that this is consistent with (4) since the first power of s
does not appear there.

It is easy to see that c2(s) is periodic when m = 2 and to compute its period.
For its value depends only on the class of eιsG^x\ which in turn depends only on the
value modulo 2π of s times the quantity ΔCιGo given by (15). Hence the period
of C2(s) equals

UjψLΔ'1 . (42)
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VI. Demonstration of (8)

It follows from Lemma 9(b) that for each ε > 0 the contribution to the integral in
(11) of a sufficiently small neighborhood of dJ is O(eεs). The main contribution
will be from certain interior points of J , as we shall see. Outside any neighborhood
of dJ the asymptotics of R(x) are given by Lemma 9(a), which may be rewritten
as

R(x) = e'isG(x\k(x) + O(s~2 )) .

It follows from general considerations that the derivative of the O term above is

also O(s~2). We use the formula

(uv)'uυ — u\2 f — \v 2 -\- v'ϋ
\u

with u equal to the exponential factor above and v the other to write

Rf(x)R(x) = e2slmG(x) {-isG'(x)\k(x) + O(s~%. )|2 + k'(x)k(x) + O

Since G'(x) is purely imaginary in J the first term in the braces is purely real, and
so does not contribute to the right side of (11), and we are left with the computation
of

Je2slmG{x)(lmk\x)k(x) + O(s~τ))dx . (43)

The integration is taken over J with its little neighborhood of dJ removed. The
main contribution to the integral will come from the point or points where Im G(x)
achieves its maximum, and these will be among the zeros of p(x). Denote these
zeros by z\9...,zm, one lying in each interval of J . Since at each zx

f^UP2L, (44)

we find by standard asymptotics that (43) equals

\Ψ(zl9xk*xk)Φ(zhxk)
e'\ ,

We have from (23)

k=\

and, using in addition to (23) the very last part of (44), we find that

Im \ ί ^ 4 + Έ
where the primes on the right denote differentiation in the real direction with re-
spect to the first variable. Combining these last two formulas gives ImAr/(zi)A:(zί).
Comparing with (11) shows that (8) is established, with

C3 = 2 max£ Im G(zk)
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and

c4(s) =

179

m-\

m=-ΣW te,xk*xk) + εk g'iz^x*

(45)

where the outer sum is taken over those / for which

Im G(zi) = maxk Im G(zk).

There is an explicit representation for the quantities Im G(z^). It follows from

(13) and (14) that for z G (<xk,βk\

the sign being that of p{oLk)- The maximum of this, its value at z^, is the integral
to Zfc, while the integral from zk to βk is the negative of this since the sum of the
two is zero. Hence

and so

When J is a single interval this equals |J | .
In this same special case (45) becomes

simply, and when the length of J is 1 this is l/2y/2πs and we recover the formula
(5). When m = 2 the function c^(s) is periodic with the same period (42) as c2(s).
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