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Abstract: We construct a real compactification of the moduli space of punctured ra-
tional algebraic curves and show how its geometry yields operads governing homo-
topy Lie algebras, gravity algebras and Batalin-Vilkovisky algebras. These algebras
appeared recently in the context of string theory, and we give a simple deduction
of these algebraic structures from the formal axioms of conformal field theory and
string theory.

This paper started as an attempt to organize geometrically various algebraic struc-
tures discovered in 2d quantum field theory, see Witten and Zwiebach [46],
Zwiebach [49], Lian and Zuckerman [29], Getzler [14,15], Penkava and A. S.
Schwarz [32], Horava [20], Getzler and J. D. S. Jones [16], Stasheff [43,44] and
Huang [21]. A more detailed version is available as hep-th 9307114.

The physical importance of these structures is that they lead toward the clas-
sification of string theories at the tree level, because the structure constants of the
algebras appear as all correlators of the theory. We suggest that an appropriate
background for putting together those algebraic structures is the structure of an op-
erad. On the one hand, as we point out, a conformal field theory at the tree level
is equivalent to an algebra over the operad of Riemann spheres with punctures, cf.
Huang and Lepowsky [21,22]. On the other hand, this one operad gives rise to
several other operads creating these various algebraic strucutres. The relevance to
physical is that theories such as conformal field theory or string-field theory provide
a representation of the geometry of the moduli space of such punctured Riemann
spheres in the category of differential graded vector spaces.

This paper, one of a series, deals with a part of these algebraic structures,
namely with the structure of a homotopy Lie algebra and the related structures of
the gravity algebra and Batalin-Vilkovisky algebra. A richer structure, the moduli
space of Riemann spheres, induces a homotopy version of a Gerstenhaber algebra,
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which contains a commutative homotopy algebra as another piece. We plan to study
these structures in a subsequent paper.

The relation between homotopy Lie algebras and the moduli spaces is similar
to the relation between homotopy associative algebras and the associahedra [41].
The idea of such a relation goes back to Beilinson and Ginzburg [5], Getzler [14],
Getzler and Jones [16] and Ginzburg and Kapranov [17].

The main results of this paper are the construction of a real compactification of
the moduli space of Riemann spheres with punctures, which is closely related to a
compactification of Deligne-Knudsen-Mumford, and an explanation of the origins
of the structure of a homotopy Lie algebra in a topological conformal field theory
in terms of a natural stratification of this moduli space. These strata are naturally
labelled by trees. We show that these strata give rise to the operad governing ho-
motopy Lie algebras which has a nice description in the language of trees due to
Hinich and Schechtman [18]. We then define a (tree level c — 0) topological con-
formal field theory in the language of operads slightly generalizing the definitions
by Segal [37,39] (cf. Getzler [14]) and show that the strata of the real compacti-
fication of moduli space combined with certain results of minimal area metrics by
Wolf and Zwiebach [46] induces the structure of a homotopy Lie algebra upon a
relative subcomplex of the state space of a topological conformal field theory. We
construct the relevant forms and verify the relevant properties using the appropriate
operator formalism. We also point out that the related structures of a topological
gravity and Batalin-Vilkovisky algebra can be understood in this framework, as
well.

1. Operads

Operads were originally invented [30] for the study of iterated (based) loop spaces:
for two excellent overviews of this theory, see Adams [1] and May [31]. For an
updated treatment, see also Kriz and May [27]. Before that invention (and hence
without the name), Stasheff created an operad [40,42] that made explicit the higher
homotopies required of the multiplication on an H-space for it to be homotopy
equivalent to a loop space. He introduced a sequence of convex polyhedra Kj (which
have come to be known as associahedra), of dimension j — 2, with the property
that a connected space X has the homotopy type of a loop space if and only
if there is a sequence of maps θfKj x XJ: —>X satisfying certain compatibility
conditions.

The analogous result for n-folά iterated loop spaces makes use of the Boardman-
Vogt little fl-cubes operad ^n [7] which is a sequence of spaces %„(]), J ^ 1, which
are the spaces of imbeddings of j disjoint copies of the standard cube In in /", the
embeddings being affine maps coordinate wise. The basic result is due to May [30]:
a connected space admits an action of the operad ^n iff it has the homotopy type
of an «-fold iterated loop space.

The case n — oc was particularly important historically; more recently, analogous
operads related to Lie structures and based on various moduli spaces have become
important - as will become clearer below.

The homology of topological operads gives algebraic operads: the calculations
of the homology of the little /z-cubes operads or of the corresponding configuration
spaces due to Arnold [2] and F. Cohen [8] in the 1960-70's have recently played
a key role in the physically motivated structures we are about to present.
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From the utilitarian viewpoint, operads are universal objects describing various
algebraic structures. The use of operads becomes essential when describing struc-
tures with multilinear operations. Since there are several recent treatments of operads
in the literature [16,17,18], we recall the bare minimum by way of definition and
the most important example for our purposes.

Definition 1.1. An operad is a collection of sets (topological spaces, vector spaces,
complexes,..., objects of a symmetric monoidal category) (9{n), n ^ 1, with

(1) An action of the symmetric group Σn on Θ{n).
(2) A composition law:

y: G{k) x 0 ( m ) x • x Θ ( n k ) - > G(nx + • • • + / ! * ) ,

(f;fι,...,fk)^y(f',fu...,fk):=f(fu...,fk).

(3) A unit e := iάx e 0(1).
such that the following properties are satisfied:

(4) The composition is equiυariant with respect to the symmetric group actions:
Σk x Σnχ x x Σnk acts on the left-hand side and maps naturally to Σnχ+...+nk,
acting on the right-hand side.

(5) The composition is associative, i.e., the following diagram is commutative:

ί G(k) x G(n\) x ••• x G(nk) Ί idx/

\ x 0(/wi,i)x ••• x G{mKnk)\

rxidl L

G{ή) x 0 ( r o u ) x • x 0(ro M i t ) ~^ 0(m)

where mι — Σjniij, n = Σ/W/ α/tί/ m = Σirrii.

(6) TTzβ unit e satisfies natural properties with respect to the composition:
y(em, f) = f and y{f; e,...,e) = f for each f e (9{k).
We will also call operads of complexes differential graded (DG) operads. The
notion of a morphism of operads can be introduced naturally.

Remark. 1.1. We will also deal with operads Θ(n), n ^ 2, without a unit. In any
case, a unit element can be formally added, so that we will have an operad in the
sense of the definition above.

Here is an important example of a linear operad, i.e., an operad of vector spaces.

Example 1.1 (Endomorphism operad). Let V be a vector space (or a complex of
vector spaces). Let

Snd{V){n) = Hom(F", V), n ^ 1 ,

where the composition y(f;g\,...,gk) in $nd(V)(n\ -\ + nk) is given by insert-
ing the output of gt in Snd{V){ni) into the zth slot of / in Snd{V)(k) for all

This is an operad of vector spaces (complexes, respectively). It is the appro-
priate setting for studying the composition of multi-linear maps. The symmetric
group will always act by permuting the inputs. In the case of complexes,
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this will assume the basic super (or graded) commutativity sign convention:
ab = (-\)\aWb\ba, where \a\ and \b\ are the degrees of symbols a and b.

Definition 1.2. An algebra over an operad Θ of vector spaces {complexes) is a
vector space {complex, respectively) V provided with a morphism of operads:

G(n)-+gnd(V){n)9 n ^ 1. (1.1)

This is equivalent to a sequence of maps

Θ(n) xVn-^V, n ^ 1 (1.2)

satisfying certain compatibility conditions.
We sometimes will use algebras over operads in the category of sets or topo-

logical spaces. It will mean that the morphism (1.1) of operads is considered in the
smallest possible category which contains terms of both operads. For instance, a
differential graded algebra over a topological operad is a complex V provided with
a morphism (1.1) of topological operads such that the image is in the component
of degree 0. Usually, V is considered with some topology. If Θ is an operad of
manifolds, we require that the morphism be smooth.

The following example is one of two crucial for our resuls.

Example 1.2 {Lie operad). A Lie algebra is an algebra over the operad ££{n) :—
Hn-2{^n+\Λ) for n ^ 2, ££{\) :— k, where Jίn+\ is the moduli space of Riemann
spheres with n + 1 punctures, a complex manifold of dimension n — 2. The middle
dimensional homology group //n_2 inherits an operad structure from the following
operad-like structure associated with the space dίn+\. The symmetric group permutes
all punctures but the n + 1st one, and the composition is induced by choosing a
holomoφhic coordinate around each puncture and sewing the Riemann spheres as
in Sect. 2. The action of the symmetric group on //„_2(</#„+1, A;) also includes the
sign of permutation. This identification is essentially a result of F. Cohen [9] and
of Schechtman and Varchenko [33], who expressed it in the equivalent terms of the
homology of configuration spaces rather than moduli spaces, and of Beilinson and
Ginzburg [4].

Definition 1.3 (Homotopy Lie Algebras). A homotopy Lie algebra is a complex
V = 0 G Z Vi with a differential β, Q2 = 0, of degree 1 and a collection of n-ary
brackets:

[ t? i , . . . , ι? Λ ] e V, vu...,υn G V, n ^ 2 ,

which are homogeneous of degree 3 -In and super {or graded) symmetric:

\v\ denoting the degree ofve V, and satisfy the relations

n

Q[vu..., vn] + Σε(i)[υι,..., Qvi9..., vn]

= Σ Σ e(σ)[[viι,...,viklvjι> "vJι-i'i> ( L 3 >
£+/=n+l unshuffles σ.

k,l^2 {1,2V . .,Λ}=/IU/ 2,
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where ε(i) = (—1 ) ' υ i l+"*+lϋ*-i I is the sign picked up by taking Q through v\,...,Vi-\,

ε(σ) is the sign picked up by the elements Vi passing through the v/s during the

unshuffle of υ\,..., vn, as usual in super algebra.

Remark. 1.2. Here we follow the physics grading and sign conventions in our
definition of a homotopy Lie algebra, [46,49], These are equivalent to but different
from those in the existing mathematics literature, cf. Lada and Stasheff [28], in
which the «-ary bracket has degree 2 — n. With those mathematical conventions,
homotopy Lie algebras occur naturally as deformations of Lie algebras. If L is
a Lie algebra and V is a complex with a homotopy equivalence to the trivial
complex 0 —• L —> 0, then V is naturally a homotopy Lie algebra, see Schlessinger
and Stasheff [34]. Similarly, with the physics conventions, homotopy Lie algebras
can occur naturally as deformations of ordinary graded Lie algebras with a bracket
of degree — 1, which are equivalent to graded Lie algebras after a shift of grading
and redefining the bracket by a sign, see [49, Sect. 4.1]. (For topologists, the physics
conventions correspond to the algebra of homotopy groups of a space with respect
to Whitehead product while the math conventions correspond to the algebra of
homotopy groups of a loop space with respect to Samelson product.)

According to a Hinich-Schechtman theorem [18], homotopy Lie algebras can be
described as algebras over a certain tree operad, which is encoded in the topology
of the moduli spaces due to Beilinson and Ginzburg [4]. We recall these results
briefly and then describe a modification of these results in the next two sections. A
beautiful extension of these ideas can be found in Ginzburg and Kapranov [17].

2. Moduli Spaces

2.1. The Deligne-Knudsen-Mumford Compactίfication. We recall the Deligne-
Knudsen-Mumford compactification of the moduli space

of ^-punctured complex projective lines C P 1 . Here A = {diagonals} = {(z\,... ,zn) E
(€Ψι)n I zx =Zj for some iφj} and n ^ 3, see [11,23,24,25] or any review of
two-dimensional quantum field theory. The compactification Jin is itself the moduli
space (the base of a universal family) of stable n-punctured complex curves, which
include nonsingular punctured projective lines as well as degenerations of them of
a certain kind. A stable n-punctured complex curve of genus 0 is a connected
compact complex curve C of genus 0 with n punctures, such that (1) it may have
ordinary double points away from the punctures, (2) each irreducible component of
the curve C is a projective line and (3) the total number of punctures and double
points on each component of C is at least 3. Both Jin and Jin are complex alge-
braic manifolds of complex dimension n — 3. The moduli space Jίn of nonsingular
curves is an open submanifold in the projective manifold J(n. The complement is
a divisor, formed by all degenerate curves.

One can visualize the degeneration of a punctured projective line (a punctured
Riemann sphere) as a process where the sphere undergoes "mitosis" into two spheres
by forming a long thin neck away from the punctures. An equation of the neck
is locally z\z2 = ε, ε e <£, and as ε —> 0, the equation turns into z\z2 = 0, which
means that the sphere degenerates into two spheres joined at a double point. The
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degenerations must all be stable, that is, there must be at least three punctures or
double points on each irreducible component.

The existing constructions [4,23,24,25] of the Deligne-Kundsen-Mumford com-
pactification as the base of a universal family of stable n-punctured complex curves
are obtained by blowing up ((CP 1)"" 3 or CP"~ 3 . There is also a similar compactifi-
cation of the configuration space ((CP1) r t\zl), which is more regular and symmetric,
see Fulton-MacPherson [13] and Beilinson-Ginzburg [4], which can give compact-
ifications of the moduli space, by taking the quotient of the union of strata of
dimension greater than 2 with respect to the group PGL(2, C).

The combinatorics of the Deligne-Knudsen-Mumford compactification can be
easily described by trees. Let &~(n) denote the set of all trees with n enumerated
leaves. Let int(Γ) for T G ̂ (n) be the number of vertices of valence greater than
1. Let δn denote the unique tree in 2Γ(ri) with only one vertex with valence greater
than 1. We call it a corolla.

Theorem 2.1 ([4,17,23]). There is a stratification of Λn+\, such that

(1) Jtn+\ = U Sτ,

(2) Each stratum ST is a smooth connected locally closed algebraic subvariety
and codimciSV = int(Γ) - 1.

(3) STCSp OT S T'.
(4) There is a unique open stratum S$n = Jin+\

(5) There is a natural isomorphism ST ^ Jίk+\ x ^nx+\ x x J^nk+\, where
the tree T £ 3~{n) is the composition of the corollas δ^ δnχ,...,δnk in the sense
of the operad structure on £Γ (cf [18]).

Here is a way of "recognizing" the tree corresponding to a punctured stable curve
with double points. Take terminal vertices corresponding to the first n punctures, the
n + 1st puncture will be the initial vertex. All other vertices of the tree correspond to
the double points. The initial vertex is joined by an outgoing edge to all punctures
and double points lying on the same irreducible component. These double points
are joined by outgoing edges to punctures and other double points if they share the
same irreducible component, and so on.

Given a k + 1-punctured stable curve and k stable curves with «i + l,...,«^4-l
punctures, respectively, we can form the union of all these curves with a total of
π\Λ + Πk + 1 punctures by attaching the zth curve at its nt + 1st (initial) puncture
to the /th puncture of the k + 1-punctured curve. The enumeration of the remaining
punctures is by inserting the orders, as usual. The action of the symmetric group
on Jϊn+\ is by permutations of the first n (terminal) punctures. This construction
leads to the following corollary.

Corollary 2.2. The composition of stable curves described above provides {</£n+\ \
n ^ 1} with the structure of an operad of algebraic varieties. This structure is
compatible with the operad structure on trees {cf [18]) via the correspondence
T H-> Sτ of Theorem 2.1.

2.2. A Real Compactification of Jίn. The compactification we construct here
is new although a similar real compactification of the configuration space, in
which case it is real version of the Fulton-MacPherson compactification, has been
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considered by Kontsevich [26], Axelrod and Singer [3] and Getzler and Jones [16].
Our compactification Jln will also be a moduli space of stable punctured curves of
genus 0 decorated with certain phase parameters attached to each double point. The
compactified space will be a compact oriented differentiable manifold with corners,
fibred over the strata of the Deligne-Knudsen-Mumford compactification with the
fibre equal to (Sι)p, where p is the complex codimension of the Deligne-Knudsen-
Mumford stratum. Thus, dim Jίn = dim Jtn = 2n - 6. Here and henceforth all di-
mensions are real.

A stable ^-punctured complex curve C of genus 0 is decorated with relative
phase parameters at double points if the sum of the arguments of germs of holo-
morphic coordinates on each irreducible component at each double point are chosen.
Geometrically, this additional data can be thought of as a choice of tangent direc-
tions (defined by making the argument equal to 0) at each double point on each
irreducible component of C modulo the diagonal action of rotations Sι at each dou-
ble point. The degeneration process can be described as the same "mitosis" into two
spheres by forming a neck, but now in the local equation z\z2 = ε of the neck, we
let |ε| —• 0, leaving the argument argε fixed, and mark the directions argzi = 0 and
argz2 = 0 on the neck. This defines the two tangent directions on the irreducible
components of the degeneration.

The moduli space of such objects can be constructed by making real blowups
(i.e., pasting in copies of Sι) along the irreducible components of the divisor
D = Jίn\</Mn of the Deligne-Knudsen-Mumford compactification. These compo-
nents are the closed strata Sγ for all trees T e 3~(n) with two internal vertices. Since
the divisor D is a normal crossing divisor, the result does not depend on the order of
the blowups. We denote the result of these blowups by Jίn. It is a real analytic man-
ifold with corners, its interior is Jίn and, therefore, Jίn is homotopically equivalent
to Mn.

Recall that Jίn+\ —> Jtn is a universal family of stable ^-punctured curves. The
natural projection Jtn+\ —> J(n (forgetting the n + 1st puncture) lifts to a morphism
J^n+\ ~* Sn- T m s yields the following theorem.

Theorem 2.3. The morphism Jt'n+x —•» Jt'n is a universal family of stable n-
punctured complex curve of genus 0 decorated with relative phase parameters
at double points.

Let us define a stratification of Jln by defining each stratum on Jίn as the
preimage of a stratum on Jin via the natural projection Jt'n —>• Mn. Evidently, the
combinatorics of the stratification will be the same, that is, the following variant of
Theorem 2.1 will hold for Jίn.

Theorem 2.4. There is a stratification of Jin+1, such that

0 )•*„+!= II *Γ

(2) Each stratum Sr

τ is a smooth connected locally closed submanifold and
codimiR^f = i n t ( Γ ) - 1.

(3) There is a unique open stratum Sr

δ = Jin+\.
(4) There is a natural projection S^ —> Jik+\ χ ^nx+\ x x Jfnk+\ with fi-

bre (Sι)k, where the tree T G 2Γ(n) is the composition of corollas δk, δnι,...,δn/c

in the sense of the operad structure on &~.
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2.3. Chain and Homology Operads. Item (4) prevents {«0n+\\n ^ 2} from being
an operad. But some operad structure is naturally defined on the (singular, for
instance) chain complexes Cm(yMn+x) of ^# M + 1 ' s with coefficients in the ground
field.

Define the composition as follows. Given a collection C, Ci,.. ., Q of chains

in C.(y#£+ 1),Cm(Jin χ J r λ),...,C%(MΆ k J r λ\ respectively, we take their product C x

C\ x x Ck in J(kJrX x Jί n + 1 x x Jtn + 1 and then the preimage (the trans-

fer, to be more precise) y(C; C\,..., Q ) in the space Sγ C Jinχ+...+nk+ι with respect

to the natural projection Sγ —• *Sk+\ x ^nλ+\ x ' ' ' x <Mnk+\> w n e r e T is the tree
y(δk;δnι,...,δnk). In other words, by choosing a singular fundamental chain S for
the fibre (Sι)h, the preimage of the chain C x C\ x x Ck can be expressed as
S x Ci x x Ck to define y(C; C i , . . . , Q ) as an element of C#(J^ +...+ + 1 ) .
Thus, we obtain a composition:

7 : C . ( ^ + 1 ) ® C . ( # n i + 1 ) ® ® C . ( # π t + 1 ^ C . ( # n i + . . . + Λ t + l ) , (2.1)

which is a morphism of complexes, except that it has degree k. Therefore we
regrade C. so that the degree of a chain C is now-dim C - 1. The action of the
symmetric group Σn on chains C9(Jin+ι) comes from the natural action on Mn-v\
by permutations of the first n punctures.

Proposition 2.5. (1) The compositions (2.1) define the structure of an operad on
the regraded complexes {C#pfί n + 1)}.

(2) This operad structure induces the structure of an operad (in the category
of graded vector spaces) on the homology {Hm(<Jίn+ι)} = {H9(yMn+\)}.

The chain operad is too large for our purposes: it consists of infinite dimensional
spaces, and it makes little sense to describe algebras over it. The homology operad is
too small: an algebra over it will always have vanishing differentials. The following
theorem allows us to extract an intermediate operad, which turns out to be exactly
the homotopy Lie operad, the operad describing homotopy Lie algebras (see below).

Theorem 2.6. Filtering Jtn+i by subspaces Fp, the closure of the strata of dimen-
sion p, there results a spectral sequence Er

p φ n — 2 ^ p ^ 2n — 4, — p rg q 5^0,
possessing the following properties.

(\)Er

M^HM(jMn+ύk).

(2)E],<q=Hp+g(Fp,Fp.i;k).

(3) The complex

0 - 4,-4,0 ^ ^ 4 , o ^4- i .o ^ • -* EUo - 0 (2.2)

(the q = 0th row of the term E\ with grading coming from the grading on chains
from Sect. 2.3, but written with p decreasing to the right) is the nth component
^(ή) of an operad £f, with the operad structure on the Eι

p0's coming from (2.1).

(4) The spectral sequence collapses at the term E2, i.e., E2 = E°°.
(5) The homology of the complex (2.2) is concentrated at the right end of the

complex and is ίsomorphίc to //" n _ 2 (-# π + 1 ;k) = Hn-2(^n+ι',k) — &(n) (up to the
sign of the action of the symmetric group, see Example 1.2, where <£(n) is the
Lie operad.
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Remark. 2.1. Deligne [10] studied the analogous spectral sequence associated with
a general complex stratification and proved that it collapsed. The operad structure
on the spectral sequence corresponding to the Deligne-Knudsen-Mumford compact-
ification was noticed in [5]. The collapse of an analogous spectral sequence in the
case of configuration space is due to Getzler and Jones [16].

Definition 2.1. The operad Sf is called the homotopy Lie operad.

This name is due to Hinich and Schectman [18], who describe an isomorphic
operad. The appropriateness of this name is established by:

Theorem 2.7. [5,17] An algebra over the operad SP is a homotopy Lie algebra.
Each homotopy Lie algebra admits a natural structure of an algebra over Sf.

Proof. The rc-ary brackets arise as follows: For a complex V of vector spaces with
a differential Q of degree 1, Q2 = 0, the structure of an algebra over the operad £f
on V is a morphism of DG operads:

φ\y(ή)-*δnd(V)(n\ n ̂  1,

where $nd(V)(n) := HomfΎ®", V) is the endomorphίsm operad, which is also a
DG operad (with the usual internal differential determined by Q). Given such a
morphism φ, we define the n-ary bracket on V:

[vu...,vn] : = φ ( δ n ) { v x ® <g) v n ) 9

which is graded symmetric, because the action of the symmetric group on corollas
δn was trivial. Note that the degree of the bracket is equal to that of the corolla δn,
which is 3 — 2n. Equation (1.3) follows from the fact that the boundary of the open
stratum, i.e., the compactification divisor, is the union of strata each of which are
operad compositions of the open strata of lower dimensional moduli spaces. These
strata fit together in precisely the right way so as to give rise to Eq. (1.3). D

2.4. More Decorations. Let us define still larger spaces Jfn, which will possess
nicer properties than Jίn and Jίn : they will make up an operad, like the J(n\,
and they will produce naturally the homotopy Lie operad y , like the Jίn's.

The space Jfn is defined as the moduli space of stable ^-punctured complex
curves C of genus 0 decorated with relative phase parameters at double points
and phase parameters at punctures, which means that the sum of the arguments
of germs of holomorphic coordinates on each irreducible component at each double
point and the argument of a germ of holomorphic coordinate on each irreducible
component at each puncture is chosen. Geometrically, this adds a choice of tangent
direction at each puncture on each irreducible component of C to the decoration
of C of Sect. 2.2. This is clearly a compactification of Jfn, the moduli space of
nondegenerate decorated Riemann spheres.

Thus, the space Jfn is naturally a fibration over J(n with fibre (Sι)n. If we
define a stratification of Jίn by pulling up the stratification of Jtn, then the strati-
fication will enjoy properties similar to those of Theorem 2.4, except that now the
product J\^k+\ x Λ"nχ+\ x x Λ^+i of spaces of nondegenerate decorated Rie-
mann spheres will be fibred over the corresponding stratum with fibre (Sι)k. This
provides the spaces JfnΛ.\, n ̂  2, with the structure of an operad. It is convenient
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to add the space Jf2 defined as (S1)2 (the space of phase parameters θ\ and Θ2 at 0
and 00), defining the composition with an element (#i,#2) £ ^2 Ju s^ by changing
the phase parameter at the corresponding puncture by 0i + 0 2 This encodes the
action of the rotation group on the spaces Λ^+ 1. As in the previous section, the top
row of the corresponding spectral sequence will be isomorphic to the tree operad

3. String Theory

In this section, we show how the axioms of a CFT and hence a CSFT based on
such a CFT provide an algebra over the homotopy Lie operad of Sect. 2.3 and
hence the structure of a homotopy Lie algebra on the BRST complex of such a
theory. Axioms for a conformal field theory are due to Segal [39]. He and Getzler
[14] define a string background (see below) so that it includes forms satisfying
properties of Sect. 3.3 below. We instead derive these properties as Theorems 3.1
and 3.2 using the so-called operator formalism.

3.1. Conformal Field Theory (CFT). Conformal field theories we consider have
central charge equal to 0 and are all at the tree level, i.e., the Riemann surfaces
involved are only Riemann spheres.

Consider the Virasoro algebra Vir, which is the algebra of complex-valued vector
fields on the circle in this text. Vir is generated by the elements Lm = zm+ιδ/dz,
m G Z, with the commutators given by the formula [Lm,Ln] = (n — m)Lm+n. By V
we will denote the complexification of this algebra V := Vir (g)R (C = Vir 0 Vir.

Let &n be the moduli space of nondegenerate Riemann spheres Σ with n punc-
tures and holomorphic disks at each puncture (holomorphic embeddings of the stan-
dard disk \z\ < 1 to Σ centered at the puncture and not containing other punctures).
The space £Pn+\, n = 1? form an operad under sewing Riemann spheres at punctures
(cutting out the disks \z\ ^ r and \w\ ^ r for some r — 1 — ε at sewn punctures
and identifying the annuli r < \z\ < 1/r and r < \w\ < \jr via w = 1/z). The sym-
metric group interchanges punctures along with the holomorphic disks, as usual.

A CFT (at the tree level) consists of the following data:

(1) A topological vector space 2tf (a state space).

(2) An action T: V <g> 3tf -» j f of the complexified Virasoro algebra V on Jf.
(3) A vector \Σ) e Hom(Jf®Λ,.?f) for each Σ e 0>n+\ depending smoothly

on Σ.

Remark. 3.1. Physicists usually have a (possibly indefinite) Hubert space as a state
space Jf. The structures we study do not involve any inner product on the state
space, so we postulate it to be a vector space, although retaining the letter 2fC.

The natural extension of the action T to an action of direct sums of V on ten-
sor powers of 3tf will be denoted by the same letter: Γ: Vn+ι (g) H o m ( ^ n , 3Ίf) ->
Hom(JfM,J^). We will use this convention later on, when we introduce more op-
erators on Jtf*. Here and henceforth we use the abbreviated notation: Jfn := Jί?®n.

To be honestly called a CFT, these data must satisfy the following compatibility
axioms:

(4) T(\) I Σ) = \δ(\)Σ), where v = (v\,..., vn+\) G V and δ is the natural action
of vn+ι on &n+\ by infinitesimal reparameterizations at punctures. In particular,
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Γ(v) I Σ) — T(\)\Σ) — 0, whenever v can be extended to a holomorphic vector field
on Σ outside of the disks.

(5) The correspondence Σ \-+ \Σ) defines the structure of an algebra over the
operad £Pn+\ on the space of states Jf.

Remark. 3.2. The crucial axiom (5) is equivalent to the factorization property or
the sewing axiom of a CFT, see Segal [38], plus the so-called "manifest" symmetry
property of the states \Σ) with respect to permutations of punctures. (As we have
learned from Edward Witten, " 'manifest' means nothing more than 'obvious' in
plain English." cf. Zwiebach [49, footnote in Sect. 7.4]).

Remark. 3.3. An equivalent definition of a CFT may be as follows: a CFT is an
algebra over the operad έ?n+\. This would imply an action of Vn+ι on the states
\Σ) via Axiom (4).

3.2. String Background. We will now consider string backgrounds, or in other
words, CFT's with ghosts and with total central charge c — 0, although our results
can be easily generalized to generalized string backgrounds or topological CFT's,
gadgets which do not contain the operators c below.

A string background {at the tree level) is a CFT based on a vector space 3tf
with the following additional data:

(1) A Z-grading 2tf = θ/ez^/ on the state space.
(2) An action of the Clifford algebra C ( F θ F*), which is denoted usually by

b: V Θ Jί? -> jf and c: V* <g> Jf -» Jf for generators of the Clifford algebra, the
degree of b is — 1, and the degree of c is 1.

(3) A differential Q: Jf -+ Jf, Q2 = 0, of degree 1, called a BRST operator.

The graded space Jf with the operator Q is called a BRST complex. For φ e Jf7,,
the degree gh φ := / is called the ghost number.

Remark. 3.4. Usually, the space Jf of a string background is constructed from a
CFT based on a space of "matter" Jfm and a "ghost" CFT based on a space Jfgh as
the tensor product 2tf = J^m <g) ̂ fgh, the grading coming from the second factor. In
that case, the CFT's Jfm and Jfgh must be more general than the ones we consider,
because Jti?m and Jfgh have nontrivial central charges. But for the resulting string
background, the central charge can be made 0 by an appropriate choice of J^m.

These data must satisfy the following axioms:

(4) [T(υι),b(v2)] = b([vuv2]) and [T(υι)9c(υ%)] = c((ad*ϋθι;|), as in any BRST
complex over V or Vir.

(5) [Q,T(v)] = O,{Q,b(v)} = T(v),{Q,φ*)}=c(dυ*), where dv* e Λ\V)*
is the Lie algebra differential of the 1-cochain υ* G V*, as in any BRST complex.

( 6 ) g h | Σ ) = 0 .
(7) b{\) I Σ) = b(\)\Σ) = 0 for any v € Vn+ι extended holomorphically on Σ.
(8) Q\Σ) = 0.

Remark. 3.5. Following A. S. Schwarz's idea, one can define a more general string
background in the same fashion as we defined a CFT in Remark 3.3: a generalized
string background is an algebra over the operad &s

n

r

+ι of semirigid N = 2 super
Riemann surfaces introduced by Distler and Nelson [12]. The operators b(v) and Q
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on states \Σ) can be read off as infinitesimal transformations of the super structure
on a semirigid surface Σ, similar to the action T(v) of the Virasoro in the usual
CFT case. The connection to semirigid supergravity of Distler and Nelson has been
pointed out in Horava's paper [20].

3.3. A Morphism of Complexes. One of the nicest implications of a string back-
ground is the construction of a morphism of complexes Jf®n —>• Ωm(βPn+\\ n ^ 1,
from the tensor power of the BRST complex J-f to the de Rham complex of the
space &n+\. We will use a somewhat partially dual picture and construct for each n
a H o m ^ 7 1 , Jf)-valued form Ωn+\ = Σr>0 Ωr

n+ι, degΩ^+1 = r, on the space ^ Λ + 1 :

Ωn+ι(\u...,\r):=Ωr

n+ι(\u...,\r):=b(\ι)...b(yr)\Σ), (3.1)

where v/? 1 ^ i ^ r, is a tangent vector to the space &n+\ at the point Σ and v,
is its pullback to an element of Vn+λ, acting by infinitesimal reparameterizations at
punctures.

Theorem 3.1.
(d - Q)Ωn+ι = 0 .

Proof. More precisely, fixing n and omitting the subscript n + 1, we have to prove
that for each r ^ 0,

dΩr~1=QΩr

9 (3.2)

where Ω~ι — 0 by definition. Let us use induction on r. For r = 0, (3.2) is 0 =
Q\Σ), which has been postulated. Suppose that Eq. (3.2) is true for some r ^ 0. To
make the induction step, it suffices to prove that for any tangent vector v to ^ Λ + i ,

ι(γ)dΩr = ι(\)QΩr+ι ,

where i is the contraction of a differential form with a tangent vector. From (3.1),
it is clear that for all r ^ 0,

ι(\)Ωr = b(y)Ωr~ι . (3.3)

According to Axiom (4) of Sect. 3.1, we have that the Lie derivative if(v) :=
{d, ι(\)} of a form along a tangent vector v is equal to Γ(v):

{d, i(v)} = &{v) = Γ(v) = {& Z>(v)} . (3.4)

Since the operator d acts geometrically and b acts in coefficients, we have

[d,b(\)]=0.
Similarly,

[β

Using these equations, we obtain

= T(\)Ωr - b(\)dΩr'1

= T(\)Ωr - b(y)QΩr

= Qι(\)Ωr+ι

= ι(\)QΩr+ι . D
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Some crucial properties of these differential forms are their equivariance under
the operad map and the actions of the permutation group.

Theorem 3.2.

γ*Ωn+ι =y(Ωk+ι;Ωnι+ι9...9Ωnk+ι)9

where n = n{ + + nk, y*: Ωφ(0>n+ι) -> Ω (0>k+λ x &>ni+ι x &nk+ι) is the
pullback of the operad map ^t+\ x &nx+\ x x &*nk+\ —> &n and the other y
is the operad map in the endomorphism operad. Similarly, for all σ in Σn, the
permutation group, we have

σ*Ωn+} = Ωn+ι oσ.

Proof The properties of the forms follow from the construction of the forms Ωn,
as well as from the fact that the background CFT at the tree level is an algebra
over the operad ^ n + i . U

Remark. 3.6. Theorems 3.1 and 3.2 insure that the maps C.(0>n+ι) -> Hom(JfΛ, )
given by C κ-> $cΩn+\ make 3tf into an algebra over {C#(^w + i)} which, in
turn, makes absolute BRST cohomology, Hm, into an algebra over the operad

}

Remark. 3.7. Dually, the above properties of the forms Ωn+ί along with their behav-
ior with respect to the identity of the operad {&n+\} can be formulated as follows.
If the ΩΛ +i's were regarded as maps from H o m ( J f 7 , ^ ) * —> β ( ^ π + i ) , then they
would define the structure of a coalgebra over the DG cooperad of differential forms
on ^n+\ on the complex 2tf.

3.4. Closed String-Field Theory (CSFT) . Suppose that we have a string back-
ground as above. Then a closed string-field theory over this background consists of
a choice of smooth mappings s = sn+\\Jfn+x —> ̂ n+\ for each n ^ 1. The images
s{JΓn+]) C 0*n+\ °f these mappings are called string vertices. The string vertices
must satisfy the following axiom, which basically governs two things: the string
vertices must be closed under sewing and symmetric with respect to permutations
of punctures.

The collection of mappings s — sn+\: ^ΓM+1 —> ̂ «+i, n ^ 1,

defines a morphism of operads.

These mappings may be constructed as homotopy inverses of the natural mappings
^n+i —• <yVn+\ °~̂  ^«+i ' which a r e homotopy equivalences. More exactly, the map-
ping sn+\ : Jfn+χ —> &n+\ is composed by pushing Jfn+X away from the boundary in
J^n+i, so that it forms the complement to a tubular neighborhood of the boundary,
and then lifting it to ^n+ι along the homotopy equivalence ^ π + i —> ̂ Vn+ι

Furthermore, the fact that the mappings sn+\: Jfn+\ —> &n+\ a r e invariant with
respect to composition with elements of Jίi and ^2 implies that the sn+\'s are
equivariant under the U(\)n+ι action corresponding to the rotation of the phases of
the coordinates, i.e. if φj is the phase parameterizing rotations about the 7th puncture
of a point Σ in Jfn+\ and θj is the phase parameterizing rotations about the / h

puncture of s(Σ) in ^n+\ then s*d/dφj = d/dθj. As a consequence, a rotation in the
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relative phase at the / h double point of

Σ' = y(Σ;Σu...,Σk)

in JfnjrX (which corresponds to rotation of the phase at the initial point of Σj) maps
under s = sn+\ to the change in

s(Σ') = γ(s(Σy,s(Σι),...9s(Σk))

induced by rotation of the initial disk in s(Σj).

Remark. 3.8. The string vertices defined here are a bit different from Zwiebach's
string vertices: the latter are the images of mappings of Jtf

n+ι to an analog of
the space ^ n + i with forgotten phases at punctures, rather than of Jfn+X to ^n+\.
Nevertheless, we can use his construction with minimal area metrics to construct
the string vertices. This is a very nontrivial result.

Theorem 3.3. String vertices exist.

While the idea of the construction of string vertices is due to Zwiebach, [49],
a mathematically rigorous account can be found in Wolf and Zwiebach [47]. The
advantage of our approach of axiomatizing the string vertices is that we allow a
certain freedom in the choice of vertices. Physically speaking, we deal with an
arbitrary solution of the string equation.

The construction of Wolf and Zwiebach assigns to each Riemann sphere with
punctures a minimal area metric compatible with its complex structure. This metric
solves the minimal area problem for metrics on the sphere with punctures satisfy-
ing the condition that the length of all homotopically nontrivial closed curves on
the sphere minus the punctures is greater than or equal to 2π. The minimal area
metric has nice properties. Closed homotopically nontrivial geodesies may not inter-
sect. Therefore, a sphere naturally decomposes into flat cylinders foliated by closed
geodesies with circumference 2π. The distance between the boundary components
of such a cylinder is called the height of the cylinder. In particular, any cylin-
der containing a puncture has infinite height. In the case of a point in Nn+ι with
double points, a minimal area metric is assigned to each irreducible component
minus its punctures and double points. A cylinder on an irreducible component
which does not contain a puncture or a double point is said to be an internal
cylinder.

We will now construct a family of morphisms of operads s:Nn+ι —> &n+\
parametrized by fixing, once and for all, a real number / greater than π and a
smooth monotonically increasing function // : [2π, oo) —> 1R such that //(2π) = 2π
and \imx->+oofι(x) = 21. Consider a point Σ in Nn+ι with irreducible components
Σ\,...,Σk and endow each irreducible component minus its punctures and double
points with its minimal area metric. Now, replace all internal flat cylinders of every
Σι with height h greater than 2π by a flat cylinder with height fι(h) calling the
result Σi. The induced metric on Γ; is its minimal area metric. This metric endows
Σi with natural holomorphic charts around each puncture and double point. The el-
ement s(Σ) in &n+\ is obtained by "smoothing out" every double point by sewing
together the Σ/'s along the charts on each side of every double point. Finally, the
holomorphic chart about each puncture or double point pi in Σj is defined as fol-
lows. Let ^ ( 0 ) denote the end of the cylinder containing pi and let #/(/) be the
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All Circles Have Radius 2 %

5(1)

(a) An Element in N 4 (b) Minimal Area Metric on an Irreducible

Component With Coordinate Curves

C2(l)
(c) Eliminate Double Points by Sewing

After Lining Up Marked Points

Fig. 1. The Morphisms and Minimal Area Metrics.

closed geodesic on this cylinder which bounds a cylinder of height / with ^ ( 0 ) .
The curve #*(/), called a coordinate curve, is the image of the unit circle in C un-
der an orientation preserving isometry so that the tangent direction at pt lies along
the positive real axis in C The isometry uniquely extends to a holomorphic chart
about pi. Strictly speaking, the holomorphic chart about each double point is only
defined up to a rigid rotation (a multiplication by a phase), but s{Σ) is independent
of this choice.

Using the string vertices, we can consider the restrictions s*+ιΩn+\ of the forms
Ωn+ι on ^ΠΛ-X to J^n+{. From now on, we will deal with these restrictions often
and will still denote them by Ωn+\.

3.5. Algebra over an Operad. To get a homotopy Lie algebra structure for a given
CSFT, we will first obtain an algebra over the operad of chains in Jtf

n+ι of Sect. 2.3,
and then restrict the structure to the smaller operad 9"(n). Since CSFT data apply to
the operad Jfn+X rather than Jin+X, we have to descend to «# Λ + 1 . That can be done«# Λ + 1 .
by passing to the following relative BRST complex (which is called semirelative in
the physical literature).

Let Jfrei be the subspace annihilated by b$ := b(L^) and T^ := T(LQ), where

: = LQ — LQ = 6 V, z — ee2mθ
is the generator of rigid rotations of

the circle. In terms of the BRST complex, this is the space of BRST cochains
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relative to u(l), which is the one-dimensional subalgebra (L^) of rigid rotations.
The differential Q induces a differential here; we have a subcomplex.

It would be natural to restrict values of our Hom(Jf", Jf)-valued form Ωn±\ to
the subspace (JfYQ\)n C Jtfn. Nothing tells us that the result will be contained in Jf^i,
but we can use the natural projection onto the quotient space Jfrel := JΊf/(b^
T^Jή?) of relative u(l)-chains. Fortunately, ^frel is canonically isomorphic to
The isomorphism is defined by the formula:

[x] t-> Inib^xo , (3.5)

where xo is the T^ -invariant (i.e., rotationally invariant) component of a vector

x G 2%\ The image lies indeed in the subspace Ĵ J-ei, because (b^)2 = 0 and

[T^,b^] = 0. The mapping is an isomorphism, because it has an inverse

where c^ : = C ( ( L ^ ) * ) , (LQ)* G F* being the corresponding element of the dual
basis.

Remark. 3.9. To make the above considerations valid in the context of generalized
string backgrounds, where the operator CQ does not exist, we should just postulate
that (3.5) is an isomorphism.

Thus, restricting our form Ωn+\ to («^rei)w a n d then mapping the result to Jfrei
via (3.5), we obtain a Y{om((^rQ\)n

y Jfrei)-valued form Ω'n+ι on Jfn+X. It turns out
that this form is basic, i.e., is pulled up from some form ωn+\ on Jin+\.

Proposition 3.4. (1) Each Hom((^frei)"•, J^TQ\)-valued form Ω'n+ι is basic with re-
spect to the natural projection p:jV'n+ι —* Sn+ι, i.e., Ω'n+ι = p*ωn+\ for some
form ωn+ι on Jtn+ι.

(2) There holds the following formula:

ωn +i(vi,...,v r) = ω^+ 1(vi,...,v r) = 2πib~{b{yλ)...b(yr)\Σ))0 , (3.6)

where the operator b^ acts in Horn as usual, for 1 S j = r, vy ^ a tangent vector

to the space &n+\ a t t n e point Σ and v, is its pullback to an element of Vn+λ.

Proof (1) To verify that the form Ω'n+{ is basic, we have to show that it is annihi-
lated by the operators z(v) and JS?(v), where v = (0,..., 0, d/dθj, 0,..., 0) is the tan-
gent vector at Σ G ̂ n + i generated by rotations at the j t h puncture, j = 1,...,«+ 1.
From Eq. (3.3), we see that ι(y)Ω'n+ι = 0. Equation (3.4) implies JSf(v)Ω^+1 = 0.

(2) Obvious by construction from Ω and the nature of the relativization
process. D

The Hom((Jfrei)
π, Jfrei)-valued forms ωn+\ on Jίn+\ are just what we need, as

we can see from the following theorem.
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Theorem 3.5. The correspondence

C K^ fωn+ι , (3.7)
c

defines the structure of an algebra over the operad Cm(Jin+λ) on the space J^XQ\.

Proof Stokes' theorem along with Theorem 3.1 implies that the mapping (3.7)
commutes with differentials. The morphism (3.7) preserves the degree, because
gh |Γ) = 0, therefore ghω^+ 1 = — r — 1, and that was defined to be the degree of a
chain C of dimension r in Sect. 2.3.

The equivariance with respect to the symmetric group is evident from the
definition of its action. Thus, we need only prove that (3.7) respects the operad
composition, i.e., to prove a factorization property of the forms ωn+\:

J ωn+ι =γl fcok+i; fωnι+ι,...9 fωnk+\\ ,
V(C;Clv..A) \C Cl Ck /

n = n\ + + njς, which will follow from

§ωn+λ =y(ωk+ι;ωnι+u...,ωnk+ι), (3.8)

where § denotes integration along the fibres (Sι)k of the natural projection

P -S'T - # * + i x # Λ l + i x ' x •#„,+!

and T = y(δk\ δnι,..., δn/c), see Theorem 2.4.
We know that both sides of Eq. (3.8) are forms on Jfk+χ x ^fnχ^\ x x Jfn + 1

which were pulled back from ^ + i x ^nx+\ x x 0*^+1- From now on, let us
use the same notation Jfj+X for the image of the space yΓ/+1 in &j+\. We need
to show that the values taken by these forms at each r-tuple (vj,...,vr) of tangent
vectors at a point (Σ; Σ\,...,Σk) e ^ + i x ^n]+\ x ' ' ' x ^nk+ι a r e e Q u a l Indeed,
by (3.3), we have

i(vi) iMMϊΊ = b(Yl)... b{vr)§ωk

n+ι

and

... ι(\r)y(ωk+ι ωnι+\,..., ωnk+\ )r

... b(vr )y(ωk+ι ωnχ+x,..., ωnk+λ)°

»^ |Σ)0; 2πΐ6^ |Σi)0,..

where the superscript means the "component of the corresponding degree" of a
differential form. Thus, it remains to show that

Σk)0), (3.9)

where the left-hand side is evaluated at the point Σ x Σ\ x x Σk.
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In order to effect the integration in (3.9), let us introduce coordinates θj,

j = 1,... ,&, in a fibre (Sι ) k , where θj is the phase parameter for the initial puncture

on Σj, which is glued with the / h puncture on Σ. Let

Σ' = y(Σ;Σu...,Σk)

be a point in «Λ +̂1 at which the form ωn+\ is evaluated in (3.9). By construction
of Ω and subsequent definition of ω, we have on each fibre

ω * + 1 = 2πίb-b(d/dθλ) b ( d / d θ k ) \ Σ ' ) o d θ ι . . - d θ k .

Since a CFT and a CSFT define a morphism of operads Jf9+\ —>• $nd(Jf), we
have the corresponding equation for states:

\Σ')=γ(\Σ);\Σi),...,\Σk)).

Applying b(d/dθj) to this equation and integrating over the circle in the fibre (Sι)k

parameterized by θj, we get

o o

= y(\Σ);\Σι)9...,2πibό\Σj)o9...,\Σk)).

The second equality holds because full integration of a function on the circle pro-
duces the rotationally invariant average value, i.e., the Γo~-invariant component.
Iterating this procedure for all j = \,...,k and applying the mapping 2πib^( )0, see
(3.5), we obtain the factorization equation (3.9). D

Corollary 3.6. The correspondence

Hp(Fp,Fp-0 -+ Hom((Jf r e lr,^ r e l),

Z H-> fωn+ι ,
z

defines the structure of an algebra over the homotopy Lie operad £f{ri) on the
relative state space ^frei.

Proof. This correspondence is induced by that in Theorem 3.5. For the row E\Q of
the spectral sequence is a suboperad of the chain operad, because there is a natural
mapping

Hp{Fp,Fp^)^Cp{Jίn+x),
the fundamental class Fp ι—>• a chain representative,

which defines a morphism of operads. The correspondence of the corollary is well-
defined by Stokes' theorem applied to this row, which consits of the top non-zero
homologies of the pairs (Fp,Fp-\). D

This corollary can be reformulated as the following result of Zwiebach [49].

Corollary 3.7. A CSFT defines the structure of a homotopy Lie algebra on the
space J r̂ei of relative states. The brackets defining this structure are given by the
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formula:

•^π+1

Proof. A homotopy Lie algebra structure on Jfrei is yielded by Corollary 3.6
via Theorem 2.7. Also according to Theorem 2.7, the rc-ary bracket is given by
the corolla δn, which corresponds to the fundamental cycle Mn+X £ # 2 Λ - 4 ( ^ Π + I J
dJin+x) due to Theorem 2.6. D

5.(5. Topologίcal Gravity. We obtained the homotopy Lie structure using the action
of the huge chain operad Cm{JPn+ι) and restricting the structure to a suboperad,
which was isomorphic to the homotopy Lie operad Sf. Now we will study what
happens at the (co)homology level. Let H*el denote the relative BRST cohomology,
i.e., the cohomology of the operator Q on the space J^ rei of relative states.

Corollary 3.8. The correspondence

Z ι-> fωn+ι ,
z

defines the structure of an algebra over the operad H.{Jin+\) = H.{</Mn+ι) on the
relative BRST cohomology H*el.

Proof This is a general fact: if we have a morphism of operads in the category of
complexes, it induces a morphism of operads on the cohomology. D

Definition 3.1. A topological gravity {at the tree level) is an algebra over the
operad Hm{Jί'n+1) of homo logy of the real compactificatίon of the moduli spaces.

Corollary 3.9. CSFT data defines a topologίcal gravity based on the space H*Ql

of relative BRST cohomology.

Remark. 3.10. A topological gravity can be defined alternatively as an algebra over
the homology operad Hm{yfίn+\) of the Deligne-Knudsen-Mumford compactification
of the moduli space. This version fits the context of intersection theory on the
moduli space better, but the connection of this theory with string theory is not that
obvious. It would be interesting to describe algebras over H%{Jϊn+\) algebraically,
as a collection of operations, generators and identities, in the spirit of Getzler's
description [15] of algebras over the operad H9{JPn+\), which we are going to use
in the following corollary.

Corollary 3.10. A CSFT defines the structure of a gravity algebra on the space H*QX

of relative BRST cohomology, that is, a collection of brackets {x\,... ,xn},x\,> ,xn

£ //r*j, of degree —1 satisfying the following relation:

Σ ε{ί,j){{χι,Xj},χ\,... ,Xi, . 9Xj,.. Λ , yu , yι]
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where k ^ 2, / ^ 0 and the right-hand side is interpreted as zero if I — 0. The sign
ε(i,j) is the sign picked up by rearranging the sequence Xi,Xj,x\,... ,xz ,... ,jfy,... ,x^
to the sequence xi,...,X£ in commutative super algebra. The brackets defining this
structure are given by the formula:

{.,...,.}= / ωn+ϊ =2πibΰ\Σ)0 G Horn((Hr*d)\K{).
a point Σ£Jξn+ι

3.7. The Batalin-Vilkovisky (BV) Algebra. This algebraic structure differs from
the previous algebraic structures in two ways. First of all, it exists for any string
background and does not depend upon the choice of a particular closed string-field
theory. In fact, the results of this section can be generalized to more general so-
called topological conformal field theories. Secondly, it is defined on the absolute
BRST cohomology H* rather than the relative BRST cohomology.

Definition 3.2. A Gerstenhaber algebra is a graded commutative and associative
algebra A together with a bracket [ , \.A ® A —» A of degree — 1, such that for
all homogeneous elements x, y, and z in A,

[x,[y,z]\ =

and

If, in addition, A has an operation Δ:A^> A of degree - 1 such that A1 = 0 and

[x, y] = (-1 Ϋ\Δ(xy) - {(Δx)y + (-1 )

then A is said to be a Batalin-Vilkovisky (BV) algebra.

Associated to the Gerstenhaber and BV algebras are certain special operads. Let
D be the unit disk in the complex plane and let ^(n), n ^ 1, be the space of all
maps / from Ii"=1£> —> D such that / , when restricted to each disk, is the compo-
sition of translation and multiplication by an element of C x and images of / are
disjoint, {^(n)} forms an operad by composition in the natural way and is called

the framed little disks operad. This operad has a suboperad {3>(ή)} c-^ {#"(«)}
called the little disks operad, where Q)(n) consists of those maps in J^(rc) which,
when restricted to each disk, are the compositions of translations and multiplications
by positive real numbers. By general arguments, the homologies of these topologi-
cal operads are operads. F. Cohen [9] proved that the category of algebras over the
operad {Hm(@(n))} was isomorphic to the category of Gerstenhaber algebras. Simi-
larly, Getzler [14] proved that the category of algebras over the operad {Hm(^(n))}
was isomorphic to the category of BV algebras.

These operads naturally appear in the context of a string background. Consider
a map j : tF(ή) ^ ^n+i which is defined as follows. Let z be a standard coordinate
on C P 1 . Given an element of ^(n), identify the complex plane in which the large
disk sits with the domain of z, i.e. with C F ^ o o , then we get C P 1 with n embedded
holomorphic disks. In addition, let the (n + 1 ) s t disk be the complement of the large
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disk D, a holomorphic disk around z = oo. This gives a point in 8Pn+\ and completes
the definition of the map j . Notice that j is a morphism of operads, which induces
a morphism between {//»(#"(«))} and {//#(^w+i)}. Furthermore, j is a homotopy
equivalence for n ^ 2. Therefore, y induces an isomorphism of operads between
{Hm(^(n))} and {//.(^n+i)}, except for « = 1, where it is an embedding. From

the composition ζ%(ή) *-> ^(n) -^ &n+\> we obtain another moφhism of operads
{H.(9(n))} -> {H.(0>n+ι)}. This leads to the following theorem.

Theorem 3.11. Given a string background, the absolute BRST cohomology Hm

is a vector space graded by ghost number, which admits the structure of a BV
algebra. It is convenient to describe the operations in the BV algebra as being
induced from operations defined on BRST cochains. The associative product is
induced from

x y:=\Σ)(x®y) \Jx,y e ^ ,

where Σ is a point (and, hence, a 0-cycle) in ^ 3 . The bracket is induced from

where \x\ is the ghost degree of x and C is a cycle in ^3 whose class is the image
of the generator in H\(^{2)) = k given by the full counterclockwise rotation of
one disk about the other. Finally, A is induced from

Ax := ( / Ω Λ (X) Vx G JT,

where h is a cycle in &2 whose class is the image of the generator of H\(^(\))
k, the full rotation of the disk D in the counterclockwise direction. Moreover,

Ax := Inib^xo, Vx G Jf,

where the subscript 0 means the T^ -invariant part of the vector.

Proof Given a string background, the integration of the differential forms Ωw+i on
&n+\ with values in Rom(J>fn,J^) over chains in ^n+\ gives 2tf the structure of
an algebra over the operad of chains on ^ π + i . This induces the structure at the
level of the (co)homologies, that is, the absolute BRST cohomology H* forms an
algebra over the operad {H9(^n+\)}. But the latter is isomorphic as an operad to
the homology of the framed little disks operad {Hm(<F(n))}. Therefore, by Getzler's
theorem [14], the absolute BRST cohomology, H9, forms a BV algebra. To obtain
the correct homology classes which give rise to our basic operations, we need only
to make some simple observations.

Ignoring A for a moment, Hm has the structure of a Gerstenhaber algebra induced
by the action of the operad {Hm(Q)(n))} on H% through the map induced by the

composition Q){rί)<—> £F(n) -U Θ*n+\. The dot product is a binary operation of ghost
degree 0 which arises from the image of a generator in H0(^(2)) = k in 7/0(^3)
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via the map induced by j o i. More directly, the dot product arises from the class of
a Σ in //o(^3), where Σ is a point in ^ 3 . In that case, the dot product is induced by
fΣΩi = \Σ). Similarly, the bracket is a binary operation of ghost degree - 1 arising
from the image of a generator in H\(SJ(2)) = k in 7/1(^3), call the image C, which
can be described as above. The bracket is then defined by integration of Ω3 over
C with an insertion of the annoying factor of (—l)'x' which is necessary to insure
that [x,y] = -(-\)W-l)^-l)[y,xl (Without this factor, we would have [x,y] =
(-1)1*113"'[j/,x] from the equivariance of the operad action under the permutation
group.) Finally, A is a unary operation of ghost degree —1 arising from the image
of a generator H\(ϊF(\)) = k in H\(^2) denoted by h which is described above.
The other expression for A is a straightforward exercise in the application of the
axioms of a string background. D

Remark. 3.11. Although different choices of the cycles representing the same ho-
mology classes above induce the same operations of a BV algebra on BRST co-
homology, the corresponding operations on the BRST cochains, Jf, will certainly
depend upon these choices. In this way, we can work at the level of BRST cochains,
as is done in Lian-Zuckerman [29], where the operations would be given by partic-
ular cycles Σ, C, and h in Θ(n\ $F(n) and &n+\ for n = 1,2 and where the relations
satisfied by these operations would be obtained from the action of operad of chains
of {^Wi} upon Jf.

Also, taking the Γo~ -invariant part of all the differential forms in a string back-
ground is still a string background. Furthermore, the operations induced on absolute
BRST cohomology are the same as before since [Q, b^] = Γo~ implies that the
only nontrivial BRST cocyles are in the kernel of Γo~ and, therefore, the only
nontrivial operations on BRST cohomology are induced from the component with
zero Γo~. Nonetheless, at the level of BRST cochains, one would obtain different
operations.

Remark. 3.12. In the case of a meromorphic string background where the vec-
tor space 2tf is a topologίcal vertex operator algebra (TVOA) (or, rather, some
completion thereof), the results of Huang [21] may allow for the construction of
similar forms Ω, which are holomorphic. In his case, the BV algebra structure on
BRST cohomology is precisely the one discovered by Lian-Zuckerman [29]. Ex-
plicit expressions for the bracket and the dot product may be written in terms of
the elements of the TVOA and a direct comparison with the formulas of Lian-
Zuckerman is possible. Huang's construction can be used to obtain smooth forms,
as well, by wedging his holomorphic forms with their antiholomorphic counterparts
which are associated to the isomorphic vector space of the opposite chirality.

Remark. 3.13. Another remarkable algebraic aspect of BV theory, which remains
beyond the scope of this paper, is its connection with odd symplectic structures.
We refer the interested reader to the papers [14,19,35,36].

3.8. Concluding remarks. To obtain the homotopy Lie structure, we actually used
only the top row of the spectral sequence Eι of Theorem 2.6. At the same time, the
whole Eι operad, which is more tractable than the entire chain operad C.(^# π + 1 ) ,
carries much more information than its upper row. The "on-shell" part of the struc-
ture it gives, i.e., the part related to the homology H.(Jin+ι) of the operad Eι, is
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the structure of Getzler's gravity algebra, as we have just seen. On the other hand,
another row of Ex gives the so-called commutative homotopy algebras, which we
anticipate to play a special role in meromorphic string theory (TVOA's). Finally,
we hope to describe algebras over the whole Eι operad as homotopy Gersten-
haber algebras, homotopy analogues of the Gerstenhaber algebras studied by Lian
and Zuckerman [29]. The role of these algebras in string theory is unclear at the
moment.

From the point of view of moduli spaces and CFT, it would be more natural
to consider several initial punctures (inputs) as well as several outputs, instead
of separating one of them as an input and all others as outputs. Corresponding
generalizations of operads are known as PROP'S in topology. The moduli space
PROP that we would deal with in the scope of this paper is in fact equivalent
to the moduli space operad, and apparently, at the moment there is no need to
complicate the situation on the algebraic side with operations from J^m to J4?n. But
as soon as m-ary operations are well-understood, a consistent theory of (m,n)-ary
operations would be at least interesting.

The larger and more interesting piece of moduli spaces for higher genera and
higher perturbations of string theory, correspondingly, remain beyond the scope of
this work. The matter is that punctured Riemann surfaces of higher genera form
an object which is slightly more general than an operad: apart from the operad
compositions, corresponding to sewing (or attaching) Riemann surfaces, one should
consider sewings of a Riemann surface with itself, which forms a new handle.
The corresponding generalization of vertex operator algebras was considered by
Zhu [48], but the corresponding algebraic structures which have appeared in string
theory, see Verlinde [45] and Zwiebach [49], are yet to be understood.

From the topological point of view, we have related the homology of moduli
spaces to a homotopy Lie algebra structure on the state space. In comparison to
that, we should mention an interesting recent work of M. Betz and R.L. Cohen [6]
relating the topology of moduli spaces to the Steenrod algebra.
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