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Abstract: We develop a theory of spectral integration for quantum stochastic in-
tegrals of certain families of processes driven by creation, conservation and an-
nihilation processes in Fock space. These give a non-commutative generalisation
of classical stochastic integrals driven by Poisson random measures. A stochastic
calculus for these processes is developed and used to obtain unitary operator val-
ued solutions of stochastic differential equations. As an application we construct
stochastic flows on operator algebras driven by Levy processes with finite Levy
measure.

1. Introduction

The standard theory of quantum stochastic calculus in boson Fock space as devel-
oped by R.L. Hudson and K.R. Parthasarathy uses the creation, conservation and
annihilation processes as basic martingales (see [HuPa 1], [Par], [Mey] and refer-
ences therein) and it is well known that classical stochastic integrals with respect
to a standard Brownian motion or compensated Poisson process can be constructed
within this more general formalism. As it stands however the theory is insufficiently
fine to capture stochastic integrals with respect to Poisson random measures. The
aim of this paper is to take the first steps towards developing the required general-
isation.

Of course stochastic integrals with respect to Poisson random measures involve
two distinct integrations over both time and space variables. In the quantum case
we find that integration over the "space" variable corresponds to a spectral integral
and hence the objects which we need to make sense of are operators of the form

0

M(t)=
-oo 0

+ E3(s,λ)Ay(ds,P(dλ))}, (1.1)

where P is a projection-valued measure, Ej(j = 1,2,3) are suitable families of

adapted processes and A^Λ and A represent the differentials of the creation, con-
servation and annihilation processes (respectively) in a sense which is made precise
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below. From the point of view that regards quantum stochastic integration as de-
scribing the coupling of a quantised system to a heat bath, it seems clear that the
finer decomposition given in (1.1) yields more information about the coupling than
the standard integral.

Integrals of the form (1.1) first appeared in [App 1] where they appeared nat-
urally in the construction of new types of quantum stochastic flow from classical
Levy flows, however in [App 1] they were only defined as forms and a full stochas-
tic calculus for them was not developed as is the case below. We remark that a
similar class of integrals has recently been employed by Belavkin [Bel] in his work
on the quantum measurement problem.

The organisation of this paper is as follows. In Sect. 2 we collect some prelimi-
nary facts about quantum stochastic integrals which we will use in the development
of our theory. In Sect. 3, we construct the integrals (1.1) as limits of sums of
stochastic integrals defined over partitions. We obtain an Itδ formula for the prod-
uct of two such processes. Sect. 4 is devoted to proving a Fubini type theorem in
which it is demonstrated that the two integrals in (1.1) can be interchanged. Our
processes are used in Sect. 5 to construct solutions of linear stochastic differen-
tial equations (SDE's), conditions are established for the unitarity of such solutions
and the resulting quantum flow is used to construct a new type of stochastic dila-
tion for norm continuous quantum dynamical semigroups. Finally in Sect. 6, we use
Parthasarathy's representation of Levy processes in Fock space to construct a class
of one-dimensional Levy flows on *-subalgebras of B(§o) in me case where the
Levy process has finite Levy measure. Although our method is sufficiently robust
for us to drop this latter restriction, there are a number of lengthy technicalities
which arise in the treatment of general Levy measures, hence to avoid this paper
becoming of unmanageable length we have postponed the case of general Levy
flows to a later article.

There are a number of interesting questions relating to the integrals (1.1) which
are not addressed in this paper. One of the most intriguing of these arises from the
observation that the processes given by (1.1) are martingales which suggests the
possibility of improving on the martingale representation theorems of [PaSi].

Notation: If T>7 are dense linear manifolds in complex Hubert spaces §/(/ = 1,2),
we denote by Dι®ϊ>2, their algebraic tensor product. If L G #(§ι) we often write
its ampliation L ® / to the whole of ξ>\ (8) §2 simply as L provided there is no room
for ambiguity. If X is a topological space, &(X) will denote the σ-algebra of all
Borel sets in X .

2. Preliminaries (cf.[HuPa 1], [Pa])

Let §o and §ι be complex separable Hubert spaces and let § denote the Hubert
space tensor product <r>0 0 Γ(J^)9 where 3? = L2(IR+,§ι). For / G Jf , the expo-
nential vector ψ ( f ) G Γ(Jtf') is defined by

ff®f f
7' V2! ''

so that if g € J? then {ψ(f),ψ(β)) = exp«/,flr)).

®n
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Let ^ be a dense linear manifold in 2tf and let S(£f) denote the linear span
of {ΆCA/ e }̂, then δ(&) is itself dense in Γ(^). Throughout this paper we
will take ^ to consist of §ι -valued locally bounded functions on IR+.

For f,g G ϊtf and T G £(Jf) with T = T*, we denote by a*(f\λ(T) and 0(0)
respectively the corresponding creation, conservation and annihilation operators in

For the remainder of this section we fix once and for all x, y £ ξ>\ and
H G B(ξ)ι) with H = H*. We define the creation process A\ = (A\(t\ t G 1R+)
by

the conservation process Λ//(0 = (Λ//(0>

and the annihilation process Ay(t) = (Ay(t)9 ί G IR+) by

We note that

ff(<S) C Dom(4(0) Π Όom(ΛH(t)) Π Dom

and
4(0 C Λ(0*> ^//(O C ΛH(t)*9 for all ί G R+ .

Recall that, for each t G IR+, § may be identified with the Hubert space ten-
sor product S> 0 £', where §, = §0 ® Γ(L2([0,0,δι)) and §' - Γ(L2([ί,cxD),Sι))
by means of the canonical isomorphism which maps each u Θ ̂ (/) to (M 0
W/Z[o,/)) (E) Ά(/^,oo)), where M G §0,/ G Jtf .

We fix a dense linear manifold DO in §o
A family £" = (E(t\t G IR+) of densely defined linear operators in § is said to

be adapted if

(i) DO 0 δ(&) C
(ii) Each E(t) = E(t) 0 /', where ^(ί) is an operator in ξ)t and /r is the identity

in

Let ^ = {0 = to < t\ < . . . < tn — > ex)} be a partition of IR+. An adapted process
E is simple with respect to ̂  if

= E(tj) whenever tj <, t < tj+{

We denote the class of all simple processes by
An adapted process E is locally square integrable if for each u G §o>/

the map ί — > E(t)(u 0 ψ ( f ) ) is measurable and for each ί > 0,

o

The linear space of all such processes will be denoted
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It is proved in [Ev] that given any E <E Z^oc(I>o,<5O, tnere exists a sequence
(En)neN in Σ(Do,«$0 such that for all t G R+,w G t>0,/ G «9",

— o . (2. i )
o n

Let (£},7 = 1,2,3,4) be simple processes and assume (without loss of generality)
that they are defined with respect to a common partition 0*. Their stochastic integral
M = (M(t),t E IR+) with respect to the processes A\,Λπ,Ay and "time" is the
adapted process given by

oo

M(t) = ΣiE\(tn Λ i) a\χ[tnwa+lΛt) ® *) + E2(tn Λ t)
w=0

Λ 0 flGtfoΛ^-MΛO ® j) +£4(ίn A 0 (tn+ι Λ ί - tn Λ 0} - (2.2)

M is usually written in the "integral notation" as

M(t) = $(Eλ(s) dAl(s) + E2(s) dΛH(s) + E3(s) dAy(s)+E4(s) ds) , (2.3)
o

or the "differential notation" as

dM = E\ dA\ + E2 dΛH + E3 dAy + E4 dt . (2.4)

We will occasionally use an alternative notation of dA(t,x) in place of dAx(t) (etc.)
when Λ: is a complicated expression and the above notation is too clumsy.

For M, v G §o? /j Q G 5̂  we obtain the following formulae which will be used
extensively in the sequel:

= > ® ψ(f),K(f,g,x,H,y,s)(Ό ® ̂ (ff)))rfί (2.5)
o

for each ί £ IR+, where

K(f,g,x,H,y,s) = ( f ( s ) , x ) E l ( s ) + ( f ( s ) , H g ( s ) ) E 2 ( s ) + (y,g(s)) E3(s) + E4(s)

and (. ,.) is the inner product in ξ>ι.
If M-i is a stochastic integral of the type (2.2) of a quadruple of simple processes

(EJ

k,k= 1,2,3,4) for j = 1,2 (respectively), we have

(M\t)(u ® K/)),M2(0(ι>

= '${(M\S)(u ® ψ(f)),K
0

+ (K}(g,f,x,H,y-S)(u

(2-6)

for each / e 1R+, where for each h e £f,j =1,2

Lj(h,x,H;s) =x® E\(s) + Hh(s) ® EJ

2(s)
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(so that each such LJ is a linear operator from § into ξ>\ 0 §) and {{.,.}) denotes
the inner product in §ι 0 §.

Writing M == M1 = M2, g = f and i; = w in (2.6), we obtain the following
estimate for 0 ^ ί ^ Γ,

||M(ί)(«®«K/))||2 £ fe>-°<Ks)«(x,H,y,f,s)ds, (2.7)
0

where

α(*,#, 7; /, 0 = 6 max

and
7=1

For the remainder of this section we take £4 — 0. Now let P be a projection in §ι.
By using estimates of the form \(x,Py)\ ^ ||Λc||.||Py|| ^ ^(\\Px\\2 + ||Py||2) , and
the Hubert space inequality \\φι + φ2 -f (foi l ^ [3(φf -f φ2 + Φ3)]1/2

?

 we obtain

\\K(f9f9Px9P9Py'9s)\\ ^ 2(3φ(s)f2β(x,y,f,Pιs) , (2.8)

where
β(χ,y,f,P ,S) = \\Px\\2 + \\Py\\2 + \\Pf(s)\\2 . (2.9)

A similar argument establishes the estimate

\\\L(f9x9P 9 s ) ( u ® ι K f ) ) \ \ \ 2 ^ 2 φ ( s ) y ( x , f 9 P ' , s ) 9 (2.10)

where ||| ||| denotes the norm in §ι (g> § (we have suppressed the index j with
obvious meaning) and

γ(x,f>P;s)= \\Px\\2 + \\Pf(s)\\2. (2.11)

We will find (2.8) and (2.10) of use in the next section.
Now let (Mn)w6]N be a sequence of stochastic integrals of the form (2.3) wherein

each (£y)wGN converges to Ej Glfoc(T)o,^) in the sense of (2.1). Using (2.7) it
can be shown that (M")wE]N converges (in an appropriate strong sense) to yield an
adapted process M which we call the stochastic integral of the quadruple (£/, j =
1, 2, 3, 4).

Furthermore the formulae (2.5) to (2.11) remain valid for these integrals. We
continue to use the notation (2.3) and (2.4) for such processes.

The following result will be useful in the next section

Lemma 2.1. Let xj9 y} G $ι and Hj G B(9)\ ) with Hj = H* , j = 1, 2 and let Ej G

Z,2

oc(t>o,^),7 = 1, 2, 3, then for each t G R+,

0

s) + E2(s)dΛH2(s) + E3(s)dAy2(
o

The proof is straightforward and hence is omitted.



612 D. Applebaum

3. Construction of Quantum Stochastic Spectral Integrals

For the remainder of this paper we will assume that §ι is infinite dimensional.
Let 7 be a (not necessarily bounded) self adjoint operator in §ι with spectral
decomposition f^°ooλP(dλ). Our goal in this section is to make sense, as linear
operators in §, of expressions of the form,

00 t

M(t) = / /{£,(*, λ)Al(ds, P(dλ)} + E2(s, λ)Λ(ds, P(dλ})
-ooO

(3.1)

where each {£}( , A), — oo < λ < 00} for j = 1, 2, 3 is a suitable family of pro-

cesses in Zqoc(Do, ^)
Operators of the form (3.1) will be called quantum spectral stochastic integrals.

Note first of all that if Y has discrete spectrum {λ\ < λi < < λn} then we
can define M(t) by

(s9 λj)dΛPj(s)

(3.2)

where Pj = P ( { λ j } ) for 1 <; j ^ n.
From now on we will assume that the spectrum of Y is the whole real line.

Our strategy will be to obtain (3.1) as a limit of expressions of the form (3.2).
First though we will need to make some restrictions on those families of processes
which we will be able to integrate. Let E — {E(λ\ λ e 1R} be a family of adapted
processes in § so that each E(λ) — (E(t, λ), t E R+). Let [α, b] be a fixed closed
interval. A family E will be said to be λ-contίnuous on [a, b] if for all t E 1R+, u E
£>o, / E ̂ , it is the case that given any ε > 0, there exists δ > 0 such that for
any a ^ A, μ ^ b with \λ - μ\ < δ, then

sup \\(E(s, λ) - E(s, μ))(u

We note that if E is A-continuous on [a, b], then the map

λ — » sup H^s, λ)(u 0 *K/))|| is continuous from [α, 6] to

A family J? is said to be admissible on [a, b] if

(i) E(λ) e I?OC(D0, ^) for each a ^ λ ^ b ,

(ii) £ is A-continuous on [α, fc].

We will now construct the integrals (3.1). Let 2P = {a = λG < λ\ < ... <
4+ι = b} be a partition of [α, b]. We define the mesh \&\ of ^ by |̂ | =
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Let {EjJ = 1, 2, 3} be admissible families and define for each t G IR+, u G

Do, / e ?,

y,0?,«,) = sup sup (£ ,.
(^=1 o^s^f

1 1 / 2

« ^ λ < μ ^ b,\λ-μ\ ^ \&\ > .

Now let 2P1 be a refinement of 2P and for each 0 ^ j ^ n, let A7l , . . . , /7λ7 be the

points of &' which lie between λj and A7+ι. Define for each t G R+,

M^(0 - Σ }{Eι(s,μj) dA\s,P(λj,λJ+l)x)
j=Q 0

+ E3(s,μj) dA(s9P(λJ9λi+ι)y)} ,

where each A7 ^ μ7 ^ A/+ι for 0 ^ 7 ^ n.

Lemma 3.1. For each u G §0>/ ^ ̂  βw^ ^ ̂  R+

? ^^^ e.xwte Λ constant C(T)
^ 0 swc/z r/zαί for Q <, t <z T,

^ C(T)γτ(u9f;<P).

Proof. As P is a projection- valued measure, we have that for each 0 ^ 7 ^ «,

/=o

Hence by Lemma 2.1, we obtain

MHO- MHO=Σ Σ /{(^(j.Aίy)-^^,^,)
y=0 /=0 0

+ (E2(s, μj) - E2(s, μjt)) dΛ(s,P(λJl,λJM

+ (E3(s,μj) - E3(s,μjl)) dA(s,P(λJrλJM

We will write each P(Δjt) = P(λjl,λjl+l ), for simplicity.
Now by (2.6) and a similar argument to that of Corollary 1 of [HuPa 1], we

find

/{2 Re
0

Σ Σ K(f,f,P(AJI)X,P(AJl),P(Ajl)y;S)(U®φ(f)))
j=0 1=0

+ Σ
j=0 1=0
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+ Σ Σl l K(f9f9P(AJl)x9P(Ajl\P(Ajl)y'9s)(u^ψ(f))\\
\7=o /=o

Σ
7=0 /=0

Now use the estimates (2.8) and (2.10) and the integrating factor e~l to obtain the
required result with

sup max {2β(x9y9fJ9s\ (2y(*,/,/;*))12} . D

Q^s^T

Now let (3Pn,n G N) be a sequence of partitions of [a, b] with lim \0>n\ — 0 and
/?— »oo

write Mn(t) = Myn(f) for each n £ N,ί € R+.

Lemma 3.2. For eαcΛ « e t>o,/ e y, Γ e R+, ί/ze sequence (Mn(t) (u
converges in §, uniformly for 0 ^ t ^ T.

Proof. Let m,n 6 N, then by Lemma 3.1 we have

I |MB(0 (« ® Ά(/)) - A/m(f ) (« ® ̂ (/))| I

= \\(Mn(t)-Mm(t))(u®ιKf))\\

H(Λ/m(/) - M^y

— > 0 as «, m — > CXD by the admissibility condition.
So the sequence is uniformly Cauchy and hence uniformly convergent in §. D
For each u G DO, / € S, ί G IR+, we write

Ma, b(t) (u®ψ(f))= lim
n — > o

Clearly each such Ma,b(t) is a well-defined linear operator on § with T>0<§)
and the process Ma^ = (Ma^(t),t G R+) is adapted.

We denote each Ma^(t) by

//
α 0

and note that the integral is linear in each of the three arguments Ej(j = 1, 2, 3).
We now introduce some families of Borel measures which we will employ in

the sequel. Fix x9 y G §ι and with regard to the notation used in (2.5) and (2.6)
define for each f,g G &,t G 1R+,F G

K(F) (/, « 0 - ^(/, g9P(F)x9P(F)9P(F)y 9
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(wherein E4 is taken to be identically zero and to save the notation becoming too
clumsy, we have suppressed the /l-dependence of K through the operators Ej(t,λ)).

Let A be any adapted process in § and let u,v £ ξ>Q9 then fF(A(t)(u®
ιl/(f)),K(dλ)(f,g ,t)(v®\l/(g))) is a finite Borel measure on IR.

Define a further family β( )(/; t) of finite Borel measures on IR by

) = β ( x 9 y 9 f 9 P ( F ) 9 t ) 9

where β is defined by (2.9) and observe that by (2.8) we have

\\K(F)(f,f,t)\\ £ 2 ( 3 φ ( s ) ) l / 2 β ( F ) ( f 9 t ) . (3.3)

Similarly if we define for each h G έf, j = 1,2,

then ((Ll( ) ( f \ t ) ( u ® \ l / ( f ) \ L 2 ( )(#;00 ® *K#)))> is a finite Borel measure
on R and defining the finite Borel measures γ( )(/, 0 by

where y is defined by (2.11) we find by (2.10) that

\ \ \ L ( F ) ( f , t ) ( u ® ψ ( f ) ) \ \ \ 2 £ 2 φ ( t ) y ( F ) ( f , t ) . (3.4)

Finally we define a family τ( )(/;£) of finite Borel measures on IR by

τ( ) (/; 0 - 12 JS(R) (/; ί) j8( - ) (/; 0 + 2 γ( - ) (/; ί) . (3.5)

Lemma 3.3. For each φ G §,M G T>o,/,#,^ G 5^,ί G 1R+ w

ίί(φ9E(s9λ)(u^^(f)))(g(s)9P(dλ)h(s))ds < oo
o «

whenever E is admissible on [a, b].

Proof. Using the Schwarz inequality and the admissibilίty criterion we find

f f ( φ 9 E ( s , λ ) ( u ® ι l / ( f ) ) ) \ \ P ( d λ ) h ( s ) \ \ l l d s
0 0

^ ί | | φ | | sup sup \ \ E ( s , λ ) ( u ® ψ ( f ) ) \ \ sup || A(s) ||| .
a^λ^b O^s^t Q^s^t

Hence, by the polarisation identity, the integral in the statement of the lemma is
also finite. D

Theorem 3.4. For each t G R+,w, v G ΐ>o,f,g G £f we have

(i) (u®ψ(f\Ma,b(t)(v®ψ(g))) = \$(u®ιlι(f\K(dλ)(f,g ,s)

"x(υ®ψ(g)))ds. (3.6)
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(ii) If MJ

a b are processes of the form (3.1) with respect to the admissible

triples Ej

k(j =1,2, k — 1, 2, 3 respectively} then

J
0 a

(3.7)

(iii) For all 0 ^ t ^ Γ, T G R+,

r 6
ffet~sφ(s,λ)τ(dλ)(fιs)ds, (3.8)
o α

Proof.
(i) For simplicity we take £2 and £"3 to be identically zero.

Note that by Lemma 3.3, the right-hand side of (3.2) is finite. Using Theorem 3.2
we find

/ Σ(u®*(f\(f(s\p(%>%M^

where Afπ(0 = Mpn(t)9Pn is the partition {α = λ{j < /l^ < ... < λ^ +1 = Z?} and
eachA; ^μ] ^ λ^(0 ^ j ^ mn).

We then find that

lim I (u <g> ψ(f),Mn(t)(v 0 ^(gf))> - //{« 0 ψ(f)9K(dλ)(f,g;s)(υ 0 ̂ ))) ̂
w~^°° Oα

<; lim / 1 («®^(/),|Σ(/ω^α;^+ιW^ι(^^)(^^^^n~^°° o [y-o

* V
-f(f(s)9P(dλ)x)El(s9λ)(v^ψ(g))) } I ̂

J

= 0, where the interchange of limit and integral is justified by the dominated con-
vergence theorem.

(ii) is proved similarly.
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(iii) Arguing as in the proof of Lemma 3.1 and using (3.7) yields

= J{2 Re(Mfl, b(s) (u ® ̂ (/)), fK(dλ) (/, /; s) (u

\ K ( d λ ) ( f 9 f s)(u®ψ(f)) |

0 α

The required result now follows on using the estimates (3.3)— (3.4), the definition
(3.5) and the fact that if m is a finite measure on [a, b] and / € £2([α, 6], m), then

/ f t \ 2 *
[ f f ( λ ) m ( d λ ) \ ^m(a,b)f\f(λ)\2m(dλ). D
v /

Using (3.8) and a similar argument to that in [HuPa 1], it is easily deduced that for
each u G DO,/ Ξ ,̂ Γ G R, the map ί — > Ma,b(t)(u 0 ^(/)) is continuous from
[0,Γ] into §.
Let £" = (E(t,λ\t e 1R+,1 G R) be a family in §. We say that it is strongly ad-
missible if

(i)
(ii) E is l-continuous on the whole of IR.

(iii) For each u G DO,/ € «9*,f € R+ the map
A -> sup || ^(j,λ)(M 0 ιA(/)) I I from R to R+ is bounded.

O^s^t

Lemma 3.5. Let Mα? j, Z?e ί/z^ stochastic integral of a strongly admissible triple,
then for each u G T>0,/ G ,̂ί 6 R+,

lim lim Mα b ( t ) ( u 0 *K/)) β^wto m § .
α — >• — co 6— »oo '

Proo/ Let c > b > a, then it is easy to see that

Mfl,c(0 = Mfl>&(0 + MM(0.

Hence by (3.8), we have for each Γ G R+,0 ^ ί ^ Γ,

2

//
o b

sup
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— » 0 as b, c — > oo, where σ(.) (f, T) = J0 τ(.) (/"; s) ds is a finite Borel measure on
IR. Hence lim Ma(t)(u^^(f)) exists.

—

The other limit is obtained similarly. D

We write M(t)(u ® ψ ( f ) ) = limβ__0olim^_>00Afβ^(0(M ® *K/))> and denote
the adapted process M = (M(t\t E IR+) as in (3.1). In the following we will in-
clude a "drift" term and write

00 t

M(t) = / f{Eι(s,λ) A\ (ds,P(dλ)) + E2(s,λ) Λ(ds,P(dλ))
-ooO t

+ E3(s,λ) Ay(ds,P(dλ))} + fE4(s)ds, (3.9)
o

where E4 G Lfoc(D0,^).
Arguing as in [HuPa 1], we obtain the following generalised quantum Itό product

formula from theorem 3.4 (ii).

Theorem 3.6. Let Mj be processes of the form (3.6) with respect to the strongly

admissible triples EJ

k(j = 1, 2, k = 1, 2, 3 respectively) such that each MJ(t\EJ

k

or t e R+,/l e IR and

sup max sup {|| M\s) ||,|| Efaλ) \\,\\ E4(s) \\J = 1,2, t = 1,2,3,} < oo ,
A6R Ogί^/

M1M2 = (Ml(t)M2(t),t £ 1R+) is then a process of quantum spectral stochastic
integrals with

— oo 0

x

Ml(t)M2(t)=
0

Al(ds,P(dλ)) + [Ml(s)El(s, λ) +El

2(s,λ)M2(s)

E\(s,λ)E\(s, λ)] Λ(ds,P(dλ)) + [Ml(s)El(s, λ)

El (s, λ)M\s) + El (s, λ)El(s, λ)]Ay(ds, P(dλ))}

o

El(s,λ)EΪ(s,λ)(y,P(dλ)x)}ds. (3.10)

Notes, (i) The interchange of integrals in the final term of (3.10) is justified by
Fubini's theorem and f^°ooE^(s,λ)E2(s,λ)(y,P(dλ)x) is a standard #(ί))-valued

integral.
(ii) It is tempting to introduce the simplified notation for (3.9) of

dM(t) = / (E,(t,λ) Al(dt,P(dλ)) + E2(t,λ) Λ(dt,P(dλ))
— 00

+ E3(t,λ)Ay(dt9P(dλ))}+E4(t)dt. (3.11)

Using this notation we can write (3.10) in the following simpler form

t) + dMl(t) - dM2(t),
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where the term dMl(t) dM2(t) is evaluated by bilinear extension of the rule that
all products of differentials vanish with the exception of

Ay(dt9P(Fl)) Al(dt9P(F2)) = (y,P(Fi ΠF 2)x)Λ,

Ay(dt9P(Fλ)) Λ(dt9P(F2))=Ay(dt9P(Fl ΓΊF 2 )),

Λ(Λ,F(F,)) - Al(dt,P(F2))=Al(dt,P(Fl ΠF2)),

Λ(dt,P(Fι)) Λ(dt,P(F2)) = A(dt9P(Fl ΠF2)),

where F l5F2 G
Despite its simplicity, we will not use this notation in the sequel as it mislead-

ingly suggests that the time integral precedes the spectral one. Although we obtain
some results justifying such an interchange in the next section, it is not guaranteed
that the required conditions hold for the processes we will consider in the final two
sections.

We close this section with a result on the "linear independence" of stochastic
differentials which we will find useful in Sect. 5 below. Let M be a process of the
type described in Theorem 3.6 satisfying the additional condition that each of the
maps

t -> Ej(t9 λ) (u ® ψ(f)), t -> E4(t) (u

is continuous from IR+ into § for j = 1,2,3 and each u G T)Q,/ G &*, λ G 1R.
I am grateful to Martin Brooks for providing the proof of the following

Theorem 3.7. If M(t) = 0 for all t G R+ on D0Θ^(^), then

Ej(t,λ) = E4(t) = 0 on Do 0<ί(^)

/or each j = 1,2,3, Λ, G 1R, f G IR+.

Proof. Suppose that M(t) = 0 for some t G IR+, then differentiating (3.6) yields

Choosing / and g to be continuous and such that f ( t ) = g ( t ) = Q yields
ψ(g)) = 0 as in [Par] Proposition 27.3, p.224.

Now let / be continuous and such that /(/) = 0. By (3.7) we find that

oo

oo

\\E}(t,λ)(tt®φ(f))\\2\\P(dλ)x\\2

2 R e ( E ι ( t , λ ) ( u ® ψ ( f ) ) , E 2 ( t , λ ) ( u ® ψ ( f ) ) ) ( P ( d λ ) x , f ( t ) )
— 00

OO
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Hence each E\(t, λ) = 0. Upon relaxing the restriction f ( t ) = 0, we see that each

Now a standard argument shows that each M(t) is closeable and the restriction
of its adjoint to £>0 ® <^(^) is

M(0f = / J E3(s9λ)*A1ί(ds9P(dλ)x)).
0 —oo

A similar argument to the above then shows that each E^(s,λ) = 0 D

4. Interchange of Integrals

In the last section we constructed, as an adapted process in §, integrals of the form

9 λ ) Λ(ds,P(dλ)
a 0

+ E3(s,λ)Ay(ds9P(dλ))} (4.1)

for the admissible families Ej (j — 1,2,3).
In this section we will demonstrate that it makes sense to interchange the inte-

grals in (4.1). We begin by assuming that for each λ G [ a , b ] 9 j = 1,2,3, Ej(λ) =
(Ej(t,λ),t G K + ) G Σ(D0,5O with respect to the common partition {0 = ί0 < h <
• - < tn — > 00} . In this case we can clearly interchange the integrals in (4.1) to
write

(tn Λ t,μ) a

E2(tn Λ ί,μ)

E3(tn Λ t,μ) a(χ[tnwH+lκ)®P(dμ)y)} . (4.2)

Now for j = 1,2,3 let (Ej \n G N) be sequences of admissible families wherein

each E*jn\μ) G Z(D0,^) and converges to £}(//) G lfoc(XΌ^) in the sense of
(2.1), where each Ej is admissible. Examples of such sequences are not difficult to

manufacture, e.g. take each EJn\t,μ) = FJn\t)fj(μ\ where f j G C(a,b) and FJn} G

with s u s u F w )

1 s ) w ( g ) < oo and lim^^

We define a sequence of stochastic integrals (M^n G N), where each M^b is

defined by (4.2) wherein each Ej on the right-hand side is replaced by EJn\ where
j = 1,2,3 respectively. We then obtain the following

Lemma 4.1. For each u G £>o,/ G ̂ ,ί G IR+, -oo < α < b < oo,

lim MYY(0 (M Θ ̂ (/)) βxw^ in
n-^ oo '
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Proof. Using (3.8) and the admissibility condition we find that

||(M^(0 (u <g> <K/)) - M^W (ii 0 ιK/)))H2 ^ ffe'-'φ^s, λ)τ(dλ) (/; *) <fc ,
0 a

where

Hence

~ sup
0 a^λ^

-» Oas n,m -> oo by (2.1).

The required result then follows. D

We write Ma,b(f) (u <S> ψ(fj) = limπ_ooM^(ί) (u 0 <A(/)). Clearly each Mfl> 6(ί)

is a linear operator in § and the process (Ma^(t},t G IR+) is adapted. We write
for each t G R+,

Eι(s,λ) Ay(ds,P(dλ))}. (4.3)

Theorem 4.2. For each u,v G DO, f->9 £ &Ί t G IR+, we Aαt e

(W 0 i l / ( f ) 9 M a t b ( t ) ( v Θ ̂ ))) - //{ιι 0 ψ ( f ) , K ( d λ ) ( f , g ' , S ) ( v 0 ̂ ))>^ .
0 α

(4.4)

6>/ As in the proof of Theorem 3.4 (i), we take E2 = £3 = 0 and observe that,
by (3.6),

( u ® ψ ( f ) 9 M a t b ( t ) ( v ® ι l / ( g ) ) )

= l^u 0 \l/(f),M™(t)(v

ί b

= lim

Now several applications of the Schwarz inequality yield

0 a

0 a
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ϊ'£ / sup \(u<S>ψ(f),(tfϊ')(s,λ)-El(s,λ))((v®ψ(g)))\\(f(sM\<is
0 a^λ^t

^ Nl IIΆCOII \\χ\\ξ>ι sup
ί

x / sup IIJ^, A) - Efa λ)) ((ϋ ® φ(g))\\ ds
0

V
I

J SUp HC&1 (5, λ) — E\(s,

0 α^Λ^6 J

-+ 0 as « —> oc by the admissibility condition and (2.1), C(0 in the final term
being a positive constant. D

Theorem 4.3. For each -oc < a < b < co, u £ T)0, / £ ̂ 9 t £ IR+, we

= M f l f.

By Theorems 3.3(i) and 4.2 we have for each u,v e ΐ>o,f,g E ,̂

(tt ® ψ(f)9 (Ma, b(t) - Ma, 6(0) (V 0 lK0))) ^ 0 ,

and the result follows from the fact that £>o£> (̂̂ 0 is dense in § D

These results are extended to the case a = -00,6 = oc by taking limits as in
Sect. 3 under the strong admissibility hypothesis.

5. Quantum Stochastic Differential Equations and Dilations of Semigroups

Let {Lj(λ),λ e IR} for j = 1,2,3 be families of linear operators in §0 and assume
that for each j — 1,2,3 we have

(i) Lj(λ) e 5(§o) for each λ G IR.
(ii) The map λ -+ L}(λ) is strongly continuous.

(iii) supλ€R||Lχλ)|| < oc.

Our first goal in this section is to investigate the existence of solutions to stochastic
differential equations of the form

00 t

X(t) = I + / j{X(s)L{(λ) Al(ds,P(dλ))+X(s)L2(λ) Λ(ds,P(dλ))
-ooO

+ X(s)L3(λ) Ay(ds,P(dλ))} + fX(s)L4dt , (5.1)
o

where I4 G #(§o) Note that we will write all subsequent SDE's in integrated form
as in (5.1) to avoid the notational difficulties discussed at the end of Sect. 3.

We take T)Q herein to be the whole of §o Where convenient we will use the
notation L4(λ) — L4 for all λ 6 IR.

Theorem 5.1. There exists a unique adapted process X = (X(t), t £ R+) satisfying
(5.1)
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Proof. We first show that we can define a sequence of stochastic integrals induc-
tively by

00 ί

Xn(t) = I + / f(Xa.ι(s){lι(λ) Al(ds,P(dλ)) + L2(λ) Λ(ds,P(dλ))
— oo 0

+ L3(λ) Ay(ds9P(dλ))} +Xn,l(s)L4ds).

We must show that each of the families Xn(t)Lj(λ) is strongly admissible. In fact
we will prove a slightly stronger result namely that each Xn( )Lj(λ) e Z,foc(ϊ>o,^),
that the map λ — > sup0<s<t\\Xn(s)ALj(λ)(u ® φ(f))\\ is bounded and that the
family Xn(t)ALj(λ) is 1-continuous on 1R for all A G #(§0), M G DO» / € ^,
7 = 1,2,3,4.

We demonstrate this by induction. It follows from conditions (i) to (iίi) above
that it holds for n — 1 . Suppose now that it holds for n — 1 . Square integrability is
established by a similar argument to that of [HuPa 1], Proposition 7.1.

To show the continuity condition we use (3.8) to find that for each T G 1R+,
7 = 1,2,3,4,

sup \\Xn(s)A (Lj(λ) - Lj(v)) (u ® ιK/))H2

O^t^T

£ sup / / e

x τ(dμ)(f,s)ds .

By hypothesis each of the maps μ -+ supQ^t^T\\Xn-\(s)A(Lj(λ) — Lj(v))Lk(μ)(u 0
is bounded and continuous. Hence we obtain,

sup \ \ X n ( t ) A ( L j ( λ ) - L j ( v ) ) ( u ® φ ( f ) ) \ \ 2 ^eΓfτ(K)(f,s)ds.
O^t^T 0

x sup max sup \\Xn^(t)A(Lj(λ)-Lj(v)H(Lk(μ)u)^ιl/(fm2

from which the required result follows.
The boundedness condition is proved similarly.
To establish convergence of the sequence of iterates, we again argue as in

[HuPa 1] above and using the estimate (3.8) we find that for 0 ^ t ^ Γ, u G §o,

T)(T\

-y max sup \\Lh (/)•
n\ ι . . . 4

where D(T) > 0 is constant.
Hence for n,m G N,

sup

π f 1̂
^ Σ ^ max sup||Lyια)|| sup||L7,.α)||

r=/ιι+l ll^b-.,7^4;GlR ;eIR J

0 as n,m — > oo.
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Hence (Xn(t)(u®ψ(f)))new converges uniformly in § on [0, Γ] and the solu-
tion to (5.1) is given on §o®A^O by

X(t) (u ® ψ(f)) = lira Xn(t)(u ® φ(f)).
n—»oo

The A-continuity of each of the families X ( t ) L j ( λ ) is established by an ε/3 argu-
ment. The boundedness condition is easily established using the above estimates.

Uniqueness is proved by a similar argument to that of [HuPa 1] D

In the sequel we will take y — x in (5.1).

Theorem 5.2. A necessary and sufficient condition for the solution of (5.1) to
consist of unitary operators in ξ> is that there exists a family {W(λ\ λ G R} of
unitary operators on §o and a self-adjoint operator HQ G #(§o) such that for each
λ G R,

L2(λ) = W(λ) - 19

L$(λ) = —L\(λ)* W(λ)9

1 00

L4 = i HQ - - / L^λγi^λ) \\P(dλ)x\\2 .
^ —00

We omit the proof as it goes along the same lines as the corresponding result in
[HuPa 1], making use of Theorem 3.6 and Theorem 3.7. We note that condition
(Hi) above guarantees the existence and boundedness of the #(§o)-valued integral
appearing in the expression for £4.

From now on we will write L in place of L\ and denote the solution of (5.1)
by U = (U(t\ t G 1R+) whenever it is unitary. Let j/ be a *-subalgebra of #(§o)
(We can, of course, take j/ to be the whole of £(§o) )

We define a quantum stochastic flow J — ( j t , t G R+) where each jt maps stf
into B(ξ>) by the prescription

jt(ά) = U(t) a U(tY (5.2)

for each a G j/, t G IR+.
A standard calculation using Theorem 3.6 shows that each jt(a) satisfies the

SDE
00 /

jt(ά) = α + / f{js(aλ(a))Al(ds,P(dλ)) +js(βλ(a))Λ(ds,P(dλ))
-oo 0 t

+ js(yλ(ά))Ax(ds9P(dλ))} + fjs(δ(a))ds9 (5.3)
o

where for each λ G 1R,

aLλ(a) = L(λ) a - W(λ) a W(λ)* L(λ),

βλ(a) = W(λ) a W(λY - a,

yλ(a) = a L(λ)* - L(λ)* W(λ) a W(λ)* ,

δ(ά) = i [HQ, a]

-- J {L(λ)*L(λ)a - 2L(λ)*W(λ)aW(λ)*L(λ) + aL(λ)*L(λ)}\\P(dλ)x\\2

2 -oo

(c.f. [Hud]).
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It is usual to assume that the operators L(λ\ W(λ) and H$ are such that each
of the structure maps α;.,/^,γ;v and δ preserve the algebra j/.

Now take j/ = B(ξ>Q\ let EQ denote the vacuum conditional expectation on,
B(ξ>) and T = (Tht G 1R+) be the norm continuous quantum dynamical semigroup
on B(ξ)o) whose infinitesimal generator is δ, then we have a "stochastic dilation"
of T by

Tt(ά) = E0(Λ(*)) (5-4)

for each t £ R+,α G £(§o)
We can construct a "coarser" dilation of Γ as follows. It is a consequence of

the work of Lindblad [Lin] that there exists a sequence (Mn,n G N) in #(δo) with
st-limw_*oo Σ=oMΓ M* < °° such that

5 ( a ) = / [//o , a] + - E (K M, a - 2 Mw* α Λ/n + α MΛ* MΛ ) ,
2 y=0

so that Γ can also be dilated using the technique of [HuPa 2]. We observe that
there appears to be no direct construction of the Mn's from the L(/l)'s.

We conclude this section by examining a class of mixed stochastic differential
equations in which the formalism of [HuPa 1] is combined with ours. To this end let
x, y,w,z e §ι, (EjJ = 1,2,3) be strongly admissible families and Fj G Zq
for j = 1,2. Consider the stochastic integral, M = (M(t), t G 1R+) given by

M(t)=Mι(t)+M2(t),

where

0

oo t

M2(t)=
-00 0

+ E3(s,λ)Ay(ds,P(dλ))}.

Recalling the notation of (2.7) and (3.8), we write for each t G IR+, / G ίf ,

We obtain the following

Lemma 5.3. For each 0 ^ t ^ Γ, u G T>0? f

£je'->ζ(s)p(f,s)ds. (5.5)
0
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Proof. Using (2.4) and (3.8) we obtain

f2| |A/2(/)(«c

T oo

)ds + 2 f / et-sφ(s,λ)τ(dλ)(f\s)ds
0 0 -oo

Γ T

o o λeR
r

^ / e'~5ζ(s) ρ ( f , s ) ds as required . D
o

Let LO G £(§o) and w G Si with P(G)w - 0 for all G G #(R). We take L(λ), W(λ)
(where λ G R) and HQ to be as in the statement of Theorem 5.2. The following
result is a straightforward extension of Theorems 5.1 and 5.2, where, in the existence
proof, we use the estimate (5.5) in place of (3.8).

Theorem 5.4. There exists a unique unitary operator valued process U = (U(t), t G
which satisfies the SDE

t
U(t) = I + f(U(s)LQ dAl(s) - U(s)L% dAw(s})

o

— oo 0

- U(s)L(λ)*W(λ)Ax(ds,P(dλ))}
t 1 1 00

+ / U(s){i HQ - -LI lolkH 2 - - / L(λγi(λ)\\P(dλ)x\\2} dt. (5.6)
0 Z Z -oo

6. Levy Flows on Algebras

Let X = (X(t\ t e R+) be a Levy process defined on a suitable probability space
(£2,5,P). For simplicity we will assume that the Levy measure v of X is finite so
that, for each t G R+ we have the Levy-Itό decomposition

X(t) = mt 4- σB(t) + / / xN(dt,dx), (6.1)
0 R-{0}

where m,σ G IR, B — (B(t\ t e IR+) is a standard Brownian motion and N is a
Poisson random measure on IR+ x (R — {0}) which is independent of B.

We realise X in Γ(I2(R+,§ι)) as follows (see [Par] p. 152-62). Using the no-
tation of Sect. 5 above, choose w e f)\,x G Dom(7) such that, ||w|| = 1, P({0})w =
w and .P(IR — {0})x = x. We fix the Levy measure v by defining

v(G) = (x, P(G) c), where G G ^(R - {0}).
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Now define an adapted process X = (X(t\ t e K + ) in Γ(Z,2(K+, $0) by

X(t) = mt + iσ(a(χ[0,t) 0 w) - a\χ[Q^ <g> w)

+ «f(Z[o,o Θ Et) + λ(χ[0i/) Θ Y ) + α(χ[0,/) ® HO + *(*, HO - (6.2)

In fact each ^(ί) is essentially self-adjoint on <f(^) and for each t € 1R+, j> E IR,
we have the Levy-Khintchine formula (ι/^(0), exp(z yX(t)c)

- exp \ t I imy - \σ2y2 + f (e^ - 1) v(<fo)} \
( V 2 R-W / J

(where c denotes closure), so that X is indeed an operator-valued realisation of X.
We observe that we have the following decomposition of X:

t
X ( t ) ~ mt + / iσ(dAw(s) -

o

— oo 0

+ (jc,P(ί/Λ)jc)^}. (6.3)

Comparing (6.3) with (6.1), leads us to introduce the notation

dB(t) = i(dAw(t) - dAl(t))
and

N(dt,dλ) = Al(dt,P(λ)) -f Λ(dt,P(dλ))+Ax(dt,P(dλ)) + (x,P(dλ)x)dt .

We will construct quantum stochastic flows on a *-subalgebra A of B(&Q) which
are driven by X. To this end, let L be a bounded skew-adjoint operator on
§o/ H a bounded self-adjoint operator on §0 and T a not necessarily bounded
self-adjoint operator in §o Consider the strongly continuous one parameter uni-
tary group {W(λ\λ G 1R} on §0? where each W(λ) = exp(UΓ). If we take each
L(λ) = W(λ) - 1 and H0 = mH + (jc, sin(Γ 0 7)jc) then the conditions (i) to (iii)
given at the beginning of Sect. 5 are all clearly satisfied. Hence by Theorem 5.4,
we can assert the existence of a unique unitary operator valued solution to the SDE

t / / i \ t
I + f U ( s ) ( (imH+-σ2L2 ) ds 4- fσU(s)LdB(s)

o \ \ 2 / o
oo / \

+ / fU(s)(W(λ)-I)N(ds,dλ)) (6.4)
-oo 0 /

(c.f. App[2]).
If we now assume that [//,.]» \L,.} and each W(λ)(.)W(λ)* preserve j/, we

obtain a quantum stochastic flow J — (jt,t G IR+) on stf by the prescription (5.2).
A slight extension of (5.3) then yields

jt(ά) = a + f{imjs([H,a]) + \<?js([L, [L,a]])}ds

σfj,([L,a])dB(s)+ / fMW(λ)aW(λ)*-a)ti(ds,dλ), (6.5)
0 -oo 0
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and we have a dilation of the semigroup with generator

1 00

δ(a) = im [H,a] + -σ2[L, [L,a]] + / (W(λ)aW(λ)* - a)v(dλ) .

We regard (6.5) as a generalisation to arbitrary *-subalgebras of £(§o) of the
Levy flows of diffeomorphisms of manifolds constructed in [ApKu]. In the latter
case §o is the intrinsic Hubert space of a manifold and j/ the algebra of smooth
functions with compact support (see the discussions in [App 2] and [Mey]). An
obvious generalisation of the results of this section would be to consider arbitrary
Levy measures. This requires us to extend the results of Sect. 5 to construct unitary
operator valued solutions of SDE's driven by infinite series of quantum spectral
stochastic integrals. The details will appear elsewhere.

We observe that the methods developed herein can also be applied to obtain a
larger class of the "quantum Levy flows" described in [App 1].

Acknowledgement. It is a great pleasure to thank Robin Hudson for valuable comments on an
earlier draft of this paper and Martin Brooks for correcting a number of errors.
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