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Abstract: We construct multi-string solutions of the coupled Einstein and Abelian
Higgs equations so that the spacetime is uniform along the time axis and a vertical
direction and nontrivial geometry is coded on a Riemann surface M. We concentrate
on the critical BogomoΓnyi phase. When M is compact, the Abelian Higgs model is
defined by a complex line bundle L over M. We prove that, due to the coupling of
the Einstein equations, the Euler characteristic of M and the first Chern number of
the line bundle L identified as the total string number impose an exact obstruction
to the existence of a string solution. Such an obstruction leads to some interesting
implications. We then study the existence of multi-string solutions which can realize
a prescribed string distribution. We show that there are such solutions when the local
string winding numbers do not exceed half of the total string number. When M is
noncompact and globally conformal to a plane, we show that the energy scale of
symmetry breaking plays a crucial role and there are finite-energy radially symmetric
string solutions realizing a given string number if and only if the symmetry breaking
scale is sufficiently small but nonvanishing. Finally, we obtain finite-energy multi-
string solutions with an arbitrary string distribution and associated local winding
numbers. These solutions are not radially symmetric and are regular everywhere
and topologically nontrivial so that both the energy of the matter-gauge sector and
the energy of the gravitational sector viewed as the total Gauss curvature of M are
quantized.

0. Introduction

Domain walls, strings, and monopoles are interesting topological defects arising as
static solutions of gauge field equations with broken symmetry and nontrivial topol-
ogy. When the Einstein equations are coupled into the theory, these solutions give
rise to various cosmological implications. Cosmic strings are static solutions of the
coupled Einstein and Yang-Mills-Higgs equations so that the spacetime is uniform
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along the time axis as well as a vertical direction. When the gauge group is Abelian,
the system represents the coupling of gravity and a condensed matter system (super-
conductivity). In this framework, cosmic strings are static vortex-like solutions
which are believed to be relevant in the theory of galaxy formation in the early
universe [Kl, V, G,W,Gr]. A basic perception is that cosmic strings might generate
the necessary density perturbations and curvature concentrations from which galax-
ies evolve. For a comprehensive but nontechnical survey article, see [K2]. See also
[Bra].

The main purpose of this paper is to construct cosmic strings solutions of the
coupled Einstein and Abelian Higgs equations in the BogomoΓnyi phase. These
solutions realize an arbitrarily prescribed string distribution.

It may be instructive to recall that, in the absence of gravity, the Abelian Higgs
action density in suitably normalized units is given by the expression [NO, JT]

<g = l-FμvF^ + l-(Dμφ}(D»φγ + ^(\φ\2 - ε2)2 ,

where φ is a complex scalar, Aμ a real vector potential, Fμv = dμAv — dvAμ the
Maxwell field tensor, Dμ = dμ — iAμ the gauge-covariant derivative, the flat Mink-
owski metric diag(—1,1,1,1) is used to raise or lower indices, and the constant
ε > 0 measures the energy scale of symmetry breaking of the model. The dimen-
sionless parameter λ > 0 is known to characterize the types of superconductivity.
The case λ < 1 corresponds to type-I superconductivity, while λ > 1, type-II, char-
acterized by the existence of a sublevel critical magnetic field. The situation λ — I
is the intermediate type called the BogomoΓnyi critical phase which is characterized
by a zero surface-energy and only in such a situation can all string-like solutions
be constructed [JT, T1,T2] due to a reduction from the second-order equations to
a first-order system [B]. In this case the vortex or string number TV is a topologi-
cal invariant characterizing the homotopy class of the solutions in the fundamental
group π\(S{) — Z and there are no restrictions to the ranges of the string number
TV and the symmetry breaking scale ε.

In the present paper, it will be seen that some new phenomena take place when
gravity is put into the model through the coupling of the Einstein equations. Since
we are interested in cosmic strings solutions, the Minkowski spacetime takes the

form R1'1 x M, where M may be assumed to be a Riemann surface equipped with
an unknown gravitational metric which will be determined by the coupled Einstein
and Abelian Higgs equations. We will concentrate on the critical BogomoΓnyi phase
λ = 1. The case λή=l is more difficult and will be pursued elsewhere.

The following two types of results will be presented.

I. Exact obstructions to the ranges of TV and ε for the existence of an TV-string
solution. When M is compact, the obstruction is related to topology. When M is
noncompact, the obstruction comes from the finite-energy requirement or geodesic
completeness.

II. Existence theorems for multi-string solutions. We aim at getting static reg-
ular solutions that can realize a prescribed string distribution. These solutions are
nonradially symmetric, thus, may not be obtained by a dynamical system approach.

In Sect. 1, we consider the case that M is compact. In this circumstance the
Abelian Higgs sector is defined by a complex line bundle L over M and the string
number is the first Chern number of L. The bundle L reflects the magnetic excita-
tion pattern of the gauge and matter fields. We show that the Euler characteristic
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χ(M) of M and the first Chern number c\(L) of L or the string number N impose
an explicit constraint on the symmetry-breaking parameter ε for the existence of
a solution. Under our notation there, the constraint reads χ(M) = 2πε2GN, where
G is Newton's gravitational constant. This equation relates the topology of the
underlying gravitational surface M to the topology (N = \c\(L)\) of the magnetic
excitation pattern of the matter-gauge sector. In particular, we observe that there are
only countably many values of ε accumulated at ε = 0 to permit the existence of
cosmic strings. We then state some existence results for multi-string solutions. For
the prescribed string problem, our sufficient condition for existence requires that the
local winding numbers do not exceed half of the total string number N.

In Sect. 2, we consider the case that M is noncompact. We shall assume that

M is conformally R2. We have already found in [CHMcY] that, for self-dual equa-
tions [CG, L], the energy scale of symmetry breaking imposes an obstruction to the
string number N. We shall prove the equivalence of the self-dual equations and the
second-order Einstein and Abelian Higgs equations under the cylindrical symmetry
assumption, regardless of the asymptotic behavior of the metric. Therefore we arrive
at a true obstruction to the topological charge N for finite-energy cosmic strings.
Roughly speaking, the obstruction is less stringent for small scales of symmetry
breaking. This observation raises the question whether there are string solutions
when symmetry is restored. We shall show that then, there will be no finite-energy
string solutions. There, again, we state an existence theorem for multi-string solu-
tions. The basic assumption reads N ^ l/2πε2G which imposes no restrictions to
the local winding number. The borderline N — \/2πε2G is a special situation that
the choice of a background metric becomes crucial, which signals the appearance of
some obstructions when N is large or gravitation is strong (large G). In particular,
beyond this barrier, metric incompleteness will occur.

Section 3 studies what happens when strings are absent. We will show in the
compact case and for the general coupling parameter λ > 0 that in this situation
there will be only trivial solutions and M must be a flat torus. In other words, the
absence of string defects implies the absence of gravity.

Section 4 is a proof of the existence theorem for multi-string solutions on a
compact Riemann surface M. The Einstein equations reduce to a scalar equation
relating the unknown Gauss curvature of M to the energy density of the Abelian
Higgs sector while the string or vortex equations are sitting in the unknown grav-
itational background. In such a setting, prescribing TV strings is like prescribing a
Gauss curvature through the influence of matter-gauge fields, while the former also
determines the latter through the background metric. We use a standard device to
reduce the unknown metric to an unknown conformal factor. Under the topological
constraint χ(M) = 2πε2GTV, we can combine the Einstein and Abelian Higgs equa-
tions into a single elliptic scalar equation with an adjustable free parameter which
may be used to get a subsolution as was done earlier in a different problem [CY].
The difficulty in getting a classical supersolution forces us to introduce a <5-perturbed
version of the equation. We then pass to the δ —> 0 limit of the solution sequence
of the (5-equations. There we see that, in order to acquire Lp-convergence for some
p > 1, we need to assume that the local winding numbers are all below TV/2. In
particular it follows that, when N ^ 3, there are N-string solutions over M if and
only if the condition χ(M) = 2πε2GTV holds.

In Sect. 5, we prove the existence of multi-string solutions on a conformally flat
surface. Again the method is to construct sub/supersolution pairs for a family of
(5-regularized equations. It is interesting to observe that the condition TV g l/2πε2G
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plays crucial roles both locally at the string axises in order to achieve an Lp-
convergence ( / ? > ! ) and asymptotically at infinity in order to make an adjustable
term dominant to allow the existence of a special subsolution. Note that, here, we
do not have a suitable variational principle to work with.

In Sect. 6, we complete our proof of existence by showing that the solutions
obtained in Sect. 6 are of finite energies. More precisely, we establish sharp decay
estimates for the physical quantities at infinity when TV < l/2πε2G. The solutions are
in the category that the Higgs field approaches the asymmetric vacuum \φ\ = 1 at

infinity. Nevertheless, the gravitational metric vanishes asymptotically like r~4πε GN

which results in the property that the Gauss curvature, the magnetic field, the kinetic
energy of φ, and the Higgs potential all go to zero at infinity faster than any power
function of the type r~b (b > 0). Hence both the total curvature and the Abelian
Higgs energy are quantized. At the borderline N — l/2πε2G, our estimates still
ensure curvature and energy quantizations and metric completeness.

In a broader sense, this work is related to the problem of constructing regular
static solutions of the Einstein equations coupled with matter and gauge fields. It
is well known that the Schwarzschild blackhole is the only solution of the vacuum
Einstein equations which is singular somewhere. When coupled with the Maxwell
equations, the only solution is the Reissner-Nordstrom solution which is again sin-
gular somewhere. Recently, it is shown in [BMc, SWYMc] that, when the Einstein
equations are coupled with the SU(2) Yang-Mills fields, there exist static regular
solutions. All the above-mentioned solutions are radially symmetric. Our solutions
constructed here are all static finite-energy regular solutions. Besides, they are non-
radially symmetric and carry nontrivial topology.

It has been observed in [BMc] that the existence of regular static solutions of
the coupled Einstein and Yang-Mills equations in three space dimensions indicates
that the weak gravitational effect cannot be neglected. The obstruction theorems in
the present paper provide further evidence to the above observation. For example,
the inequality TV ^ l/2πε2G in the noncompact case imposes a very weak upper
threshold to admissible string numbers N since G is a small quantity. However,
because GφO, such a constraint must not be ignored in order to avoid energy
blow-ups. There is no such a phenomenon when gravity is absent [JT].

1. The Case of a Compact Surface

We divide our discussion into three subsections. We first introduce quickly the cou-
pled Einstein and Abelian Higgs equations in the aforementioned two-dimensional
setting of current interest. We then establish an obstruction theorem and point out its
important consequences. Finally we state our existence theorem for the prescribed
string solutions.

1.1. The Governing Equations. We begin by assuming that gμv is a general metric
tensor with signature (—h ++), Rμv the Ricci tensor, and R the scalar curvature.
Recall that the Einstein tensor takes the form

^μv ~ -K μv 'ϊϊdμv K .

In order to define the Abelian Higgs sector properly, we need to work in a
frame-work in which the Higgs field φ is a cross-section on a t/(l)-line bundle
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L over the spacetime and the gauge field, say A, is a connection 1-form. Suppose
that h is a Hermitian metric of L and {(Uy.,e%)} is such an atlas of local trivial-
izations of L that e% satisfies h(e^e%) = 1, Vα. Let 0α be the local representation
of φ on Uyr : φ = φ^e^. Then we have h(φ,φ) = \φχ 2 which is obviously a local-
chart-independent scalar field, thus, may conveniently be denoted by \φ\2. Therefore,
using local coordinates and local representations, we can write the Abelian Higgs
action density at the BogomoΓnyi phase λ = 1 in the form

^ - \gμμgvvfFμvFμ,v, + ̂ gμv(Dμφ)(Dvφγ + l-(\φ\2 - ε2)2 ,

where and in the sequel we also allow the vanishing of the symmetry-breaking
parameter, ε = 0, to include in the model the restoration of symmetry. Note that,
in the above expression and subsequent discussion, we suppress the subscript "α"
when there is no risk of confusion, and that, D is the covariant derivative induced
from the gauge connection A and F = άA is the curvature of A or the Maxwell
field. The presence of the gravitational metric gμv indicates the influence of gravity.

The Einstein equations coupled with the Abelian Higgs model are l

Gμv = — 4πG Tμv,

]) = kψι 2 -e 2 )Ψ,

where G is Newton's gravitational constant (or more precisely a dimensionless
rescaling factor of the gravitational constant) and

Γμv = 9μvFμμ,Fn,, + -([Dμφ](DvφT

is the energy-momentum tensor of the Abelian Higgs sector obtained by varying
the gravitational metric.

We assume that the spacetime is uniform along the time axis x° and the x3-
direction so that the line element takes the form

ds2 - s^dxW

= -dt2 + dz2 + gikάxjάxk, j,k=\,2,

where t—xQ,z—x^, and 0β is the Riemannian metric tensor of an orientable
2-surface M (without boundary), and that Aμ, φ depend only on the coordinates
on M and

Aμ = (Q9Al9A2,Q).

1 In literature, the matter-coupling factor 4πG in the Einstein equations is often written 8πG.
Here we still use 4πG in order to be consistent with our notation in [CHMcY].
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Then Tμv is simplified to

ΓQO = $, Γ33 = — <f , Γ03 — Γ0y = Γ3/ = 0 ,

7> = /*>,/**/ + i([£7(/>][ZW + [Dyψr lAfl) - gjkδ ,

where
7 - ε2)2

is the energy density of the Abelian Higgs sector which is now defined by the line
bundle L restricted to the 2-surface M. The Maxwell field F^ represents the first
Chern class, of course. Besides, if we use Kg to denote the Gauss curvature of
(M, {0jk}\ the Einstein tensor reduces under local isothermal coordinates into the
form

-GOO = £r33 = Kg ,

Gμv — 0 for other values of μ, v .

As a consequence, the system becomes the following two-dimensional Einstein and
Abelian Higgs equations on M:

*'* v^*') = 9Jk(Φ[DkΦT - Φ*[Dkφ]) , (1)

where g also stands for the determinant formed from {gjk}

1.2. The Obstruction Theorem. The system (1) describes the interaction of the
gravitational and gauge-matter sectors confined in a two-dimensional space. We will
see that these two sectors are so strongly coupled that, topologically, they totally
determine one another. In fact, the first Chern number

classifies the line bundle L up to isomorphisms which clearly indicates the magnetic
excitation pattern of the theory because the integer N = c\(L)\ is the number of
magnetic strings through M, identified as the algebraic number of zeros of the order
parameter φ. On the other hand, the Gauss curvature Kg reflects the topology of
M and measures the gravitational strength, which, by the first equation in (1), is
determined by the energy distribution of the matter and gauge fields. Thus it is clear
that there must be a link between these structures through the coupling of gravity
with the matter-gauge fields such as that given in (1).

More precisely, calling a solution of (1) with |cι(£)l = N an TV-string, we have
the following basic result.



Prescribing Topological Defects 547

Theorem 1.1. Given an integer N ^ 0, there exists an N-string solution for the
Einstein and Abelian Hίggs equations (I) on a line bundle L equipped with a cer-
tain Hermίtian structure over an appropriate compact Riemann surface M, only
if the string number N, the first Chern number c\(L) of L, the Euler character-
istic χ(M) of M, the symmetry-breaking parameter ε > 0, and the gravitational
coupling factor G satisfy the exact relation

χ(M) = 2πε2GN = 2πε2G\cl(L}\ . (2)

Furthermore, if N ^ 3, the condition (2) is necessary and sufficient for the exis-
tence of an N-string solution. In any case, the solutions o/(l) can all be obtained
from a self-dual or anti-self-dual system in which the matter-gauge equations are
all of the first order.

Before going into the proof of the above theorem, we would like to point out
some of its interesting implications.

1. The Unique Topology of the Underlying Surface. It is well known that a com-
pact orientable 2-surface M is topologically a sphere with n handles and the num-
ber n is called the genus of M. The Euler characteristic satisfies the equation
χ(M) = 2-2n (see e.g. [NS]). Thus the relation (2) implies that the only pos-
sible situation we may have so that the Einstein and Abelian Higgs system (1)
has a cosmic string solution is given by n — 0. In other words, the 2-surface must
be diffeomorphic to the Riemann sphere S2 and all other geometries with #ΦO are
ruled out. In particular, the surface M cannot be a torus (n — 1). This result implies
the nonexistence of gravitational string condensation realized by the appearance of
a periodic lattice structure.

2. The Quantization of Symmetry Breaking Scale. Now we use the conclusion
χ(M) — 2 (or n = 0) arrived above and rewrite (2) in the form

β = εN = ^——, N =1,2 , . . . . (3)

We view the gravitational constant G as fixed. Equation (3) says that there are only
countably many levels of the symmetry breaking scale ε for which there may exist
cosmic string solutions, and, when ε is away from those quantized levels, there will
be no strings. In particular, when ε > εi = l/\/ττG, there is nonexistence. Such a
fact seems to suggest that the existence of string solutions prefers lower values of
the symmetry breaking scale ε. Indeed, in (2), the vanishing of ε implies that M is
topologically a torus and (2) no longer presents a constraint to the string number N.
However, we will see that in this case there is no nontrivial solutions. This simple
fact will be established later. Thus, we observe that the existence of cosmic strings
indeed requires symmetry breaking. Such a fact is also true for the noncompact
case.

3. Effective Radius vs. Gravitational Attraction. Finally, since M is topologically a
sphere, we may define the "effective radius" of M, say R^, by setting 4π/ζff = \M\g.
Then we find that RQR has the lower bound

(4)


