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Abstract: The dispersionless Toda hierarchy turns out to lie in the heart of a recently
proposed Landau—Ginzburg formulation of two-dimensional string theory at self-dual
compactification radius. The dynamics of massless tachyons with discrete momenta
is shown to be encoded into the structure of a special solution of this integrable
hierarchy. This solution is obtained by solving a Riemann—Hilbert problem. Equiv-
alence to the tachyon dynamics is proven by deriving recursion relations of tachyon
correlation functions in the machinery of the dispersionless Toda hierarchy. Funda-
mental ingredients of the Landau—Ginzburg formulation, such as Landau—Ginzburg
potentials and tachyon Landau—Ginzburg fields, are translated into the language of
the Lax formalism. Furthermore, a wedge algebra is pointed out to exist behind
the Riemann-Hilbert problem, and speculations on its possible role as generators of
“extra” states and fields are presented.

1. Introduction

Recently a Landau—Ginzburg model of two-dimensional strings at self-dual radius
(i.e., ¢ =1 topological matter coupled to two-dimensional gravity) has been pro-
posed and studied by several groups [1,2,3]. This model is in a sense a natural
extrapolation of the topological A1) model to k£ = —3, and seems to inherit the
remarkable properties of the 4,1 models such as: (i) an underlying structure of
Lax equation [4], (ii) a period integral representation of correlation functions [5],
(iii) an algebraic structure of gravitational primaries and descendents [6], etc. Al-
though the status of the so-called special (discrete) states [7] still remains obscure,
the dynamics of massless tachyons with discrete momenta is shown to be correctly
described in this new framework.

The ¢ =1 model, however, differs from the A,.; (and some other ¢ < 1)
models in several essential aspects. This seems to be eventually due to the dif-
ference of underlying integrable hierarchies. The A;;; models are special solutions
of the dispersionless KP (or generalized KdV) hierarchy [8, 9, 10]. Hanany et al. [2]
suggested a similar link between the ¢ =1 model and the dispersionless Toda
hierarchy [11].
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In this paper, we demonstrate the suggestion of Hanany et al. in the
machinery of dispersionless Toda hierarchy, and search for implications therefrom.
Our basic observation is that the tachyon dynamics at self-dual radius is perfectly
encoded into the structure of a special solution of this integrable hierarchy. In
Sect. 2, we recall fundamental notions concerning the dispersionless Toda hierarchy,
and in Sect. 3—4, reformulate several results of our previous work [11] in a more
convenient form. The aforementioned special solution is constructed in Sect. 5 by
solving a Riemann—Hilbert problem. A set of w;o-constraints (recursion relations)
characterizing tachyon correlation functions are derived from the Riemann—Hilbert
problem in Sect. 6. Since, as remarked by Hanany et al., those w;,-constraints
determine tachyon correlation functions uniquely, we can conclude that our solu-
tion indeed describes the tachyon dynamics. In Sect. 7 we show the existence of
a wedge algebra being the Riemann—Hilbert problem, and propose a speculative
interpretation of this algebra as generators of “extra” states and fields in the ¢ =1
model. Section 8 is devoted to concluding remarks.

2. Fundamental Notions in Dispersionless Toda Hierarchy
The Lax formalism of the dispersionless Toda hierarchy is based on the two-
dimensional Poisson bracket
0A0B 04 OB
A ,B(p,s)}=p——=— — —p— 1
{4(p,s). B(p.s)} Paras 3 Pap (1)

rather than the usual commutators. Fundamental quantities (counterparts of Lax
operators) are two Laurent series ¥ and . of the form

o
L =p+ 3 ui(tls)p™", (2)
n=0
‘vl - . < - -
S o =dop T+ Y (L s)p" 3)
n=0

where the coefficients depend on time variables of flows ¢ = (f1,5,...) and 7=
(f1,62,...) as well as the spatial coordinate s. (We have slightly changed notations
in the previous work [11].) Lax equations of these “Lax functions” are written

0¥ 0¥ -
atn - {*@m 'g}a al;-n - {gn> g} ’
0L _. 0P -
= _— = 7
atn {gn:$}9 c"fn {Qn,g} > (4)

where %, and %, are given by

f@n:(gn)gm @n:(g‘n)é—l 5
( )s0: projection onto p°, p',... ,

( )<—1: projection onto pLp2.. (5)
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Furthermore, given such a pair % and %, one can find another pair of Laurent
series

o0 o0
M=, L s+ S vt 58) L

n=1 n=1
-~ X - ~-n &0 - ~n
M==Y 1, +5s— > vu(t,1,8)L (6)
n=1 n=1
that satisfy the Lax equations

oM oM

= {B,, M — = {B,, MY},
Oty { b ot, { My
Vi oM
O, ey, L= (4, i %
Otn an
and the canonical Poisson relations
(LMY =2, {(L.40\=Z. (8)

It is rather these “extra” Lax functions that play a central role in our approach to
two-dimensional strings.

Before going forward, a few comments on formal residue calculus are in order.
We consider residues as being defined for 1-forms as:

res . ap,z'dz =a_, . (€))

Residues of more general 1-form are to be evaluated by the standard rule of exterior
differential calculus:

o5 / (2)dg2) = res /()00 g (10)

Residues thus defined are invariant under coordinate transformations z — w = h(z)
sending oo — oo or 0 — 0.

We can now define four fundamental potentials ¢, F,. and & as follows.

The first potential ¢ = ¢(z,7,s) is defined by the equation

00 1S54 - -
dp =S res(L"dlog p)dt, — 3 res(L "dlog p)din + logitds (11)
n=1 n=1
where “d” means total differentiation in (z,7,s), and of course d log p = dp/p. The
right-hand side is a closed form as far as ¥ and .# are subject to Lax equations
(4). This potential ¢ satisfies the second-order equation

¢ o

= 4+ = . 12
ot on, | s "9<as> ¢ 41
This is the well known dispersionless (or long-wave) limit of the two-dimensional

Toda field equation.
The second potential F = F(t,1,s) is defined by the equation

dF =Y v,dt, — 3. tdi, + dds . (13)

n=1 n=1



104 K. Takasaki

Again, the right-hand side is a closed form as far as %,.#, % and ./ are subject to
Lax equations (4,7, 8). This potential F' plays the role of a “generating function” —
all other quantities u,, iy, vy, U, and ¢ can be reproduced from F by differentiation
with respect to #,7 and s. This is obviously reminiscent of the role of partition
functions with external sources in usual field theories. In our earlier work [11,
1991], F was defined as the logarithm of the “tau function” of the dispersionless
Toda hierarchy, but it was later recognized that F' is also connected with the tau
function (%, ¢, 7, s) of the full Toda hierarchy by #-expansion [11, 1993]:

log t(h,t,7,8) = B 2F(t,1,s) + O(h™ ") . (14)

The last two potentials & = ¥(t,i,s, p) and & = F(1,1,s, p) can be defined
rather directly as:

S =3 L +slog¥ — > ! a—FQ_" ,
n=1 n=1 1 atﬂ

- X —-—n - © 1 0F -n

S =517 +slog$+¢~zzﬁ$ . (15)
n=1 n=1 n

We call & and.% “potentials” because they can also be characterized as:

) 0o _
d¥ = Mdlog & +log pds + > Budty + > Bdiy ,

n=1 n=1

dP = Mdlog L +log pds + . Budt, + 5. B,di, , (16)

n=1 n=1

where “d” now means total differentiation in (#,7,5) and_p. An immediate conse-
quence of (16) is the following expressions of %, and %,:

> 1 *F
By =L" =Y ~ P
,,Z::l n 0Ot,ot,
PF =1 0*F -,
Otyds 2 n Otyoi, z
- o 1 *F
By = — ~ —n
n=1 "1 atmatn

-m  O*F =1 O*F FL
Otyds =\ n 0t,0f,

(7)

3. Spectral Parameters 4 and 7

We now introduce two new variables A and Z, and reformulate the setting of the
previous section by replacing

L —i L. (18)
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By this substitution, & and & are replaced by

oF
KL = 0) =3 2" + slog 4 — Z > 274 "
n=1 n

X - r—n 1 OF -n
=S i 4slogi+ ¢ — Z—— .
n=1 atn

\;

P (P — (19)
In the language of the full Toda hierarchy, these quantities are just the leading

terms in h-expa_lnsion of logarithm of two Baker—Akhiezer functions ¥ (h,1,1,s,4)
and ¥Y(h,t,1,s,2) [11]:

Y(h,t,i,5,2) = exp[h 'L (L — 1)+ OHR")],
P(h,t,7,s5,7) = exp[h™ ' F (L — 1)+ O(H")] . (20)

The new variables 4 and A are thus nothing but the spectral parameters of the
full Toda hierarchy In the usual setting, actually, one does not have to distinguish
between 4 and 4; in the present setting, they correspond to the two Lax functions
& and &. Furthermore, in our interpretation of the Landau-Ginzburg formulation,
they do arise in a different form as we shall see later. These are the main reasons
that we use the two different spectral parameters.

Similarly, .# and .4 are replaced by

[es) oo aFﬂ
ML — )= nty " +s+ Y, —i7",

n=1 n=1 atn
- - - X _-—n S a =
AP y= =S s S 1)
n=1 n=1

where we have rewritten v, and @, into derivatives of . By comparing (21) with
(19), one can readily find that

0
ME - )=A=L (&L — 1),
04
= 7 =0 - - =
ML — A)Z/»E.y(g—%/i). (22)

These equations can be derived from (16), too.

Lastly, applying the same substitution rule to (17), we can define four quantities
BAL — 1), B L — 1), BL — 1), B P — 7). Equation (16) imply that these
quantities, too, can be written as derivatives of (% — 1) and (& — A):

B(L — 1) = Aiy(z), B(L — )) = i_y(/l) ,
Oty ot,
- - 6 by ~ = s ~ a
BL — 0= —S), B(L — )= (23)
oty Otn
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An immediate consequence of (22) and (23) is the following identities:

ign(y — )= %ﬂ(gf — A,

0/
0 B(L — 1) d ML — I)i!
e - = = LA
oL ot ’
a 7% ~ 6 Py T
— % (L — 4) = —a—,/%(ﬁﬁ — )i,
(4 I
0 - - 0 - - .
———B(L — A) = —= AL — L) (24)
ai ) Ot

We shall show later that these quantities are fundamental ingredients of the Landau-—
Ginzburg formulation of two-dimensional strings.

4. Symmetries of Dispersionless Toda Hierarchy

Given two functions «f = (¥, M) and o = of (L, .4), one can construct an
infinitesimal symmetry 6, . of the dispersionless Toda hierarchy [11]. More pre-

cisely, .7 and .o/ are assumed to be a “good” function, such as a polynomial of

(&, %", M) and (5?,37_1,/%—” ), respectively, with constant coefficients. We here
explain how these symmetries are actually defined, and present several formulas
that we shall use crucially in the subsequent sections.

Let us consider the ring # generated by tf,s,F and all its derivatives. In
this setting, F' and its derivatives have to be considered abstract “symbols” rather
than actual functions of (¢,7,s). By “derivation” we mean a linear map 6 : Z — %
satisfying the Leibniz rule d(ab) = é(a)b + ad(b). One can define the derivations
0/ot,, 0/0t,, and 0/0s as derivations on Z in an obvious manner:

0 0 _ 0

E,;F =Uy, a—t-nF = —Up, &F =9,
it =0 etc (25)
6t,,m_ ams  ---CIC.LL

Differential equations satisfied by F and its derivatives (which include differential
equations of v,, 0, and ¢, too) are thus encoded into these differential-algebraic
structures of £.

The symmetry 6, . is defined to be an additional derivation of # with the
following properties [11]:

e The action of d,, 7 on F is given by

H(L—7) MP—T)
0y JF = — res | S u)du | dlogi+ res J A, p)dp | dlogi.
0 0

(26)
e 5, . acts trivially on £,7 and s as:

5‘(27«y =10, 5%’ 'Jl‘—,, =0, 5'(7/, #S=0. 27)
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e, . commutes with 0/0t,, 9/0t, and 0/0s:

0
[5&{, &> 6_tn] =

The last property implies, in particular, that 6, ; commutes with all flows of the
dispersionless Toda hierarchy, a condition characterizing a symmetry!
Furthermore, these symmetries satisfy the following commutation relations [11]:

[5%(% 5%"%;] za{ﬂﬁ}’{,y/-,_%;} + res(ﬂ(/l,O)dt%’(/l,O)
— A(4,0)d B(4,0))0F , (29)

0 5,
547/, /> -atTn} = 1:5&/, o> a_s:l =0. (28)

where O is yet another derivation on # defined by
OrF =1, Of (any other generator of #) =0, (30)

which accordingly commute with all other derivations 0/0t,, 0/0t,,d/ds and Oy o
Thus an underlying Lie algebra is a central extension of wj;. @ Witoo; NOte that
Witeo 18 now realized as the Lie algebra of Poisson brackets.

The action of J, ot.cd ON other fundamental quantities such as v,, 0, and ¢, etc.
can be read off from the above construction, because they all are derivatives of F.
For v,, 0, and ¢, we have the following formulas (and, actually, the above formula
for F was first discovered by “integrating” these formulas [11]):

8.y V= tes(—l(L, M)+ A(L,A)) dB,
8.y in = tes(+L(L M)~ AL, M)) d B,
8.y 7= tes (=L, M)+ A (L, M)) dlogp . (31)

Furthermore, since .#(¥ — A) and (L — 1) are generating functions of v, and
U, one should be able to rewrite the first two of (31) in terms of these generating
functions. This indeed results in the following formulas:

0

8y, M (L = 1) = b |(HL M) = ALMD) (£ = D)

- - -0 o -
b, WP = 1) = I [(—&/(3,/%)—1— y(g,ﬂ))zo(yez)] ., (32)

where J, ;7 is understood to act trivially on 4 and 4 (i.., 0, ;4 = 0 and 5&/,’9/—/‘_» =
0); inside “[ ]” on the right-hand side, we first take the projection with respect to
powers of p, then reexpand the results into powers of ¥ and % instead of p, and
finally replace them by A and A.

5. Riemann-Hilbert Problem

We are now in a position to apply the general machinery of the preceding sections to
two-dimensional string theory. In this section, we solve a Riemann—Hilbert problem
to construct a special solution of the dispersionless Toda hierarchy. In the next
section, we prove that it indeed describes the tachyon dynamics at self-dual radius
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by showing that its F' potential satisfies wioo-constraints of tachyon correlation
functions.

In general, Riemann—Hilbert problems for solving the dispersionless Toda hier-
archy can be written

L= (LM, M=g L M), (33)

where &,.#, ¥ and ./ are required to be Laurent series of p of the form
assumed in (3,6); f = f(4 u) and g = g(4, 1) (“Riemann—Hilbert data”) are func-
tions satisfying the area-preserving condition

0f 0g Of .0g
‘oo i (34)

(which means that the map (log 4, u) — (log f,g) is area-preserving in the ordinary
sense) and some additional condition on its analyticity. A general theorem [11]
ensures that if (33) has a unique solution, then ¥, .#, ¥ and .# satisfy all rele-
vant equations (4,7, 8) of the Lax formalism. Theoretically, one can thus obtain all
solutions of the dispersionless Toda hierarchy. Practically, explicit solutions of such
a Riemann—Hilbert problem is rarely available. Note that (33) is just a compact
expression of an infinite number of highly nonlinear relations between the two sets
of variables (u,,0,) and (@, 0,) (in which £,7 and s enter as parameters); solving
these equations looks as difficult as solving the hierarchy directly! Fortunately, the
Riemann—Hilbert problem we consider below, is relatively easy to handle.
The Riemann—-Hilbert problem to be considered is the following:

L=dP, P =", (35)

Apparently this does not take the form of (33), but can be readily rewritten in
that form. This non-standard (but more symmetric) expression is rather suited for
recognizing a wedge algebra structure. The area-preserving condition, too, can be
easily checked. This Riemann—Hilbert problem can be solved by almost the same
method as used for the 44, models [10]. Actually, details of calculations are rather
similar to the case of the D, models [12]; the integrable hierarchy underlying these
models, too, has four Lax functions, and Riemann-Hilbert problems take the same
form as (33).

Solving (35) consists of several steps. The first step is to split each equation of
(35) into two pieces by applying ( )z and ( )<_;. This gives the following four
equations:

(Dzo=- ki@ o -m vl 0" G6)
k=2 n=1
X -k
(L)< = —kzzktk(ff i (37)
(L o= k(Lo +1 . (38)
k=2

(@ et = S k(PN 5L 43 0y P (39)
k=2

n=1
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The second step is to decompose each equation into an infinite number of equa-
tions not including p, by taking residue pairing of both hand sides with suitable
1-forms. For instance, by taking the residue pairing of both hand sides of (36,37)
with (i) @op~'dlog p, (ii) p"~'dlog p, (iii) j—nhldlog £, respectively, we can
obtain the equations

_ SN s—k+l 4
iy = — y kit res[ ¥ p 'dlog pl+s, (40)
k=2
7z -n—l1 & g 5—k+1 p]
Uy = —ntyul™ — > ki res[¥ p" dlog pl, (41)
k=n+1

n

By = res[(£)20Z " 'dlog £

o =—k+1 ~—n—1 -
+ > ki res[(& )z0¥ dlog ¥] (42)
k=2
for n =1,2,.... Here trivial equations of the form 0 =0 have been omitted. It

should be noted that this process is reversible, because the 1-forms (i)—(iii) used in
the residue pairing form a complete set. Similarly, from (38,39), we obtain another
infinite set of equations

o0
g =Y. kty res|[L*"'dlogp]+s, (43)
k=2
oo
Uy = nt, + Y. kty res[Z*¥ 1 p~"dlog p], (44)
k=n+1
vy =res[(Z )z 2" dlog £
(o]
~ > kty res[(L* <1 ¥ d log £] (45)
k=2
for n =1,2,.... This process, too, is reversible. Therefore we now have only to

solve these equations for u,,v,,u, and o,.

The third and final step is to solve these equations by Taylor expansion. Equa-
tions (40,41,43,44) include only u’s and #’s. By expanding these unknown func-
tions into Taylor series of (¢,7) at (¢,7) = (0,0), one can convert these equations into
(very complicated) recursion relations of Taylor coefficients. By the standard power
counting method, one can show that these recursion relations uniquely determine
u’s and @’s as:

ug = s + higher order terms,
u, = —nt,s"~' 4+ higher order terms,

U, = nt, + higher order terms (n = 1) . (46)
Once u’s and u’s are thus determined, the remaining two equations (42,45) give

v, and 0, explicitly. Thus our Riemann—Hilbert problem turns out to have a unique
solution.



110 K. Takasaki

The solutions u,,u,,v, and 0, of the above equations turn out to have good
scaling properties. Note that each equation of (35) is invariant under the following
formal rescaling of variables included therein:

ty — ¢ "y, i'n — "ty ,
§—S8, p —>c_1p s

Uy — "uy, iy — ¢ "y,

Up — C'vp, Uy — ¢ M0, 47)

Since the Riemann—Hilbert problem has a unique solution, this means that u,, ,, v,
and 7, indeed have the above scaling property as functions of (4,7,s). In other
words, if we define a weight (U(1)-charge) of ¢,7,s as

Wi(ty) = —n, wt(f,) =n, wi(s)=0, (48)

then u,,u,,v, and v, become quasi-homogeneous functions of degree n, —n,n and
—n, respectively. Accordingly, the functions ¢ and F, which are defined by (11, 13),
become quasi-homogeneous function of degree 0.

Three remarks are now in order:

First, we have in fact two equations (40) and (43) that include %, as a main
term; apparently this is redundant. Actually, one may select one of them arbitrarily,
and solve them along with (41,44). This eventually leads to the same result, as
one can verify by returning to (36-39) and reexamining the derivation of the above
equations therefrom.

Second, in the final step of the above consideration, we have Taylor-expanded all
unknown functions at (£,7) = (0,0), but s is left free. Namely, we do not need Taylor
expansion in s, and can set it to any constant value. This is also reflected in the
fact that the weight (U(1)-charge) of s is zero. This is a desirable property, because
s is interpreted to be the cosmological constant of two-dimensional strings, and an
advantage of the Landau—Ginzburg formulation lies in the fact that it describes the
theory with non-zero cosmological constant.

Third, we have not specified any explicit expression of u,,v,,u#, and 7,; they
should be very complicated, and we actually do not need such explicit formulas.
We just have to prove that the Riemann—Hilbert problem has a unique solution.
The general machinery of the dispersionless Toda hierarchy can work only after
this fact is confirmed. Once the existence of such a solution is proven, one can
derive w4 oo-constraints to the F potential therefrom, and identify it with the gene-
rating function of tachyon correlation functions, as we shall show in the next sec-
tion. All relevant information on the tachyon dynamics is now encoded into the F
potential.

6. Constraints to F Potential
Let us now derive wy,o-constraints to F. To this end, we start from the relations

=" F", =P, n=12,..., (49)
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which are an obvious consequence of (35). Just as we derived (40) etc. in the
previous_section, we now take residue pairing of both hand sides of (49) with
dBy,d By and dlog p (m = 1,2,...). This results in the following relations:
res[L"dBy] = res|. A" L "dB,] ,
res[L"d B, = res.d" L dRB,],
res[#"d log p] = res[.#" ¥ "dlog p],
res[L dBy) = res[.M"YL "dB,] .
res[F 'dBy] = res[ "L "dB,],
res[£ "dlog p| = res[.4"¥ ~"dlog p] . (50)
Note that these relations conversely imply (49), because this residue pairing is
complete (i.e., res[ fdB,,]| = res[fdAB,] =res[fdlog p] =0 for all m = 1,2,... if

and only if /' =0). We can now apply (31) to each equation of (50) to rewrite
them as:

0 0 0
8—[—0]’”,.//-"51;”1: = ?o://",.//‘”yfﬂlF = ao,&ﬂ“,.//”f[;”F = 0 5
m m
~ ~
0 . 0 . 0
atm ar//ny*~n‘ Va *llF - 617"1 0‘//»1 @, g ‘*"F = 5;0'/’/""(/)_'1’ 7 '”F = 0 . (51 )
These equations show that 0, ,»#F and 0, _, ,-F are constant. Actually,

this constant should vanish: If one recalls the aforementioned scaling properties of
vn, Uy and ¢, and apply them to general formula (26), one will be able to see that
Oyn_jn yrF and 6, Py -« are quasi-homogeneous of degree —1. This means
that the constant values should be zero. Thus we can conclude that F' satisfies the
equations

Sy i g F =0, 3 iy paF =0, m=12,. . (52)

Furthermore, by carefully examining the above derivation, one can see that this
derivation is reversible; Egs. (49) (therefore the original Riemann—Hilbert problem)
can be derived conversely from (52).

Egs. (52) are, actually, just a disguise of the wj . -constraints of Hanany et al.
By general formula (26), one can rewrite (52) into a more explicit form:

1 -n ~n e
0y = res[A 7" 0g P1=0,
1
Ty + res[. 4" P "d log L] =0 . (53)
n+1
One can then substitute v, = 0F/0t, and ©, = —0F/0t, to write the left hand side

in terms of derivatives of F. Furthermore, one can introduce a new variable X and,
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as in (18), rewrite the residues in terms of X by replacing & — X, % — X\
Thus, eventually, (52) turn into the following form:

~ -_% 1 n+l
oF 1 [(M) dX}:O,

ot, n+1 X
oF 1 ML — X))\
= — d =
o, + P res ( ) X 0, (54)

which become exactly the wi, o.-constraints of Hanany et al. if we interpret their two
Landau—Ginzburg potentials W (X), W(X) and tachyon correlation functions ((7},))
as:

ML — X) (L - XY

W)= - e . WX) = e ; (55)
1 0F oF
(1) = n oL (To)) = PRk
1 0F
(T-.) = e (=120, (56)

The extra numerical factors on the right-hand side emerge because our (4,7,s) are
slightly different from the background sources of Hanany et al. Our results agree
with theirs if we interpret the correlator (@) as:

(o) = <6“ exp (§ nty Ty +sTo — 3 nt'nT_n)> : (57)
n=1 n=1

Actually, in place of (49), one can consider even more general combinations of
the fundamental Riemann—Hilbert relation as:

M = " kn=0,1,... (58)
Then, by the same reasoning as above, the following constraints can be obtained:

5 y-n—kF = 0 . (59)

Mk =k i

In terms of the Landau-Ginzburg potential, more explicitly, these constraints can
be written

res [(-W(X))"“X"dx] =- ! - rcs [(—W(X))"+‘Xkdx] . (60)

k+1

Of course, as also noted by Hanany et al., their wy ,-constraints are in themselves
powerful enough to determine the tachyon correlation functions completely. In this
respect, the above constraints are redundant. These extra constraints, however, turn
out to stem from underlying higher symmetries, as we shall discuss in the next
section.
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7. States and Fields Generated by Wedge Algebra

We first note that both hand sides of (58) are generators of a wedge algebra. To
clarify this fact, we introduce nonnegative half-integer indices (j,m) in the “wedge”
|m| < j by the usual convention

k=j—m, n=j+m, (61)

and write both hand sides of (58) as wj,:
Wi = LMLV = (ALY L (62)

Since R
{(LMP™ Y ={ ML, L } =1, (63)

wj, indeed form a wedge algebra with respect to the Poisson bracket. In the fol-
lowing, we propose a speculative interpretation of this wedge algebra as generators
of “extra” states and fields of two-dimensional strings.

Let us show how such “states” emerge in our framework. Let ¥}, denote the
following symmetries of the dispersionless Toda hierarchy:

Win = 0gn(yg-1ypo = _50, (ALYynF * (64)

These symmetries are understood to be acting on the ring # of Sect. 4. The two
expressions on the right-hand side give the same symmetry because of (59). Fur-
thermore, by (29), W;, obey the same commutation relations as the Poisson com-
mutation relations of wy,; the central terms disappear, as usual, on a wedge. The
action of those sitting on the “edge” of the wedge, (j,m) = (n/2,+n/2) generate
the tachyon correlation functions:

oF
Wn/2,n/2F = —(—37 = —n«Tn» >
oF
Wn/zy_,,/zF = -é—t_— = —n((T_n» . (65)

In view of this, we propose to consider the action of other W’s, too, as insertion
of a “state” W, into the correlator:

I/levml e Vl/jr"mr‘F = «I/lesml e VI/jr',m)->> . (66)

Commutation relations (29) of our symmetries will then reproduce the wy, ., Ward
identities in the matrix model approach [13] (now in the presence of tachyon back-
grounds). )

What about “fields”? A set of fields ¢,(X) and ¢,(X) are introduced by Hanany
et al. [2] as ¢ =1 analogues of ¢ < 1 chiral ring generators and gravitational
descendents. In our interpretation of (z,7) as background sources, ¢,(X) are given
by
1 oW (X) 1 oW (X)

X)=—- _,,X = - =1,4,...),

D) =S5 )= (=12, (6])
and (]SH(X ) by similar derivatives of W(X). Since the Landau-Ginzburg potentials
are written in terms of #(¥ — X) and .4 (¥ — X~') as shown in (55), these
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“fields” are exactly the same quantities as emerging on the right-hand side of (24),
i.e., derivatives of the flow generators %, and %, with respect to the Landau—
Ginzburg field variable X. Note that this is parallel to the construction of chiral
ring generators in the A, models [4, 8,9]. These “fields” are Landau—Ginzburg
counterparts of tachyon “states” W, 1,». To find other “fields,” let us note that
¢(X) can also be written

‘ 1
D) =X 4 LS W), Gy = =20, W) (68)

Here we have used (32), recalling the correspondence (55) between the Landau—
Ginzburg potential and the Lax functions. The somewhat strange extra term X"~!
is due to the presence of tachyon backgrounds. Since the symmetries on the right-
hand side are just Wy, 442, We are naturally led to conjecture that “fields” @;,,(X)
corresponding to the “states” W;, are to be given by

¢jm(X) = I/ij W(X). (69)

Similarly the action of W, on W(X) will give another set of extra “fields” d3jm(X ).
In principle, one can find an explicit form of these “extra fields” from (32), though it
will become considerably complicated in general. To push forward this speculation
further, we will have to examine if the period integral representation of tachyon
correlation functions and the contact algebra of ¢,(X) and d_)n(X ) [1,2,3] can be
extended to our @;,(X) and @,(X).

8. Conclusion

Inspired by the suggestion of Hanany et al., we have considered the integrable struc-
ture of two-dimensional string theory at self-dual compactification radius. Our main
conclusion is that the dispersionless Toda hierarchy is a very convenient framework
for studying the tachyon sector of this theory. We have been able to identify a spe-
cial solution of this integrable hierarchy in which full data of the tachyon dynamics
is encoded. The w;,-constraints of tachyon correlation functions can be indeed
reproduced from the construction (Riemann—Hilbert problem) of this solution. The
Landau—Ginzburg formulation, too, turns out to be closely related to the Lax for-
malism of the dispersionless Toda hierarchy. Furthermore, we have pointed out the
existence of a wedge algebra structure behind the Riemann-Hilbert problem, and
proposed a speculative interpretation of this algebra as generators of “extra” states
and fields in this model of two-dimensional strings. The last issue deserves to be
pursued in more detail.
We conclude this paper with several remarks.

1) In the context of two-dimensional gravity, the dispersionless Toda hierarchy
is zero-genus limit of the full Toda hierarchy. A full-genus analysis in the language
of the Toda hierarchy is done by Dijkgraaf et al. [14]. We will be able to extend
the results of this paper to that case.

2) As already mentioned, the integrable hierarchy underlying the topological D,
models [12] resembles the dispersionless Toda hierarchy. This hierarchy is related
to the Drinfeld—Sokolov hierarchy of D-type. It is intriguing that Danielsson {3]
pointed out a link between a deformed Landau—Ginzburg model and the Drinfeld—
Sokolov hierarchy of D-type.
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3) Our method for solving a Riemann—Hilbert problem can be extended to more
general cases such as:
N

N =i "IN, 7V = VN, (70)

where N and N are nonzero integers. In this paper, we have considered the simplest
case, N = N = 1; other cases, too, may have interesting physical interpretations. For
instance, the work of Dijkgraaf et al. [14] implicitly shows that if the compactifica-
tion radius (f in their notation) is a positive integer, the dynamics of tachyons in
zero-genus limit can be described by the solution of (70) with N = N = . Thus
we can deal with a discrete series of theories at non-self-dual (f > 1) radii in much
the same way; a full genus analysis will become possible in the full Toda hierarchy.

4) Discrete states and quadratic Ward identities in the free field approach [15]
are still beyond our scope. Our approach by the dispersionless Toda hierarchy is at
most an effective theory in the tachyon sector, though we can anyhow reproduce the
wedge algebra symmetries acting on tachyon states. Presumably, a suitable integrable
extension of the dispersionless (or full) Toda hierarchy will provide a framework
for dealing with this issue.
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Note added in proof. Hiroaki Kanno informed the author that Tohru Eguchi independently arrived
at the same Riemann-Hilbert relation as ours (35)

References

1. Ghoshal, D., Mukhi, S.: Topological Landau—-Ginzburg model of two-dimensional string theory.
TIFR/TH/9362, hep-th/9312189, December, 1993

2. Hanany, A., Oz, Y., Plesser, M.R.: Topological Landau-Ginzburg formulation and integrable
structure of 2d string theory. IASSNS-HEP-94/1, hep-th/9401030, January, 1994

3. Danielsson, U.H.: Two-dimensional string theory, topological field theories and the deformed
matrix model. CERN-TH.7155/94, hep-th/9401135, January, 1994

4. Dijkgraaf, R., Verlinde, E., Verlinde, H.: Topological strings in d < 1. Nucl. Phys. B352,
59-86 (1991)

5. Blok, B., Varchenko, A.: Topological conformal field theories and the flat coordinates. Int. J.
Mod. Phys. A7, 1467-1490 (1992); Eguchi, T., Yamada, Y., Yang, S.K.: Topological field
theories and the period integrals. Mod. Phys. Lett. A8, 1627-1638 (1993)

6. Losev, A.: Descendents constructed from matter field in topological Landau—Ginzburg theories
to topological gravity. ITEP preprint, hep-th/9212090, January, 1993; Eguchi, T., Kanno, H.,
Yamada, Y., Yang, S.K.: Topological strings, flat coordinates and gravitational descendents.
Phys. Lett. B305, 235-241 (1993)

7. Lian, B., Zuckerman, G.: New selection rules and physical states in 2D gravity. Phys. Lett.
B254, 417-423 (1991); Mukherji, S., Mukhi, S., Sen, A.: Null vectors and extra states in
¢ =1 string theory. Phys. Lett. B266, .337-344 (1991); Bouwknegt, P., McCarthy, J., Pilch, K.:
BRST analysis of physical states for 2D gravity coupled to ¢ < 1 matter. Commun. Math.
Phys. 145, 541-560 (1992)

8. Krichever, I.M.: The dispersionless Lax equations and topological minimal models. Commun.
Math. Phys. 143, 415-426 (1991)

9. Dubrovin, B.A.: Hamiltonian formalism of Whitham-type hierarchies and topological Landau—
Ginzburg models. Commun. Math. Phys. 145, 195-207 (1992)



116 K. Takasaki

10. Takasaki, K., Takebe, T.: SDiff(2) KP hierarchy. Int. J. Mod. Phys. A7, Suppl. 1, 889-922
(1992)

11. Takasaki, K., Takebe, T.: SDiff(2) Toda equation—hierarchy, tau function and symmetries.
Lett. Math. Phys. 23, 205-214 (1991); Takasaki, K., Takebe, T.: Quasi-classical limit of Toda
hierarchy and W-infinity symmetries. Lett. Math. Phys. 28, 165-176 (1993)

12. Takasaki, K.: Integrable hierarchy underlying topological Landau-Ginzburg models of D-type.
Lett. Math. Phys. 29, 111-121 (1993)

13. Moore, G., Seiberg, N.: From loops to fields in 2d gravity. Int. J. Mod. Phys. A7,
2601-2634 (1992); Minic, D., Polchinski, J., Yang, Z.: Translation-invariant backgrounds in
1+ 1 dimensional string theory. Nucl. Phys. B369, 324-360 (1991); Avan, J., Jevicki, A.:
Quantum integrability and exact eigenstates of the collective string field theory. Phys. Lett.
B272, 17-24 (1991); Das, S.R., Dhar, A., Mandal, G., Wadia, S.R.: Gauge theory formulation
of the ¢ = | matrix model: Symmetries and discrete states. Int. J. Mod. Phys. A7, 5165-5192
(1992)

14. Dijkgraaf, R., Moore, G., Plesser, R.: The partition function of 2d string theory. Nucl. Phys.
B394, 356-382 (1991)

15. Kutasov, D., Martinec, E., Seiberg, N.: Ground rings and their modules in two-dimensional
string theory. Phys. Lett. B276, 437-444 (1992); Klebanov, 1.: Ward identities in two-
dimensional string theory. Mod. Phys. Lett. A7, 723-732 (1992); Witten, E., Zwiebach, B.:
Algebraic structures and differential geometry in 2d string theory. Nucl. Phys. B377, 55-112
(1992); Verlinde, E.: The master equation of 2D string theory. Nucl. Phys. B381, 141-157
(1992)

Communicated by M. Jimbo





