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Abstract: We propose a reduced constrained Hamiltonian formalism for the exactly
soluble B Λ F theory of flat connections and closed two-forms over manifolds with
topology Σ3 x (0,1). The reduced phase space variables are the holonomies of a flat
connection for loops which form a basis of the first homotopy group π\(Σ3), and
elements of the second cohomology group of Σ3 with value in the Lie algebra L(G).
When G = £0(3,1), and if the two-form can be expressed as B = e Λ e, for some
vierbein field e, then the variables represent a flat spacetime. This is not always
possible: We show that the solutions of the theory generally represent spacetimes
with "global torsion." We describe the dynamical evolution of spacetimes with
and without global torsion, and classify the flat spacetimes which admit a locally
homogeneous foliation, following Thurston's classification of geometric structures.

1. Introduction

The B Λ F theory was first considered by Horowitz [1] as an example of an exactly
soluble theory in four dimensions, analogous to the Chern-Simons formulation of
(2+l)-dimensional gravity [2,3]. The set of solutions was shown to be related to
equivalence classes of flat 50(3,1) connections and closed two-forms. When the
four-manifold has the topology Σ3 x (0,1), where Σ3 is compact and orientable,
there is a natural symplectic structure which is related to the Poincare duality be-
tween the first and second homology groups of Γ3: Roughly speaking, the flat con-
nections are labeled by their holonomies around loops of Zι(Σ3), and the two-forms
are labeled by their integrals over elements of Z2(Σ3). The symplectic structure on
the set of holonomies and integrated two-forms would then be derived from the
Poincare duality between Hι(Σ3) = Zι(Σ3)/£ι(Σ3) and H2(Σ3) = Z2(Σ3)/B2(Σ3).

The purpose of this article is to elucidate further the physical content of this
theory. We will first postulate a reduced constrained Hamiltonian formalism [4]
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which exploits the Poincare duality explicitly, and can be solved for the dynam-
ical evolution of the reduced phase space variables. Next, we will examine the
relation between the solutions of two-form gravity and flat spacetimes, including a
classification of flat spacetimes which admit a locally homogeneous foliation.

The article is organized as follows. We will begin with a review of the
B Λ F field theory, derive the constrained Hamiltonian system for the reduced vari-
ables, and examine the dynamical evolution (Sect. 2). In Sect. 3, we will show
that these solutions generally represent spacetimes with "global torsion," and pro-
pose vanishing torsion constraints. Finally, we will construct all flat spacetimes
which admit a locally homogeneous slicing, by constructing the representations
p : π \ ( Σ 3 ) —> ISO(3,1) for each of Thurston's eight geometric structures.

2. Two Forms and Flat Connections

2.1. The B f\F Field Theory. The B I\F theory describes a gauge connection A in
G, and a two-form B with values in the Lie algebra L(G), with the action

S = 6 f t r ( B / \ F ) . (2.1)
M

The field equations which derive from variations of B and A are, respectively,
F — 0 and D Λ B — 0, where F is the field strength and D — c -j- A is the gauge-
covariant derivative. This action is invariant under the gauge transformations δA —
Dτ,OB = [B,τ], where τ is an arbitrary field on M with values in the Lie algebra
L(G)9 and under the translation of B by an exact form, SB = D Λ v. When A satisfies
its field equation, D2 — F = 0, there is a cohomology of covariantly closed two-
forms, modulo translations by covariantly exact forms. This implies that the physical
information carried by B can be represented by a map form the second homology
group //2(£3) to the Lie algebra L(G): When G is abelian, this map is simply the
surface integral of the two-form over any representative of H2(Σ3) in Z2(Σ3).

If one sets G = 50(3,1) and Bab = ea Λ el\ the action (2.1) becomes the Palatini
action for vacuum gravity,

Sp = S(ea/\eb f\Fcd)εabcd . (2.2)

The relation between the B Λ F theory and gravity will be examined further in
Sect. 3.

As Horowitz has pointed out, if M = Σ3 x (0,1) the reduced phase space has
a canonical structure which is related to the Poincare duality between H\(Σ3) and
//2(£3): The degrees of freedom of the connection are associated to non-contractible
loops, while the inequivalent closed two-forms differ by the values of their integrals
over non-contractible surfaces of Z2(Z3). Poincare duality suggests that if the for-
mer are configuration space variables, then the latter should be the corresponding
momentum variables. Before we can make this idea more explicit (Sect. 2.2), we
first need to put the action (2.1) in canonical form.

Assuming that M — Σ3 x (0,1), one can separate the coordinates into ςςspatial"
(i,j,k) and "time" (o) components, and write the action in the form

S = fdtfdΣ(A[iBjk]A - F^Bk]oA + A0

AD[iBjk]A) . (2.3)
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(We will assume that G admits a non-degenerate Cartan metric; the index A is in
the adjoint representation.)

The canonical formalism is obtained by computing π = ̂  and Π = |̂, and
performing the Legendre transformation. One finds

[A \BjkB] = δA

BΣijk , (2.4)

π° = 0, (2.5)

Πk°A = - - « 0 , (2.6)

H = 3J (F$jBk]oA + A0

AD{lBjk]A )dΣ , (2.7)

and the secondary constraints [4], which express the consistency of (2.5) and (2.6)
with time evolution, are

77° « 0 ̂  D{lBjk]A « 0 , (2.8)

77*° « 0 => F4 « 0 . (2.9)

These constraints state that #^ is a covariantly closed form on Σ3, and that ̂ 3

(the connection restricted to Σ3) is flat. Note that, given (2.8) and (2.9),

/ / « 0 . (2.10)

The flow generated by H is

[H,AiA] =DiA0

A , (2.11)

[H,BiJA] = D{iBkW + [%Λ0l4 (2.12)

As Horowitz noted, diffeomorphisms are part of the symmetry group when the
constraints are satisfied. For any vector field c,

which reduces to the form (2.11) when F, jA = 0.

2.2. The Reduced Theory. Since the fundamental group is presented by a finite
basis {γ(μ),μ= l,...,dimH\(Σ3)}, the representations p : n\(Σ3) —> 5Ό(3,1) are
parametrized by the holonomies for a set of basis loops:

(2.14)

where P denotes the usual path ordering of the exponential. The other half of the
phase space is parametrized by elements of the second cohomology group with
values in the Lie algebra L(G). In de Rahm cohomology, the equivalence classes
of closed two-forms modulo translations by exact forms can be parametrized by
their integrals over basis surfaces σ(μ), where each σ(μ) intersects only the basis
loop y(/0 only at the base-point of π \ ( Σ 3 ) . Generalizing this idea to the covariant
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cohomology defined by D = c + A when F — 0, one would naively consider the
integrals

BA(μ) = § PA

B(x)BiJ

B(x)dxi Λ dx1 , (2.15)
σ(/0

where PAB(X) parallel-transports the index B from the fiber at x to the fiber at the
base-point P of the fundamental group π\(Σ*).

The key problem is that this parallel-transport is not well-defined, since different
paths from x to P can differ by non-trivial elements of πj(Σ 3 ) . To define uniquely
the parallel-transport between points of (Σ3), one can instead remove the dimH2(Σ3)
basis surfaces σ(μ)εZ2(Σ3) to form a topologically trivial open manifold ΣQ. The
integrated two-form is then defined by approaching the removed surface from one
side or the other:

BA(μ) = lim § PA

 B(x)BfJ(x)dx' Λ dxj , (2.16)
t:~*Qff+ε(μ)

BA(-μ) = \im § P A

B ( x ) B f j ( x ) d x i / \ dxj . (2.17)
c~*Qσ-r.(μ)

The difference between these expressions is precisely the parallel-transport
around the loop y(μ), and we have

BA(μ) = MA

B(μ)BB(-μ) . (2.18)

To resolve the ambiguity in parallel-transport, we have been forced to introduce a
dependence on the surfaces cr(μ). One can show that it is impossible to achieve both
gauge-invariance and surface-invariance within a homology class, for any choice of
parallel-transport PAB(X). This fact appears to be related to Teitelboim's proof that
it is impossible to achieve a reparametrization-invariant ordering of the expression

(2.19)

analogous to the holonomy (2.14)[5]. Note that the logarithm of Teitelboim's two-
form "holonomy" can be written in the form (2.15), but taking PAB(X) as a func-
tional of B, rather than A.

The expression (2.16) is coordinate-invariant if the surfaces σ(μ) are chosen in
a coordinate-independent way. For example, one might choose a maximal surface
among the surfaces σ(μ) G Z2(Γ3) in a given homology class and which contain
P. Any intrinsic criterion which selects a unique representative in 2^(1?} of each
element of//2(Σ 3), leads to an acceptable definition of the global variables BA(μ).
For example, in Sect. 3, we will choose a piecewise geodesic triangulation of σ(μ).

We will assume that a choice of surfaces σ(μ) has been made, and examine the
dynamical behaviour of the global variables M(μ\B(μ).

The Poisson bracket algebra can be deduced from the bracket [BA

/ ( x ) , A ι (

B ( x / ) ] =

8 i j / < g A B 0 ( x ~ x'}, using a lattice regularization, following the same lines as in (2+1 )-
dimensional gravity [6]. One finds

[MA(μ\MC

D(v)] = 0 , (2.20)

[BA(μ)9M
c

D(v)] = δvμC
AC

EME

D(μ) , (2.21)

[BA(μ\BB(v]} = δμvC
AB

cB
c(μ) , (2.22)
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where CABC are the structure constants of L(G\ The first bracket is deduced directly
from [AA(x),AjB(x'y\ = 0. The second can be derived from the expressions (2.14)
and (2.16), by considering the contribution from the point x — x' — P9 where y(μ)
intersects σ(μ). The bracket of BA(μ) with BB(μ) is ill-defined because the same
surface σ(μ) appears on both sides of the bracket; Eq. (2.22) is the result of the
lattice regularization mentioned above.

There are two sets of constraints on the global variables (M(μ),#(μ)}. The
former are the cycle conditions for the representations M : π \ ( σ ( μ ) ) — » G, pre-
sented by a subset of the matrices (M(v)}: for each surface σ(μ), there is a con-
tractible loop (the "cycle"), which follows every basis loop of πι(σ(μ)) in both
directions. If σ(μ) is a genus g surface and π \ ( σ ( μ ) ) is presented by the basis
{y(μ),μ = μι,μ2, , μ2#}, the cycle conditions are

(2.23)
M(μ4))(M(μ2,_1)M-1(μ2,_1)M(μ2ί/)) =/ ,

since the connection is flat and the cycle is homotopically trivial. The conditions
(2.23) are the remnants of the flatness conditions for the global variables:

FijA « 0 -+ W(μ) - / « 0 . (2.24)

The other constraints are a consequence of the closure conditions D Λ B — 0, and
of our definition of BA(μ), based on removing the region bound by 2 x J/m//2(Σ3)
basis surfaces σ±ε(μ), to obtain a topologically trivial open manifold Σ3

ε. The in-
tegral of the two-form over the boundary, in the limit ε — » 0, is a sum over μ of
the expressions (2.16) and (2.17), and vanishes as a consequence of the definitions
(2.16), (2.17) and the closure of BAij(x). Thus,

D/\B = Q-*JA = Σμ(\ -M-\μ))A

BB
B(μ)^0 . (2.25)

The brackets (2.20)-(2.22), together with the constraints (2.24) and (2.25), de-
fine a dynamical system in the constrained Hamiltonian formulation, which we con-
structed to have the same physical content as the B Λ F field theory. Since some
steps in this construction are non-trivial, particularly the regularization of the brack-
ets [BA(μ),BB(μ)]> we will state this equivalence of physical content as a conjecture.

We will say that theories A and B are "equivalent" if there is a gauge transfor-
mation which maps solutions of A to solutions of B, and this map is bijective.

Conjecture 2.1. The constrained Hamiltonian system given by the brackets (2.20)-
(2.22) and the constraints (2.24), (2.25), with H w 0, is equivalent to that which
derives from the B f\F field theory (2.1), for any coordinate-independent choice of
representation of the basis of H2(Σ3) in Z2(Γ3), σ : μ — » σ(μ).

2.3. Solution of the Time-Evolution Problem. The constraints (2.24)-(2.25) have
a first-class algebra with the following structure:

[JA,JB] = CAB

CJ
C , (2.26)

[JA,(W(μ) - I)Bc] = CAB

D(W(μ) ~ lfc - (W(μ) - I)B

DCAD

C , (2.27)

(2.28)
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The closure conditions JA « 0 generate global G-transformations:

[J\B\μ}} = CAB

cB
c(μ}, (2.29)

[J\MB

c(μ)} = CAB

DMD

c(μ) - MB

 D(μ)CAD

 c . (2.30)

The cycle conditions W£(μ) «/ generate transformations of BA(μ), which include
timelike translations of the base-point P, at which all loops y(μ) and surfaces σ(μ)
intersect. The time evolution is generated by the Hamiltonian constraint.

H = ΣTr(ξ(μ)(W(μ)-I)}, (2.31)
μ

where ξ(μ) are generalized "lapse-shift" functions. Note that, given (2.20) and
(2.21),

B\μ)= [//,[//,^(μ)]j -0, (2.32)

MB(μ) = [H,MAB(μ)] = 0 . (2.33)

Thus, the integrated two-forms are linear functions of time and the holonomies are
constants of the motion.

The number of physical degrees of freedom is equal to the number of configura-
tion space variables minus the number of first-class constraints. There are dimL(G)
independent closure conditions (2.25), but the cycle conditions are not all indepen-
dent: they are associated with surfaces σε(μ) which, together with their partners
σ_ε(μ), form the boundary of a homotopically trivial manifold Σ\\ this implies that
the product of the cycle conditions over all faces σε(μ) and σ_ε(μ) is an identity,
so that dίmL(G) of the cycle conditions are redundant, and the number of inde-
pendent cycle conditions is dimL(G) x (dίmH2(Σ3)— 1). Altogether, in terms of
the Betti numbers bj = dίmHi(Σ\ one has dimL(G) x (b\) configuration variables
M(μ), minus dimL(G) x (1 -f- #2 — 1) constraints, or

dimL(G) x(bι -fe 2) = 0 (2.34)

degrees of freedom, using Poincare's identity bf = &3_/. Note that one could also
count directly the degrees of freedom in the representations M : πι(Σ 3 )— > G
as b\ x dimL(G) minus the number of independent cycle conditions, (62 — 1) x
dimL(G), minus dimL(G) for the overall G-conjugacy. Again, one finds zero de-
grees of freedom.

The "generic" counting which lead to (2.34) must be modified for some topolo-
gies, for which there are fewer independent cycle conditions. Non-contractible
spheres in the set (σ(μ)} do not contribute any cycle conditions, and non-
contractible tori provide only the dim(L(G)) - rank(L(G)) independent conditions

[M(μι),M(μ2)]-0. (2.35)

If one considers the orientable compact topologies which admit locally homo-
geneous structures; only the quotients of //3 and S3 have no non-contractible tori
or spheres, as far as we know. The fact that the B Λ F theory has no degrees of
freedom in these cases is related to Mostow's rigidity theorem on the discrete repre-
sentations of π\(Σ3) into semisimple Lie groups with trivial centers and no compact
factors, not isomorphic to SL(2,R) [7].

We conclude this section by counting the physical degrees of freedom when Γ3

has the topology of any one of Thurston's eight classes of locally homogeneous
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orientable compact manifolds [8]. The results are summarized in Table 3.1 in the
next section.

L Type a: Quotients ofE3. The topologies are Γ3, Γ3/Z2, Γ3/Z3, Γ3/Z4, Γ3/Z6

and Γ3/Z2 x Z2. The fundamental group πι(Σ3) has three generators which are
dual to three non-contractible tori. The cycle conditions require that the matrices
{M(μ),μ = 1,2,3} commute. The closure conditions are then r = rank(G) times re-
dundant, since the matrices (1 — M(μ)) in the adjoint representation have r common
null eigenvectors. If we denote by d = dimL(G) the dimension of the Lie algebra,
there are 3 x d variables, minus 2(d — r) cycle conditions and d — r independent
closure conditions, or 3 x r physical degrees of freedom (6r phase space degrees
of freedom).

2. Type b: Quotients of Nil Γ3 is a non-trivial Sλ -bundle over Γ2. Two of the
cycles are as in case (1) above, but the third fixes Λf(3) as a function of the
commutator of M(l) and M(2). For example, for type biR/\(n\

M(\)M-\2)M-\\)M(2) = M(3}n . (2.36)

This relation and one of the commutators can be chosen as a set of d 4- (d — r) —
2d - r independent cycle conditions. One easily shows that they imply M(3)n =
/. If one considers the "generic" solution, M(3) = /, then there are only d — r
independent closure conditions. Note that the holonomy generates a non-faithful
representation π\(Σ*) —> G in this case. The number of degrees of freedom is 3d -
(2d -r + d -r) = 2r.

3. Type c: Quotients of H^ x R. Σ3 is finitely covered by a trivial Sl -bundle over
ΣCJ, a genus g Riemann surface. The cycle conditions are

(2.37)

(2.38)
...M(2g-l)M-l(2g)M-l(2g-l)=I .

If one chooses M(2g+l) = I, all Eq. (2.37) are satisfied and, with (2.38),
one has a total of 2d independent conditions. Otherwise (M(2g + 1 )=(=/), all of the
M(μ) commute among themselves and Eq. (2.39) is satisfied in a trivial way. In
either case the representation M : n\(Σ3) —> G is not faithful. For M(2g + !) = /,
one has 3d constraints and (2g — 2) x d degrees of freedom, while in the other
case the number of constraints is (d - r) x 2g + (d - r) and there are r x (2g -f 1)
degrees of freedom.

4. Type d: Quotients of SL(2,R). Σ3 is a non-trivial S1-bundle over Σg. The cycle
conditions are (2.37) and one relation which fixes M(2g + 1) as a function of the
recycle (2.38). In the case M(2g + 1) — 7, one has (2g — 2) x d physical degrees
of freedom. The representations M : πι(Z3) —> G are not faithful.

5. Type e: Quotients of H3. There is an infinite set of compact quotients of// 3 ,
such as the polyhedra discovered by Lόbell [9] with two hexagonal faces and twelve



70 H. Waelbroeck

pentagonal faces identified in pairs; the classification of these quotients is not com-
plete. None of them are smoothly deformable, as a consequence of Mostow's the-
orem [7]. This theorem also tells us that a basis of U2(H3/Γ) can have at most
one non-contractible torus, since there are no free parameters in the quotienting
group Γ : π j ( Z 3 ) —* G, in accordance with the counting (2.34) (one of the cycles
is redundant, and could be of the torus type, but as far as we know quotients of H3

do not admit any non-contractible tori or spheres in Z2(H3/Γ)). Thus, Mostow's
theorem implies that the B Λ F theory has no degrees of freedom for the hyperbolic
manifolds.

6. Type f: Quotients of Sol. £3 is finitely covered by a (non-trivial) Γ2-bundle over
S1. Since the cycle is invariant under mapping class transformations (Dehn twists),
the cycle conditions are the same as for type a topologies; so is the counting of
degrees of freedom of the B Λ F theory.

7. Type cj: Quotients of S\ Σ3 is one of the following [10]: S\ S*/Zm, S*/Dm,
where Dm is the symmetry group of a regular m-gon in the plane, and 53/Γ, S3/0
and S3/I, where Γ, O and / are the symmetry groups of the regular tetrahedron,
octahedron and icosahedron in R^. The second holonomy group is trivial, and so is
πι(Γ3): the B Λ F theory has no physical degrees of freedom.

8. Type h: Quotients of S2 x R. Σ3 is finitely covered by S2 x Sl. There are no
cycle conditions, but b\ — b^ = 1: the phase space is spanned by a single matrix
M £ G and an "integrated two-form" BA with values in L(G). The closure conditions
are

JA = (I -M~})A

BB
B , (2.39)

or d — r independent conditions, leaving r physical degrees of freedom.
This completes the list of solutions of the B Λ F theory; in the next section we

examine the possible relation between these solutions and flat spacetimes Σ3 x (0,1),
when G = SO(3,1).

3. Flat Spacetimes

If B — e Λ e and G = SO(3,1), then F = R is the Riemann curvature and the action
2.1 becomes the Palatini action

S = f e / \ e / \ R . (3.1)

This begs the question: When do the solutions of the B Λ F theory represent
flat spacetimes? Clearly, any flat spacetime gives a solution of the B Λ F theory,
by B = e Λ e. The converse is not true, as we will see shortly. We will first review
the global properties of flat spacetimes, then see under what conditions the global
variables {B(μ\M(μ)} of the B Λ F-theory describe flat spacetimes.

3.1. 75Ό(3,1) Holonomy and Flat Spacetimes. Given a flat spacetime M = Σ x
(0,1), where Γ is a compact, orientable, spacelike three-manifold, the holonomy in-
jects π\(Σ) into /SΌ(3,1). Following Mess [11], one can classify the flat spacetimes
by the rank of the kernel of the linear holonomy. If the rank is equal to three (three
independent translations), then Σ is a three-torus and the maximal development is


