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Abstract: We propose a reduced constrained Hamiltonian formalism for the exactly
soluble B Λ F theory of flat connections and closed two-forms over manifolds with
topology Σ3 x (0,1). The reduced phase space variables are the holonomies of a flat
connection for loops which form a basis of the first homotopy group π\(Σ3), and
elements of the second cohomology group of Σ3 with value in the Lie algebra L(G).
When G = £0(3,1), and if the two-form can be expressed as B = e Λ e, for some
vierbein field e, then the variables represent a flat spacetime. This is not always
possible: We show that the solutions of the theory generally represent spacetimes
with "global torsion." We describe the dynamical evolution of spacetimes with
and without global torsion, and classify the flat spacetimes which admit a locally
homogeneous foliation, following Thurston's classification of geometric structures.

1. Introduction

The B Λ F theory was first considered by Horowitz [1] as an example of an exactly
soluble theory in four dimensions, analogous to the Chern-Simons formulation of
(2+l)-dimensional gravity [2,3]. The set of solutions was shown to be related to
equivalence classes of flat 50(3,1) connections and closed two-forms. When the
four-manifold has the topology Σ3 x (0,1), where Σ3 is compact and orientable,
there is a natural symplectic structure which is related to the Poincare duality be-
tween the first and second homology groups of Γ3: Roughly speaking, the flat con-
nections are labeled by their holonomies around loops of Zι(Σ3), and the two-forms
are labeled by their integrals over elements of Z2(Σ3). The symplectic structure on
the set of holonomies and integrated two-forms would then be derived from the
Poincare duality between Hι(Σ3) = Zι(Σ3)/£ι(Σ3) and H2(Σ3) = Z2(Σ3)/B2(Σ3).

The purpose of this article is to elucidate further the physical content of this
theory. We will first postulate a reduced constrained Hamiltonian formalism [4]
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which exploits the Poincare duality explicitly, and can be solved for the dynam-
ical evolution of the reduced phase space variables. Next, we will examine the
relation between the solutions of two-form gravity and flat spacetimes, including a
classification of flat spacetimes which admit a locally homogeneous foliation.

The article is organized as follows. We will begin with a review of the
B Λ F field theory, derive the constrained Hamiltonian system for the reduced vari-
ables, and examine the dynamical evolution (Sect. 2). In Sect. 3, we will show
that these solutions generally represent spacetimes with "global torsion," and pro-
pose vanishing torsion constraints. Finally, we will construct all flat spacetimes
which admit a locally homogeneous slicing, by constructing the representations
p : π \ ( Σ 3 ) —> ISO(3,1) for each of Thurston's eight geometric structures.

2. Two Forms and Flat Connections

2.1. The B f\F Field Theory. The B I\F theory describes a gauge connection A in
G, and a two-form B with values in the Lie algebra L(G), with the action

S = 6 f t r ( B / \ F ) . (2.1)
M

The field equations which derive from variations of B and A are, respectively,
F — 0 and D Λ B — 0, where F is the field strength and D — c -j- A is the gauge-
covariant derivative. This action is invariant under the gauge transformations δA —
Dτ,OB = [B,τ], where τ is an arbitrary field on M with values in the Lie algebra
L(G)9 and under the translation of B by an exact form, SB = D Λ v. When A satisfies
its field equation, D2 — F = 0, there is a cohomology of covariantly closed two-
forms, modulo translations by covariantly exact forms. This implies that the physical
information carried by B can be represented by a map form the second homology
group //2(£3) to the Lie algebra L(G): When G is abelian, this map is simply the
surface integral of the two-form over any representative of H2(Σ3) in Z2(Σ3).

If one sets G = 50(3,1) and Bab = ea Λ el\ the action (2.1) becomes the Palatini
action for vacuum gravity,

Sp = S(ea/\eb f\Fcd)εabcd . (2.2)

The relation between the B Λ F theory and gravity will be examined further in
Sect. 3.

As Horowitz has pointed out, if M = Σ3 x (0,1) the reduced phase space has
a canonical structure which is related to the Poincare duality between H\(Σ3) and
//2(£3): The degrees of freedom of the connection are associated to non-contractible
loops, while the inequivalent closed two-forms differ by the values of their integrals
over non-contractible surfaces of Z2(Z3). Poincare duality suggests that if the for-
mer are configuration space variables, then the latter should be the corresponding
momentum variables. Before we can make this idea more explicit (Sect. 2.2), we
first need to put the action (2.1) in canonical form.

Assuming that M — Σ3 x (0,1), one can separate the coordinates into ςςspatial"
(i,j,k) and "time" (o) components, and write the action in the form

S = fdtfdΣ(A[iBjk]A - F^Bk]oA + A0

AD[iBjk]A) . (2.3)



B Λ F Theory and Flat Spacetimes 65

(We will assume that G admits a non-degenerate Cartan metric; the index A is in
the adjoint representation.)

The canonical formalism is obtained by computing π = ̂  and Π = |̂, and
performing the Legendre transformation. One finds

[A \BjkB] = δA

BΣijk , (2.4)

π° = 0, (2.5)

Πk°A = - - « 0 , (2.6)

H = 3J (F$jBk]oA + A0

AD{lBjk]A )dΣ , (2.7)

and the secondary constraints [4], which express the consistency of (2.5) and (2.6)
with time evolution, are

77° « 0 ̂  D{lBjk]A « 0 , (2.8)

77*° « 0 => F4 « 0 . (2.9)

These constraints state that #^ is a covariantly closed form on Σ3, and that ̂ 3

(the connection restricted to Σ3) is flat. Note that, given (2.8) and (2.9),

/ / « 0 . (2.10)

The flow generated by H is

[H,AiA] =DiA0

A , (2.11)

[H,BiJA] = D{iBkW + [%Λ0l4 (2.12)

As Horowitz noted, diffeomorphisms are part of the symmetry group when the
constraints are satisfied. For any vector field c,

which reduces to the form (2.11) when F, jA = 0.

2.2. The Reduced Theory. Since the fundamental group is presented by a finite
basis {γ(μ),μ= l,...,dimH\(Σ3)}, the representations p : n\(Σ3) —> 5Ό(3,1) are
parametrized by the holonomies for a set of basis loops:

(2.14)

where P denotes the usual path ordering of the exponential. The other half of the
phase space is parametrized by elements of the second cohomology group with
values in the Lie algebra L(G). In de Rahm cohomology, the equivalence classes
of closed two-forms modulo translations by exact forms can be parametrized by
their integrals over basis surfaces σ(μ), where each σ(μ) intersects only the basis
loop y(/0 only at the base-point of π \ ( Σ 3 ) . Generalizing this idea to the covariant
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cohomology defined by D = c + A when F — 0, one would naively consider the
integrals

BA(μ) = § PA

B(x)BiJ

B(x)dxi Λ dx1 , (2.15)
σ(/0

where PAB(X) parallel-transports the index B from the fiber at x to the fiber at the
base-point P of the fundamental group π\(Σ*).

The key problem is that this parallel-transport is not well-defined, since different
paths from x to P can differ by non-trivial elements of πj(Σ 3 ) . To define uniquely
the parallel-transport between points of (Σ3), one can instead remove the dimH2(Σ3)
basis surfaces σ(μ)εZ2(Σ3) to form a topologically trivial open manifold ΣQ. The
integrated two-form is then defined by approaching the removed surface from one
side or the other:

BA(μ) = lim § PA

 B(x)BfJ(x)dx' Λ dxj , (2.16)
t:~*Qff+ε(μ)

BA(-μ) = \im § P A

B ( x ) B f j ( x ) d x i / \ dxj . (2.17)
c~*Qσ-r.(μ)

The difference between these expressions is precisely the parallel-transport
around the loop y(μ), and we have

BA(μ) = MA

B(μ)BB(-μ) . (2.18)

To resolve the ambiguity in parallel-transport, we have been forced to introduce a
dependence on the surfaces cr(μ). One can show that it is impossible to achieve both
gauge-invariance and surface-invariance within a homology class, for any choice of
parallel-transport PAB(X). This fact appears to be related to Teitelboim's proof that
it is impossible to achieve a reparametrization-invariant ordering of the expression

(2.19)

analogous to the holonomy (2.14)[5]. Note that the logarithm of Teitelboim's two-
form "holonomy" can be written in the form (2.15), but taking PAB(X) as a func-
tional of B, rather than A.

The expression (2.16) is coordinate-invariant if the surfaces σ(μ) are chosen in
a coordinate-independent way. For example, one might choose a maximal surface
among the surfaces σ(μ) G Z2(Γ3) in a given homology class and which contain
P. Any intrinsic criterion which selects a unique representative in 2^(1?} of each
element of//2(Σ 3), leads to an acceptable definition of the global variables BA(μ).
For example, in Sect. 3, we will choose a piecewise geodesic triangulation of σ(μ).

We will assume that a choice of surfaces σ(μ) has been made, and examine the
dynamical behaviour of the global variables M(μ\B(μ).

The Poisson bracket algebra can be deduced from the bracket [BA

/ ( x ) , A ι (

B ( x / ) ] =

8 i j / < g A B 0 ( x ~ x'}, using a lattice regularization, following the same lines as in (2+1 )-
dimensional gravity [6]. One finds

[MA(μ\MC

D(v)] = 0 , (2.20)

[BA(μ)9M
c

D(v)] = δvμC
AC

EME

D(μ) , (2.21)

[BA(μ\BB(v]} = δμvC
AB

cB
c(μ) , (2.22)
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where CABC are the structure constants of L(G\ The first bracket is deduced directly
from [AA(x),AjB(x'y\ = 0. The second can be derived from the expressions (2.14)
and (2.16), by considering the contribution from the point x — x' — P9 where y(μ)
intersects σ(μ). The bracket of BA(μ) with BB(μ) is ill-defined because the same
surface σ(μ) appears on both sides of the bracket; Eq. (2.22) is the result of the
lattice regularization mentioned above.

There are two sets of constraints on the global variables (M(μ),#(μ)}. The
former are the cycle conditions for the representations M : π \ ( σ ( μ ) ) — » G, pre-
sented by a subset of the matrices (M(v)}: for each surface σ(μ), there is a con-
tractible loop (the "cycle"), which follows every basis loop of πι(σ(μ)) in both
directions. If σ(μ) is a genus g surface and π \ ( σ ( μ ) ) is presented by the basis
{y(μ),μ = μι,μ2, , μ2#}, the cycle conditions are

(2.23)
M(μ4))(M(μ2,_1)M-1(μ2,_1)M(μ2ί/)) =/ ,

since the connection is flat and the cycle is homotopically trivial. The conditions
(2.23) are the remnants of the flatness conditions for the global variables:

FijA « 0 -+ W(μ) - / « 0 . (2.24)

The other constraints are a consequence of the closure conditions D Λ B — 0, and
of our definition of BA(μ), based on removing the region bound by 2 x J/m//2(Σ3)
basis surfaces σ±ε(μ), to obtain a topologically trivial open manifold Σ3

ε. The in-
tegral of the two-form over the boundary, in the limit ε — » 0, is a sum over μ of
the expressions (2.16) and (2.17), and vanishes as a consequence of the definitions
(2.16), (2.17) and the closure of BAij(x). Thus,

D/\B = Q-*JA = Σμ(\ -M-\μ))A

BB
B(μ)^0 . (2.25)

The brackets (2.20)-(2.22), together with the constraints (2.24) and (2.25), de-
fine a dynamical system in the constrained Hamiltonian formulation, which we con-
structed to have the same physical content as the B Λ F field theory. Since some
steps in this construction are non-trivial, particularly the regularization of the brack-
ets [BA(μ),BB(μ)]> we will state this equivalence of physical content as a conjecture.

We will say that theories A and B are "equivalent" if there is a gauge transfor-
mation which maps solutions of A to solutions of B, and this map is bijective.

Conjecture 2.1. The constrained Hamiltonian system given by the brackets (2.20)-
(2.22) and the constraints (2.24), (2.25), with H w 0, is equivalent to that which
derives from the B f\F field theory (2.1), for any coordinate-independent choice of
representation of the basis of H2(Σ3) in Z2(Γ3), σ : μ — » σ(μ).

2.3. Solution of the Time-Evolution Problem. The constraints (2.24)-(2.25) have
a first-class algebra with the following structure:

[JA,JB] = CAB

CJ
C , (2.26)

[JA,(W(μ) - I)Bc] = CAB

D(W(μ) ~ lfc - (W(μ) - I)B

DCAD

C , (2.27)

(2.28)
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The closure conditions JA « 0 generate global G-transformations:

[J\B\μ}} = CAB

cB
c(μ}, (2.29)

[J\MB

c(μ)} = CAB

DMD

c(μ) - MB

 D(μ)CAD

 c . (2.30)

The cycle conditions W£(μ) «/ generate transformations of BA(μ), which include
timelike translations of the base-point P, at which all loops y(μ) and surfaces σ(μ)
intersect. The time evolution is generated by the Hamiltonian constraint.

H = ΣTr(ξ(μ)(W(μ)-I)}, (2.31)
μ

where ξ(μ) are generalized "lapse-shift" functions. Note that, given (2.20) and
(2.21),

B\μ)= [//,[//,^(μ)]j -0, (2.32)

MB(μ) = [H,MAB(μ)] = 0 . (2.33)

Thus, the integrated two-forms are linear functions of time and the holonomies are
constants of the motion.

The number of physical degrees of freedom is equal to the number of configura-
tion space variables minus the number of first-class constraints. There are dimL(G)
independent closure conditions (2.25), but the cycle conditions are not all indepen-
dent: they are associated with surfaces σε(μ) which, together with their partners
σ_ε(μ), form the boundary of a homotopically trivial manifold Σ\\ this implies that
the product of the cycle conditions over all faces σε(μ) and σ_ε(μ) is an identity,
so that dίmL(G) of the cycle conditions are redundant, and the number of inde-
pendent cycle conditions is dimL(G) x (dίmH2(Σ3)— 1). Altogether, in terms of
the Betti numbers bj = dίmHi(Σ\ one has dimL(G) x (b\) configuration variables
M(μ), minus dimL(G) x (1 -f- #2 — 1) constraints, or

dimL(G) x(bι -fe 2) = 0 (2.34)

degrees of freedom, using Poincare's identity bf = &3_/. Note that one could also
count directly the degrees of freedom in the representations M : πι(Σ 3 )— > G
as b\ x dimL(G) minus the number of independent cycle conditions, (62 — 1) x
dimL(G), minus dimL(G) for the overall G-conjugacy. Again, one finds zero de-
grees of freedom.

The "generic" counting which lead to (2.34) must be modified for some topolo-
gies, for which there are fewer independent cycle conditions. Non-contractible
spheres in the set (σ(μ)} do not contribute any cycle conditions, and non-
contractible tori provide only the dim(L(G)) - rank(L(G)) independent conditions

[M(μι),M(μ2)]-0. (2.35)

If one considers the orientable compact topologies which admit locally homo-
geneous structures; only the quotients of //3 and S3 have no non-contractible tori
or spheres, as far as we know. The fact that the B Λ F theory has no degrees of
freedom in these cases is related to Mostow's rigidity theorem on the discrete repre-
sentations of π\(Σ3) into semisimple Lie groups with trivial centers and no compact
factors, not isomorphic to SL(2,R) [7].

We conclude this section by counting the physical degrees of freedom when Γ3

has the topology of any one of Thurston's eight classes of locally homogeneous
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orientable compact manifolds [8]. The results are summarized in Table 3.1 in the
next section.

L Type a: Quotients ofE3. The topologies are Γ3, Γ3/Z2, Γ3/Z3, Γ3/Z4, Γ3/Z6

and Γ3/Z2 x Z2. The fundamental group πι(Σ3) has three generators which are
dual to three non-contractible tori. The cycle conditions require that the matrices
{M(μ),μ = 1,2,3} commute. The closure conditions are then r = rank(G) times re-
dundant, since the matrices (1 — M(μ)) in the adjoint representation have r common
null eigenvectors. If we denote by d = dimL(G) the dimension of the Lie algebra,
there are 3 x d variables, minus 2(d — r) cycle conditions and d — r independent
closure conditions, or 3 x r physical degrees of freedom (6r phase space degrees
of freedom).

2. Type b: Quotients of Nil Γ3 is a non-trivial Sλ -bundle over Γ2. Two of the
cycles are as in case (1) above, but the third fixes Λf(3) as a function of the
commutator of M(l) and M(2). For example, for type biR/\(n\

M(\)M-\2)M-\\)M(2) = M(3}n . (2.36)

This relation and one of the commutators can be chosen as a set of d 4- (d — r) —
2d - r independent cycle conditions. One easily shows that they imply M(3)n =
/. If one considers the "generic" solution, M(3) = /, then there are only d — r
independent closure conditions. Note that the holonomy generates a non-faithful
representation π\(Σ*) —> G in this case. The number of degrees of freedom is 3d -
(2d -r + d -r) = 2r.

3. Type c: Quotients of H^ x R. Σ3 is finitely covered by a trivial Sl -bundle over
ΣCJ, a genus g Riemann surface. The cycle conditions are

(2.37)

(2.38)
...M(2g-l)M-l(2g)M-l(2g-l)=I .

If one chooses M(2g+l) = I, all Eq. (2.37) are satisfied and, with (2.38),
one has a total of 2d independent conditions. Otherwise (M(2g + 1 )=(=/), all of the
M(μ) commute among themselves and Eq. (2.39) is satisfied in a trivial way. In
either case the representation M : n\(Σ3) —> G is not faithful. For M(2g + !) = /,
one has 3d constraints and (2g — 2) x d degrees of freedom, while in the other
case the number of constraints is (d - r) x 2g + (d - r) and there are r x (2g -f 1)
degrees of freedom.

4. Type d: Quotients of SL(2,R). Σ3 is a non-trivial S1-bundle over Σg. The cycle
conditions are (2.37) and one relation which fixes M(2g + 1) as a function of the
recycle (2.38). In the case M(2g + 1) — 7, one has (2g — 2) x d physical degrees
of freedom. The representations M : πι(Z3) —> G are not faithful.

5. Type e: Quotients of H3. There is an infinite set of compact quotients of// 3 ,
such as the polyhedra discovered by Lόbell [9] with two hexagonal faces and twelve
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pentagonal faces identified in pairs; the classification of these quotients is not com-
plete. None of them are smoothly deformable, as a consequence of Mostow's the-
orem [7]. This theorem also tells us that a basis of U2(H3/Γ) can have at most
one non-contractible torus, since there are no free parameters in the quotienting
group Γ : π j ( Z 3 ) —* G, in accordance with the counting (2.34) (one of the cycles
is redundant, and could be of the torus type, but as far as we know quotients of H3

do not admit any non-contractible tori or spheres in Z2(H3/Γ)). Thus, Mostow's
theorem implies that the B Λ F theory has no degrees of freedom for the hyperbolic
manifolds.

6. Type f: Quotients of Sol. £3 is finitely covered by a (non-trivial) Γ2-bundle over
S1. Since the cycle is invariant under mapping class transformations (Dehn twists),
the cycle conditions are the same as for type a topologies; so is the counting of
degrees of freedom of the B Λ F theory.

7. Type cj: Quotients of S\ Σ3 is one of the following [10]: S\ S*/Zm, S*/Dm,
where Dm is the symmetry group of a regular m-gon in the plane, and 53/Γ, S3/0
and S3/I, where Γ, O and / are the symmetry groups of the regular tetrahedron,
octahedron and icosahedron in R^. The second holonomy group is trivial, and so is
πι(Γ3): the B Λ F theory has no physical degrees of freedom.

8. Type h: Quotients of S2 x R. Σ3 is finitely covered by S2 x Sl. There are no
cycle conditions, but b\ — b^ = 1: the phase space is spanned by a single matrix
M £ G and an "integrated two-form" BA with values in L(G). The closure conditions
are

JA = (I -M~})A

BB
B , (2.39)

or d — r independent conditions, leaving r physical degrees of freedom.
This completes the list of solutions of the B Λ F theory; in the next section we

examine the possible relation between these solutions and flat spacetimes Σ3 x (0,1),
when G = SO(3,1).

3. Flat Spacetimes

If B — e Λ e and G = SO(3,1), then F = R is the Riemann curvature and the action
2.1 becomes the Palatini action

S = f e / \ e / \ R . (3.1)

This begs the question: When do the solutions of the B Λ F theory represent
flat spacetimes? Clearly, any flat spacetime gives a solution of the B Λ F theory,
by B = e Λ e. The converse is not true, as we will see shortly. We will first review
the global properties of flat spacetimes, then see under what conditions the global
variables {B(μ\M(μ)} of the B Λ F-theory describe flat spacetimes.

3.1. 75Ό(3,1) Holonomy and Flat Spacetimes. Given a flat spacetime M = Σ x
(0,1), where Γ is a compact, orientable, spacelike three-manifold, the holonomy in-
jects π\(Σ) into /SΌ(3,1). Following Mess [11], one can classify the flat spacetimes
by the rank of the kernel of the linear holonomy. If the rank is equal to three (three
independent translations), then Σ is a three-torus and the maximal development is
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all of R3+l (Thurston type a universe; see Conjecture 3.1 below). If the rank is
2, then Σ is finitely covered by Γ3 and the maximal development is again ^3+1

(Thurston type b, /). If the rank is 1, Σ is closed Seifert bundle with rational Euler
class zero. The universal cover of the maximal development is the direct product
of R and a domain W in R2+l , which is the universal cover of the maximal devel-
opment of a (2-hl)-dimensional flat spacetime Σ(2) x (0, 1), where Σ(2} is a genus
g Riemann surface (Thurston type c and d universes). If the rank is zero, then the
holonomy embeds n\(Σ) into 6Ό(3,1) as a discrete compact subgroup, which is
rigid by Mostow's theorem. These spacetimes are quotients of the interior of the
future light-cone by this subgroup, have an orbifold-singularity at the origin and
admit a natural foliation by the hyperbolic surfaces H3 = t2 - x2 - y2 - z2 = τ2

(Thurston type e universes).
We will denote the holonomy for y(μ) by {M(μ),b(μ)}9 where M(μ) is the

50(3, 1) projection of the holonomy in the usual 4 x 4 matrix representation, and
b(μ) is the four- vector

ba(μ)= §Ma

h(s}eb

l(s)dsl , (3.2)
y(/0

where

(s}

(3.3)

A flat spacetime Σ3 x (0,1) can be represented by an open subset of R3^1 with
points identified, 2P x (0, 1), where IP is a polyhedron with 2 x dimH2(Σ3} faces
which are identified in pairs by the isometrics {M(μ),b(μ\ μ — 1, ,c//w(//2
(Z3))}. The edges of the polyhedron are given by the vectors b ( μ ) and their
images under the 5(9(3,1) components of the identifications, M ( v ) b ( μ ) . All cor-
ners of the polyhedron are identified to a single point of Γ3, which is the base
point P of the homotopy group πι(Σ3).To reconstruct the representation of the
spacetime & x (0,1), from the polyhedron .̂ 0 given by {M(μ\b(μ}}, one con-
structs a one-parameter family of polyhedra by displacing one corner of J^o along a
timelike segment S(τ\τ G (0, 1), and the other corners along the identified segments
(M(μ)S(τ\ etc.). One can show that different choices of the timelike segment S(τ)
lead to representations of the same spacetime Σ3 x (0,1). Likewise, the geometry
of the polyhedral faces can be chosen arbitrarily: It is sufficient to give the relative
positions of the corners, b(μ), and the 5Ό(3, 1) holonomies M(μ\ to specify com-
pletely the spacetime. Roughly speaking, a polyhedron ϊ? can be obtained from Σ3

by chosing a base point P £ Σ3, cutting out dimH2(Σ3) basis surfaces and "un-
folding" the resulting three-manifold into a polyhedron. The point P, and the basis
surfaces, correspond to different choices of segments S(τ) and polyhedral faces σ(μ).

We will list all flat spacetimes, by Thurston type, and in each case count the
number of parameters needed to describe them. We are using Thurston's classifica-
tion as a list of topologies which are likely to have some relevance in cosmology,
regardless of whether or not there exists a foliation of these spacetimes in locally
homogeneous leaves. If such a foliation exists for any flat spacetime with topology
Σ3 x (0, 1 ), where Σ3 is a compact, orientable three-manifold, then the spacetimes
given below are locally homogeneous cosmologies, and the list is complete: Any flat
spacetime Σ3 x (0, 1) belongs to one of the categories listed below. We conjecture
that a locally homogeneous foliation always exists:
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Fig. 3.1. A T3 -universe is represented as a hexahedron in IR3+1 with opposite faces identified.
As one transports a vector from the face σ(μ) to its identified partner σ(—μ), the vector is
Lorentz-transformed by the matrix M~l(μ). The closure of each face is a condition on the basis
vectors b(μ) and the matrices M(μ); for instance the closure of the forward face requires that

- 6(3) = 0 ,

fe(2) + M~1(2)6(3) - Af"1(3)6(2) - 6(3) = 0 ,

Conjecture 3.1. Let M be a flat spacetime with topology Σ3 x (0,1), where Σ3 is
a compact, orientable three-manifold with orientable normal bundle. There exists a
foliation of M such that the metric on each leaf, which is inherited from the flat
metric on M, is locally homogeneous.

1. Type a\ Cosmologies. The universe is a three-torus. The holonomies (M(μ),
6(μ);μ = 1,2,3} must satisfy the SO(3,1) cycle conditions, which state that the
matrices M(μ) commute, and the following polyhedron closure relations [Fig. 3.1]

+ M~l(l)b(2) - M~\2)b(\) - b(2) = 0 , (3.4)

(3.5)

(3.6)

(3.7)

The most general solution to the cycle conditions (3.7) is given, in the appro-
priate frame, by

M(μ) = exp(u(μ)Jxt + β(μ)Jyz] . (3.8)

In the generic case, when all six coefficients |oc(μ), β(μ); μ — 1,2,3} are non-
zero and different from each other, the only solutions to (3.4)-(3.6) are polyhedra
which collapse to a point singularity at a finite proper time in the past or future: at
the singularity b(μ) = 0, and at time τ one has

b(μ) = (M~l(μ) — I)Nτ , (3.9)

where N is a timelike normal.
The largest family of solutions is found when β(μ) = 0, for all μ. In this case

there is again an initial or final singularity (unless α(μ) = 0 as well), but one where
the singular polyhedron collapses to the y-z plane, which is invariant under M(μ).
The polyhedron at time τ is then given by

(3.10)
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where b^(μ) — &ό(μ) = 0,Vμ. One needs five scalar parameters to specify |£>o(μ)}
up to a rotation in the plane, on top of the three independent parameters α(μ),
altogether eight parameters to specify the spacetime.

It is interesting to compare these spacetimes to the Kasner solutions [12]

as2 = -dt2 + Σt2hidx* , (3.11)

which are flat if one chooses b — (1,0,0). They are then specified by six param-

eters, which define the identifications in IR3,Γ : x^ x + n\a -f n^b H~ n$c and the
quotient Γ3 = 1R3/Γ. At τ = 0, the spatial part of the metric (3.11) collapses to
a parallelogram in the y-z plane, comparable to (3.10) but with &o(3) = 0. The
vanishing of these two parameters in the Kasner solution is due to the requirement
that the Γ3 universes be surfaces of instantaneity: this requirement is not satisfied
in the solution (3.10) when & 0(3)ΦO.

2. Type a,Ί9n > 1. For Z3 = Γ3/Z2, the two images of the surface σ(3) are identified
after a twist by 180°. This is consistent with the closure of the polyhedron's faces
only if b(\) and b(2) are orthogonal to &(3). With these two new conditions, the
largest set of spacetimes with Type cii slices is parametrized by 6 numbers. The
polyhedron is given, as for Kasner 's solution, by Eq. (3.10) with &o(3) = 0

For Γ3/Z3 and Γ3/Z6, the vectors b(μ) must have the same lengths and equal
bihedral angles (4 conditions). The flat spacetimes with Type #3 and a5 sections
are labeled by 4 independent parameters. Finally, the flat spacetimes with α4 and
«6 sections are labeled by 2 parameters and three parameters, respectively.

3. Type b Cosmologies. Σ3 is a non-trivial -S1 -bundle over Γ2, and has negative
sectional curvature. There are seven subclasses, all of which can be represented as
a hexahedron with identifications. We will consider only the type bLR/l(n). The
cycle conditions are

[M(1),M(3)] -0 , (3.12)

[Af(2),Λf(3)] = 0 , (3.13)

) = M(3)/' . (3.14)

There are three constraints on the polyhedron vectors &o(/0 in the solution
(3.10), on top of α(3) = 0 from (3.14) (note, however, that the identification rules
are not the same as for Γ3 ). This gives the largest set of spacetimes in this class;
they are parametrized by the variables α(l ), α(2) and the vectors /?o(/0 which satisfy
the constraints, altogether four parameters.

Type c Cosmologies. The universe is finitely covered by Σf) x S1, where Σ{1 is a
genus g surface. The cycle conditions were given in (2.37)-(2.38):

[MOO,M(20+1)] = 0 , (3.15)

W(2g+\) = I , (3.16)

and the face closure conditions are [Fig. 3.2]:
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M(1)M(Z)M(l)b(2g+1)

Fig. 3.2. A universe with topology ΣΊ x S1, where Σ2 is a genus g — 2 surface, is represented as
a decahedron in IR3+1 with the "top" and "bottom" octagons identified by M(2g + 1), and the 4g
"latteraΓ faces identified in pairs. The vector b(2g + 1) at A is identified to M~λ(\)b(2g+ 1) at
A to M ( 2 ) M ~ ] ( \ ) b ( 2 c j + 1) at C and finally M(\ )M(2}M~l(\ )b(2g + 1) at B, so the face 5(1)
closes if (/ - M~\2g+ 1)6(1) + (M(\)M(2)M~\\) - 7)6(20 + 1) = 0.

(7-M->(20+!))£(!)
I (l)-7)£(20 + 1) = 0 (3.17)

-1) = 0 (3.18)
etc.

If M(2g + 1) = 7 and M(l), ,M(20) generate a faithful representation M :
πι(I^) —* £0(3,1), there are 20 x 4 closure conditions and 12 independent condi-
tions on the matrices M(μ\ If one subtracts the overall equivalence by 7£0(3,1)
conjugacy, one is left with (20 + 1) x 1 0 - 8 0 - 1 2 - 1 0 = 1 2 0 - 1 2 parameters to
describe these spacetimes. This is also the number of parameters which describe
the flat (2+1 )-dimensional spacetimes with the topology Σf] x (0,1). Indeed, we
have set M(2g + 1) = 7, so these spacetimes are just the direct product of (2+1)-
dimensional spacetimes with Sl. There are other solutions to (3.15)-(3.18) besides
the ones we have just described, for M(2g + 1)Φ7; as in Sect. 2, these have fewer
free parameters.

Type d Cosmologies. The universe is finitely covered by a non-trivial £ !-bundle
over Σίy; the cycle conditions and closure conditions are as above, except for (3.16),
which now sets M(2g + 1) as a function of the Γίy-cycle W(2g + 1) (Eq. 2.38):

W(2g + 1) = M(2g + 1)'? . (3.19)

Since [M(μ),M(20+ 1)] = 0 for μ= 1, ,20, the generic solution satisfies W(2g
+ 1) = M(2g + 1) = 7, which we have discussed in Type e above, and again there
is a (120 - 12)-parameter family of solutions. Note, however, that the identifications
of points on the boundary of the polyhedra are different. Roughly speaking, by
following the cycle on ΣfJ one goes around Sl n times.

Type e: Hyperbolic Spaces. The spacetime is a quotient of the interior light-cone by
a discrete subgroup of £0(3,1). There is a natural foliation in terms of the Lorentz-
invariant hyperbolic surfaces t2 — τ2 — x2 — y1 — z2. The discrete subgroups are not
completely classified to this date, and they have no free parameters by Mostow's
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theorem. One may check this fact in our formalism, for any given topology, by
counting the constraints and showing that these are sufficient to fix all the variables
{M(μ),Z?(μ)}? up to an overall 75(9(3,1) transformation.

Type f Cosmologies. The universe can be represented as a hexahedron, as Γ3,
but where one face is identified to the opposite face by means of a Dehn twist.
The cycle conditions are unchanged (from Γ3), since the cycle is mapping-class
invariant, but one must impose three constraints on the vectors {&(!),b(2\6(3)},
which require that the faces which are identified with a Dehn twist, say μ = 1, can
be cut diagonally into two similar isoceles triangles, and lie in a plane orthogonal
to the vector b ( l ) :

b ( l ) 6(2) = 0 , (3.20)

6(1) 6(3) = 0 , (3.21)

62(2) +2(6(1) 6(2)) = 0 . (3.22)

The largest set of spacetimes in this classes parametrized by 8-3 — 5 numbers.

Type g: Spherical Spaces. There are no flat spacetimes with a foliation in spherical
locally homogeneous slices, S3/Γ. Indeed, if there were such a spacetime, one could
map Σ3 as a sphere embedded in Minkowski space, with points identified. This is
impossible because S3 cannot be embedded in IR3"1"1.

Type h: Kan towski-Sachs Spaces. There are no flat spacetimes with foliations in
S2 x Sl leaves, i.e. the topology of the Kantowski-Sachs solutions. One proves this
as for the quotients of the three-sphere (Type g), by noting that it is impossible
to embed S2 x (0,1) in IR3+1 in such a way that S2 is spacelike and the segment
(0,1) is timelike.

The results of this section are summarized in Table 3.1 and compared to the
counting of solutions of the B Λ F theory and to the Teichmϋller parameters of
locally homogeneous structures given in [13]. The number of spacetime parameters
is generally less than twice the number of Teichmϋller parameters, because arbitrary
initial conditions in the cotangent bundle to Teichmuller space generally do not lead
to flat spacetimes.

3.2. Global Torsion. Given a set of global variables (M(μ),7?(μ)}, we wish to
interpret the matrices M(μ) as the 5Ό(3,1) holonomies for loops y(μ) in a flat
spacetime, and each B(μ) as the area bivector of the face σ(μ) of a polyhedron ̂
in R3+1, which represents a section of the spacetime as explained in Sect. 3.1. First
of all, note that the area bivectors of a polyhedron in R3+1 depend only on the
boundary segments of the faces, and not on their local metric properties. We denote
the boundary segments of an n-gon σ(μ) by 6/(μ),z = 1, ,;?, with Σ/6/(μ) = 0.
The area bivectors can be computed from these vectors by triangularizing the n-gon
and summing the contributions of each triangle. For example, for a quadrilateral
face, B(μ) = l / 2 ( b \ ( μ ) Λ 62(μ) + 63(μ) Λ 64(μ)). One would like to invert these
expressions, to compute the polygon vectors which lead to given bivectors B(μ). It
is not always possible to find such vectors in such a way that the polygon faces
close: we will define the global torsion for a "polyhedron" given by 6"(μ), by

/ 0 . (3.23)
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Table 3.1. The number of parameters which label the solutions of the B Λ F
theory and the flat spacetimes Z3 x (0,1) are given, when Σ3 is one of the
Thurston geometries. The rank of the algebra L(G) is r and its dimension
is d\ for S0(3,1), r = 2 and d = 6

Universal
cover

a

bL,R

c

d

e

f

g

h

Compact
quotient

al
a2
a3
a4
a5
a6

bL,R/l(n)

(orientable
Seifert b.)

(orientable
Seifert b.)

(hyperbolic
manifolds)

(sol / G)

(quotients of
the sphere)

(Kantowski
Sachs)

Solutions of
B Λ F theory

6r

4r

(4g+2)r

(4g-4)d

0 (discrete)

6r

0 (discrete)

0 (discrete)

Flat
spacetimes

8
6
4
2
4
3

4

12g-12

12g-12

0 (discrete)

5

0 (no solutions)

0 (no solutions)

We will show with a simple example how one can construct solutions of the
B Λ F theory which cannot be represented as torsion-free polyhedra. Consider the
spacetime Γ3 x (0,1), with trivial 50(3,1) holonomies: a static three-torus cosmol-
ogy. If one modifies this solution by taking M(l) to be a rotation in the plane
of the face σ(l), then the bivectors B(l) and M~l(l)B(\) do not change but the
two identified faces are twisted with respect to each other. One easily shows that
the other faces no longer close, regardless of the choice of {b(μ)} consistent with
the bivectors {B(μ)}. Yet, all of the constraints of the reduced B Λ F theory are
satisfied.

One can identify a set of constraints on the variables {M(μ\B(μ)} which guar-
antee that the global torsion vanishes. We will give these constraints below with
a brief explanation; the reader is referred to analogous work in the exact lattice
formulation of the B Λ F theory for a more detailed derivation [14].

The torsion constraints state that the pairs of faces which intersect at an edge of
the polyhedron intersect transversally, and the various identified edges respect the
identification rules of the polyhedron. For the intersection of faces (μ) and (v), the
former conditions (transversality) are

εabcdB
ab(μ)Bcd(v) = 0 . (3.24)

The latter are found by considering all sets of three faces which intersect along two
identified edges: Let B(μ) and B(v) represent two faces which intersect along edge
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No. 1, and let #(v) and B(p) intersect along edge No. 2, which is identified to edge
No. 1 by means of an 75(9(3,1) transformation with the 5(9(3,1) component M. To
reconstruct the triple intersection at edge No. 1, one transports B(ρ) from edge No.
2 to edge No. 1, and considers the three bivectors B(μ), B(v) and MB(p\ which
intersect transversally in pairs by (3.5). They intersect along the same edge if

CABCB
A(μ)BB(v)Mc

DBD(p) = 0 , (3.25)

where CABC are the structure constants of 5(9(3,1) and M is in the adjoint repre-
sentation.

4. Conclusion

We have investigated two theories, the B Λ F gauge theory and the reduction of
Einstein's equations to flat spacetimes, and examined the relation between them.

The B Λ F theory was reduced to a finite constrained Hamiltonian system, where
the phase space is spanned by holonomies M : πι(Z3) —> G and "integrated two-
forms," B : H2(Σ3) — » L ( G ) . This reduced theory could then be solved explicitly
when Σ3 is one of the orientable topologies listed by Thurston in his classification of
geometric structures, and the number of degrees of freedom was given in all cases.

The flat spacetimes were constructed from their 75(9(3,1) holonomies {M(μ),
b(μ)} for a basis set of loops of πι(Σ3), as a subset & x (0,1) of IR3+1 with
points identified on the boundary faces of the polyhedron 3P. The vectors b(μ)
give the displacements between corners of ,̂ while the matrices M(μ) <E 5(9(3,1)
are the 5(9(3,1) holonomies for loops which cross through identified faces of the
polyhedron. The number of parameters which label the flat spacetimes Σ3 x (0,1)
were given when Σ3 is one of Thurston's manifolds. This completes Ellis' list of
topologically non-trivial cosmological models in the case of vanishing spacetime
curvature [15]. The solutions of the B Λ F theory with G = 5(9(3,1) can be inter-
preted as representing spacetimes with global torsion, which we define as the failure
of the polyhedra's faces to close. The variables Bab(μ) represent the area bivectors
of the faces of a polyhedron, when they do close. We also gave the vanishing
torsion constraints as equations on the bivectors Bab(μ).

The solution of the time evolution problem for the reduced B Λ F theory can be
exploited to give information on the global dynamics of flat spacetimes, when the
torsion constraints are satisfied. In particular, one has the result that the area bivec-
tors of non-contractible surfaces, in an intrinsically chosen set of representatives of
basis elements of 772(Σ3) in Z2(Σ3), have a linear evolution in time.

The derivation of the reduced theory from the B Λ F field theory required some
non-trivial steps, and we could only conjecture that the reduction is exact. It would
be of great interest to prove this conjecture, perhaps as in the polygon represen-
tation of (2+1 )-dimensional gravity [16] or, by means of the exact lattice theory
[6,14]. Also, the polyhedron representation of flat spacetimes is based on several as-
sumptions, in particular it assumes the existence of non-contractible geodesic loops
which become the polyhedron's edges b(μ) in the Minkowski space representation.
If this construction can be formalized, it would give a generalization of Poincare's
polygon in H2 [16], which labels the conformal structures on Riemann surfaces, to
polyhedra in R3+l which label the flat spacetimes.

Finally, the existence of a finite constrained Hamiltonian formulation of the
B Λ F theory could be useful in developing the corresponding quantum theory [17].
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The linear time-evolution of the classical variable B(μ) indicates that the quantum
theory may have a representation in terms of "free particles" in L(G\ but with iden-
tifications given by the mapping class transformations, or "large diffeomorphisms"
[18]. The Green's function could then be constructed by the method of images, as a
sum of freely propagating amplitudes over the mapping-class images of the source.
The quantum effects would likely appear as interference terms in this sum, as in
(2-f 1 )-dimensional quantum gravity [19].
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