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Abstract: We prove that each action of a compact matrix quantum group on a
compact quantum space can be decomposed into irreducible representations of the
group. We give the formula for the corresponding multiplicities in the case of the
quotient quantum spaces. We describe the subgroups and the quotient spaces of
quantum 577(2) and SO(3) groups.

0. Introduction

Quantum groups have been already applied in various areas of physics, like confor-
mal field theory and exactly solvable models in statistical mechanics. It is especially
interesting that they could possibly describe symmetries of (quantum) space-time in
a future quantum gravity. In the same time, the nature and properties of quantum
groups are still under investigation. The local description of quantum groups is given
in terms of quantum universal enveloping algebras (cf. e.g. [Dr, J]). In the global
description we investigate the functions on quantum groups (cf. e.g. [W2, RTF]). A
deep insight in that global structure is given by the topological approach developed
in the series of papers of S.L. Woronowicz [W1-W6]. We use that approach in the
present paper.

The classical 517(2) and SO(3) groups play an important role in description
of spherically symmetric, stationary problems in physics. Also their subgroups are
important in description of various physical systems. The description of quantum
SU(2) groups was given in [W2]. Their quantum homogeneous spaces, quantum
2-spheres, were investigated in [PI, P2, P5] (cf. also [VS2]). However, the general
theory of quantum subgroups and quantum homogeneous spaces was only touched
there. In the present paper we want to treat that subject in more detail. We also
provide more examples.

In Sect. 1 we investigate the general theory of the (right) actions of (compact
matrix) quantum groups on (compact) quantum spaces. In Sect. 2 and 3 the theory
is illustrated on the example of quantum SU(2) and SO(3) groups. We classify
their subgroups and describe the corresponding quotient spaces. Provided examples
of finite quantum groups can have an application in the theory of pseudogroups of
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Ocneanu. In the course of the paper we substantiate some statements made in [PI]
and [P5]. The results of the paper were partially contained in [P3] and partially
announced in [P4].

Throughout the paper we use the terminology and results of [W2, W3]. All
considered C*-algebras and C*-homomorphisms are unital. The symbol ~ denotes
a C*-isomorphism. If M is a subset of a C*-algebra A then < M > denotes the
closure of span M. Let us recall (cf. [Wl]) that (compact) quantum spaces X
are abstract objects which are in bijective correspondence with C*-algebras C(X).
In particular, if X is a usual (compact Hausdorff) space then C(X) has the usual
meaning of C*-algebra of continuous functions on X. Each commutative C*-algebra
can be obtained in that way (up to a C*-isomorphism).

We use the Pauli matrices

0 1
1 0

σv =
0 -i
1 0

1 0
0 -1

We sum over repeated indices which are not taken in brackets (Einstein's conven-
tion). For x G R ,E(x) denotes the integer part of λ".

1. Symmetries of Quantum Spaces

In this section we define the notion of subgroup of (compact matrix) quantum
group. We also provide the basic notions concerning the actions of quantum groups
on (compact) quantum spaces. We prove that each such action can be decomposed
into irreducible representations of the quantum group. We give the formula for the
corresponding multiplicities in the case of quotient quantum spaces.

Let us recall

Definition 1.1 ([W3, W7]). G = ( A , u ) is called a (compact matrix) quantum group
if A φ{0} is a C*-algebra, u — (ui/ )fί ^l is an N x N matrix with entries belonging

to A and
1. A is the smallest C*-algebra containing all matrix elements of u.
2. There exists a C*-algebra homomorphism Φ : A —> A ®A such that

Φ(w*/)=Σ>,<g>w,/ M = l , 2 , . . . , # . (1)
r=l

3. u and ιιτ — (t/// c)f / = 1 are invertible.

In particular, each compact group of matrices G C GL(N,C) is a quantum group
[W3]. Then A = C(G) and u corresponds to the fundamental representation of
G : ιijj(g) = Qij £ C, g £ G,ij = 1 , . . . , 7 V . Each quantum group with commutative
A is of that kind (up to a C*-isomorphism). We use the notation A — C(G) for any
quantum group. We say [W3] that vr is a (smooth nondegenerate) representation of
G if i t ' is an invertible M x M matrix with entries in A and

N

Φ(mι) - Σ>W,r Θ w,v, /c, / - 1,2,.. .,M ,
r=l

for some M E N . We denote M = dimit '. It is easy to see (cf. [W3]) that w7 is
also invertible and therefore the iv-image of G is a quantum group:



Symmetries of Quantum Spaces 3

Proposition 1.2. Let w be a representation of a quantum group, M - dimiv. Then

is also a quantum group.

Note. Let C*({w// : ij = 1,...,M}) =A Then quantum groups (^,w) and C/4,w)
have the same Φ and can be identified.

The unital * -algebra generated by all matrix elements of u is denoted by ##.
Tensor product (φ), direct sum (Θ), equivalence (~) and irreducibility of repre-
sentations of G are defined as for usual matrices (cf. [W3]). In particular, repre-
sentations w, w' are equivalent if dimw = dimv/ and there exists S G GL(dimw, C)
such that w = Sw'S~l. Each representation is equivalent to a representation which
is unitary (as matrix). Let {uτ}τ^ be the set of all nonequivalent irreducible unitary

representations of G. We denote by UQ the trivial representation (0 G G, dimι/° = 1
and u°n = I). Set dτ = άimuτ. Due to [W3, Prop. 4.7], the matrix elements of all

uτ,τ G G give a linear basis of j/. The Haar measure h is the state on C(G) which

is equal to 1 on I and 0 on other matrix elements of ι/τ, τ G G. It is invariant, i.e.
(id 0 h)Φ(x) = (A 0 id)Φ(x) = h(x)I,x G C(G) [W3, Th. 4.2]. According to (5.10)
and (5.15) of [W3], there exist matrices Fα, α G G, such that

We set x*m — (7>F(α)) u^m *(F(χ))ιcs,p*m(x) = h(xy

smx) for x G C(G),α G G, s,m =

l , . . . , d χ . Then p*OT are continuous linear functionals on C(G) and p*m(w'n) =

δχβδsιδmn, β G G, l,n — 1,2,.. .,dβ. Hence,

(the action of both sides on all uτ

ab is the same). We put P*m = (id 0 p*m)ΦG,p
y =

py

ss G C(GX (Einstein's convention!). Then

PlmC(G) C spanK : ' = 1,2,...,^} , (3)

(cf. [W3, eq. 5.37]). In particular ρ° = h. The basic notion of this section is given
by

Definition 1.3. We say that a quantum group H = (B,v) is a (compact) sub-
group of a quantum group G = (A,u) if ά\mv = άimu and there exists a C*-
homomorphism ΘHG '• A —> B such that ΘHG(UΪJ) = VjjJJ = 1,2,.. .,dinm

Notice that ΘHG must be a C*-epimorphism.
Let H C G be two compact groups of matrices. The conditions of Def. 1.3 are

then satisfied by ΘHG — *'*, where i : H —> G is the natural embedding. Conversely,
let G be a compact group of matrices. Then each subgroup in the sense of Def. 1.3
is also a compact subgroup in the usual sense (up to a C*-isomorphism).

According to Def. 1.3, SqU(N),q G(0,l] (see [W4]) is a subgroup of SqU(N +
1) (we use the identification of the note after Prop. 1.2 for the representation w =
uφu° of SqU(N), cf. Eq. (1.7) of [NYM]).
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The second main notion of the paper is introduced as follows.

Definition 1.4. Let X be a quantum space and G be a quantum group. We say
that a C*-homomorphism Γ : C(X) —> C(X) <8> C(G) is an action of G on X if

b) ((I ® y)Γx : x e C(X\ ye C(G)) = C(X) <8> C(G).

Remark 1. This definition is more restrictive than that used in [PI]. Nevertheless,
Thm. 1 and Thm. 2 of [PI] remain true if we use instead Def. 1.4 (cf. Corollary
1.6).

Remark 2. In the classical case (i.e. if X is a usual compact Hausdorff space and G
a compact group of matrices), Def. 1.4 means that Γ = σ*, where σ : X x G —> X
is a right continuous action of G on X in the usual sense (including the condition
σ(jt,e) =x for x e X).

Let X be a quantum space and G be a quantum group. Let us fix a C*-
homomorphism Γ : C(X) -» C(ΛΓ) ® C(G). We say that a vector subspace £F C
C(X) corresponds to a representation v of G if there exists a basis ei,...^ in W
such that dimt; = d and Γe^ = ew <8) %£,£ — 1,2,.. .c/. It occurs that if Γ is an ac-
tion of G on A" then C(X) can be decomposed into vector subspaces corresponding
to irreducible representations of G:

Theorem 1.5. Let Γ be an action of a quantum group G on a quantum space X.
We denote E* = (id ® ρα)Γ, W* = E*C(X) C C(X) for a e G (see (4)). Then

2) F<7r eαcΛ α G G ί/zerβ exists a set 7α α«J vector subspaces W^ i G 7α,
a) ^α - Θί€/β ̂  .
b) fFαί corresponds to u* for each i G 7α .
3) Tsαc/z t ec/or subspace V C C(^) corresponding to u* is contained in W%
4) The cardinal number of 7α doesn't depend on the choice of {fFα/}/e/α

denoted by c% and called the multiplicity of u* in the spectrum of Γ.

Proof 1)2) Set^ = (id 0 p*m)Γ : C(X) — ̂ C(^),αG G, 5 , / w = 1,2,... ,rfα. Us-
ing condition a) of Def. 1.4 and (2), we get

EZJE* = [id ® (p«m ® p§ )ΦC]Γ = ̂ ,̂ (̂ 4 . (5 )

By virtue of (x*m : α e G,s,m = \,...,dx) = C(G) and condition b) of Def. 1.4, we
obtain

(EZHx:aeG,s,m=l,...,da,x€C(X)} 1
? ( Ό )

: j € C(G),x

Let fΓ αί = £(*fXί)Cp ). Using (5) and (6), we get

C(X) = 0 W»* . (7)

But E* = Efs9 hence

dx

(8)
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which proves 1). Let {eαπ}/E/α be a basis of £Fαl. We set eais — E^ exn,s =
l , . . . , ί/ α , i G 7α. In virtue of (5), {eαw}/e/α is a basis of W™'. Putting J f α /=
span{eα/s : s = l,...,ί/α} and using (8), we get 2a). Using condition a) of Def.
1.4 and (3), we get

Γe^ = ΓE^ew = Γ(id 0 p^^Γe^

- [id ® Pa

(s}(s}]Γe*ls G C(X) 0 span{ι£ : j = ! , . . .,</«} .

Therefore Γe^s = x^^j <S> ujs for some xΛiSj^G C(G)J = 1,2,. . . ,rf α . Acting on

both sides by (ά/0pj^),& = 1,2, . . . ,£/ α , we obtain JS^e^ = Jtα/s*, hence x^ =

£a/yb ^aw = <?(aχ/ ® W/ s» 5 = 1 , 2 , . . . , rfa, Z G 7a. It pΓOVCS b).

3)4) Let βj ,β2, . . . ,e</ a form a basis of V C C(JQ such that Γes = βy 0 UjS9 s =
l,...,dα . We get T^βi = er,r = l,...,dα . Thus er — £(

α

r)(r)er G JFαr C JFα, which
proves 3). Moreover, we see that each decomposition of type 2a) can be obtained
as in proof of 2). Therefore the cardinal number of 7α is equal to dim^Fαl for each

choice of {fFα/}/e/α Π.

Corollary 1.6. Let X be a quantum space, G be a quantum group and Γ : C(X) —>
C^Y") 0 C(G) be a C*-homomorphism. Then Γ is an action of G on X iff there
exist sets Jα, α G G, and linearly independent and linearly dense elements eαmy , α G

G,m G yα, 7 = 1,...,ί/α, /« C(AΓ) 5McA ίAύίί Γe^mj = ey_ms 0 M^ . In that case #Jα =
cα ί/ on^ o/ ?Aβ^^ values is finite.

Proof. " = >̂ " is contained in Theorem 1.5. Conversely, let such elements eamj- be
given. Then condition a) of Def. 1.4 is satisfied (it suffices to check it on βαmy), while

the condition b) follows from eαm£ Θ w = {7 0 [w(wαΓ)^.1]}Γe(α)my , where w G

C(G),α G G,m G Λ,A: - l ,2, . . . , r f α . Moreover (see the proof of Th. 1.5), W«s =
(e^ms : m G Λ)>Cα = dim(eαml : m G Jα), which proves the last statement. D.

Now we shall find the numbers cα for the quotient spaces. Let 77 be a subgroup
of a quantum group G. The quotient space 77\G is defined by

C(77\G) = {x G C(G) : (ΘHG 0 zW)ΦG;t = 7 0x}

(cf. [PI, Sect. 6]). Similarly as in [PI, Sect. 6] we get that EH\G = (hH 0 id)(θHG 0
zW)ΦG is a completely bounded projection from C(G) onto C(77\G). Moreover,
(Efj\G 0 id)ΦQ = ΦoEH\G. Thus we can define

A/\G - ΦG|C(//X(?) : Q77\G) —> C(77\G) 0 C(G) .

Let α G G. The representation ΘHG(^) of the group 77 can be decomposed into
a direct sum of irreducible representations among which the trivial one appears with
a multiplicity which we denote by nα. Taking a suitable form of wα we get

ί7 for z = 7 , z = 1,2,...,nα,

otherwise.
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Therefore EH\Gu^j = w*y. for 1 g m rg rcα and EH\Gu^j = 0 for «α < m ^ c/α,y =

1,..., fi?α, α G G. Hence, eαwj = M^ , m = 1,..., «α,y — 1> ? <^α> α G G, have the same

properties as in Corollary 1.6 with Jα = {l, . . . ,w α }. We obtain

Theorem 1.7. L<?ί H be a subgroup of a quantum group G. Then ΓH\G =
ΦG) G) : C(H\G) —> C(H\G) 0 C(G) w ΛΛ αcrww o/ G <w //\G. Moreover,

cα = «α (fήe multiplicity of the trivial representation (/) /« the decomposition of
®HG(U*} into irreducible components).

Definition 1.8. All the pairs (H\G,ΓH\G) obtained in the above way (and the
pairs isomorphic to them) are called quotient. Let Γ be an action of a quantum
group G on a quantum space X. We say that a pair (X9Γ) is embeddable if
C(T)φ{0} and there exists a faithful C*-homomorphism ψ : C(X) —> C(G) such
that ΦGψ = (ψ 0 id)Γ (cf. [VS2]). We say that (X,Γ) is homogeneous if c0 = 1.

Remark 3. In the classical case C(H\G) is the commutative C*-algebra of functions
which are constant on the orbits Hg(g G G) of the subgroup H of G. Let π be the
continuous projection π : G —> H\G. Then π* identifies that C*-algebra with the
C*-algebra of continuous functions on the usual quotient space H\G. Then Γ is
identified with σ*, where σ is the usual right continuous action of G on H\G.

Remark 4. In the classical case (X,Γ) is homogeneous iff JΓΦ0 is homogeneous
w.r.t. the action σ of the group G (see Remark 2).

Proof Let x G C(X). Then x G WQ iff Γx = x Θ 7 iff x ( p g ) = x(p\ peX.g^G
iff x is constant on the orbits pG of G.

<=: If ^ΓΦ0 is homogeneous then /?G = G, ί^Ό = C/,CQ = 1.
=>: Xή=9 since c0 — 1 > 0. Assume ad absurdum that X is not homoge-

neous. Then there exist p, p' G X such that // 0 pG. By the Urysohn lemma there
exists / G C(X) such that 0 ^ / ^ \J\pG = 0,/(//) = 1. Let A: = (W 0 A)Γ/.

Then k = EQfeW° = CL But t(p) = ^f(pg)dg = 0, t(^) = f G f ( p f g ) d g >
0. This contradiction proves the homogeneity of X. D.

A relation among the above notions is given by

Proposition 1.9. Let Γ be an action of a quantum group G on a quantum space
X. Then

a) (X9Γ) is quotient => (X,Γ) is embeddable => (X,Γ) is homogeneous.
b) In the classical case (X9Γ) is quotient ^=> (X9Γ) is embeddable <=> (X9Γ) is
homogeneous.

Proof a) The first implication holds for ψ = id : C(H\G) —> C(G). Let now
(X,Γ) be embeddable, x G C(X\Γx = x 07. Then ΦG\l/(x) = ψ(x) 0/. Acting
on both sides by id 0 hG we get ψ(x) = hG(ψ(x))I G CI,x G C/. Thus JF0 = C/,
c0 = l.
b) In this case each homogeneous space is (up to a homeomorphism) quotient,
which proves the implications opposite to that of a). D.

Remark 5. Examples of non-compact quantum homogeneous spaces are given by
[W8].
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2. Subgroups and Quotient Spaces of Quantum SU(2) Groups

In this section we classify the subgroups of quantum groups SUq(2),q G [—1,1]\{0}.
The corresponding quotient spaces are described (for q G (—1,1)\{0}).

First, let us recall that compact subgroups of 5(9(3) are given by

a) 50(3),
b) 5(9(2)n (all rotations around the axis given by n),
c) DO(2)n (the elements of 5(9(2)n and all rotations through angle π around axes
perpendicular to n),
d) C"m,n (rotations through angles ^k9k — 0,1,... ,ra - 1, around the axis given by
n), m = 1,2,...,
e) Dm^φ (the elements of Cm?n and rotations through angle π around m axes in
plane σn perpendicular to n, with equal angles between neighbouring axes, where φ
denotes the angle in σn between the projection of e3 on σn (we take ei instead of
€3 if n = ±63) and the first axis in the anti-clockwise direction), m = 2,3,...,0 ^
Φ < m
f) TΛfφ (the symmetries of regular tetrahedron with one of vertices in the direction
of n, where φ is now measured towards a projection of an edge starting in this
vertex), 0 g φ < y,
g) Onφ (the symmetries of regular octahedron with n,φ defined as in f)), 0 ^

Φ< f,
h) Λ i φ (the symmetries of regular icosahedron with n,φ defined as in f)), 0 r§

Φ<'Ύ>
where n is a unit vector. We have two opposite choices of n for any subgroup in
b)-f) (in the case of f) the change of sign of n corresponds to the inversion of
the tetrahedron) and many choices of n corresponding to the vertices of the solid
for any subgroup in f)-h) (thus we have 8 choices for f); φ is unique for a given
n, but can depend on its choice); moreover C\ does not depend on n, D2 depends
only on the set of three perpendicular axes; other subgroups are distinct.

Let β : 5(7(2) —» SO(3) be the standard continuous two-folded covering:
[β(g)]w = gwg~\ where g e 517(2), w = xσx + yσy + zσz ~ (jc,y,z) G R3. The
compact subgroups H C 5(7(2) fall into two classes:

1) —I £ H. Then β(H) can not contain Cm?n for any even m. We must have
β(H) = Cmp for some odd m. Then we have exactly one such subgroup H =
(Zm)n = {R2k : k = 0,1,. . . ,m — 1}, where R is any generator of the cyclic group
β~l(Cm,n) (the choice of R is irrelevant, opposite choices of n give the same sub-
group, for m = 1 n is irrelevant, other subgroups are distinct).
2) -/ <E H. Then all distinct possibilities are given by H = β~l (W), where W is
any compact subgroup of 5(9(3).

Quantum SU(2) groups [W2] are defined as SUq(2) = (A,u), q G [-1,1]\{0},
where A is the universal C*-algebra generated by two elements α, 7 satisfying

α*α + 7*7 = /, αα* + g27*7 = /, 7*7 = 77*
αy = gyα, <ry* = g7*α

and

" ~~ 7, α"
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For q = 1 we get the usual SU(2) group. According to [W2, Sect. 5], all nonequiv-
alent irreducible representations of SUq(2) can be chosen as {dα}α<EN/2? dimd% =
2α -f 1, d^φdβ ~ <ήα-0| θ d|α_β|+ι Θ ... θ dΆ+β. We can put d\/2 = u. The classi-
fication of subgroups of SUq (2\q G (—1,1)\{0}, is given by

Theorem 2.1. SUq(2),q G [-1,1]\{0}, has the following subgroups:

b) £7(1) - (c(Sl\ I Q ^ I j where Sl = {eίφ : φ G R} and z G C(Sl) is given

_ f ' ΓZ ( Λ ) > o 1\ _{ 2πίk/n

C(ZΛ) w ί/^^flf 63; z(n)(e2π^Π) - e2πik/n, n = 1,2, . . . .

For g G (— 1,1)\{0} the above list contains all subgroups of SUq(2) (up to
C* -isomorphisms, without repetitions).

Proof, a) is obvious.
b) Compact group of matrices Sl corresponds to the quantum group (C(Sl),z).

By Prop. 1.2 (for w = z θz), U (I) is also a quantum group. The elements α = z
and y = 0 satisfy (9), hence θu(\)suq(2) exists, ί/(l) is a subgroup of SUq(2).

c) can be proved analogously.

We shall prove the last statement. Let H = (B, υ) be a subgroup of SUq (2), g G
(-1,1)\{0). Then

where α,y satisfy (9). Moreover, ,δ = C*(α,y). A detailed analysis of relations (9)
shows (cf. [W2, VS1]) that (up to a C* -isomorphism of the C*-algebra B)

1 ) α = α0 0 /c(zi), 7 = 7o 0 C/, or
2) α = £7,7 = 0,

where αo, 7o E B(Hoo), HQQ is a Hubert space with an orthonormal basis /o,/ι, . ,

α0 /w = (1 - ^2m)1/2 /m_ι, 7o fm - qm fm (/-i - 0), m = 0, 1, . . . ,

U G C(A) is given by £7 ' (elφ) = el(ί> for elφ G zl and Δ is a nonempty compact
subset of Sλ .

In the case of 1 ) we define the unitary operator Dc G B(H00 ) by Dcfk —
eickfk,k = 0, 1,2, . . . ,c G R. Using Φ//7 = γ 0 α -f ά* 0 7 we get

(Dc* 0 zW 0 Dc 0 id)ΦHy(D* 0 zW 0 Dc 0 W)* - e~icΦHy .

Therefore

Sp(ΦH7) = e'icSp(ΦHγ). (10)

But Φ//α and Φ//7ΦO also satisfy (9), hence they are (up to a C* -isomorphism)
such as in 1) for some A' '. By virtue of (10), A' = e~ic Δf for all ceR,A' = Sl.
Since Sp(ΦHj) C Spy, A' C A, A = Sl . We can identify H with SUq(2).

In the case of 2) Φ//α = α Θ α. Therefore

J Zl = 5/?(α 0 α) = SpΦH& C Spoi = A .

We get Zl = S1 or A = Zn, n = 1,2, . . .. Hence, H is such as in b) or c).
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These subgroups are distinct since the corresponding C*-algebras are non-
isomorphic.

Remark L In the case of q = l,SUq (2) = 5(7(2) = β~l (50(3)) ,

(7(1)- J " * > °

β2πik/n9 0

Q e—2πιk/n

which is (Z,7)e3 f°r odd « and β~l(Cn/2^3) for even n.
Now we shall classify the subgroups of G — SU-\ (2). Some related facts were

already given in [Z]. Here we proceed in a little bit more complete way. First,
analysing the set Sp(A) of unitary equivalence classes of nondegenerate irreducible
representations of the C*-algebra A (cf. [W2, Remark after Th. A2.3]) we get

Proposition 2.2. Let q =—I. There exists the surjection τ : 5(7(2)—>Sp(A)
such that

1) [τ (w)] (α) - aσx, [τ (w)] (y) - cσv for
2) [τ (w)] (α) - a, [τ (w)] (y) - 0 for c = 0,
3) [τ(w)](α) - 0, [τ(w)](7) = c for a = 0,

where /
a, ( i i )

We denote πw = τ(w) α/tί/ πz = ΘU'ez^v /OΓ ^^ Z C 5ί7(2).

Remark 2. Let π G Sp(A). If dimπ = 1 then τ~ ! (π) consists of 1 element (case
2) or 3) above). If dimπ = 2 then τ"1 (π) consists of four elements of 5(7(2)
which give equivalent irreducible representations. These elements can be obtained
one from another by change of sign of a or/ and c.

Let S C Sp(A). We set

S= \πeSp(A) :\\π(x)\\ ^ \\ φ p(x) \\ for allx G ̂  I

(cf. [Dix, Sect. 3.1]). Clearly S C 5, 5 = S. Denoting Zs = τ~] (S) and by Z the
closure of a subset Z c 5(7(2) we have

Proposition 2.3.
zs = z^

Proof. "D": If w G Z$ then there exists a sequence Z^ 3 w/? — > w. It is easy to
check that

|| πn, (x) || ̂  sup || πw/l (x) || ̂  || φ p W ||, ^ 6 >4 ,
n pes

hence πu. G 5, w G Z^.
ς'C": If w G Z^ then πvv G 5, || πw(x) II ̂  suPzez5 II M*) II for ali ^ G ^4. Let us

first consider the case where αcφO (see (11)). Setting

* = 87 - [(α2 - «2)*(α2 - a2) + (y2 - c2)*(γ2 - c2)} ,


