
Commun. Math. Phys. 169, 627-633 (1995) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1995

Deformation Quantization of the Heisenberg Group

F. Bonechi l, R. Giachetti2, E. Sorace l, M. Tarlini
1 Dipartimento di Fisica, Universita di Firenze and INFN-Firenze, Italy
2 Dipartimento di Matematica, Universita di Bologna, Bologna, Italy

Received: 10 December 1993/in revised form: 15 February 1994

Abstract. A *-product compatible with the comultiplication of the Hopf algebra of
the functions on the Heisenberg group is determined by deforming a coboundary Lie-
Poisson structure defined by a classical r-matrix satisfying the modified Yang-Baxter
equation. The corresponding quantum group is studied and its .R-matrix is explicitly
calculated.

1. Introduction

The quantization of a dynamical system on a symplectic manifold was introduced in
[1,2] by deforming the pointwise multiplication of the commutative algebra of the
classical observables into a one parameter family *^ of associative but not necessarily
commutative products. The parameter h is physically interpreted as the Planck constant
and the deformation is required to satisfy the classical limit conditions

for any pair of observables φ,ψ.
Since its first appearance, the method has found a constantly increasing number

of applications and special attention has been devoted to systems with symmetry. For
instance the geometric quantization, or coadjoint orbit method, yielding the irreducible
representations of nilpotent Lie groups has been reproduced in this approach [3]; the
deformation of quotient manifolds of the Heisenberg group by appropriate lattice
subgroups has been investigated in [4] in connection with results on quantum tori;
a framework for quantizing the linear Poisson structures has been proposed in [5].
Almost all deformations are expressed in terms of formal power series in h with
coefficients in the algebra of the observables and a very tiny number of *a -products
is explicitly known, the most relevant of which is obtained by the Weyl quantization
on R2n. In [4,5] the convergence of the power series is discussed and an answer is
provided in terms of Fourier transforms.
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A natural question that arises in this context concerns the relationship and the
applicability of these results to quantum groups, being themselves deformations of
the algebras of the representative functions of Lie groups. A general prescription
for handling the problem and relating quantum groups to ^-products is presented
in [6]. Here the fundamental objects are assumed to be a classical r-matrix and the
corresponding coboundary Poisson-Lie structure determined by r. This implies that the
resulting ^-product will be compatible with the comultiplication of the Hopf algebra
of the functions on the group, differently from [4,5], where the Poisson brackets to
be quantized are required to be left-invariant for the appropriate action of the Lie
group, so that the deformed multiplication inherits the same property.

A distinction in the procedure of quantization must be made according to whether
the r-matrix satisfies the CYBE or the MYBE (respectively: classical and modified
Yang-Baxter equation). While a theory [7] and some explicit results exist for the
former case [8], no deformed product, to our knowledge, has been found in the
second: applications to quantum groups have only been made with the explicit use of
a representation and reproduce, for instance, the expression of the quantum .R-matrix
of SLq(2) in the fundamental representation.

In this paper we shall consider the deformation quantization of the one dimensional
Heisenberg group H(l). After some remarks on the MYBE for H(\) we determine
the coboundary Poisson-Lie structure and the brackets to be quantized. We then look
for a deformation of the pointwise multiplication of functions on H(l) and we give
an explicit form for the *̂  -product whose restriction to symplectic leaves is obviously
equivalent to Weyl quantization, but has different invariance properties. We finally
calculate the jR-matrix for the quantized structure thus found, obtaining the same
expression as the one found in [9,10] for the Heisenberg quantum group Hq(\).
A straightforward generalization to the Heisenberg group in n dimensions is finally
given and the quantum group Hq(n) is determined.

2. Coboundary Poisson-Lie Structure

We denote by α, α^, h the three generators of the Heisenberg Lie algebra j^(l) that
satisfy the commutation relations

[α,αt] = Λ , [Λ, ] = 0. (2.1)

Let
r = λα Λ αf + μa Λ h + va^ Λ h G Λ2^(l) , (2.2)

and denote by % = U(3$(\)) the enveloping algebra of β&(l). Let us also introduce
the notation r , i = 1, 2, 3; i < j, where r12 — r 0 1 G Θ3^ and similarly for the
other values of indices.

(2.3) Lemma, r satisfies the MYBE. If X = 0, r satisfies the CYBE.

Proof. Defining
B = t ri2> rl3] + [ri2> Γ2s] + [^13^23]

a direct calculation shows that Aάκ B = 0 for any K G 3@(\\ where Ad denotes the
diagonal adjoint action of β&(l) on 03^. Also B = 0 for λ = 0. D

Therefore, according to the usual definition, any element of Λ2^(l) is a classical
r-matrix.
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Let us define on H(l) the coordinates (/3, <5, a) such that for g G H(l) and for
(2, y, x) = (β(g), 6(g), a(g)) we have

The composition law

0', 2/', x7) - 0, 2;, x) = (zf + 2; + x'y, 2;' + y, x7 4- x)

induces then the comultiplication

(2.4) Proposition. The coboundary Lie-Poisson structure associated to an element r
as in (2.2) has the following brackets:

>f. If ad denotes the adjoint representation of ff (1) on ̂ (1), for g = (z, y, x) we
have

ad α = α — y f t , ad α' = α' 4- x f t , ad ft = ft.

Since the right invariant fields on H(l) are

the brackets { , } = ηuvXuXv, (u, v — α, α^, ft), determined by the coboundary

η = ad r - r = λ(α Λ aft 4- a1" Λ £ft): ff(l) -> Λ2 JT(l), (2.6)

are of the stated form. D

(2.7) Remark. It can be observed that the Poisson brackets are not vanishing if and
only if λ is not vanishing and in this case they differ by a multiplicative factor, so that
the coboundary Lie-Poisson structure is essentially unique. In what follows, without

loss of generality, we shall thus fix λ — 1/2, μ = v = 0, so that r = ^ a Λ aJ.

3. The *7l Product

Let %ϊh be the algebra obtained from % by extending the field of coefficients to the
ring of formal power series in ft. Let then πL and πR respectively be the representation
and the anti-representation of the Lie algebra (̂1) by left and right invariant vector
fields on H(l) and use the same notation for the extension of the representation that
maps ^h into the left and right invariant differential operators on H(l). Consider an
element F e ®2(^h of the form

F = l < 8 l + 5 r + . . . , (3.1)

for which
(1 0 ε)F = (ε 0 1)F = 1 0 1.

Where 1 is the unity, ε the counit of ^h and r is the element specified in (2.7).
Moreover F is invertible in 02ί&Λ: letting πf = πL 0 TΓL, π^f = πR 0 πβ, we can
define

F' = π®(F-1)
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and a composition law [6]
*h = moFoF' (3.2)

on the differentiable functions on H(l), m denoting the multiplication of functions.
According to the standard use, the law (3.2) will be called ^-product. If φ,φ G
C°°(H(\)\ then the properties

ii) {0, <φ} = lim -(φ*hψ-ψ*hφ),
ft— >0 Γi

iii)

are easily verified. To deal with the associativity of the *Λ -product we recall the
following result:

(3.3) Proposition [6]. Assume that an element F as given in (3.1) satisfies the equation

(A 0 ΐ)F(F 01) = χ(l 0 Δ)F(1 0 F) , (3.4)

where χ G 0 % w invariant, i.e. Adκ χ = 0/or any ft G .̂ (1). TTien ί/z£ product *^
as m (3.2) is associative. D

Therefore we shall prove the associativity by solving Eq. (3.4). Let $h =
%h ®z Q(Z) be the localization of %h with respect to its center Z, Q(Z) being
the field of fractions of Z. Let then x = ft 0 1, y = 10 ft, 1Θ — 101 and define the

elements Θ1,Θ2 G 02^ by the relations

(3.5) Proposition. Ifθ = θl-θ2 and ρ = 20/^/xy, then ρ G 02^a and the element

solves (3.4).

Proof. For the first statement it is sufficient to observe that tan Θ2 = y/y/x(l — h(x +
y)θ(ft, x, y)), where θ is a power series in ft, x, y. We then obtain θ = θλ — Θ2 =
arctanj^/xyftθ/tl - yhθ)}: thus ρ = 2<9/Λ/xy G 02%. The first terms of the
expansion of ρ in powers of fι are

To prove the second statement, introduce the notation F123 = (Z\(8)1)F, Fn = F01,
F23 = 1 0 F, F! 23 = (10 Zi)F. Equation (3.4) becomes

X = ^12,3^12^23 ^1,23 '

and the invariance of x reads

^S^iTiί1 ® ̂ )^F1)23F23 - F-^F-^I 0 ̂ )^F12?3F12 , (3.6)

with K = α, α^. Defining /, ^ by

ίϊ /x/ = cos # + 4 / - sin θ , g = cos θ — * I - sin θ ,
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and using for / and g the same notation as for F9 Eq. (3.6) is equivalent to

(/1,23 ~ /12/12,3)« ® 1 ® 1 + (012/12,3 ~ /2301,2s)1 ® κ ® l

+ (02301,23 - 012,3)! ® 1 ® « = 0 .

With our definition of θ we can write

(3.7)

=

+ y)/2)

Λx/4

/sinh(ftx/2)

/sinh(fey/2)

from which Eq. (3.7) is verified. D

(3.8) Corollary. The explicit expression for the *h-product is as follows:

φ *Λ <ψ = m o exp{πf (£??)} (φ ® ̂ ) ,

where ρ is given in (3.5) αrcJ 77 m (2.6).

Proof. Indeed

F o F' = exp{(πf(ρr)} exp{-τrf (ρr)}

= exp{πf (£>(ad r - r))} = exp{πf (ρ??)} . D

(3.9) Remark. According to (2.4), the relation a/δ — cost defines the symplectic
leaves of H(\), on which the local Darboux coordinates are p — logα and q = 2β.
The expression given in (3.8) can be compared with the *w -product obtained by the
Weyl quantization that can be defined on any symplectic leaf: as expected, the latter
shows to be not compatible with comultiplication (e.g. compare β *w aβ2). This fact
was already noticed in [6] in connection with the quantization of SL(2).

4. β-Matrix and the Quantum Group Hq(\)

In this last section we shall determine the ^-matrix from the given quantization and
we shall compare the result with what was found in [9, 10]. By a direct calculation
the following lemma is easily proved.

(4.1) Lemma. Let

n =
n

αf + αf a - ξ)

The element t G 02^ι given by

t = 1 (α

is invariant and satisfies the equation

B = [t23,ί13],

where B is given in (2.3). D

Denote by σ the flip isomorphism of 02^, σ(α 0 6) =
of this section is formulated as follows.

α). The main result
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(4.2) Proposition. The element <

R = (σ o F)~lehtF , (4-3)

with F as in (3.5) satisfies the QYBE (quantum Yang-Baxter equation) and coincides
with the quantum R-matrix ofUq(3@(V)) [9].

The proof of this proposition is a consequence of the following two lemmas that
stem from the observation that the fundamental objects in terms of which F and t
are built are α 0 α^, α"1" ® α and ξ.

(4.4) Lemma. The elements of®2%h given by

' J* 2xy '

k = — — ?
7 3 '

7 = x — y, generate an u(2) Lie algebra.

Proof. Indeed it is immediate to verify that j±,j'3 satisfy the su(2) commutation
relations, while k is the central generator of u(l). D

(4.5) Lemma. The elements

J2Sinh(wh/2) f J2ήnh(wh/2) fA = \ I α, A} = \ I α 1 , ri = a , (4.6)

satisfy the commutation relations of the generators ofUq(3$(l)) [9], namely

[A, A^] = - sinh(wH/2), [H, •] = 0. D
w

Proof of (4.2). In terms of the u(2) generators, (4.3) reads

R _ e(σo6>)0+-j_)e/i/2(v/xyO++j_)-7/c-7J3)e^O+-j_) ^

Using the composition law of the group C/(2), the last expression is transformed into

R = e-h(Ίk+ΊJ^/2 exp{2ea7/4

 λ/sinh(ftx/2) sinh(/ιy/2)j+} . (4.7)

From (4.4) and (4.6), letting

tπ A ' A
N= . Ω = H®N + N®H, (4.8)

Eq. (4.7) with h = w becomes

Λ = e-wΩ/2 eXp{we"
H/*A (8) e~wH/4Ai} . (4.9)

This expression coincides with the R matrix of Uq(3@(l)) found in [9], where it is
explicitly shown that R satisfies the QYBE. D

(4.10) Remarks, (i) We observe that F as given in (3.5) deforms the comultiplication
Δ of 96 to the comultiplication Δq of Uq(3&(\)\ namely

as expected.
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(ii) A final remark concerns a straightforward generalization to the deformation of
the Heisenberg group H(ri) in n degrees of freedom, with algebra M(n) generated

by /ι, α], ai (i — 1, . . . , n), relations

and corresponding group coordinates β,δτ,ai. The classical r matrix

gives if (n) a Lie-Poisson structure with coboundary

Let ρz be defined as in (3.5) with the substitution of h by λ^. Then

defines a *^-product on H(n). The corresponding quantum group H (n) = U (J

is generated by H, Aτ,A\ defined for each i = 1, . . . , n as in (4.6) with wτ = XJl
replacing w. The ^-matrix of Hq(n) is R = Π Rt, where the Rt are given by (4.8)
and (4.9) with the above substitutions. l

References

1. Vey, J.: Comment. Math. Helv. 50, 421 (1975)
2. Bayen, F., Flato, M, Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Ann. Phys. 110, 61 and

111 (1978)
3. Arnal, D.: Pacific J. Math. 114, 285 (1984)
4. Rieffel, M.A.: Commun. Math. Phys. 122, 531 (1989)
5. Rieffel, M.A.: American J. Math. 112, 657 (1990)
6. Takhtajan, L.A.: Lectures on quantum groups. In: Introduction to quantum group and integrable

massive models of quantum field theory. Nankai Lectures in Mathematical Physics. Singapore:
World Scientific, 1990, p. 69

7. Drinfeld, V.G.: Sov. Math. Dokl. 28, 667 (1983)
8. Ohn, Ch.: Lett. Math. Phys. 25, 85 (1992)
9. Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: J. Math. Phys. 32, 1155 (1991)

10. Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: Contractions of quantum groups. In: Lecture
Notes in Mathematics 1510. Berlin, Heidelberg, New York: Springer 1992, p. 221

Communicated by M. Jimbo






