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Abstract: We prove that in a one-dimensional gas in the canonical ensemble with
pair interaction A/rΊ — B/r2, 7 > 2, we have a separation of phases at sufficiently
low temperatures. The same combinatorial framework can be used for both lattice
and continuous models. A rather precise bound on the critical temperature in a 1/r2

lattice gas is obtained when the nearest neighbour coupling is large. The interface
between the two phases is defined and investigated.

0. Introduction

There are many results on phase transitions in lattice models in all dimensions. For
continuous models however there are very few results, see [Ru2] or [Is], appendix. It
is still an open problem to prove that there is a phase transition in a 3-dimensional
continuous gas with a Lennard-Jones interaction, A/τn — B/r6, see [Si], problem
7. In view of this it seems worthwhile to try to establish the existence of a phase
transition in a 1-dimensional continuous gas in particular in the non-hard core case.
A phase transition in one dimension requires a long-range interaction, which makes
the argument complicated, but on the other hand the difference between a lattice and
a continuous gas should be least in one dimension.

We need an energy-entropy argument which is not so sensitive to the exact location
of the particles, i.e. if we move the particles slightly the argument should still be valid.
In two previous papers such a method was developed and it was proved that in a lattice
gas [Jol] or in a hard-core continuous gas [Jo2], in the canonical ensemble, with
attractive pair interaction — l/ra, 1 < a < 2, there is condensation at sufficiently low
temperatures. Here condensation means that for a large system, with high probability,
the gas has non-uniform density, a separation of phases occurs. A heuristic argument
is given in the introduction to [Jol].

In this paper these results will be extended to a continuous gas without hardcore.
The pair interaction will be of Lennard-Jones type, A/rΊ — B/r2, 7 > 2. This model
is more unlike a lattice gas and is more difficult to deal with than the hard-core
continuous gas.
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In the papers [Jol] and [Jo2] different combinatorial arguments were used for the
lattice and the continuous case. In the present paper the same combinatorial framework
(entropy estimate) is used for both the lattice and the continuous gas, only the energy
estimates are different. Also the rearrangement (condensation) procedure is simpler
than those used in [Jol] and [Jo2]. Furthermore the phase separation and the interface
are more carefully defined.

For the lattice gas corresponding to an l/r2-Ising model, a rather precise estimate
of the critical temperature is obtained in the limit when the nearest neighbour coupling
becomes large. This has been investigated also in [ACCN] and [IN]. To be able to
deal with continuous models one has to leave the strictly ferromagnetic models, so
the results for the lattice gas (Ising model) are valid even if not all couplings Jr are
> 0, provided Jr ~ 1/r2 as r — > oo.

The organization of the paper is as follows. In Sect. 1 we define the models
considered, write the continuous gas as a lattice model, define what we mean by a
phase separation and state our results. Section 2 contains the energy-entropy argument
for what we call a general lattice gas. In Sects. 3 and 4 the energy estimates for the
lattice and continuous gas respectively are proved. Together with the general energy-
entropy argument of Sect. 2, they establish the results in Sect. 1. The last section
contains the proof of an energy estimate used for the continuous gas in Sect. 4. To
prove this estimate we must show that the probability that we have very many particles
in a short interval, or in a sequence of short intervals is small.

1. Definitions and Results

1.1 The General Lattice Gas

A continuous gas and a lattice gas on a line can both be written as special cases of what
we call a general lattice gas, which is defined as follows. Consider a one-component
one-dimensional lattice gas where we allow multiple occupation at a lattice point. We
will work in the canonical ensemble so we have a fixed number N of particles in our
box A = Z Π [0, L). Let L = [N/ρ], where ρ G R+ is given, ρ is the overall density.
For our purposes the following boundary conditions are convenient: all lattice points
in Z Π (—00, 0) are occupied by a single particle, and all lattice points in Z Π [L, oo)
are empty. This means that our basic configuration space is

ί L 1
QNρ = 1 n G Nz; ]Γ ny = N, n3 = 1 if j < 0 and nά ; = 0 if j > L \

[ fc=l J

with L = [N/ρ].
Suppose that we are given a Hamiltonian H : QN^ρ •-» M U {oo}. For each

A C QN^ρ we put

Z(A) = ZNtβίH(A)

where as usual exp(— oo) = 0. We get a probability measure on the σ-algebra of all
subsets of QN Q by letting

for each A C
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We want to show that, in the models we consider, there is a separation of phases
at sufficiently low temperatures. Because of the choice of boundary conditions we
expect to get a dense phase (liquid) to the left in A and a dilute phase (vapour) to the
right. The question is how far into A the boundary conditions are felt. To make this
more formal we need a definition. First, for each n G QN ρ and x, y G Z, we put

Definition 1.1. Let 0 < <52 < ρ < δl < I and ω G (0, 1). We will say that
ti : QN ρ — » Z+Π[0, L], ί — 1,2, defines a (δl , <52, ω)-phase separation if the following
conditions are satisfied for each n G QN Q:

(i) if x < tj(n), then

(ii) if x > t2(n), then

N(t2,x) < δ2(x-t2).

(iiϊ) Let {εN} be any sequence tending to zero as N^o
then

and i f ( x , x + ε^lNω) C (ί2, oo), then

(x, x + εΰlNω) < (δ2

for all sufficiently large N.

The interval [0,^] should be thought of as containing the dense phase, density
> δl9 and [t2,L] as containing the dilute phase, density < 62. The third condition
gives an upper bound on the size of "bubbles" in the dense phase and "droplets" in
the dilute phase. The size of the largest bubble/droplet is less than essentially Nω .

By the choice of boundary conditions t\(n) = 0 and t2(n) = L defines a (1,0,0)-
phase separation. It is clear that we always have tγ(n) < gL/δl.

That the boundary conditions are felt far into A should mean that tv(n) and t2(n)
are "close" for typical configurations. We can think of (nt , . . . , nt ) as an interface
in n, and we will call

Δ(n) = t2(n) - tλ(n)

the thickness of the interface if n. Note that Δ(n) depends on <5j , δ2 and ω. In particular
choosing a larger ω, i.e. allowing larger bubbles/droplets, makes Δ(n). smaller. It is
not clear what the right definition of the interface in a one-dimensional gas should
be.

1.2 The Continuous Model

As above, let L = [N/ρ], ρ G R+ fixed. The configuration space is

ΩN^β = {x& [0,L] N ; X i < xί+l,i = 1, . . . , TV - 1} .
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Also we introduce fixed particles at xi — i — 1, i < 0. On ΩN ρ we consider the
Hamiltonian

1 N o N
HΦM = 2 Σ ^(K - ^1) + Σ Σ #XJ - x<>'

i,j=l,ί^j i=-oo j=\

where

with D, C G R+ and 7 > 2.
For each Borel subset B of ΩN^ρ we set

ZC(B) = ίexp(-βHφ(x))dx{ ...dxN,

B

and the probability of B is given by

If we write φ(r) — ψ(r) — C/2r2, then φ(r) is increasing and concave, and ^(r)
is increasing for r > r0, where r0 = [max((7 + l)^D/6C, 7D/C)]1/(7~2). After a
change of variables (scaling) we can assume that r0 = 1. The change of variables will
modify the constants in the potential, and we will write (using the same notation)

φ(r) = φ(r) - A/r2 , (1.1)

where ψ(r) = B jrΊ — A/r2. Now, φ(r) is strictly increasing and concave and ψ(r)
is increasing for r > 1.

To relate this model to the general lattice model above we need some further
notation. Given x € βjγ we let ni(%) be the number of a^ 's in [i, i — 1), i e Z, and,
we write n(x) = (nί(x)j^_00. Clearly n(x) G QN g for all x. Given n G QN^g we
set

β(n) = {x G ΩN ρ\n(x) = n} ,

and for A C QNρ, Ω(A) = (j Ω(n). Now, for any A C QN ρ,

/

where

ίf^fe, /?) = - log J w&-βHφ(x))dNx . (1.2)

r?(n)

Hence, for any A C QJV ρ,

which gives the relation between the continuous gas and the general lattice gas. We
will write Δ(x) = Δ(n(x)).
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The main result for the continuous gas is the following theorem.

Theorem 1.2. There are positive constants /?*, ητ, i — 1, . . . , 4, which only depend
on the parameters in φ, such that if β>β*> and ρe (exp(- η{β), 1/4), there
is a (1/2 — exp(—ηlβ),exp(—ηlβ),(η2β)~l)-phase separation, so that when

for all sufficiently large N.

This theorem shows that, for β sufficiently large, with high probability the thickness
of the interface is short on macroscopic length scales, and hence established the
existence of a phase separations. The theorem will be proved in Sect. 4.

The Helmholtz' free energy for the gas is defined by

and the pressure is given by

see [Rul], Chap. 3.

Corollary 1.3. I f β > β * > there is a μc such that dp/dμ does not exist at (μc, /?).

The proof of the corollary is sketched at the end of Sect. 5.
It is known that if the pressure is not differentiable as a function of μ at some point

(/?, μc), then there must exist several Gibbs states at this point, see [KY] Theorem

1.3 The I /r2 -Lattice Gas

In this section we consider an ordinary lattice gas, with at most one particle
per lattice site, having a Hamiltonian which behaves like 1/r2 for r large. Let
Q*N = {n G QNtβ',0 < Πi < M e Z} and set Hd(n) = -hoc if n G QN,ρ\Q*N. If

neQ% set
oo L

Hd(n) = - 2/3 Σ Σ J(J ~ i)n*HJ ' (L3)

-co j=l

where J(r) satisfies
oo

=Σr\J(r)-l/r2 < oo. (1.4)
r=2

With some extra work it is also possible to use the weaker condition r2 J(r) — > 1 as
r — > oo. Write J{ = J(l). Note that we do not assume that J(r) > 0 for all r > 1.

By the substitution s^ = 2ni — 1, this model is related to the Ising model with
Hamiltonian

Σ
i=— oo j=\,i<j ι=\
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(with +/— boundary conditions). Assume that J(r) > 0 and let M(/?, J{) denote the
spontaneous magnetization (using the usual + boundary conditions) as a function
of β and the nearest neighbour coupling Jλ. Let M*(/3) = supM(/3, Jλ) and

Jι
β* = sup{/3;M*(/3) = 0}. It is known that /?* < 1, [IN], i.e. if β > 1 we can
make M(/3, Jt) positive by choosing Jλ sufficiently large. The idea ot treating Jl as
an extra parameter was introduced in [ACCN].

We will now establish the corresponding result in the present setting.

Theorem 1.4. Assume that J : Z+ — » R satisfies (1.4) <?m/ ί/zαί ί/ze Hamiltonian
is given by (1.3). Lei ξ > 0, ft G (0, 1) ίmd λ > 2 &e given. Suppose that
ρ G (1/λ, 1 - 1/λ). Put μ2 = 1 - 4/λ + 1/λ2 am/ a&swm* ίAaί /3μ2 > 1 + ξ/2.
There is a constant J* swc/z ίto ί/ Jj > J*, ί/zerc ί/zere w a (1 — 1/λ, 1/λ, (1 + O"1)-
phase separation so that for all d > I,

PN^H^ € Qjv,β;4(n) > d} < Cd~ψ , (1.6)

where C is a constant, N is sufficiently large and

-*). (L7)

The proof will be given in Sect. 3.
Let us give some heuristic comments. Inequality (1.6) implies that in the corre-

sponding Ising model, the spontaneous magnetization M = M(β, Jλ) > 0. We have
the inequality M > 1 — 2/λ > μ, and for given /?, Jj, the largest possible λ should
be λ = 2(1 — M)"1. Picking ft and ξ small, we see that the exponent φ in (1.6)
is approximately 2(βM2 — 1). This should be compared with the known fact [IN],
that the 1/r2 -Ising model has an intermediate phase, where the correlation function
\(SQSX] - M2| - \χ\~θ, with θ < 2(βM2 - 1) and θ -* 2(β - 1) as Jl -> oo; it is
conjectured that θ = 2(βM2 — 1) in the intermediate phase [IN].

The largest possible ξ we can choose, keeping ψ positive, is ξ = 2(βμ2 — 1) - ε/2,
ε > 0 arbitrary. Hence the best estimate we can get on the size of the largest

bubbles/droplets is that they are < jyP^-i-e^]"^ which is close to N(l+θ)~~l .
As the critical line is approached we expect that 0 — > 0, and then the upper bound on
the size of maximal bubbles/droplets approaches O(N).

Define

Corollary 1.5. There is a constant Cl such that if Jl > Cλ, then

βc(Ji) ~ 1 < e2Cl/5e-2Jl/5. (1.8)

Proof. See Sect. 3.

Remark 1.6. Going through the proof in Sect. 3 and estimating the constants numer-
ically, it is seen that Cl « 8 -h 8|| J||^ suffices.

Remark 1.7. It is conjectured that the critical line β = βc(Jl) is given by
βM2(β, Jj) - 1, and it seems reasonable that M(βc(Jl)-, Jx) = l-O^pί-Oί^))).
This gives βc(J{) — 1 = O(exp(— O(Jj))), so the exponential dependence on J{ in
(1.8) should be correct.

Remark 1.8. The existence of a phase separation can also be proved when J(r) is
arbitrary in RU{oo} for r < r0 and J(r), r > r0, is decreasing and r2J(r) — > J+ > 0
as r — » oo. See Remark 4.2.
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2. The Energy-Entropy Argument

2.1. Partitions and the Rearrangement Procedure

In this section we will develop the necessary combinatorics and carry out the
energy-entropy argument, under suitable assumptions on the Hamiltonian H : Q N ρ — »
R U {oo}, for the general one-dimensional lattice as defined in Sect. 1.

We will use the notation introduced in Sect. 1 and \M\ will denote the cardinality
of an arbitrary set M. Define

& = {(n, 7); n € QNtβ, Ί Q [0, L] Π Z, with |7| odd} .

For Γ = (n, 7) G ̂  we will write π±Γ = n and π2Γ = 7. In the ordered
pair (n, 7), 7 is called a partition and it defines a partition of the configuration n
into blocks. Given n and α, α' G [0, L] Π Z, the block (α, α'} = (nα, . . . , nα/_!).
If A' = (6, 6') is another block, then the block obtained by joining A and A'
is AA' = (nα, . . . , n α /_ 1 ,n 6 , . . . , n6/_1). Let Γ = (n,7) G ̂  be given with
7 = {&!, α2, 62> j αs? frs}> where bλ < α2 < . . . < as < bs. This gives a partition
of n into blocks Al9 J51? . . . , ^S,^BS, where A^ = (o>3,b3} and ̂  = (6^, αj+1),
j = 1, . . . , s. Here 04 = -co and αs+1 = oo. We will call A^ . . . , As o-blocks,
Bl^ . . . , 5S e-blocks and we will say that these are the blocks in Γ.

Let C = (c, c;) be a block in Γ e .̂  and define the length \C\ of C to be c; - c.
The weight w(C) of C is defined to be

c'-l

w(C) =

From the definitions it is clear that

\C\ <w(C) (2.1)

for every block C in Γ. If we restrict ourselves to configurations with ni < 1 for all
i, as in a standard lattice gas, then equality holds in (2.1).

We now turn to the definition of the partitions that we will work with. Assume
that every n G QN ρ has been assigned a basic partition 7(0)(n), i.e. a subset

7(0)(n) C {1, . . . , L} with an odd number of elements. Let λ and ξ be given positive
parameters and for j > 1 set

+, (2.2)

where
C(0 = 2ξ(2ξ- 1Γ1. (2.3)

We can now iteratively define partitions ^k\n) in the following way (compare [Jol]
p. 45). Suppose that 7(/c~~1)(n) has been defined. Consider all e-blocks in (n, 7(fc~1)(n))
of length > υk, B ^, . . . , BJ ; , p > 1. If the o-blocks in (n,7(/c)(n)) between

% = (6Jr'Sr + l) aild βjr+l = (6Jr+l'^r+l + l) haVC tθtal WeίSht ^ Uk WC SCt

ryr — [a r+l ,bjr ] Π 7(/c~1)(n); if the o-blocks have total weight > uk we set r/r = 0.

Do this for r = 1, . . . , p — 1; if p = 1 there are not ryr's. In the same way we define
λ 1 ? . . . , Ag-1 with e- and o-blocks interchanged. Let

7<*>(n) = 7(fc~1)(n)\(??ι U . . . U »/„_! U λ, U . . . U λς_,) .
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Note that we remove an even number of elements from 7(/c~1)(n), so |7(/c)(n)| is odd.
Let

7ιfe) = Γ| 7(fc)fe)
/c>0

and, for each n £ QN ρ, define /\(n) = fc57ιfo))
It follows from the construction that the following lemma holds (see [Jol], p. 45

for more details).

Lemma 2.1. Consider two o-(e-)blocks of length > vk in Γ^n), n e QN:Q Then the
total weight of the e-(o-)blocks between them is > uk, k > 1.

The choice of the basic partition 7(0)(n) should be such that o-blocks have a higher
density of particles than the e-blocks. Before stating the precise definition we need
some notation. Given Γ € & with π{Γ — n, x, y G Z, we write

and
ι/-ι

(2.4)

Definition 2.2. W£ H>/// say that Γ G ̂  satisfies the (δl,δ2)-density property, 0 <
^2 < ̂  < 1, if

(1) /or eαc/z o-block A = (α, α7} in Γ, and all x E [α, o! — 1],

(i) z/(α, x) > ^j(x — α),

(ii) z/(x,αO >^(α'-x- 1);

(2) /or ^αcA e-*toc* 5 = (6, 67} m Γ, and all x e [6, 67],

(i) AΓ(6, x) < 62(x - 6),

(ii) AΓ(x, 67) < ί2(67 - x - 1),

(iii) |β| <w(B)<διl\B\.

We can now prove

Lemma 2.3. If (n,7(0)(n)), n G Q^5ρ, satisfies the (δ®\ δ(^)-density property, then
Γγ(n) satisfies the (δγ , 62)-density property with

/λ , tf2 = + I/A , (2.5)

where λ w ί/z^ parameter in (2.2).

Note that we assume that λ is chosen so that δl > δ2 are required in Definition
2.2.

Proof. See the end of this section.

We will now define the rearrangement operations which will be used to transform
a configuration into the corresponding condensed configuration. Given j > 1 the
(jth order) elementary rearrangement operation 5 : & — > & is defined as follows.
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(The present definition differs from the one used in [Jol].) Let Γ G & and let
C(1), . . . , C(t) be the blocks in Γ. Set

W(Γ) = mm w(C(i)) ,
l<i<t

i.e. the smallest weight of a block in Γ. If W(Γ) > uj+l, we set SjΓ = Γ. Otherwise

let <7(/c) be the first block (counting from the left) of weight < Uj+ί. S0Γ is obtained

from Γ by letting C(k} and C(fe+1) change place, except when k = t — 1, in which
case we let C(ί~2) and C(t~1} change place. More formally, that C(/c) = (ck,ck+l)
and C(fc+1) = (cfc+1, ck+2) change place means that we set

π25jΓ - (π2Γ\{cfc,cfc+1,cfc+2}) U {ck + cfc+2 - CM} .

The points ck and ck+2 will be called "old" partition points. Note that if we specify
ck and ck+2 we can recover Γ from SjΓ uniquely, so the fact that different choices of
ck and ck+2 gives different Γ given SjΓ means that we have a decrease in entropy.
The "old" partition points always come in pairs and we will say that they constitute
a pair of "old" partition points, one of them lies in an oblock and the other in an
e-block.

Set

We want to define ̂  C &>, j > 2. Assume that ̂  has been defined. For Γ G ̂  we
let

fy(Γ) - min{A: e TV; W(SίT) > Wj+1} ,

Here Ŝ  = 5 'ό o . . . o ̂  (fe times). The map Rj : ̂  ̂  ̂  is now defined by
k -(Γ)

RΓ = S3 Γ and we set = Λ )- It is clear from the definition that

Γe^=> W(Γ) > U j , j > 1 . (2.6)

We are now in position to define the condensed configuration corresponding to a
given configuration. Let

(2.7)

Then

Γ G ̂ p+1 =Φ |π2Γ| = I . (2.8)

To see this note that if |π2Γ| > 1, then W(Γ) < L + AT < N(l/ρ + 1), but from
(2.6), W(Γ) > 2P > N ( l / ρ + 1), and we get a contradiction. Define the maps
3Bj : &{ -> ̂  +1, j > 1, by 38 j = Rj o R.^ o . . . o Rγ. It follows from (2.8), that if
Al9 Bl, . . . , A8, Bs are the blocks in Γj(n), so that n = A^j . . . ASBS, then

For a configuration n G Q^^, 3B(n) is the corresponding condensed configuration.
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2.2. The Entropy Estimate

Before stating the basic entropy estimate we need some further notation. Write
Γά(n) = JBj^Γ^n) and for a given A C QN ρ, d^(A) = (Γ3(n)\n G A}. Note
that ^(A) = R^^^A). Also

Z(A)= e~H(7ΓlΠ> (2 9)

since the correspondence n H-» Γλ(n) is one-to-one. Given A C QN ρ, k

(fcj , . . . , kp) G ATP and Γ0 G &>p+l(A\ we write

^(AtΓ^k) = {Γ G ^(A);^pΓ - Γ0, fc(Γ) - £} ,

where fc(Γ) - (fe^Γ), . . . , fcp(Γ)). We will also write k3(n) = k^Γ^n)), j
1, . . . , p, and k(n) — (k^n), . . . , kp(n)\ Also set

{(A,k)= \J

The entropy change, as well as the energy change, in the rearrangement procedure
will be estimated using the quantities

S\L£) / j ιvj

and

Note that 1 + s(k(n)) = s = the number of o-(e-)blocks in Γλ(n).

We can now prove

Lemma 2.6 (The entropy lemma). Let A C QN Q, Γ0 G &>p+l(A) and k G W be
given. Then

where
Cl = log[5C(ξ)2λ21+«] ,

Froo/ Define for 2 < j < p + 1,

^(A, Γ0, k) = {^_,Γ; Γ € 0>(A, Γ0, k)} .

The first step is to prove

' € &>.(A, Γ0, fc); Λ r = Γ}| < p " ' j ec'^+c^ (2. 1
V "-j

for each Γ e ̂ +l(A,Γ0,k), with c,, c2 given by (2.10).
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From the definition of the rearrangement it is clear that each o-(e-)block C in
Γ G j^+1 is of the form C = CτCl+l... C3 for some o-(e-)blocks Cτ, ..., C3 in

Γ' if Γ = RjΓ', Γ' G &r To reconstruct Γ7 from Γ uniquely we have to specify

the positions of 2k3(Γ') old partition points. As explained above these occur in pairs,
with one of the points in the pair, called the old o-point, lying in an o-block in Γ,
and the other, called the old e-point, lying in an e-block in Γ.

Claim 2.7. Given that the old o-point in a pair of old partition points lies in a certain
o-block in Γ, there are < exp(cj + c2j) possibilities for the pair, where Cj, c2 are given
by (2.10).

We postpone the proof to the end of the section.
If Γ' G .^CA,Γ0,fc) and Γ - Λ^Γ', then |π2Γ'| - |π2Γ| = 2k3, and using this

repeatedly we obtain |π2Γ| = 2(kp + . . . + fy+i) + 1» since π2Γ0 = 1. The number

of o-blocks in Γ is (|τr2Γ| -f l)/2 = kp + ...+ kj+l + 1. If we have k pairs of old
partition points there are less than or equal to

fep + . . . + kj+l + 1 + λ^ — 1 \ _ f kp + . . . + /

ways to distribute the k} old partition points among the o-blocks in Γ. This together
with Claim 2.7 gives (2.11).

Now,

0,fc)= (J
r^+1(A,

and consequently using (2.11),

Since \ά^p+l(A, Γ0, fc)| = |{Γ0}| = 1 repeated use of this estimate completes the proof
of the lemma.

23. The Energy-Entropy Balance

Let us now define the (6l, <$2, α;)-phase separation that we will use. Consider n G QN Q

and let

ττ2

Γιfe) = (b\(n), a2(n), 62(n), . . . , αs(n), 6s(n)}, fr^n) < α2(n) < . . . < 62(n).

Put

*ιfe) = &ι(n), ί2fe) = 6,fe)» (2 12)

so that tγ(n),t2(n) are the rigth and left endpoints of the first and last o-blocks
respectively.

Lemma 2.8. tl(n),t2(n) defined by (2.12) defines a (δl,δ2,ω)-phase separation with

δl = <$|0) - 1/λ, (52 - δf + 1/

/ See the end of this section.
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Lemma 2.9. For each n G QN^>

^^Γ^ff '-V..
with ct gzverc fry (2.10).

Proof. See the end of the section.

We now come to the main result for the general lattice gas.

Proposition 2.10. Let the density ρ G M+, the Hamiltonian H : QN ρ — >• R U {oo},

α basic partition 7(0)fe)> satisfying the (δf\ δ^-density property, for each n G Qjv,ρ

a subset Q^ of QN^Q be given. Assume that ξ and \ in (2.2) and D, D >

exp(q), can be chosen so that δl = δf} - 1/λ > δ(

2

} + 1/λ = £2,

n) > d{s(k(n)) + d2σ(k(n)) , (2.14)

n G QN,Q\Q"N satisfying A(n) > D, where the constants dp d2 satisfy

Kl=dl-cl+ Iog(exp(κ(d2 - c2)) - 1) > 0 ,

PNH(Q*N) + Cd-φ , (2. 16)

2 = 2 - c 2 > , ( ' }

for some K G (0, 1) with c1? c2 g/verc Z?̂  (2.10). Then for d > D,

(n) > d} < PNtβ>H(Q*N

(1+0 log 2 ' (2.17)

C =

Proof. Let X = {n G QN^β\Q%',σ(k(n)) > σ0}, where σ0 > 1. If we can show that

(2.18)

then combining this with (2.13) we obtain (2.16); C' — (exp K{ - l)-1(exp K2 - 1)"1.
Note that Δ(n) > 21+^expc! implies σ(k(n)) > 1.

By (2.9),

Z(X)=

= Σ e^(7rιΓ)

= \^

oo oo
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where Ks σ = {/c; s(k) = s and σ(k) = σ}. We now use Lemma 2.6 and the estimate
(2.14) to get

Z(X)< Σ e~H(^Γ}Σe~b}S Σ e~(l~K)b2

Γ€&>p+ι(X) s=l σ=σ0

x e-"**7 -j^- , (2.19)

.7 = 1

where bi = di — cτ, i = 1,2. The multinomial theorem yields

p

where 63 = — logίe^^2 — 1). Inserting this in (2.19) we see that

Z(X) =

since 62 > 0 and bλ - b3 > 0 by (2.15).
To complete the proof of (2.18) we need to show that

This follows if we can prove that for any Γ, Γf G £Pp+l(X\ πλΓ = πlΓ
f => π2Γ =

π2Γ'. Assume that π{Γ = πlΓ
/ but π2Γ = {x} ^ {y} = π2Γ', where we can

suppose that x < y. It follows from the assumptions that both Γ and Γ' satisfy the
(δλ,<52)-density property. Since π^Γ = πlΓ

f

9 N(x,y)(Γ) = N(x,y)(Γr). Now, by
the density property for Γ, 7V(x,y)(Γ) < δ2(y — x), and by the density property for
Γ', 7V(x, y)(Γ') > δλ(y — x). Since δl > <52, we get a contradiction.

This completes the proof of Proposition 2.5.

Proof of Some Lemmas

Proof of Lemma 2.3. We proceed inductively. Define

k k

for fe > 1. Suppose that n,7(/c"υ(n)) satisfies the (δ[k~l\δ(

2

k~l))-density property.

Consider an o-block (c, c;) in (n, 7(fc)(n)) and let / and /; be the weight and length,
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respectively, of the e-blocks (or parts of e-blocks) in (n,^k~l\n)) between c and
c+t < cf . The construction of ̂ k\n) from ^k~l\n) above shows that t— I' > vkl/uk,
which gives I < ukt/υk, and hence I' < ukt/υk since V < I. Using the density
property of (n,7(fc-1)(n)) we get

ι/(c, c + ί) > tfj*-1^ - 0 > ̂ ~υ(l - uk/vk)t = δ(k}t .

Now, δ(^ \ ^0) ΠC1 - ujvi) > δ(ι\l - 1/λ) > <$! as fc -> oo. If we interchange
ι=l

o- and e-blocks above we get

N(c, c + t)< δ(k~l\t -ϊ) + l< (δ(k~l} + uk/υk)t = δ(

2

k)t .

In this way we can prove (l)(i), (l)(ϋ), (2)(i) and (2)(ii) in Definition 2.2. It
remains to establish (2)(iii). Let B ~ (b,b') be an e-block in (n,7(fc)(n)) and
let 1(1') be the weight (length) of the o-blocks between b and b' in (n,7(/c~1}fe))
Then as above I < uk\B\/vk < ukw(B)/vk and by the induction hypothesis

w(B)-l< (\B\-l')/δ(k~λ} < \B\/δ{k~l) and hence (l-uk/υk)w(B) < \B\/δ(k~l\

which gives w(B) < \B\/6(k\

Proof of Lemma 2.8. That properties (i) and (ii) in Definition 1.1 are satisfied follows
from the fact that Γ^n) satisfies the (δ{ , <52)-density property. It remains to establish

Write Δ = ε^ΛΠ+e . Consider the interval [x,x + Δ) in [0,^). Let q be the
smallest positive integer such that 7(ς)(n) Π [x, x + Δ) = 0. If q = 0, then [x, x + Δ)
is entirely contained in an o- or an e-block in (n, 7(0)fe)) In the first case the density in
[x, x+Δ) is > δj0) > £j and there is nothing to prove. In the second case the endpoints
of the e-block containing [x,x + A) must be removed at some step 7(p-1) — > 7^,
where Z\ < ̂ p and vp < L, which gives a contradiction for sufficiently large N since

pu < (υ/(CX)(l+ < C'N+ . (2.20)

Hence we can assume that q > I and j(q~l\n) Π [x, x -h Z\) ̂  0. Clearly (2.20) must
hold with p = q, since we remove endpoints in the step 7(<?~1) _> ^(9). Consider now
o- and e-blocks in (n^9"1^)). Let z be the length of e-blocks wholly or partially
contained in [x, x + Z\). If z < uq we get using (2.20) (p = q)

N(x,x + Zi) > Δ-lδ(«~l\Δ -z)> δ[q-l\l -

by the density property for oblocks in (nί^
q~l\n))

Assume that kuq < z < (k+l)uq for some k > 1. Then from the definition of the

construction of 7(g) from ^~l\ we see that [x, x + Δ) contains at least k oblocks of
length > vq9 i.e. y = Δ — z > kυq, where y is the total o-block length in [x, x + Δ).

Now, by the density property for (n,7(ςf-1)(n)),

N(x,x + Δ) > δ(rl) -JL- > δ(Γ
y + z
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But z/y < uq/vq + ug/y and y + (k + V)uq > y + z = Δ gives y > Δ(l + (k +

l)uq/y)~l, and hence

Thus
N(x, x + Δ)> δ[q-l\l - uq/vq) - o(l)) > δl -

The proof in the case where [x, x + Δ) is contained in (t2, i) is analogous.

Proof of Claim 2.7. Given j > 1, let ,4(1),£(1), . . . , .A(ί),£(ί) be the blocks in
Γ £ ̂ +1 . Suppose that Γ = R3Γ', where Γ7 £ ̂  and let A! , ̂  , . . . , Ar , £r be the

blocks in Γ' . Then fc = &j(Ό = r ~^ From the definition of the rearrangement it is

clear that each A(/c) is of the form A(k} — AiAi+l ΆJ for some ί,j,l<i<j< r,

and similarly for the e-blocks B^k\
Let <?! = 0 and define recursively

j > 2. Also set wy = υJ+2 + g , j >
Consider the following statements:

9j=v3+l+2u3+2gj_l, (2.21)

9j,j>l
itements:

(b) : Consider two o-(e-)blocks in Γ G 3^ of length > vk+l + ̂ . Then the total
weight of the e-(o-)blocks between them is > uk, k > j + 1.

(c)^ : If we have two o-(e-)blocks C and Cf in Γ £ ό^ +1, such that the weight of the
e-(o-)blocks between them is = x, and if Γ1 = R3Γ

r , there are o-(e-)blocks C*

andCi inr, \C*\ > \C\-(wj+2uj+l)9 \C'*\ > \C'\ - (w3 --h^ +1) such that
the weight of the e-(o-)blocks between C* and C* in Γ' is < x + u^+l.

Since ^2 >
 v\, Φ)ι follows from Lemma 2.1.

The strategy is now to prove that (b)^ and the definition of the rearrangement
procedure imply the claim for this j as well as (c)^. We then show that (b)J+1 follows
from (b)j and (c)l5 . . . , (c)^, and this complates the proof by induction.

As noted above an o-block A(k} in Γ = RΓ' e 1, Γ
1 G , is of the form

^= Ai... A , where A^ . . . , A3 are o-blocks in Γ' '. Assume that w(Aτ) < uj+l.
Since A%_γ and Aτ are not joined, Aτ cannot move to the left. Hence when we get
to Aτ we do the rearrangement

If i + 1 < j, then w(Bl+l) < u3 +l, since w(AlAl^l) >u3+ u3 = u3 +l. Hence the
next rearrangement must be

It follows from (b)^ that both At+l and Al+2 cannot have length > wy After this
rearrangement no more o-block can be joined with AτAi+lAl+2 unless i + 3 = τ and
w(Ar) < Uj+l, in which case Ar will be joined with AiAi+lAτ+2

If u>(^) > ̂ j+i we apply the same argument as above with ̂  Aΐ+1 replaced by A{.

This argument shows that there are seven possibilities for A^k\ and we list them

below. In each case we specify the "assigned" block A(^ used in (c^ .
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1) A"* = Ai , π,Γ = . . . B^AtBi . . .; A™ = A, .

2) A™ = A,Ai+1, π,Γ = . . . B^B^-n î-H . . .; rc^) <

3) Λ<*> = ΛA+ιΛ+2; π,Γ = . . . Bi_lBiAiAi+lAi+2BMBi+2

wOU < ui+1; tu(Bi+1) < u^jj min(μί+1|, \Ai+2\) < υy, A(

\Ai+l\ > \Ai+2\, otherwise A(£> = Ai+2.

4) A<*> = ΛAi+1Λί+2Λί+3; π.Γ = . . . Bi_lBiA%Ai+lAi¥lAi^
w(Ai) < uί+l; w(Bi+1) < uj+1; w(Ai+3) < uj+1; i + 3 = τ;

min(|A+ι
(fe) -—

= Aί+1 if

< w,; Af = Ai+ι if IΛ+il > IΛ+al. otherwise

5) A<fc> = ̂ ^+1; π,Γ = . . . Bt_lAiAi+lBiBM . .

w(Bi) < uj+l; min(|^|, |^i+1|) < w3; Af = Ai if |̂ | > |Λ,+1|, otherwise

6) ̂  = A,Ai+lAi+2- π,Γ = . . .β^A

w&J < uj+l; w(Ai+2) < uj+l, i + 2 =

if \A^ > \Ai+ι\, otherwise A(^ = Ai+l.

7) A^ = A.A^; π1Γ = ... B^A.A^B.B^ w(Aί) > uj+l;

i + 1 = τ; Af = Ai.

A similar argument shows that there are six possibilities for an e-block B(k) in
Γe^.+1, r = Rjr

f, r' e^.

2)

3)

4)

B,βi+1, π,Γ = . . . A

B,Bi+lBl+2- ιrlΓ = ...

< uj+l; w(Aί+2) < uj+l;

> \Bi+2\> otherwise &»

^βί+1; π,Γ = . . . Λ^

< «j+Γ,

= Bί+ί if

< = Bί if |Bi+1| > |Bt+2|, otherwise

5)

6)

1; |Bί+2

= r;

= B

2 = r;

i+2.

Checking all the cases we see that (c)̂  holds. The fact that we need < x + ui+1 in

= Ai+2.general and not < x can be seen for example in case 3) for o-blocks when
We will now prove (b) +1. Suppose that there are two o-(e-)blocks C and C'

in Γ € ^+ι of length > vk+l + Sj+ι, such that the weight of the e-(o)blocks
between them is < uk, k > j + 2. We will show that this leads to a contradiction.
Γ = fyΓ' for some Γ' C ̂ . By (c^ there are o-(e-)blocks Q and C'* in Γ' of
length > vk+1 +9j+ι - (Wj + 2uj+l) such that the weight of the e-(o-)blocks between
C* and C* is < uk + Uj+l. Continuing in the same way, using (c)j_l , . . . , (c),, we
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find that there are two o-(e-)blocks Ct and C| in Γt, where Γ = J^ Γt, Γt G ^},
j

of length > vfe+1 + gJ+\ — Σ(^ + uj+ι) — vk+ι* sucn tnat me tota^ weight of the
i=l j

e-(o-)blocks between them is < uk + ̂
 uj+ι — uk + ̂ 7+2 — %+ι Hence we have

ι=l

two o-(e-)blocks in Πj. G ̂  of length > vk+l such that the length of the e-(o-)blocks
between them is < uk+l. This contradicts (b)j.

We now have all the facts we need to prove Claim 2.7. Given that the old
o-point in a pair of old partition points lies in a certain o-block A(k^ in Γ, we want
to show that the number of possible positions for the pair is < exp(q + c2j). Let x
and y be the distance from the old o-point to the left and right endpoint of A^
respectively. If 1 < x < Uj+l going through all the possible cases for £(/c~1}

and A^ we see that the old e-point in the pair has distance < wj + w +1 to

either the left or the right endpoint of B(k~l\ This gives < u +l 2(Wj -f- u +l)
possibilities. If uj+l < x < Wj + uj+\> we see by checking all cases that the

distance from the old e-point to the right endpoint of A(fc) is < u +l, giving
< w3 uj+l possibilities. If x > Wj + uj+l then we see that y < w^. If

y > ^ +ι> tnen me distance from the old e-point to the right endpoint of A(k)

is < Uj+l, and if y < uj+l the distance is < w + u +l giving < 2Wj - uj+l

possibilities. The total number of possibilities for the pair is thus < 5Uj+l(Wj +
uj+l\

The definition of g and w give

j+i
W3 + UJ + l = Vi+2 + Σ 2J + l~l(^ + "i)

' - 1)] + j2j

1]2~^'] . (2.22)

A simple computation shows that this is < 5~l2^l+^ expίcj). Hence the total number
of possibilities is < 2(2+^)j exp(cj) = exp(cj + c2j).

Proof of Lemma 2.9. Let Al,Bl, . . . , As, Bs be the blocks in Γγ(n). Assume that
s > 2 so that tl < t2, otherwise there is nothing to prove. Let q > 1 be defined by
kj = 0 if j > q and kq > 1. Checking the different cases, as described in the proof of
Claim 2.7, we see that in each step & — >• ̂  +ι, the infinitely long blocks (containing
Al and Bs respectively) cannot "grow" by more than Wj + u^+l. Hence

β-l

From (2.22) we get

- ecι V 2(1+^ < -
5 ^ ~ 5

with c{ given by (2.10). Clearly σ(k(n)) > q and consequently

log Δ(n) + log 2 ~ c\
σ(k(n)) >

(1+0 log 2
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3. Proof of the Energy Estimate for the Lattice Gas

In this section we will show how Theorem 1.4 follows from Proposition 2.10.
Choose ft G (0,1), λ>2 and £>0 and take £>G(l/λ, 1 - 1/λ). Let

QN = {n € QN^ni > ! some *}• so that pN,ρ,Hd(QN) = ° Note that for a

configuration in QN^Q\Q% the weight of a block is equal to its length. As our basic

partition we take 7(0)(n) = {j G Z\n^ ^ ^j+ι}> i e. a block in (n,7(0)(n)) consists
of either just Γs (o-block) or just O's (e-block). Clearly the basic partition satisfies
the (l,0)-density property.

We will now show that the estimate (2.14) holds for each n G <2jv,ρ\ΦN> w^ere

dl,d2 satisfy (2.15) under the conditions of Theorem 1.4.

Lemma 3.1. // Hd is given by (1.3) and H = Hd, then (2.14) holds with

d, = 2β(J, - 1 + Λl(-l + λ~2) - ^λ-1 - 8|| J|U) ,

where κ1 ? ft2

 flr^ numerical constants.

Assume that the lemma is valid. Then

2K2 = d2 - c2 = 2(/?μ2 (λ) - 1 - £/2) log 2 , (3.2)

by (2.10) and (3.1) and this is positive provided βμ2(X) > 1 4- £/2. We see that the
second condition K{ > 0 in (2.15) holds if J{ > J*, where

λ~2) + κ2λ~l -h [q - log(exp(Ac^2) - 1)] . (3.3)

Theorem 1.4 now follows from Proposition 2.10 and from (3.2) and (2.17) it follows
that ψ is given by (1.6); furthermore D = 21+^ exp(cj).

To prove Corollary 1.5 we use expx — 1 > x in (3.3) and choose ξ/2 =
β(l-4/X)-l.Ύhenβμ2(X)-l-ξ/2 > 0. Put λ = 5β(β~\Γl so that ξ = 2(β-l)/5
and K = 1/2. A simple computation shows that C(ξ) < (ξlog2)-1(l + «?log2) and
we obtain

Jf^ + ^/r'iog^-L-, (3.4)

where Cl is a numerical constant. Now, if

β-l> exp(2C1/5)exp(-2J1/5) (3.5)

and Jj > Cj, then (3.4) and (3.5) imply J{ > Jf, and hence the conclusion of the
theorem, which in turn gives M(β, J { ) > 0. Thus the estimate (1.8) in Corollary 1.5
must hold.

To prove Lemma 3.1 we need to introduce some more notation. For n G QN^ρ,
let r0(n) = 0 and

j
1 ~

i=\

i.e. r (n) is the number of elementary rearrangements performed in going from Γ^n)
to Γj+l(n). The total number of rearrangements is s(k(n)) = rp(n). If r^_{ < ί < r ̂
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we put

so that Γ^\n) is the configuration obtained after i rearrangements starting from
Lemma 3.1 will follow if we can prove that

ΔH = ΉXπ^-^n)) - H(^Γ^\n)) > d, + d2j , (3.6)

when rj_l < i < r .
Let φ be a pair potential and C = (e{, . . . , ex\ C' = (/1? . . . , fχf) two blocks

with C to the left of C1 . The interaction energy between C and C", when the distance
between the blocks is 2, is then

rr-l x

The zth rearrangement is either of the form C0A1B1A2B2A3C1 — > C0A1A2B1B2A3C1

or C^AJ^A^^CO ~^ C^^^i-^A^O' where ^-, i = 1,2,3 are o-blocks,
J5^, i = 1,2 are e-blocks, and CQJC1 contains all other blocks. Let xi = |^4^ and
yi = \Bτ . We than have

0) ^,%>« j ; (3_?)

(ii) max(x2,yl) < uj+l .

Now, write J'(r) = J, - 1 if r = 1, Jl(r) = 0, if r > 2, J2(r) = 1/r2, r > 1, and
J3(r) = 0 if r = 1, J3(r) = J(r) - 1/r2 if r > 2, so that J = J1 + J2 + J3. Put

+ Ejk(B1,A2B2A3C1,0)-EJk(Bl,B2A3Cl,0)

+ Ejk (CϋAι ,A2,Vl)- Ejk (C0A, ,A2,0)

+ EJk(A2B2A3Cι , 0) - EJk(A2, 52A3CΊ, j/,) .

Then Ziίί = /ύίί1 + /lίf2 + <d#3. We get immediately that

ΔH1=2β(Jl-l), (3.8)

, (3.9)

where we have used ^ r| J3(r)| — || JH* in (3.9).
r=2

Let^ = (nα., . . . , nb%_ι\i= 1,2,3 and B, = (nb., . . . , na^_λ\ i = 1,2, and

write nlίk = 1 - nbι_k, n^k = 1 - na2+k_l9 n3^k = 1 - nb^_k, n^k = 1 - na3+k_l9

n5,k = nbl+k-\> nβ,k = na2-k and n?Λ = nb2+k-\ τhen the density property gives

(3.10)

λ = 1/λ), r - 1, . . . , 7 for 1 < k < xl9 1 < k < x2, 1 < k < x2, 1 < k < x3,

< ^ < 2 / ι » 1 ^ ^ ^ 2 / ι and 1 ̂  ^ — 2/2 respectively.
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Using this notation we have

= - ΣΊ - 172;

(ii) £J2(5! , ̂ Bj^CΊ , 0) - EJ2(B1 , ̂ 2^3^ , 0)

(iii) ^(CΌ^!, ̂ 2,^) - ^(CΌ !̂, A,,0)

00

(iv)

X2 °° / 1 1 \y-y-f 1 ___ ΐ _ )
—[—[Vi + j + yi- !)2 (« + j + yi + y2 - 1)2/

Now,

Π T7 77 V1 T7

~ M ~ 6»*^ " '̂-Σ 4- Σ >4 ~
= Σ"7 — Σ'g .

Hence
Λtf2 > Γ7 - ΣΊ - Γ2 - Σ5 - Σ6 - Σs . (3.11)

Let / be a non-negative, decreasing and convex function and consider

k k

Put Ak = 2 α , Bk = 5^ /?.. Assume that 0 < At < At < A*, i = α, . . . , 6,j
ϊ=α j=c

?*
α _ j - v4*_j - 0, 5- < B% < Bf, i = c, . . . , d, 5C_! = B*_! - 0, and write
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ά, = Λ - Λ-i. ~βί = Bi- B^, a* = A* - A*_lt β* = B* - B*_,. Summation
by parts then gives

b d b d

Σ Σ Mj fa + 3) < s < Σ Σ α?# /<* + j) <3 12>
i=α '̂=c i— α j^c

Using (3.10) and (3.12) we obtain

(3.13)

X2 yι+2/2-ι

*=1 .7=2/2

2y\ — 1 X2

p = V V -
v "̂  (7

i=yι .7=1

To estimate these sums we use the following result which follows from Eulers
summation formula. If α + c > 2, then

0 Λ Λ / ι 7 \ / ϊ ι \ I I

= los
α + c b + d

J_^
i + c)2 (6 + cOV

1 / 1 1 \ 1 / 1 1
_l I I \ \ I I

' 1 Λ I X . T^ 1 ' X 7 . ^1 I I ^ \ / . T. 1 I

(6 +

24

where -1/100 < R < 0.
Using (3.7) and (3.14) to estimate the sums in (3.13), (3.11) gives

ΔH2 > 2β[l - 462 + 62

2][j\og2- C{] - 2βC2δ2 , (3.15)

where Cl and C2 are numerical constants. (C\ « 2 and C2 « 6 will do, but better
values can be obtained with more numerical work.) Combining (3.8), (3.9) and (3.15)
we obtain (3.6), with κl = Cλ and κ2 = 4C{ — C2.
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4. Proof of the Energy Estimate for the Continuous Gas

To prove Theorem 1.2 we want to apply Proposition 2.10 to the lattice gas model
with Hamiltonian Hφ(n, β) given by (1.2) where φ is given by (1.1).

Given n G QN ρ we define the basic partition 7(0)(n) as follows. If ni_l > 1,

n. = nί+1=0, then i+1 G 7(0)(n); if ni_l = n - = 0 and nl+l > 1, then ΐ+1 G Γ(0)(n).
It follows immediately that (n,7(0)(n)) satisfied the (l/2,0)-density property.

The key energy estimate is the content of

Lemma 4.1. If 0 < ρ < 1/4 and λ > 7,

(i) f/zere w a Q^ C Q^ swc/z

where cf 6w/y depends on the parameters in φ, and

(ii) ί/zere w a diffeomorphism &* : Ω(n) — > ί?(^n) w/ί/i Jacobian = 1

(4-1)

(Qjv,ρ\QΛr)Π{n;σ(Mn)) > c*A-1 log TV}, where k = k(n(x
are positive constants, which only depend on the parameters in φ

Assuming the validity of this lemma we can prove Theorem 1.5. Note that

/ εxp(-βHφ(x))dNx

*>> * = log (4'2)

The integral in the numerator is greater than or equal to

j εxp(-βHφ(y))dNy = j exp(-/?ίf0(Jg*(x))) dNx . (4.3)

Ω(n)

Here we have made the changed of variables y = Jffi*(x). The right-hand side of (4.3)
can be written

Ω(n)

72®) /
Ω(n)

where the inequality follows from (4.1). Inserting this in (4.2) gives (2.14) with
d{ = /?7j, d2 = /?72 We see that the conditions (2.15) will be satisfied provided
β is sufficiently large. The constants involved are chosen as follows: K, = 1/2,
l+ξ = η2logβ, λ = exp(τ7ιy#), where η2 = min(72/21og32,71/21og2) and
77 ! = 7j — η2 log 2. If we assume that

β>ff= max 1 0 g l 6 2 21og7
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then some computation shows that the conditions in Proposion 2.10 are satisfied with
ψ > 2 and D = N™****-^, where η3 = 2c% provided N is sufficiently large.
Theorem 1.2 now follows from Proposition 2.10 and the estimate Lemma 4.1(i).

Proof of Lemma 4.1. The first step is the definition of ̂ *. Consider a fixed x G Ω(n)9

n G QNιβ. Let Al,Bγ, . . ., AS,BS be the blocks in Γλ(n). If Aj = ( a j 9 b j ) and
dj < %k < - < %ι < bj, we define

I(Aj) = {xτ - max(0, α ); k < i < 1} ,

i.e. I(A ) gives the positions of the particles in A relative to the left endpoint (or the
origin). I(B3) is defined analogously if there are particles in BJ9 otherwise I(Bj) = 0.

Fix fc, 1 < k < s, and let A(l\ B(l\ . . . , A(τ\ B(r} be the blocks in Γ(k\n). Then
each A(^ has been built up from o-blocks in /^(n), i.e. A(^ = At . . . At j . We
set

tj + ι-1

= \J (I(AZ) + \Aty . . . A,\) , (4.4)

which then gives the positions of the particles in A(i\ I(B(^) is defined analogously.
Recall that 3&(n) = Aλ . . . ASB{ . . . Bs. Thus if I(AV . . . A8) = {yl}^00 and

{ S ^Vyi-bl- Σ(6 - α,) \ , where T/ .j < yi9 i < N, we see that
j—2 ' i=K+\

it is natural to define &*(x) = y. It is clear that ?̂* is a diffeomorphism on
with Jacobian = 1.

Each Ai lies in some block A(l^ in Γ(k\n), so we can talk about the distance

between A% and A in Γ^k\n). Note that for all i,j,

7). (4.5)

The interaction energy between two blocks C and C' at distance z is given by

Eφ(C,C',z) = Σ φ(\C\-s + t + z ) , (4.6)
s€/(C),t€/(C')

and the interaction energy between the particles within a block C is

Eώ(C,C',0)= V 0(t-s). (4.7)

For 0 < fc < s we set

<N Σ (4.8)

We consider a fixed x G Ω(n), and we will not indicate the dependence on x. H, \
gives the interaction energy between the particles in different original o-blocks after
k elementary rearrangements. Also, set

(^ ,At,0) + E(B,,Bl, 0)) ,
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for 0 < k < s, and finally

*S = **fe>-*S-«S, (49)
^7° = Hφ(&*<x)) - tf'7" - /?£•'> .

Here H(

φ\ represents the interaction energy between particles within the same original
o- or e-blocks, and clearly it does not change during the rearrangement procedure.
H(φ\, k — 0, s — I represents the interaction energy between e-blocks, and between
e- and o-blocks.

We will now state some estimates which together imply (4.1). There is a Q^ C
QN ^ satisfying Lemma 4.1(i) such that if n(x) G QN,ρ\Q%, Q < 1/4, λ > 7 and
s = s(k) > 2, k = k(n), then

s-» > κlS(k) , (4.10)

) + «3σ(fe) , (4.11)

^ (4.12)-

where κ , i — 1, . . . , 4 are positive constants, which only depend on the parameters
in φ.

Let us first show how (4.1) follows from (4.10) to (4.12). If the right-hand side of
(4.11) is > Λ3σ(fe)/2, (4.10) and (4.11) give

ΔHφΛ>^s(k)+^σ(k). (4.13)

If the right-hand side of (4.11) is < κ3σ(k)/2, then s(k) > κ3(2κ2)~lσ(k) and (4.10)
gives

ΔHφtl > 5- s(k) + f- σ(k) . (4.14)
^ QK/2

Let 72 = min(κ3/8, «3/8«2). Since Hf2 - H(

φ~
l} = 0, (4.12)-(4.14) yield

Hφ(x) - Hφ(3$*x) > Ίls(k) + 72σ(fc) + (72σ(fc) - λ~ V4 log TV) ,

where 7l = κ{/4. This gives (4.1) if we put c* = κ4/72.

Proof of (4.10). We have

flβ-flj Γ1^ Σ (^(Λ,
s-1

where we have used cζ^j = 0, (4.5), and the fact that φ(r) is strictly increasing
when r > 1. It is clear that κγ only depends on φ.

Proof of (4.11). We write φ(r) = VΌ~)+£(r) as in (1.1), where ξ.(r) = -A/r2. Hence
ΔHφ j = AHψ j 4- zl.ί/£ j, . Inequality (4.5), (4.6) and the fact that ψ(r) is increasing
for r > 1, yield ΔHψ ̂  > 0 and thus

ΔHφtl >ΔHξΛ. (4.15)
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For any n £ QN,Q define ZΛ = min(l,n^), so that v(x,y), defined in (2.4), is given
y-i

by ]P ZA. If ZA = 1, then there are particles at x^ . . . , xί+n._l in [ί — 1, i), and we
z=x

let M; = {xj}. If ZΛ = 0 we let Mi = 0. For each o-block Af in Γλ(n) we define

&,-!

7*(Λ> = U (M< - min(°' αP}> j = i, . - , 5 -

Then J*(A •) C ^G4j)> and /*(Aj) describes the configuration we get if we just keep

one particle in every occupied box. If A(^ is an o-block in Γ(k\ we define
in analogy with (4.4). Also,

E%(A,A',z)= J] ξ(\A\-s
s6/*(A),ί€/*(A7)

Furthermore, let

^T= Σ

Now, it is not difficult to see that

> = -

To prove this, observe it suffices to prove the nonnegativity of

which equals

( Σ
I t€/(Λ,)\/*(A t)
V βe/(Aj)

That each term in these last sums is nonnegative follows from (4.5) and the fact that
ξ is increasing.

Considering the right-hand side of (4.10) means that we are trying to estimate
the change in energy by just considering one particle in each box and neglecting the
others. This suffices unless there are very many particles in an o-block compared to
its length. To tackle this problem we have to consider two different cases.

Suppose that in rearrangement number k from Γ(k~~l\n) to Γ(fc)(n), the o-blocks
A and Af are joined. Define

_ / 1 if w(A) < 2\A\5 and w(A') < 2\Af 5

Tj]ς - \

( 0 otherwise .

Assume first that ηk = 1. We want to estimate the right-hand side of (4.16).
Suppose that A' is moved to the left when it is joined with A\ the other case is
analogous. If A! = Ag . . . AL_λ we let A" = Al . . . As, i.e. the join of all o-blocks
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to the right of At. Since ξ is increasing and concave, we see that Eξ(A,A',z) and

, A1 , z ) - Eξ(A, Af,z + y) are increasing functions of z > 1, y > 0 arbitrary.
Hence

+ E*(A', A", y2) - El(Af, A",yι + </2) , (4-17)

where yl is the length of the e-block, B, between A and A', and y2 is the length of
the e-block B', between A! and At... .

Suppose that r^_l < k < r , j > 1. It follows from the density property Definition
2.2(2) (iii) that \B\ > 6^(3), \B'\ > δλw(B'\ and since w(b) and w(B') are > u3

we have

2 / i > M » i = l , 2 . (4.18)

Also, from the assumption ηk > 1,

where xl = \A\,x2 = |-A'|.
Let β(x) = 0 if x < 0 and θ(x) = 1 if x > 0, and write

(4.19)

(4.20)

Then

From the density property, Definition 2.2(i), we see that

(A, A', z) = ξ(s + 1 + z)dF%(s)

6ι(s - 1) < F%,(s) < s + 1 , s G [0, x2] .

Using (4.22) and integrating by parts we find

(4.22)

>Aδ\

- XI X2 π

/ ί ( l—τ Λdtds-3\ .
J J \(s + ty (s + t + yλyj

L 1 0 J

Similarly,

*!,A",y2)-E*(A',A"Λ

X2

>-A\
1

i o
(s + t + 1/2)

2 (s yl

Λdtds-3
'

(4.23)

(4.24)



Separation of Phases in One-Dimensional Gases 547

Computing the integral in (4.23) and using (4.18) and (4.19) yields

where r = Uj_{ and σ = ^u^-. Similarly, from (4.24)

£*(Λ', Λ", %) - £*(Λ', ,4", j/, + y2)

> _Λ log (*2 -*)0+ P. +*) _ 3A . (4.26)
δ(x2 + 2 / 1 +σ)(l+σ)

Now, <5| > 1/3 and min(x2)ί/ι) < uj+ι> so (4.25) and (4.26) give

13) . (4.27)

Suppose now that ηk = 0. The estimate (4.26) holds also in this case, and since
we always have E%(A, A', yγ) - E%(A, A', 0) > 0, (4.17) gives

-6A. (4.28)

Summing (4.27) and (4.28) over all k and using (4.16) we obtain

P ro~l

ΔHζ,^Σ Σ A[7fc0790-13)-6(l-77 f c)]. (4.29)

In order to obtain the estimate we want, we have to prove that we get a sufficient
energy gain in the case ηk — 0.

Consider the kth rearrangement, r^_λ < k < r^ and assume that ηk = 0. In

the kth rearrangement two o-blocks A = Ap ...Aq_l and A' = Aq ...Al_l

are joined. Suppose that w(A) > 2\A\5', the case w(A') > 2\A'\5 is analogous.
Let N(A) denote the total number of particles in A. From the definition of w(A)
it follows that N(A) > w(A) - \A\. There must be a block Aik in A such that
Nk — N(Al ) > N(A)/\A\. The previous inequalities give

ι,,( Δ\
(4.30)

Thus, to each k with ηk = 0, we can assign a pair (Ai ^A ) of o-blocks. Clearly
different A 's give different pairs of o-blocks. Let zτ and ζi be the distance between the
ith particle in Ai and the first particle in Aq in Γ(0)(n) and Γ(s~l\n) respectively,
i = 1, . . . , Nk. Then

*.>l + Cι> (4.31)
C, < |A | . (4.32)

Since ξ(r) is increasing, we get

P rJ~l

Σ



548 K. Johansson

Now, by (4.30)-(4.32),

y Ύ J . + JΛ^V-^

and u > (log2)j/5, so

JP_^ r3-^

(4.33)

Adding (4.29) and (4.33) we get (4.11) with κ2 = 1A and κ3 = A/ISO.

Proof of (4.12). Since the distance between any two e-blocks B^ and Bk in Γ(0) is

greater than the distance between B and Bk in Γ(s~1}, and since φ(r) is increasing
for r > 1,

s /c-1

fc=l j = l

fc=l j=fc

(^..α^,, + & , _ ! ) ] , (4.34)

where we have used the notation

for j < I and α^ k = b3 k = 0 for j > k. The right-hand side of (4.34) represents
the change in the interaction energy between o- and e-blocks when going from a
configuration to the corresponding condensed configuration.

Using the fact that E,( , , •) < 0 and rewriting the second double sum in (4.34)
we obtain

s k-l

ΔHφ3 > Σ Σ^ '̂S +i,*-! + W-i)

+ '̂ B ' ° f c ι +

ί ) . (4.35)

where we have written £?(/c) = B^. . .Bΰ.
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The estimate we want follows from the following three estimates of the terms is
the sums in (4.35). If j < fc, the

1=1

A,Λ>%H*-ι + -ι))> (4.36)

where K = δ2(\ — δ2)~l of1. If j > fc, then

1=3 + 1

-£0(Λ,A,%+u-ι+^-ι)) (4-37)

The third estimate is the most difficult one: there is a Q^ C QN Q satisfying Lemma

4.1(i) such that if m(x) € QN:β\Q%, Q < 1/4 and λ > 7, then

(4.38)
k=\

where κ4 only depends on the parameters in φ.
The idea behind the above estimates is the following rearrangement procedure.

Consider the o-block Ak. Let successively the e-blocks Bs_l, Bs_2, . . . , Bk change
place with the o-block to the right. Then the interaction between the e-blocks and
Ak goes up, but the interaction energy between Ak and the o-blocks to the right
goes down. We compare these energy changes. Then we let successively the e-blocks
#!, . . . , Bk_l change place with the o-block to the left, and argue similarly with the
energy changes. Finally we insert the e-blocks B^ . . . , Bk_l between Al...As and
Bk...B8. This leads to an energy change estimated by (4.38). The proofs of (4.36)
and (4.37) are not difficult, but (4.38) is far from immediate. To prove it we need
some control over how many particles there are in a box in typical configurations.
For example, if there are very many particles, say (log TV)2, in the last box in As,
then the estimate need not be true. We will prove in Sect. 5 that configurations for
which (4.38) fails have a vanishing probability in the limit N — » oc.

Assume now that (4.36)-(4.38) are valid. Use (4.36) and (4.37) in the first and
second sums in (4.35) respectively, rearrange these sums, and use (4.38) to estimate
the last sum. This gives (4.11) if λ > 7 (which implies K < 1/2).

We will now prove (4.37). The proof of (4.36) is analogous. Inequality (4.38) will
be proved in Sect. 5.

Let A = Aj+l ...Ar,x= \A\, z = αk+lj + bkj_l and y = \B3\. Then (4.37) can
be written

- Eφ(Ak, A, z)] . (4.39)
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We can write

x

,C',z)= ίEώ(C,

o

where Fc/ and Gc are defined as in (4.28) /(•) given by (4.4) instead of /*(•)• Hence
we see that (4.39) follows if we can prove that for each t > 0,

y

I (φ(t + s + z + x) - φ(t + s + z))dFB.(s)

0
x

< K / (0(ί + s + z + y)-φ(t + s + z))dFA(s). (4.40)

o

From the density property we now that FA(s) > δλ(s — 1) and FB.(s) < δ2s, and

by definition FB.(s) < 0 if s < l/δ2. A consequence of this is that FB.(s) <

δ2(l — 52)~1(5 — 1)» if 5 > 1. An integration by parts shows that the left-hand side of
(4.40) can be written

y
f
/ (A) (i~ \ o \ 7 \ τ\ (T) (ϊ \ o \ 7\\ pi I Q 1 / 7 Q
I V T \ "^ "^ "^ / T V " ^ 1 ^ )) pi \ / ^^

7 J

o
+ (φ(t + y + z + x)-φ(t + y + z))FB.(y)

y
? ,

iK J

1

*))(y-i)
— (0(ί + ^ + x) — 0(ί + z)) (0 — 1)].

Here we use the fact that φ(r) is increasing and φ'(r) is decreasing when r > 1. The
integration by parts formula shows that this equals

y

δlκ (φ(t + s + z -h x) — 0(ί + s + z))ds

a;

y
1 J

- φ(t + 5 + z))ds . (4.41)

Repeating the argument above, now using the inequality FA(s) > δ{(s — 1), we find
that the right-hand side of (4.41) is

X

<κ (φ(t + s + z + y) - φ(t + s + z))dFA(s) ,

o

and we have proved (4.40).
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Remark 4.2. To prove the existence of a phase separation in an ordinary lattice gas
as given in Remark 1.8, one can use methods similar to the ones used above. Assume
that ρ < l/r0 and define 7(0)fe) as follows: k G 7(0)(n) if nk_rQ = l,nk_rQ+l =
. . . = %_ι = % — 0 or if nk_ΓQ = ... — nk_l = 0 and nk = 1, i.e. an o-block in

(n, 7(0)(n)) always ends with r0 — 1 zeros. With this definition J(r), r < r0, does not
enter into the energy considerations in the rearrangement procedure.

5. Proof of (4.38)

In this section our goal is to show that there is a Q^ C QN^ρ such that

N2-cΪP, (5.1)

if λ > 7 and ρ < 1/4, where c* just depends on the parameters in φ, and if x G Ω(n),
n G QNjg\Q*N, then (4.38) holds.

What we want to show is that configurations where there is a large number of
particles in a single box [ j — 1 , j), or in a sequence of boxes, has small probability
for large N. The proof is by an energy-entropy argument.

Let z/o be a given integer > 2 and put

Qϋ) = {n G Q^ ra,. > ^0}, j = 1, . . . , L. (5.2)

That n G Q(j) means that there is an excess of particles in box nr j, [j - 1, j). The
next lemma given us a way of moving a particle from box j, which contains an excess
of particles, to an empty box. This lemma is the combinatorial part of the argument.

Lemma 5.1. There is an injective map Tj : Q(j) — >• QN ρ such that if m = T^n, then
mj — rij — 1 and there is an I — l(n) such that nl_l = nt = nl+l — 0, ml = 1 and
m% — ni for i not equal to j or I.

Proof. The proof will be given later in this section.

The next step is to use T to define a map F : Ω(n) — > Ω(T n), and use F in
an energy entropy argument to show that the probability of configurations where the
number of excess particles in some box is > C(log7V)1/4+1/27 goes to zero in the
limit TV — > oo.

Lemma 5.2. There is a VQ > 2 such that if Q(j) is defined by (5.2) the following
holds. For each n G Q(j)> I < j < L, there is an injective map F : Ω(n)
and a partition

Ω(n) = | J?(n, 77) , (disjoint union) ,

where I is a finite index set, so that

(i) F : Ω(n, η) — > F(Ω(n, η)) is a diffeomorphism with Jacobian = 1, and

(ii) if x G Ω(n) and n% < n^ for i — 1 , . . . , L, then

where B is the constant in (1.1).

Proof. The proof will be given below.
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We will now prove

Lemma 5.3. Let

Ω' = jx G Ω : max n^x) < [logJV]1/4+1/27} ,

where Ω = ΩN ρ. Then

PNΛΦWW < exp ( - f̂ [log 7VF/4+1/2) . (5J)

Proof. Define for m > [log TV] 1/4+1/27 = m()j 1 < j < L,

Qm = \Q £ Q^\n^ = m and max nk = m > .
v. 1 \ rC\ -L/ )

Then
L

f2(n). (5.4)
j=l m>m0

Let TV be sufficiently large, n G Q^ and F be the mapping given by Lemma 5.2.
Then, by Lemma 5.2(i) and (ii), for each μ £ /,

F(Ω(n,μ))

ί exp(-βHφ(F(x)))dNx

(n,μ)

= j ^[β(Hφ(x)-Hφ(F(x)))-βHφ(x)}dNx

Ω(n,μ)

(n, μ)) .

Summation over μ G / gives

Z(Ω(n)) < exp(-βBmΊ/S) Z(F(Ω(n))) . (5.5)

Note that F(Ω(n, μ)) Π F(ί?(n, z/)) = 0 if μ ^ ί/, since F : ί2(n) -> F(Ω(n)) is
injective. We now sum (5.5) over all n G Q^ to get

(J ί?(nΛ <

where we have used F(Ω(n)) C β(T^n) and Ω^n^ΠΩ^jm) = 0 whenever m ̂  n
by Lemma 5.1. Now by (5.4),

00

Z(Ω\Ωr) < L

Estimating this sum by an integral, we get

Pc

N,β,φ(Ω\Ω') < 7_. exp(-/3S0

7/8) < exp -
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The next lemma does not concern the total number of excess particles in a single
box, but the total number of excess particles in certain groups of boxes.

Let n G QN,Q ^e giγen. We let J^(Jf) be the set of indices k G Z, such that nk

lies in an o-block (e-block) in /\(n), see (5.12). Put ̂  = ̂ (n) = [k\ nk > z/0}Π^.
^ = {fc1? . . . , A;M}, where kλ < ... < kM. Write M = [logN]q + r with

0 < r < [logNl and put βW = [k{, . . . , kr}9 ̂  = R0_1)+r+I, . . . , *βj+r},
j = 1, . . . , g . Set

Lemma 5.4. Let

Ω" = jx G β : max ra/nfe)) < [log N]\ .

Then for all sufficiently large N,

where cf only depends on the parameters in ψ.

Proof. We will prove that

I Π Ω') < (ρ - ρ/e)~{N2~B

which, if we take cf = B/3, together with (5.3) implies (5.6), since z/0 > 3 and
7 > 2. Given j, 0 < j < q and m > [log TV], let

L, , m = \ n G Q/v D» max nΐ — mo» rnιfe) = m anc^ max

•̂  I 'y 1<^<I/ ^<k<q

Then

(β\β")nβ' = [J U (J β(n). (5.7)
j=0 m>[log7V] n£Lj^m

Consider n G L^ ; m. The idea is now to move the excess particles in the boxes with

indices in ̂ ^ successively to empty boxes using the maps defined in Lemma 5.1
and 5.2.

Let n(1) = n. Suppose that nw has been defined, and that

Σ (4ί)-^o»o,

which means that n^ still contains excess particles in boxes with index in J^(j). Let
kτ be the smallest k in J^ such that

= max
τ

Then n(ϊ) G Q(kr\ and we put

with Γfcτ given by Lemma 5.1. We also get a map Fx : Ω(n(l}) -^ Ω(n(l+^) from
Lemma 5.2. Furthermore, we define the map Γ : Lj ?m -» Q^ ρ by T(n) = n(m+1).
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Then there are no excess particles in the boxes with index in ̂ ^' in T(n). Note that
the map T : L m —> QN Q is not necessarily injective.

We can now formulate the essential energy and entropy estimates:

Claim 5.5. Let x G β(n^), I <i <πι. There is a number Xif independent ofx, such
that

Hφ(x) - H^F^x)) > λ,. (5.8)

These numbers satisfy

Furthermore, for each nr G T(L3 m),

\{n£ Ljim\n' = Tn}\ <expm. (5.10)

The proof of the claim will be given below.
Assuming the validity of the claim we can now complete the proof of the lemma.
By the same argument as in the proof on Lemma 5.3 we see that

Here we have used (5.8). Repeated use of this inequality gives

/ m \

Z(Ω(n)) < exp - β^f\] Z(Ω(Tn))
\ *=ι /

where the second inequality follows from (5.9), and Cl = Bv^ /24. Using this we
find

Z(Ω(n)) < e°lβm

n£:Lj^γn

))|{n e L^n1 = Tn}\

Z(Ω(n')) < e-m(Cιβ-l}Z(Ω) . (5.11)

If 2 > C{β the estimate (5.6) is trivial, so we can assume that Cλβ > 2. Then (5.7)
and (5.11) give

oo 1 /

Pc ((Ω\ Ω"^ Γ\Ω'^< V p-m(Cι 1/9-1) <
 l/Q -(C^-2)[\ogN]

^N,ρ,φ\(**V' >l ' J/ ) ̂  / , C - \ _ e-C{β-l) 6

m=[logN]+l

This completes the proof of Lemma 5.4.
The results needed to prove (4.38) are now at our disposal, so we proceed with

Proof of (4.38). With the notation introduced above let

Q*N = {n G Q^ max m -(n) > [log AT]) .
I 0<j<9 J )
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Then (5.1) holds by Lemma 5.4. We have to show that the inequality (4.38) holds for
all x with n(x) G QN,ρ\Q*N

Let n G @N,Q\QN- fe»^Ίfc)) gives a partition of n = AlBl .. ASBS, where
Ak = (ak, bk), k = 1, . . . , s are the o-blocks. Put

(5.12)

so that ̂  = { . . . , Z _ j , Z 0 , . . . , Zτ}, Zz < Zi+1 is the set of all indices for boxes in
oblocks. Write μi = n / Γ_ i, i > 0, to simplify the notation. Let ̂ ' = Λ\^. Then

μi <v0ifί£βί'.
Observe that the interaction energy between two boxes at distance z from

each other containing v and μ particles respectively is > —Aμv/z1. Recall that
β(k} = Bk...Bs and write B(k^ = (ξl, £2, ...), i.e. ξi is the number of particles in
the iih box in B(k\ Then ξl = 0 and ξi = 0 if i > L. It follows from the density
property that

— I < m < L .
k=l

If xk — \Ak , we have

xk L

(5.13)

n'bk-ι

- 1 + i + ί)2 '
(5.14)

where we have used (5.13) to get the second inequality. Now, since αfc+1 s+xk = ak s,
α

s+ι,s = ° and nίτ = °> we βet

k=l

L oo

+

Σ +
L Γ oo

\ > I

--^L
> -Aδ,

j=0

(5.15)
t=l j=0

where we have used μi < z/0 when i G ̂ ', πιl — ^ (μi — z/0), and

[logTV], j = 1, . . . , q and |̂ (0)| < [logTV]. Since n G Q%9 m- < [logTV] and hence
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the last expression in (5.15) is bounded from below by

Γ oo g 1

ί=l ?=0

> - Λ«2[ι/0 log L + log q + C]. (5.16)

Now L = N/ρ and q < N/[logN], so when N is sufficiently large we have

Y^Eφ(Ak,B
(k\ak+^s) > -Λ«2(ι/0+ 1) log T V ,

fc=l

which proves (4.38) with κ4 = A(VQ + 1).

Proof of Lemma 5.1. Let 5, t G [0, L] be two integers and let Q^j. be the set of all n

in QW such that the number of boxes with exactly one particle is = 5 and the number
of empty boxes is — t. Let r be the number of n fc's such that nk_λ = nk — nk+l = 0;

r > t. The condition ρ < 1/4 ensures that Q(^t = 0 unless 5 + 1 > r. To simplify

the notation we write X = Q^t-
Given n G X we can assign t different ra G QN,Q by letting πij =nj — l9ml = I

for some / such that nl_l — nt = nl+l = 0, and πιτ — ni for i not equal to / or j.
Let y be the set of all ra that can be obtained in this way, starting from any n G X.
This construction defines a bipartite graph (X, y, ̂ ), where (n, ra) G ̂  if ra can
be obtained from n in the way described above. Let ρ(x) denote the valence of the
corner x in the graph, and for A C X let

R(A) = {ra G y (n, ra) G ̂  for some n G A} .

Given ra G y we can obtain any n G X such that (n, ra) G ̂  by moving a particle
from one of the 5 + 1 boxes with exactly one particle in ra, to the jth box. Hence

= 5 + 1 and clearly ρ(n) = r for any n G X. Let A C X be arbitrary. Then

Hence |A| < |Λ(A)| for all A C X and according to Hall's lemma ("marriage
lemma"), see [GW], there is a matching of X into y, i.e. an injective map
TJ; : X -^ y, such that (n,Tnn) e ̂  for each n e X. This gives an injective

map T3 : Q(^t —>• Q^ ρ. If ra e T (Q(^t), then ra has exactly 5 + 1 boxes with one

particle and t - 1 empty boxes. Consequently Tj(Q^t) / T^Q^,) if (5, t) ± (sf, tf).

Hence Tj : Q(j) -> QN^ is injective.

Prao/ of Lemma 5.2. Let n G (5(j) so that n^ < z/0; the choice of z/0 will

be specified below. Divide box no. j, [j — 1, j), into n^ — 1 subboxes, 1^ =

l(j - 1) + (i - l)/(^ - l),ϋ ~ 1) + i/(nj - 1)), of length \/(nj - 1). At least
one of these subboxes must contain more than one particle. Let k = k(n) be given
by Lemma 5.1. Let Ω(n, /, μ, ι/) be the set of all x G Ω(n) such that
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(•) each of I , 1 < i < /, contains at most one particle, but 1^ contains two or
more particles,

(•) xμ is the first particle in ij , and

(•) xv < k(n) - 2, Xj/+l > k(n) + 1.

The index set / is the set of all possible (/, μ, z/) for a given n. We define F on
Ω(n, £, μ, ι̂ ) by y = F(x), where (suppose v > μ, v < μ is analogous)

ί
x, ifl<i<μorv<i<NI — f~ —

xi+ι 'ύμ<i<v (5.17)

xμ - (j - 1) + k(n) if i = v.

It is clear from the definition that (i) is satisfied, and it is also immediate that
F(Ω(n, l,μ, z/)) are disjoint for different values of (/,μ, z/), so F is one-to-one on
Ω(n). From Definition (5.17) of F and the definition of Tj in Lemma 5.1 we see that
F maps Ω(n) to β(ϊ}n).

We now turn to the proof of the energy estimate (ii). Assume that xσ, . . . , xr G
[j — 1, j) are the positions of the particles in box j, τ = σ + n^ , — 1. Define

σ<i<k<r

and
T

flf(a?) = Σ Σ ^fc-^i).
x=σ /c<σ or fc>r

so that H^ \x) is the interaction energy of the particles in box j with each other,

and HJ (x) is the interaction energy between the particles in box j and the particles

in all the other boxes. H[I\X) and Hf\x) for i ^ j are defined analogously, and

Hf\x) = 0 if n < 1.
The potential φ(r) in (1.1) satisfies φ(r) < 0 if r > 1. Thus

0. (5.18)

We will now prove the estimate

Hf\x) - Hf\F(x)) > j nj . (5.19)

Suppose that x £ Ω(n, I, μ, v). Then

T

Hf\x)-Hf\F(x))= Σ Φ(\xj~xμ\') + (t>(χ

μ+ι-χ

μ') (5 2°)

Recall that φ(r) = B/rΊ - 2A/r2, 7 > 2. There is a constant d{ > 0 such that
φ(r) > — dγ for all r > 0, and there is an r0 such that

φ(r) > B/2rΊ , if 0 < r < r0 (5.21)
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and φ(r) is decreasing in (0, r0). Let z/0 ?1 = [l/r0] -f 1. Since xμ+l —xμ< l/O^ — 1),
we see that if z/0 > z/0,ι» tnen nj — 1 > ^0,1 anc* tnus xμ+\ ~ x

μ < ro Hence (5.20)
and (5.21) give

H?\x) - Hf\F(x)) > - άlnj + (Uj - 1)^

Choose ι/o2 so that if z/0 > z/0 2 then the expression in brackets in the last line i
(5.22) is > B/4. This proves (5.19) if z/0 > max(z/0j l, z/0)2).

The next step is to estimate

Hx) - HF(x)) = </>(K-*μD (5-23)
k<σ or k>τ

The boxes adjacent with box j each contains < n particles by assumption. Hence
their contribution to the sum in (5.23) is > — 2dlnJ. The distance from a particle in
box k to the partticle at xμ is > \k — j\ — 1. Since the number of particles in any box

is < rij and φ(r) > 2A/r2 we see that

00 2A
Hf\x) - Hf\F(x)) > - 2dιnj -2n3Σ-ϊ = - d2n3 , (5.24)

k=ι K

where d2 = 2dl+2Aπ2/3. The estimates (5.18), (5.19) and (5.24) together show that

Hφ(x) - Hφ(F(x)) >*NJ- d2n, > |

Choose Z/Q 3 so that 1 — 4d2B~l^~Ί < 1/2 if z/0 > z/0 3. Then the desired inequality
follows if i/o > max z/0 1> which only depends on the parameters in φ.

Proof of Claim 5.5. We will denote the number of excess particles in the boxes
with index in &W by z/ ., z/. = ZΛ — z/n, ϊ = 1 . . . . [logΛΓj. Then

^ J l * Λ0' — l)[logN]+r+r υ ' ' L °

[log N]

J^ ^ = m. The positions of the particles in box /c are xσ , . . . , xσfc 19 i.e.,
ϊ=l

A: — 1 < xσ < . . . < xσ _ι < k, σfc+1 = σk if there are no particles in box k. The
interaction energy between the particles in box k and the particles in box / is

i+1

ίr*,ife)= Σ Σ #[*τ-*ti)ί::ι:CΓfc τ=σz,r^t

By the same argument as in the proof of Lemma 5.2 we can show that

(5.25)
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using the notation introduced in the proof of Lemma 5.4. If j G ̂ &\^ then n. < v§
by definition. Combining this with the density property for e-blocks we see that

/ 00 \

(Hkτtl(x) - £ΓΛrϊ/(Ft(*))) > - 4Aι/0 ]Γ -2 + d! = - d3^0 , (5.26)

JSUC/Λ^) ^ J^1

where d3 = 4A(π2/6 + <
Consider now

l)+r M \

Σ + Σ )ίHkτtkt(x)-HkτM(Fi(x))]
t=l t=[\ogN]j+r+\ /

= Σl + Σ2 . (5.27)

If \kτ - kt\ = I we use the fact that maxn^ < m0 = [log AΓ]1/4^1/^ as above, to get
the estimate

Hkτ,kt(x) - fffcτιfct(Ft*)) > - d,mϋ , (5.28)

where dλ is a lower bound on φ(r) as above. If \kτ — kt\ > I we use the fact that
the distance between any particle in box kτ and any particle in box kt is > |r — t\.
Combining this with max rij < m0 and φ(r) > - 2A/r2 we find that in this case

(5.29)

Let d4 = max(2A, dλ). Then (5.28) and (5.29) give

[logAΠO'-D+r

~^ Σ (T

(Recall that [\ogN](j - 1) + r < r < [log N] j + r.) Similarly,

Σ2 > - 2d4mQ - - -— — - - - . (5.31)2~ 4 ° r + l -r

Combining (5.25)-(5.27), (5.30), (5.31) and (5.18) we obtain

Hφ(x) - Hφ(F%(x))

(5.32)

What we do in the construction of nw, i — 1, . . . , m, is that we successively remove
the excess particles in the boxes given by ̂ \ Hence it follows from (5.32) that

t=l

ΠogW] , j j ,

+ 2d4m0 Σ ^ (i + [log TV] +1-0 - d^m (5'33)
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We will use the following estimate

[log TV] i/i [logΛΓ]

Σ ΣW + "of - f] > -h Σ «"< + "0
'

i=l j=\

\ Ύ Ί \ Ύ /c o/i\> —— z/0

ym > - z/0

ym. (5.34)

Choose z/o4 so that z/0 > ί/04 implies Bv§ /24 — d3z/0 > 0. Them (5.33) and (5.34)
imply

if we can show that

0 [log TV] ϊ/t

„ ̂  ^7 M o g / Y I + l _ Ϊ 7 (5 35)
.= 1 j=l

Using the Cauchy-Schwarz' inequality and the estimate J^ jΊ > v\, we see that the

left-hand side of (5.5) is bounded from below by

D [log TV] /[log TV] \ 1/2

ΐ=l \ i=l )

where d5 — 4πd4/V6 Now, again by the Cauchy-Schwarz' inequality

[log TV] /[log TV] \ 1/2

m= V ι/ t < ( V ^2 [logAΓ]1/2.
i=l V i=l /

/[log TV] v i / 2

If we write x — ( ^ ^ ) we thus have x > m[logN] 1/2 and (5.36) equals

^ i=l ^
#(#) = Bx2/8 — d5m0x. When TV is sufficiently large then

D

00*0 > ^(m[logTV]~1/2) = — mtmflogTV]"1 - cί5m0[logTV]~1/2]
8

B B

~ 8 5 ~ 16

since 7 > 2 and m > [log TV]. This proves (5.36).
The condition on z/0 is

(5.37)

which only depends on the parameters in φ.
It still remains to prove (5.10). Let n G L^m. There is a sequence {jr}^! C

(n), which depends on n, such that

Tn = (Γ J .moT J m_ lo...oΓ J . l)(n). (5.38)
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This means that we first move a particle from box jl9 then from box j2, and so
on. Given n' = Tn and {jVJJILj we can find n by reversing (5.38). Given n' we
also know ^(3\n), since ^(3\n) = ^(3\n'). Since \^(3\n)\ = ra, the number of
possible sequences {jr}^l is

m + [log TV] - 1
771

and consequently,

[log7V]-l.n - n <

< exp f m log ) < exp([log N]) < exp m.
V m J

Remarks on the Proof of Corollary 1.3. This proof is analogous to the proof of
Theorem 1.3 in [Jol]. The only difference is that when we divide Λ into two parts
[0, ξ)Γ\Λ and [£, L] Π Λ, the interaction energy between the two parts is not o(N) for
all configurations. But if we exclude configurations for which the number of particles
in a box is > [logTV]1/4^/27, which we can do by Lemma 5.3, it is clear that the
interaction energy between the two parts is o(N), and the proof in [Jol] can be used.
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