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Abstract. We realize the Hopf algebra Uq-\(so(N)) as an algebra of differential

operators on the quantum Euclidean space R^. The generators are suitable g-deformed

analogs of the angular momentum components on ordinary RN. The algebra Fun(R^)

of functions on R^ splits into a direct sum of irreducible vector representations of
U ' ι ( s o ( N ) ) m , the latter are explicitly constructed as highest weight representations.

1. Introduction

One of the most appealing facts explaining the present interest for quantum groups
[1] is perhaps the idea that they can be used to generalize the ordinary notion of
space(time) symmetry. This generalization is tightly coupled to a radical modification
of the ordinary notion of space(time) itself, and can be performed through the
introduction of a pair consisting of a quantum group and the associated quantum
space [2,3].

The structure of a quantum group and of the corresponding quantum space on
which it coacts are intimately interrelated [2]. The differential calculus on the quantum
space [4] is built so as to extend the covariant coaction of the quantum group to
derivatives. Here we consider the TV-dimensional quantum Euclidean space R^ and
SOq(N) as the corresponding quantum group; the Minkowski space and the Lorentz
algebra could also be considered, and we will deal with them elsewhere [5].

In absence of deformations, a function of the space coordinates is mapped under
an infinitesimal SO(N) transformation of the coordinates to a new one which can
be obtained through the action of some differential operators, the angular momentum
components. In other words the algebra FunίR^) of functions on R^ is the base
space of a reducible representation of so(N), which we can call the regular (vector)
representation of so(N). It is interesting to ask whether an analog of this fact occurs
in the deformed case; in proper language, whether Fun(R^) can be considered as a
left (or right) module of the universal enveloping algebra Uq(so(N))> the latter being
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realized as some subalgebra U^ of the algebra of differential operators Diff(R^)

onRf.
In this paper we give a positive answer to this question. The result mimics the

classical (i.e. q = 1) one: starting from the only 27V objects {x\ dj} (the coordinates

and derivatives, i.e. the generators of Diff(R^)) with already fixed commutation and
derivation relations, we end up with a very economic way of realizing Uq-ι(so(N))
and its regular vector representation (the fact that in this way we realize Uq-\(so(N))
rather than Uq(SO(N)) is due to the choice that our differential operators act from
the left as usual, rather than from the right). In this framework, the real structure of
Diff(R^) induces the real structure of Uq-\(so(N)). This is the subject of this work.

What is more, this approach makes inhomogeneous extensions of Uq-\(so(N))
and the study of the corresponding representation spaces immediately at hand,
without introducing any new generator: it essentially suffices to add derivatives to the
generators of Uq-ι(so(N)) to find a realization of the g-deformed universal enveloping
algebra of the Euclidean algebra in N dimensions [6], containing Uq-\(so(N)) as a
subalgebra. In fact this method was used in [7] to find the g-deformed Poincare Hopf
algebra. In both cases the inhomogeneous Hopf algebra contains the homogeneous
one as a Hopf subalgebra, and we expect it to be the dual of a inhomogeneous q-group
constructed as a semidirect product in the sense of [8].

The plan of the work is as follows. In Sect. 2 we give preliminaries on the quantum
Euclidean space R^ and the differential algebra Diff(R^) on it. In Sect. 3 we define

a subalgebra Uq c Diff(R^) by requiring that its elements commute with scalars,
introduce two different sets of generators for it and study the commutation relations of
the second set. In Sect. 4 we find the commutation relations of these generators with
the coordinates and derivatives and derive the natural Hopf algebra structure associated
to U^ (thought of as algebra of differential operators on Fun(R^)); the Hopf algebra

Uq is then identified with Uq-\(so(N)). In Sect. 5 we find that the g-deformed
homogeneous symmetric spaces are the bases spaces of the irreducible representations
of U^ in Fun(R^), and we show that they can be explicitly constructed as highest
weight representations. When q G R+ the representation are unitary and the hermitian
conjugation coincides with the complex conjugation in Diff(R^).

We will treat by a unified notation odd and even TV's whenever it is possible, and
n will be related to TV by the formulae TV = In + 1 and TV = 2n respectively. We
will assume that q is not a root of unity. Finally, we will often use the shorthand
notation [A, B]a := AB - aBA (=> [-, ]ι = [ , •]).

2. Preliminaries

In this section we recollect some basic definitions and relations characterizing
the algebra Fun(R^) (O^(C) in the notation of [2]) of functions on the quantum

euclidean space R^, TV > 3, (which is generated by the noncommuting coordinates

x = (x1)), the ring Diff(R^) of differential operators on R^, the quantum group
SOq(N). In the first part we give a general overview of this matter; in Subsects. 2.1,
2.2 we collect some more explicit formulae which we will use in the following
sections for explicit computations. In particular, in Subsect. 2.2 we report on a very
useful transformation [9] from the >SΌg(ΛΓ)-covariant generators x, d of Diff(R^) to
completely decoupled ones. As in [9], index i = —n, — n + 1, . . . , — 1,0,1,... n if
TV = 2n + 1, and i = —n, — n + 1, . . . , — 1,1,. . . n if TV = 2n. For further details we
refer the reader to [10, 9, 11].
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The braid matrix Rq := \\R^k\\ for the quantum group SOq(N) is explicitly given
by

_ _ , _ (i)

(2)

where (ej)£ := £ί/l£ jfe. Rq is symmetric: A* - R.

The g-deformed metric matrix C := \\Cτj\\ is explicitly given by

CtJ := <?-%_., , (3)

where

•= / (n ~ in ~ f ' ' ' 5>°> -5> ' ' 5 ~ n) if ^ = 2n

'(p ) •= ~ ~ ' ' ' 5 > > -5> ' ' 5 ~ (4)
' l(n- l , n - 2 , . . . , 0 , 0 , . . . , l - n ) ttN = 2n.

Notice that N = 2 — 2ρn both for even and odd TV. C is not symmetric and coincides
with its inverse: C~l = C. Indices are raised and lowered through the metric matrix
C, for instance

αt = Ctχ, α* = C*χ.. (5)

Both C and R depend on q and are real for q e R. A admits the very useful
decomposition

A =^-9-^ + 9'-^. (6)

I^\ are me projection operators onto the three eigenspaces of R ( the latter

- ι Λ. l) Λ N(N-l) \ u .
have respectively dimensions - - -- 1, - - - , 1 1 : they project the tensor

product x®x of the fundamental corepresentation x of SOq(N) into the corresponding
irreducible corepresentations [the symmetric modulo trace, antisymmetric and trace,
namely the g-deformed versions of the corresponding ones of SO(N)].

(~^13 (^

The projector ̂  is related to the metric matrix C by &£k = hk ' ; the factor

QN is defined by QN := C^C^. R±l,C satisfy the relations N

, P (C 0 C)] = 0 , f(Rn)R%R±ϊ = R^R^f(R^) (7)

(P is the permutator: P^k :— δz

kδ
j

h and / is any rational function); in particular this

holds for f(R) = R±l,&>A,0>s,&(.
Let us recall that the unital algebra Diff(R^) of differential operators on the real

quantum euclidean plane R^ is defined as the space of formal series in the (ordered)

powers of the {x*}, {dt} variables, modulo the commutation relations

φ iJ Th k _ rv ^ ij fthftk _ rv /ox
^Ahkx X ~ U ' ^Ahk° ° — U ' v5^

and the derivation relations

dh. (9)
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The subalgebra Fun(R^) of "functions" on R^ is generated by {x1} only. Below we
will give the explicit form of these relations.

For any function /(#) G Fun(R^) dj can be expressed in the form

dj = Λ + fldj , /„ // G Fun(Rf ) (10)

(with f^ fl uniquely determined) upon using the derivation relations (9) to move step

by step the derivatives to the right of each xl variable of each term of the power
expansion of /, as far as the extreme right. We denote fτ by dτf\. This defines the
action of dτ as a differential operator dt:f G Fun(R^) -> dj\ G Fun(R^): we will
say that d τ f \ is the "evalaution" of di on /. For instance:

d l\ = 0, 0V I - & , <9Vz*Ί - Cl3xk + qR-l%xhClk . (11)

By its very definition, di satisfies the generalized Leibnitz rule:

dif\g + <%f\d9\ , f,ge Fun(Rf ) , & G Diff(R ) (12)

(& f\ — f ? ) . Any D G Diff(R^) can be considered as a differential operator on

Fun(R^) by defining its evaluation in a similar way; a corresponding Leibnitz rule
will be associated to it. In Sect. 4 we will consider as differential operators the angular
momentum components.

If q G R one can introduce an antilinear involutive antihomomorphism *:

*2 = id, (AB)* = B*A* (13)

on Diff(R^). On the basic variables xl* is defined by

(a4)* = xjCi3 , (14)

whereas the complex conjugates of the derivatives dl are not combinations of the
derivatives themselves. It is useful to introduce barred derivatives dl through

(dif = -q-NVCjz. (15)

They satisfy relation (8) and the analog of (9) with g, R replaced by g"1, FT1. These
d derivatives can be expressed as functions of x, d [11], see formula (29).

By definition a scalar /(x, d) G Diff(R^) transforms trivially under the coaction
associated to the quantum group of symmetry SOq(N, R) [2]. Any scalar polynomial

/(x, d) G Diff(R^) of degree 2p in x, d is a combination of terms of the form

I = Ofe,)'1^ - - (riεp)
ip(riε>p\ (VΛ'VΛ , (16)

where εi , ε'0 — +, — , η+ := x and η_ := d. From here we see that no polynomial of

odd degree in ηl

£ can be a scalar. One can show that any scalar polynomial I(x, d)
can be expressed as an ordered polynomial in two particular scalar variables (see for
instance Appendix C of [12]), namely the square length x x and the laplacian d - d,
which are defined in formulae (20) below.

We will use two types of g-deformed integers:

an - q~n qn - 1
[n] := 1 - ̂ , (n) := ^ - ~ (17)

~q <ι —
both [n] and (n) go to n when n — » 1.
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2.1. Some Explicit Formulae in Terms ofx.d Generators

For any "vectors" a := (α*), b := (6*) let us define

479

* r^α<
("*&),-:= 2-,° 6-<+{o

^fϊA) if

0

-(<Z2-

0 < j < n,, - .., (18)
if N even

*b). , . 7 > 1. (19)

(20)

(when this causes no confusion we will also use the notation α b := (a b)n). Then
it is easy to verify that

(α b)j = (α * fyj + ̂  T2? (21)

Note that the preceding four formulae make sense for any n > j and do not
formally depend on n.

Relations (8), (9) defining Diff(R^) amount respectively to

, x) = 0 , (̂<9, d) = 0 , i = 1, 2, . . . , n ,

and
kx

3 = qxjdk - (q2 -

3_xk =
J \ L ή —L JU

-̂  —" /> J / "^

i>0

i <0

for N

Here are some useful formulae (sum over / is understood):

d\x - x)n = q2ρnxi + q\x x)nd
l, (d - d)nx

l = q2βndτ + <?V(<9 -

(x'9X - x* 4- fx%xldl -f (1 - g2) (x - x)nd
l,

^(x^,) = a* + q2(xldl)dl + (1 - tfV(<9 S)n .

In [9,11] the dilatation operator Λn

Λn(x, d):=l + (q2 - \)xidl + g^'2^2 - l)2(x x) (d - d)

was introduced; it fulfills the relations

Λnx
l = q2x*Λn , And* = q~2diΛn .

Then one can prove [11] that

dk = Λ~{[θk + gN~2(q2 - l)xk(d d)].

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)



480 G. Fiore

In the sequel we will also need the operator

j£ n :=l+(Λ~V -!)(*• d) (30)

It is easy to show that it is the only operator of degree one in xld^ satisfying the
relations

^n(x . x) = q

2(χ . X)B , J$n(d d) = q~2(d d)Bn . (31)

Under complex conjugation

^*=q-N.^Λ-1, Λ*=q-2NΛ~1 if q € R+ (32)

In the sequel we will drop the index n in J?n, Λn when this causes no confusion.

2.2. Decoupled Generators 6>/Diff(R^)

In [9] it is shown that there exists a natural embedding of Diff(R^~2) into Diff(R^).
In next sections we will see that it naturally induces an embedding of Uq(so(N - 2))

into Uq(so(N)). We just need to do the change of generators of Diff(R^) (x\dj) — >

xl = μli X1 , di = μli Dl , \i\ < n

χn = xn, dn = Dn

x-» = Λl

n

/2μjχ-n - q-2~^(q2 -\)(X X}n_,Dn

and
μn := μ(Xn, Dn) := DnX

n - XnDn = l + (g2- l)XnDn . (34)

Then the variables X^D^, (\ί\, \j\ < n — 1) satisfy the commutation and derivation
lations (8), (9) for Diff(R^~2), wher

[X±n,X*]=0, [X±n,Di] = 0,

and

relations (8), (9) for Diff(R^~2), whereas

= D±n,X*] = 0, [£>±n,£> j]=0,

[D±n,X*n]=0, (Dn,D_n]=0, [Xn,X~n]=0,

DnX
n = 1 -f q2XnDn , D_nX~n = I + q-2X~nD_n . (36)

As a direct consequence of the previous relations, μn commutes with all the X, D
variables, except Xn,Dn themselves:

μnX
n = q2Xnμn , μnDn = q~2Dnμn . (37)

The dilatation operator Λn in terms of X1, Dj variables reads

where μ_n := (D_nX~n - χ-nD_nΓ
l and Λ^^X.D) depends only on X\Dy

(KΊ> \J\ <n— 1) as dictated by formula (27) (after the replacement n — > n — 1).
For odd N it is convenient to start the chain of embeddings from the "differential

algebra of the quantum line" Diff(R^) generated by x°, <90 satisfying the relation

d0χ° = I + qχ°d0 . (38)
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For N even, it is convenient to start the chain from the differential algebra Diff(R2)

of two commuting quantum lines; it is generated by the four variables x±l,d±l all
commuting with each-other, except for the relations

f) «.±1 _ i i ~2 ±1 o C\Ω\
C/_j_ιX — 1 T~ fj Ju "-t-1 \3-')

Summing up, we have the two chains of embeddings

Diff(R^) ̂  Diff(R£+2) <-> Diff(R£+4) ̂  . . . , (40)

L f 1 for odd TV's
where h= <

[ 2 for even TV s
From the abovementioned embeddings, it trivially follows the important

Proposition 1.

F(x\0J) = 0 in Diff(R^~2)

=> F(Xi(xh, dk), Dj(xh, dk)) = 0 in Diff(Rf), (41)

with \i\, \j\ < n — 1, \h\, \k\ < n. In the LHS x\dj are the (x,d)-type generators

for Diff(R^~2, in the RHS X\ D^ and xh,dk are respectively X, D- and (x, d)-type

generators for Diff(R^), and F for our purposes will be some polynomial function in

the variables x,9,μn_1 Λn_l .

Let us introduce variables χ%^,z e Z, such that

q2 if ί > 0 or TV even and i — — 1

^X* = l+αχ^, a={q tfi = 0 , (42)

g~2 otherwise

ξ = χ j, ̂  with iφj. (43)

By iterating the transformation (33) one arrives precisely at generators of Diff(R^)

of the type χ%^ with \i\ < n (and i ^ 0 when TV is even), by identifying

X±n = χ±n , D±n ~ ̂ ±n ' Xn~l — X^

We generalize the definition (34) in the following way:

(ιι \^* — off Λ/ Λ/-'1^ (5?) — 1 _l_ (n λ\Λ/ ^ &ϊ
\HJ±ι/ ' °^^iϊA A ^.x ' V" /A ^i

i > 0, except when TV even and i = 1;
μ := ̂ , v^ — v1^1^, , = 1 + (q2 — \)γ±l^+λ .. _.r m i i c i v v ztri -z v. mi ^^-^

when TV even;
(u \ l /2 ._^γO.
vMo/ ~ =^t)X

when TV odd.

Consequently,

, _ , „ _ ) q 2 if i = .7 - - (q i if i = j (46)
MlX A. Mi " i 1 r _. / _. 7 Γ"l— 7 ~7Γ~l | ! - r /

11 * T2^ J
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n

and Λn= Π μi. In terms of X, D and χ, 0$ variables the square length x - x and
i=— n

the laplacian d d take respectively the forms

x x = Λ\l2μ-{/2XnX~nq^ + q~\X X)n_j

0 if N = 2n
fl-2n+l

« - _χθχθ if jv = 2n+

if N = 2n
(48)

3. The U.E.A. of the Angular Momentum on R*

Inspired by the classical (i.e. q = 1) case, we give the following

Definition. The universal enveloping algebra U^ of the angular momentum on R^

is the subalgebra of Diff(R^) whose elements commute with any scalar /(#, d) G

Diff(R^). Since any such I can be expressed as a function of the laplacian and of the
square length x x, d d, our definition amounts to

U? := {u G Diff(Rf): [u, x x] = 0 - [u, 3 d]} . (49)

In the next two subsections we consider two sets of generators of U^ (actually

we will prove in Appendix B that any u G U^ can be expressed as a function of

them). The generators of the first set transform in the same way as the products xlχi
under the coaction, since (up to a scalar) they are g-antisymmetrized products of x, d
variables, but have rather complicated commutation relations; nevertheless Casimirs
have very compact expressions in terms of them. The generators of the second set
have a quite simple form in terms of x, ̂  variables and are much more useful for
practical purposes, since they have simple commutation relations and are directly
connected with the Cartan-Weyl generators of Uq-ι(so(N)).

3. The set of generators {LZJ , B}

Keeping the classical case in mind, where the angular momentum components are
antisymmetrized products xld^ — x^d1 of coordinates and derivatives, we try with the
(/-deformed antisymmetrized products

_
A hk — — A hk '

From relations (25), (8) it follows that

d = q~2d - d&j . (51)



Realization of Uq(so(N)) within the Differential Algebra on R^ 483

Series Bn:

I 2-n,n-1 i 1-n,n

Series Dn.

This implies that 2§13 commutes only with scalars having natural dimension a = 0.
This shortcoming can be cured by introducing a scalar 5 G Diff(R^) with natural

dimension d = 0 and such that Sx x — q~2x - xS, Sd-d — q2d - OS', then by defining
Lij :=^j s we get

[LtJ,/] = 0; (52)

LIJ are therefore candidates to the role of angular momentum components. The sim-
plest choice is to take S = Λ~1/2, as we did in [12], and will be adopted in the sequel.

Starting from commutation relations for the =S^'s we get corresponding relations
for the ZΛ^'s by multiplying them by a suitable power of Λ~1/2. In fact, it is clear that
the former must be homogeneous in J^'s to be consistent with (51). Nevertheless,
commutation relations including factors such as 5§13 2?~3>l cannot be of this form.
In fact, performing the derivations d~3x3 according to rules (9) one lowers by 1
the degree in xd of some terms; this can be taken into account only by considering
homogeneous relations both in Jgί^'s and & (J? was defined in (30)), since J?
is the only other 1st degree polynomial in xldj with the same scaling law (51) as

^hk. Summing up, we expect homogeneous commutation relations in the L ϊ j f 's and
B := J8A~ll'1. B is not really an independent generator, as we will see below.
Therefore, the alternative choice 5 := J$~l (as considered in [13]) would yield the
same algebra.

Remark 1. When q = I, J$ = 1 —A and U3 reduce to the classical "angular
momentum" components, i.e. to generators of U(so(N)) (note that they are ex-
pressed as functions of the non-real coordinates xl of RN and of the correspond-
ing derivatives). In this limit one can take as generators of the Cartan subalge-
bra the J7'~~z's, as ladder operators corresponding to positive (resp. negative) roots
the L jA;'s with \j\ < \k\ and k > 0 (resp. k < 0), as ladder operators cor-

responding to simple roots the L1-M's together with L 7'2 ( i = 2, . . . ,n, and

j — < _ j . A Chevalley basis is formed by the set of triples

{(Ll-^\L-^~l,L^-τ -L*-1'1-*),* - l , . . . ,n} if N = 2n + I (here L°'° - 0)
and {(L1'2, L"2'-1, L2'~2 + L1'"1), (L1-^, L^'1, Ll~l ~ L^1'1^), i = 2 , . . . , n}
if TV = 2n. The correspondence with spots in the Dynkin diagrams of the classical
series Bn,Dn is shown in Fig. 1.
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Remark 2. One could work with 5 instead of d derivatives and define LIJ :=
^AhkχhdkΛl/2> Bn '•= ^n^1/2, where ^n := 1 + (q~2 - l)(z 5). But using
formulae (15), (28), (32) one shows that q~lL13 = qL*i. In the language of [12]
this means that the angular momentum in the barred and unbarred representation
essentially coincide.

Instead of the N linearly dependent operators J^~M one can use their n linearly
independent combinations

^-= ^(χ,<9), i = l , 2 , . . . , n . (53)

As for the operators J^ΪJ, ί ^ —j, for simplicity we will renormalize them as follows:

, i<j,

The scalar (L - L)n := LljL^ commutes with any L^ and reduces (up to a factor)
to the classical square angular momentum when q = I. We will call this casimίr the
(g-deformed) square angular momentum. Higher order Casimirs can be obtained by
forming nontrivial independent scalars out of j'-th powers (j > 2) of the L's,

(L L ...L)n := U^L^L^ ... L^ , (55)

j times

for the same values of j as in the classical case.

Proposition 2. The following important relation connects Λ, J$ and <S? - 2?:

Proof. Using formulae (7), (6), (8) one can easily show [12] that

(3S - S}n = aN(q)xidl + βN(q)xίxJdJdi + jN(q) (xix%) (d'd^ , (57)

where

2_N_ N__2

«Λr((7) — NQ N_? <58)
(q 2 +q2 )(q~2-q2)

Performing derivations in ̂ 2 according to formula (26) we realize that the RHS of
formula (56) gives A as defined in formula (27). D

As a consequence, B2 is not an independent generator, as anticipated, but depends
on L L.

When q G R from formulae (14), (15), (28), (32) it follows that under complex
conjugation

(Lt^)*=^<+^L-^-<; (60)

this implies in particular that L L, the other casimirs and the Lz's are real. Moreover,
it is easy to show that all the Z/'s commute with each other, as the J^'s do.

The basic commutation relations between LIJ, B are quadratic in these variables
but rather complicated and we won't give them here.
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3.2, The Set of Generators {V^ki}i^j_3

On the contrary, the new generators defined below admit very simple commutation
relations, allowing a straightforward proof of the isomorphism U^ ~ U -\(so(N)).
It is convenient to use χ,J^ variables to define and study them. The definitions of
Lu,k* involve only χl,&m variables with |/ | , |m| < J := max{\i\,\j\}, so that
in terms of these variables it makes sense for any n > J. Hence, it trivially follows
the embedding U^ <-* U^+2, since, as we will show in Appendix B, LΪJ, k* gen-

erate

Proposition 3. The elements

k* := μ.μ:] G Diff(Rf ) , 0 < i < n (61)

belong to U^ and commute with each other.

Proof. The thesis is a trivial consequence of formulae (46), (47), (48). D

We will call the subalgebra generated by k* the "Cartan subalgebra" H^ C U^ .

In Appendix A we show that the elements k^ G U^ can be expressed as functions

of S,L^.
Now we define the generators Lτj G U^, which correspond to roots. Since

the generators of U^~2 belong also to U^ (in the sense of the abovementioned
embedding), we can stick to the definition of the new generators, i.e. the ones
belonging to (U^ — U^~2). For this purpose it is convenient to use the X, D variables

of Diff(lφ.

Definition.

(p,°sitίve;°°?/2 , 1 / 2 , I Ί < » <62)L —nl. „— I Λ~ ' a V—nr/r^ τ~)\ v'l n~ ' vl D — n-— 4 ^n p_n^ H-L/ * ^yj n _i5^ J ~~ μn -Λ A/ ,

(negative roots)

In particular, it is easy to show that the complete list of generators corresponding to
simple roots of U^ (i.e. the ones with indices as prescribed in Remark 1) in terms of
y,^ variables reads

2 if N = 2n+l

L01 := (μι

if TV = 2n + 1 ,

if N = 2n
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the list of corresponding negative Chevalley partners is given by

'L-k,k-i :=μ-

2<k<n,

L-' ° = (μ,)
if N = 2n + 1 ,

(64)

if N = 2n .

Note that when TV = 2n + 1 L0±l = (kl)l/2L0±l, when N = 2n L±l'2 =
(k2)'/2(k1)±1/2L±1'2, L~2'±l = 5(k2)1/2(k1)IF1/2L-2,±ι_ In AppendixA we show

that the simple roots and their Chevalley partners are functions of L^ , B.

Proposition 4. Vn,L~n'1 e Uf.

Proof. In terms of X, D variables, formulae (47), (46), (42) yield

[Lln, (x *)„] = Aϊl'zμ_n[Dl, (X X)n_,]I

-[μ-l/2XnDl,q-2(X X)n_l]

(65)

and formulae (48), (46), (42) yield

[L'", (3 d)n] = -q^μ-lΛl

n/
2[Xn, D~n]q^DlDn

ΛΛ-V2μ_nD
n[[Dl, (X *)„_!], (D £>)n_!],-2

(66)

/ g2+2ρn \

I here we have used the identity [9 9, x x]q2 = —^ - (Λn — q2^n~2) j namely

Vn G U?. Similarly one proves that L~nl G U? . D

Lemma 1.

[LΛn, aj^ = aΛ , [L-n«Λ, x%_ι = -q*»xh , |Λ| < n , (67)

[δ71-1^1-^-! =qβn-ldn, [L~n>n-l,xl-n]q-ι =qeiχ~n, n> 1 , (68)

[a°,L01] = g"1β1, [L-10,x°] = α; 1 , if TV - 3 . (69)

Proof. For the proof see Proposition 1 1 of the next section and the remark following
it. D

The following proposition allows to construct all the roots starting from the
Chevalley ones.
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Proposition 5. The following relations hold in Diff(R^):

0 if TV - In + 1

2<l<k<n (71)
r τ O f c τ O l - 1 Λ-lf Ifc Γϊ -10 T -fcOΊ f -fc,-l[L , L, J = </ L, , |L, , L, \ = L, ' ,

1 < A: < n if ΛΓ = 2n + 1 . (72)

Proof. As an example we prove Eq. (70); . First consider the case n = k. We note
that

-/i-1/2Λ fe[L-^, £>-'],, (73)

as [(X-X) f e_,,L~ J l i]=0. But

[L-ί ',I>-l]g = £>-J'(ϊ« (74)

as a consequence of the preceding lemma and Proposition 1, therefore the RHS of
Eq. (70) j gives qριL,~jk. Applying Proposition 1 (n — k) times we prove formula (70) j
in the general case. The proofs of the other equations are similar. D

Proposition 6. When q G R,

(k*)* - kz , (L1-*'*)* - q-2L~k'k-1 , k > 2 ,

f (L01)* = (Γ3/2L-
1() if N = 2n + 1 (75)

\ (L12)* - g-^-2'-1 if TV - 2n

Proof. The thesis can be proved by writing these k, L generators in terms of the B, L
ones as shown in Appendix A and by using the conjugation relations (60). D

The following three propositions give the basic commutation relations among the
Chevalley generators. More relations for the other roots can be obtained from these
ones using the relations of Proposition 5. In the following two propositions we assume
, . 1 if TV = 2n + 1

that k><-.f.T _
2 if N = 2n

Proposition 7.

q±2 if i = k < n

q^ if i = k - 1 ,

1 otherwise (76)

f2 ^=1'2.1 otherwise
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Proof. A trivial consequence of formula (46) and of the definition of L, fc's D

Proposition 8. (Commutation relations between positive and negative simple roots).

[L'-m'm,L
1 γγi _ I — /£

ifm-l>k*

if m — I = k

if m - I > k '

[L12,L-2 1] = 0, [L-1'2,L-2'-1]=0, /f 7 V - 2 n ,

(77)

(78)

(79)

[Ll-m,m L-m,m-l ] =

*

q-q

9-9'
-i

ϊ/ TV - 2n + 1 (80)

if N = 2n.

Proof. Use Eqs. (42), (46) and perform explicit computations. D

Proposition 9 (Serre relations).

[Ll-m>m,Ll-k>k] = 0, [L-™'™-1,!,-*'*-1] = 0,

?n, A; > 0, ra — fc| > 1,

[L12, L1^^'] = 0, [L-2'-1, L-^-1] - 0,

j = 2,4,5, . . . ,n, A^ = 2n,
FT 1+j — m,m—j T 2—m,m-ι /Λ rr —m,τn—2 T j—m,m—j — I Ί

-i ., . , ,
if J = 1

[L01,L12L_, =0 -, =0

(81)

(82)

(83)

=0

Proof. Use the definitions (62), commutation and derivation relations for the X, D
variables, Eq. (37) and perform explicit computations. D

We collect below all the basic commutation relations characterizing
algebras read respectively

1 - (k1)-

*. Their

(86)

r y O l T -lO-i _ n-\IL ^ Jς — q
q-q-i
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[(k1k2)1/2,L-2'-1]?-2=0

1 - k'k2

•γ-lq-q-

[L,L'] = 0, L^lΛL'2'-1

f[((k1)-1k2)1/2,L-1'2] f l2=0

1 - (k1)"^-
' ' 2

, (87)

-»-!g-g-

L/ = L-12,L-21,(k1Γ1k2. (88)

We see that t/^ is the direct sum of two (commuting) identical algebras, (the ones
in the L and L' generators respectively). This is no surprise, since it preludes to the
relation Uq ~ Uq(so(4)) ~ U (su(2)) 0 U (su(2))9 which we will prove in Sect. 4.

4. The Hopf Algebra Structure of U™ and its Identification

In this section we show that Uq is an Hopf algebra, more precisely that it is
isomorphic to Uq-\(so(N)).

A natural bialgebra structure can be associated to U^ for the reason that its

elements satisfy some Leibnitz rule when acting as differential operators on Fun(R^).

A matched antipode can be found in a straightforward way, so that U^ acquires a Hopf
algebra structure. As for the mentioned isomoφhism, we will prove it by constructing
an invertible transformation from the generators of U^ to those of Uq-ι(so(N)\ in

such a way that the commutation relations, coproduct, counit, antipode of U^ are
mapped into the ones of Uq-\(so(N)\

This means that the Hopf algebra Uq-\(so(N) admits a representation on all of

Fun(Rf).

The Hopf algebra Uq(so(N)) [1,2] is generated by Xf,X^,Hτ (i = l , . . . , n )
satisfying the commutation relations

[Hit HJ] = 0, [if,, X f } = ±(αt) a,)X* ,

(89)

= o, i
v t=ι

where

q =

[ί]ς[m-ί]ς'
(90)

and the (n x n) matrix of scalar products between the simple roots aτ is given by

1 -1

-1 2 -1

-1 2 -1

(91)

-1 2 -1

-1 2
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if TV = 2n + 1 and by

2 -1

2 -1

-1 -1 2 -1

-1 2 -1

-1 2 -1

-1 2

(92)

if TV — 2n. Moreover, when g e R they also satisfy the adjointness relations

. (93)

The coproduct, counit, antipode Φg,ε,σς are defined respectively by

φ (Hj) = 1 0 ί̂  + ί/^ (g) 1, Φ (X^) = Xf Θ q 2 + q 2 ® X^, (94)

ε(XΪ) = Q, ε(fft) = 0, (95)

σg(£Γ.) = -#., σς(X±) - -g ^~ Xf, (96)

on the generators and extended as algebra homomoφhisms/antihomomoφhisms.
Now we show that there exist closed commutation relations between the generators

of U^ and the coordinates xi.

Proposition 10.

[k',ίcΛ]α=0,

' q2 if h = i > 0

in (97)

1 otherwise

Proof. One has just to write xh as functions of χ 7,^- and use relations (46). D

As for the commutation relations between roots L's and x% we write down only
the ones involving simple roots and their opposite (the other ones can be obtained in
the same way or using Proposition 5).

( 1 if N = 2n + 1
Proposition 11. Let m > < . . Then

1 if \i\ < m — 1 or \i\ > m

q~l if i = 1 — m,m
(98)

(99)

(100)
_ι^m = _qβmχm~\ )

(102)
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f [L12,z%-ι -0

[L12,x%-ι=0
= 2n. (103)

f . One has just to write xh as functions of χ 7,^- and use relations (42),
(46). D

The commutation relations of k%Lu 's with di^di are the same, since di oc
[d - 9, zjg2, d oc [d - δ, xJς-2 and the k, L's commute with scalars. The knowledge
of the latter commutation relations will allow us to construct the inhomogeneous
extension of U^ « Uq-\(so(N)), i.e. the universal enveloping algebra of the quantum
Euclidean group, adding derivatives as new generators [6],

We can consider Lu's, k*'s as differential operators on Fun(R^) in the same way
as we did in Sect. 2 with di. The commutation relations (97)-(103) allow us to define
iteratively their evaluations and Leibnitz rules starting from

k1!^!, L^l |=0 (104)

(1 denotes the unit of Fun(R^)). For instance, by applying kz to xh, using Eq. (97)
and the previous relation we find

^ ^ ±/l = < > ° ; (105)

1 otherwise

by applying k* to xh g (g e Fun(R^)) and using again Eq. (97) we find

(106)

for / = xh first, and then by recurrence for any / G Fun(R^). The latter relation is

the Leibnitz rule for k*. Equations (104), (105), (106) are equivalent to (97), (104)
and determine the evaluation of k1 on all of Fun(R^). Similarly the Leibnitz rule for
the simple roots is determined to be

Ll-m,m(/ . ̂ | = Ll-m ,mf\g + (fem-l( fcm)-l)l/2/ |Ll-m ϊm ί/ | ?

-2n+l (107)f 1 if N = :
m - \ 2 i f 7 V = 2n

l29\ if N = 2n (108)

( f i d ^ Fun(R^))5

 and me same formulae hold by replacing each simple root by its
negative partner.

More abstractly, the above formulae define: 1) a counit ε:U^ —> C, by setting

ζ(u) \— π(ΐ/l|), u G U^ and π(αl) := aVa G C, implying that ε is an homomor-

phism which on the generators kl , Lu takes the form

ε(L"') = 0, ε(k')=l, (109)
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2) a coassociative coproduct φ:U^ — > U^ 0 U^ which on the generators k%L^
takes the form

0(k*) = k*0k ί , (110)

Γ ^(L1-™'™) = L1-™'™ 0 I7 + (k™-1^™)"1)1/2 0 L1-™'™

\ ^(L-™'™-1) - LΓ™'™-1 0 I' + (fc™-1^™)"1)172 (8) L"771'771"1 '

Γ 1 if TV = 2n + 1

- \ 2 if ΛΓ = 2ra

- ^
(k1k2)-1/2®L-2-1' U J

(!' here denotes the unit of Diff(R^), which acts as the identity when considered

as an operator on Fun(R^), and k° = 1'), and is extended to all of U as
an homomoφhism. ε,φ are matched so as to form a bialgebra; in particular the
coassociativity of φ follows from the associativity of the Leibnitz rule, which in turn
is a consequence of the associativity of Diff(R^).

An antipode σ which is matched with </>, ε, (i.e. satisfies all the required axioms)
is found by first imposing the two basic axioms

m o (σ (8) id) o φ = m o (id ®σ)oφ = ioε (1 13)

on the generators of U^ , and then by extending it as an antihomomorphism; here

m denotes the multiplication in U^ and i is the canonical injection ί:C — > U^ .
Computations are straightforward:

σ(k') = (kV1 , (114)

= 2n + l (Π5)

m ^ < - -" 2n

Γ l i f 7 V =

- \ 2 if N =

-(k'k2)-1/^12

i if N = 2n. (116)
-1

Finally, when g G R it is straightforward to check that the complex conjugation *
(the antilinear involutive antihomomorphism defined in Sect. 3, which acts on the basic
generators as shown in formula (75)) is compatible with the Hopf algebra structure
of U^, so that U^ gets a *-Hopf algebra.

Now it is easy to identify the Hopf algebra U^ .

Proposition 12. All the relations characterizing the (*)-Hopf algebra Uq-\(so(N))

are mapped into the ones characterizing the (*)-Hopf algebra U^ through the
transformation of generators
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j^' /wϊ 'Γ ' "0-1)"^
L1'2 = Q~5/2X+Q~~^L

Hι ' (117)

q~^~ , A^-2n.

α^r setting Φ -\ — φ, σ -\ — σ (or, alternatively, τ o Φ = φ, σ — σ, r being the

permutation operator). In other words U^ w Uq-ι(so(N)).

Proof. Straightforward computations. D

Note that if we had defined the elements of U^ as differential operators acting on

Fun(R^) from the right (instead of from the left), we would have got the isomorphism

U? « Uq(so(N)).

As a concluding remark, the final lesson we learn is that the product in Fun(R^)
realizes the tensor product of representations of Uq-\(so(N)\ the Leibnitz rule

satisfied by the differential operators of U^ realizes the corresponding coproduct,

and the real structure of Diff(R^) realizes the real structure of Uq-ι(so(N)).

5. Representations

Let us now look at Uq as an operator algebra over Fun(R^). In other words we

consider "evaluations" of its elements on Fun(R^) as defined in the previous section.

We look for its irreducible representations. Since L L commutes with any LIJ , it is
proportional to the identity matrix on the base space W of each of them.

As a first remark, we note that any W must consist of polynomials of fixed degree
in x, as any u G U^ is a power series in the products xτdy. Of course, the degree of
these polynomials must be the same, say fc, also after factoring out all powers of x x,
since [u,x x] — 0. One can easily realize (see [12]) that the subspace of Fun(R^)
satisfying these two requirements is

wk:=sp™c[^sii::
3

t

k

kx^...x^], ^N, (us)
and that Wk is an eigenspace of L-L. Here ̂  s denotes the (g-deformed) /c-symmetric
(modulo trace) projector, which can be defined through

= 0 = ̂ 5^1 i . + i » 1 < ί < fc - 1 , (119)

where ̂ μt+1) = OS)!)'"1 0^A (g) (Θl)"-4"1, etc. Hence W c Wk.
In particular the fundamental (vector) representation Wλ is spanned by the N

independent vectors xl.
Below we are going to see that the representations of U^ in Wk's are irreducible

and of highest weight type. When q — 1 they reduce to the vector representations of
so(N\

As "ladder operators" corresponding to positive, negative, simple roots we take
the ones indicated in Remark 1 for the case q = 1. Correspondingly,
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Proposition 13. The highest (respectively lowest) weight eigenvector is the vector
u% :— (xn)k (respectively (x~n)k). Wk is generated by iterated application of negative
fresp. positive) ladder operators and is an eigenspace of L - L with eigenvalue

(QQn + \ I n-Qn-\\

H,N = [*],[* + N - 2], ̂ V'K^+Λ) - (120)

Proof. Using the derivation rules (42) it is straightforward to show that all positive
ladder operators L j fc annihilate (xn)k. Moreover, it is easy to show that this vector
is an eigenvector of L - L (with eigenvalue φ and therefore belongs to Wk. This
follows from the fact that it is an eigenvector of xldl (with eigenvalue (fc)g2) and from
formulae (56), (30). As already noted, the application of negative ladder operators then
yields a space W C Wk. As known, W = Wk when q = 1; but dim(W), dim(VFfc)
are constant with q, therefore W = Wk Vg. Similar one proves that (x~n)k is the
lowest weight eigenvector. D

Let us consider the space of homogeneous polynomials of degree k

Mk :=Spanc[xZ1...^]. (121)

As a consequence of the definition of Wl9 we are able to decompose Mk into
irreducible representations of U^ (see [12]), just as in the case q = 1:

Mk= t& Wk_2m(χ.χ)m. (122)

/ N + k — l\
Recall that dim(Mfc) = I 1, therefore this formula allows to recursively

find dim(Wk): dim(Wk) = dim(Mfc) - dim(Affc_2). The formula

oo oo

/=0 i=0 I

gives the formal decomposition of Fun(R^) into irreducible vector representations of

U -ι(so(N)). All of them are involved (infinitely many times), and therefore Fun(R^)
can be called the base space of the "regular" vector representation of Uq-ι(so(N)),
in analogy with the classical case.

When q G R, starting from the prescriptions (u^.u^) := 1, u^ :— u*Vu G C/^,

and using the commutation relations of U^ one can define an inner product ( , •) in
all of Wk.

Proposition 14. The inner product ( , •) is positive definite, i.e. the representations Wk

are unitary (when q G R+J w.r.t. it.

Proof. In [12] (or [14]) the integration / over R^ satisfying Stoke's theorem was
defined. According to it

Indeed, integrating by parts "border terms" vanish, and therefore taking the adjoint u*
of u w.r.t. this inner product amounts to taking its complex conjugate. In this formula
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ρ(x x) denotes a "rapidly decreasing function" function of the square length such
as the g-deformed gaussian exp^(—ax x) and the normalization factor ck is chosen
so that uk,u%) = 1. But we have proved in [12, Lemma7.3] that ( , ) is positive
definite. D

According to the theory of representations of Uq-ι(so(N)), when q e R the
Cartan subalgebra generators Hτ make up a complete set of commuting observables
in Wk, VA; > 0. The highest weight associated to Wk is the n-ple (0,0,... ,0, k) of
eigenvalues of the n-ple of operators (Hl,H2,..., Hn) on u^.

According to the commutation relations (76), a basis Ek of Wk consisting of
eigenvectors of (H{, H2,. - . , Hn) is obtained by considering all the independent
vectors obtained by applying negative root operators to 11%.

For instance, in the case TV = 3 the dimension of Wk is 2k -f 1 and

Ek := R,Λ := (L-10Γ*-X, ft = -fc, -fc + 1, . . . , fc} . (125)

For any monomial M(k, { ί } ) := x^x* 2 . . . xZk define t(M) := i* -M2 + - ik. Looking
at formulae (42) we realize that the effect of the action of L ±1 on any monomial
M^i is to give a combination of monomials M' with t(M') — t(M) =b 1. Therefore
ukh is a combination of monomials M with t(M) = h.

The functions (x x) 2 ιt(^ £ Ek) will be said g-deformed spherical functions of
degree k, since they reduce to the classical ones in the limit q — 1, when we express

-1

x*(x x) 2 in terms of angular coordinates.

6. Appendix A

In this appendix we show how to express the generators k\Lτ:) as functions of
Lu, Bn. One can easily check that this map is invertible.

We first introduce some useful combinations F of the L\ B variables introduced
in Subsect. 3.1.

,̂  Λ r f 2 n + l for odd N
Let us iteratively define objects .9^ e Diff(Rl*), [ N = , .

s n q V I 2n for even AT

as usually I by

:= .fy , / > 0, V7V > 2 ^~ = μ_λ if N = 2 (126)

= 1 when TV - 2),

^/+1(x, 9) := μ^ίί/ίX, β) , n > ί > 0

Let F^ := J^yl"1/2. One easily checks that Fl

n G C/^, more precisely

1 + a~2βn
1 Σ Lί?-^ - (9

2 -1) ̂ (n "' x •"--"- , (128)

1 + q-2βn ̂J *

(l-<?)Ll=FΪ-?-^ Ll. (129)
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Next we define

Kl+l := (Anr
lA^i+l)

2 . . . (μn)
2 G Diff(Rf ) , 0 < i < n - 1 , (130)

and observe that

Proposition 15. Kl

n 's belong to U^ and

2 Ί 2 _ 2
~ ~"— /zτn+K2~ {T

-2(

Proof. From the definitions of Λl , μl the first part of the proposition immediately
follows. Relation (131) is a consequence of formula (56) and of the definitions of the
F's. D

Formulae (128), (129), (131) allow to express k^ as functions of L13 ;, B after noting
that

k* = <(/CV , (K%+l = l ) . (132)

As for the L's, we find the

Proposition 16.

Γ __ q 2 - I ι=k-i _ __ "I
j^-fe,fc-i _ ^-i^ ̂ fc^-i i^-fe^-i^p^-i— ^— y^ L^^'^L^"1

2<k<n (133)

Proof. As an example we prove Eq. (133)^ As usual, it is sufficient to prove the
claim when k — n, and then use Proposition 1 to extend it to n > k. Inverting relation

(33)4 we get Dn = qΛ-l/?μn/2[dn + q~2~2^(q2 - l)Xn(D D)n^]. Replacing this
expression in the definition (62) of L1-n'n and using the definition (27) for An_v we
easily find

n, (X X)n^]dn

- [D1-", (1 + <Γ2-2^) (X D)n_,}Xn}

+ (1 - <Γ2) ((X X)n_2D
l~ndn + Xl~n(D D)n_2X

n]

- (q2 -!)(! + q-2βn~4) (X D)n_2]XnDl-n} (135)
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on the other hand, using the normalization (54) for J?u,

n-2

/ j I
l=2-n _ (ft . τ\ l-nflπ _ f t \ ol-n on

1 , ~-2^-4 ~ ^° X>n-2X ° (X X)n-2° °

- xl~n(d - d)n_2x
n + q2(x d)n_2d

l~nxn

ϊ ' D)n_2(q2Dl-nXn + q-2~2gnX]

+4

- (X - X)n_2D
l-ndn - Xl~n(D - £>)n_2^

n (136)

and

"n'n = μ_n(MnΓ , (138)

x (Xl~ndn - XnDl~n). (137)

From the preceding three formulae we find that

2 _ -, l=n-l

^n-l^l-n,n___^ ^̂  V- jgΊ-n^n
ql -\- q-L-lQn L-^ l

which is equivalent to the claim upon use of formula (132). D

Note that Kl

n = (F^)2 both for odd and even TV, and (K2)2 = Kl

n(F~1)2 when
TV = 2ra. All Kl

n go to 1 in the limit q -> 1. Moreover, for TV = 3F/ = (k1)1/2 and
for N = 4F2 = (k^2)1/2 F~l = (kl]

7. Appendix B

Define

J '~ _ q _ _Mn -1/2 _ A n~1 - K l < n C13^)
[L n'l:=X nDl-q βnΛN μn

 / μ_n[D\(X - X^^D n

Lemma 2. Lm,L-rM G U^ and can be easily expressed as simple functions of the

Since [kn, χj]a = 0 = [kn, ̂ ]6 with some α, 6, we can introduce a grading p G Z

in Diff(R^) and decompose the latter as follows:

Diff(R^) - 0 DifP where kn DifF := q2p DifF kn (140)
pez

note that for each monomial

p(M) = l + r-m-s. (141)

Decomposition (140) induces the decomposition U^ — 0 U^ ΠDifP.
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Now we can sketch the proof of the main theorem of this appendix.

Proposition 17.

u £ UΪ* => u = u(kl, jk), i = 1 , . . . , n, |j|, |/c| < n. (142)

Moreover

— u , e t f f . (143)

Sketch of the Proof. As a preliminary remark, let us recall that [Λn, u] = 0, namely
t£ has natural dimension zero. Our proof will be by induction in n. It is easy to prove
that Uq = 1 C, and that U2 is generated by k1. Now assume that the thesis is true

for ί/f -2.q
The most general u G Diff(R^) can be written in the form

oo

U = y {(%~n) (Mή Xn)m ' l '/,m(A in'M-n'X

Z,m=0

vlt_m(μn,μ_n,χi,!Z)3) + \j\ <n. (144)

In fact the dependence on powers of χ±n^±n can be reabsorbed into the dependence
on μj_n.

It is easy to realize that, if we impose the constraint that the natural dimension
d(u) of u is zero, formula (144) can be rewritten in the form

U =

EΓ^̂  >P=O L h=o

(145)

where i = l — n , . . . , n — 1. We sketch the procedure which leads to this result.
j / 2 1/2

For each μn χn or χ~n (respectively ^~n or μn ' z$n) we can extract out of
the corresponding coefficient function υ a Dl (respectively a X1) variable (since
d(u) = 0) and replace the LHS's of the following identities by the RHS's (see the
definitions (62)):

ΛQI -L ^46)

„_ ,

(X X)n_γ}^n - tin .



Realization of U (so(N)) within the Differential Algebra on 499

Then each factor χn&n, χ n^-n can be reabsorbed into the μn, μ_n-dependence of
the coefficient functions υ's. Finally, we arrive at (145) using the result of Lemma 2
and the commutation relations of Sect. 3, which allow us to reorder all L, k's according
to the ordering shown in that formula.

Now we impose the conditions [u, x x] = 0 = [u, d - d] explicitly. They reduce
to

P

h=0

X - X

d d
X X

d-d

(148)

In fact the powers of L's appearing in formula (145) belong to a Poincare basis
of U^, therefore are independent, and their coefficient functions can be split into
components belonging to different subspaces DifF (140). Using a procedure which,
for the sake of brevity, we describe only in the case p = 1, it is easy to show that
from the latter equations it follows decompositions of the type

ί>ή'
h=Q

, μ_n,

(149)

u{i\,.. i } ^ Uq 2, which completes the proof of formula (142). When p = 1, upon
use of formulae (42), (46), it is easy to verify that the LHS's of Eqs. (148) are combi-

nation of (μΰ Xn)2X~n,^_n,Mn χn and μΰ ^n(^__n)
2, ^Γ_n)

2,^Γ_n,χ
n re-

spectively, and that setting their coefficients equal to zero amounts to

[w°, (X X)n_λ} = Q=[v\(D D)n_J ,
(150)

(151)

Hence

0 = (X X)n_J,(X X)n_!],2 = [{v\(X X^.^,2, (X X)n_,], (152)

implying upon use of recursion hypothesis (143), formula (25) and of relations
d(υl) = 1,

(153)

the equation

«.- e • V OC "^ oc
(154)

This yields vl(μn ' χ
n) + v°&_n oc w.L*™, as claimed.
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The proof of (143) can be given recursively by constraining the general expansion
(144) in a similar way. D
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