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Abstract: We prove the decomposition formula for the f/-invariant of the compatible
Dirac operator on a closed manifold M which is a sum of two submanifolds with
common boundary.

0. Introduction

Let M be a compact odd-dimensional Riemannian manifold without boundary. Let
A : C°°(S) —> C°°(S) denote a compatible Dirac operator acting on sections of a
bundle of Clifford modules S over M (see [6,8]). Then A is a self-adjoint elliptic
operator. It has a discrete spectrum {/4}&ez We define the eta function of the
operator A as follows:

η(A;s)= Σ s i g n ( 4 ) | 4 Γ (0.1)

Now η(A;s) is a holomorphic function of s for Re(s) > dim(M), and it has
a meromorphic extension to C, with isolated simple poles on the real axis and
locally computable residue (see [1,8,13]). In particular, we know that if A is a
compatible Dirac operator, then η(A;s) is holomorphic for Re(s) > — 2. The value
of η(A;s) at s = 0 is an important invariant of the operator, the bundle, and the
manifold. We call η(A;0) the eta invariant of A and denote it by ηA We use the
heat representation for the eta function and obtain the following formula for ηA:

1 °° 1 ,2
ηA = —.J— . Tr{Ae-tA )dt . (0.2)

In this paper we study the decomposition of ηA into the contributions coming
from different parts of the manifold M. The problem here is that ηA is not given
by the local formula and it depends on the global geometry of the manifold and
the operator (see [1,13]). Therefore it is somewhat surprising that we can present
a satisfactory result.
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Assume that we are given a decomposition of M into M\ UM2, where M\ and
M2 are compact manifold with boundary such that

Mi ΠM2 = Y = dMx = dM2 . (0.3)

We also assume that the Riemannian metric on M and Hermitian product on S
are products in N = [—1,1] x Y, the bicollar neighborhood of Y in M(M\ ON —
[—1,0] x F). In this case A has the following form in N:

A = Γ(δu+B), (0.4)

where Γ : S\Y —> S\Y is a unitary bundle automorphism (Clifford multiplication by
the unit normal vector) and B : C°°(Y;S\Y) -+ C°°(Y;S\Y) is the tangential part
of A on Y. B is the corresponding Dirac operator on 7, hence it is a self-adjoint,
elliptic operator of the first order. Furthermore, Γ and B do not depend on u and
they satisfy the following identities:

Γ2 = -Id and ΓB = -BΓ . (0.5)

In particular, S\Y decomposes into the direct sum S+ φiS1"" of subbundles of eigen-
vectors of Γ corresponding to the eigenvalues ±/. The operator B has the following
representation with respect to this decomposition:

We consider first the case ker(B) = {0}. Let 17 > (respectively, 17<) denote the
spectral projection of B onto the subspace of L2(Y;S\Y) spanned by the eigenvectors
corresponding to the positive (resp., negative) eigenvalues. It is well-known (see
[6,12]) that 17> is a self-adjoint elliptic boundary condition for the operator A\M2.
This means that the operator s$2 defined by

(JZ?2=A\M2 (

\ dom(s/2) = {se H\M2;S\M2);Π>(s\Y) = 0} K }

is an unbounded self-adjoint operator such that si2 •' dom(s^2) -^ L2(M2;S\M2) is
a Fredholm operator and the kernel of si2 consists of smooth sections of 5|Λf2.
It turns out that the eta-function of si2 is well-defined and enjoys all the prop-
erties of the eta-function of the Dirac operator defined on a closed manifold (see
[12]). In particular r\^2, the eta-invariant of si2* is well-defined. Likewise, 17< is
a self-adjoint boundary condition for the operator A\M\, and we define the operator
si 1 using the formula which is the obvious modification of (0.7). We proved the
following result in [20]:

Theorem 0.1.
rjA = ηjx + η^2 mod Z . (0.8)

It was explained in [20] that the integer jumps in formula (0.8) are due to the
presence of "small" eigenvalues of the operator A.

Now we will discuss the situation in which ker(B)ή={0}. In this case, the un-
bounded Fredholm operators si\ and si2 are no longer self-adjoint. We have to
modify the boundary conditions in order to take care of the kernel of the operator
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B. We follow Appendix A of [12]. Formulas (0.4)-(0.6) show that Γ defines a sym-
plectic structure in ker(B). We use the Cobordism Theorem for Dirac Operators
(see [6, 18]) which implies that index B+ = 0. In particular, it gives the equality

dim ker(£+) = dim ker(£~) . (0.9)

The last fact implies the existence of Lagrangian subspaces in ker(B). We choose
two such subspaces W\ and W2. Let σz denote the orthogonal projection of
L2(Y;S\Y) onto Wt. The operator j/2,σ2 is defined by

\ dom(s/2,σ2) = {se Hι(M2;S\M2);(\Π> + σ2)(s\Y) = 0} ' ( ° 1 0 )

The operator J^i,σ, is determined analogously by the condition (77< + σi). Note that
stfuσι are self-adjoint operators. We refer the reader to [4 and 12] for a discussion
of the space of self-adjoint generalized Atiyah-Patodi-Singer boundary conditions. In
general 77> -f σ2^Id — (77< -f σ\) and this is the reason that we have a correction
term in our additivity formula. The correction term is the ^/-invariant of the boundary
problem on the cylinder. We consider the operator A = Γ(du -f B) on the manifold
[0,1] x Y subject to the boundary condition (77> -f σ\) at u = 0 and (77< + σ2) at
u — 1. Let η(σ\,σ2) denote the /^-invariant of this operator. In this paper we prove
that

Theorem 0.2.

ΆA = r\sfχ ,σ, + n,9?2,σ2 + η(σ\, σ2 ) mod Z . (0.11)

Remark 0.3.
(a) Theorem 0.2 shows that partial localization of the ^-invariant can be achieved

when the manifold is a sum of two submanifolds joined by the cylinder. In this
case the ^-invariant is the sum of the contributions coming from different parts of
the manifold, plus the error term due to the cylinder.

(b) We also have a corresponding result in case M is a manifold with boundary,
which leads to a formula for the variation of the /^-invariant under cutting and
pasting of the operator. This subject is discussed in Sect. 4 (see Theorem 4.3 and
Theorem 4.4).

(c) In this paper, for simplicity, we discuss only compatible Dirac operator. The
result, however, holds for any operator of Dirac type (see [6 and 8]. We reduce
general case to the compatible. Details will be presented elsewhere.

The main step in the proof is the reduction to the case in which the tangential
operator is invertible. Fix a Lagrangian subspace W of ker(B). Let σ denote the
corresponding orthogonal projection of L2(Y;S\Y) onto W. We define the operator
y:L2(Y;S\Y)^L2(Y;S\Y) by

_ ί 2σ - Idker{B) on ker(B)
y~\ 0 on ker{B)^ ' ^ Λ l )

We define {Λ}{o^r^i}5 a family of modified Dirac operators, where the operator
Ar is given by the formula

Ar =AΛ-rf(u)Γy , (0.13)
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and where / : [—1,+1] —» [0,1] is a smooth function equal to 0 for \u\ > \ and
equal to 1 for \u\ ̂  \, which is extended by 0 to the whole manifold M. The
tangential part of Ar, B + ry, is invertible for r=t=O. The technical problem we face
here is that the operators Ar are not pseudodifferential. Therefore we have to be
careful when dealing with heat kernel formulas giving the values of ηAf. We employ

DuhameΓs Principle, which allows us to show that Tr(Are~tAf) and Tr(Are~~tA>)
have the same asymptotic expansion as t —» 0, as in the case of compatible Dirac
operators. We use the standard notation here - Ar denotes the derivative of Ar with
respect to a parameter r. Once we have established the necessary asymptotic behav-
ior of Tr(Are~~tAf), we show that ήAr is 0. Now we can directly apply the argument
from [20] in which we treated the "invertible" case. This gives the following result:

r\Λ = n^x, idket(B)-σ + rj^2,σ mod Z . (0.14)

The general case now follows from the results of [14], in which we studied the
variation of η^2,σ under perturbation of the boundary condition.

Remark 0.4. Theorem 0.2 was announced in [5]. We have a corresponding decom-
position formula for the index (see [5,6,7]) and for the spectral flow. The last was
obtained by L. Nicolaescu (see [17]; see also [5]).

Remark 0.5.
(a) It should be mentioned that Jeff Cheeger was the first who considered the

localization problem for the ^-invariant in his papers [10 and 11]. He suggested to
blow down Y to a cone in order to separate pieces Mt. He also pointed out that
this procedure should correspond to the choice of the specific boundary conditions
on M, , of the type considered here.

(b) This paper presents results of the research, which was started long ago with
a joint project of the author and Ron Douglas. The fundamental analytical tools
were developed in the joint work of author and Ron Douglas (see [12]).

(c) Mazzeo and Melrose obtained a formula which corresponds to formula (0.8)
in Theorem 0.1, in the framework of the ft-calculus of pseudodifferential operators
(see [15]).

(d) Theorem 0.2 was also announced by U. Bunke (see [9]). His proof was
based on the finite propagation speed method.

(e) The ^-invariant of boundary value problems of the type considered in this
paper were also studied in a recent work of Werner Mϋller (see [16]).

In Sect. 1 we use DuhameΓs Principle in order to show that ηA) enjoys all
properties of the ^-invariant of a compatible Dirac operator. In particular we show
that we can use formula (0.2) in order to represent ηAr.

In Sect. 2 we study the variation of ηAf. with respect to a parameter r. Results
of Sect. 1 allows us to prove that

In Sect. 3 we explain how Theorem 0.2 follows from the results of Sect. 1 and
2, and of [14].

In Sect. 4 we discuss cutting and pasting of the ^-invariant. The corresponding
problem for the index was settled and solved in the early Eighties (see [19]; see
also [3, 6]). In this paper we present a simple corollary from a generalization of
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Theorem 0.2 for the case of manifolds with boundary (Theorem 4.4). We will
analyze the general situation in future work.

1. The f/-Invariant of the Operator Ar

In this section we discuss the ^-invariant of the operator Ar given by formula (0.13).
It is not difficult to show that η(Ar;s) is well-defined for Re(s) large. The question is

about the meromorphic continuation of η(Ar;s). We show that Tr(Are~ίA>) has the
same asymptotic expansion as t —> 0 as the corresponding trace for the compatible
Dirac operator A. We have the following result:

Theorem 1.1. There exist positive constants c\,C2 such that for any 0 < t < 1,

\Tr(Are-tA> ) - Tr(Ae~tA2)\ < cλ e"^ . (1.1)

In particular, we have a positive constant c3 such that for any 0 < t < 1,

\Tr(Are~tA>-)\ <c3 yΓt . (1.2)

Proof We apply DuhameΓs Principle (see for instance [6,10]). Let us observe that

A2

r = A2-rf'(u)γ + r2f(u)0> , (1.3)

where 8P denotes orthogonal projection of L2(Y;S\Y) onto kernel of the operator
B. We also have

Tr(Are~tA')- Tr(Ae~tA2) = Tr(Ar - A)e~tAl + Tr(A{e'^ - e'^}) . (1.4)

We discuss Tr(Ar - A)e~tAl- = Tr(rf(u)Γye~tAl first. We are interested in the small

time asymptotics only. Therefore we can replace the operator e~tA> by a suit-

able parametrix. Let έFr(t;x,z) denote the kernel of e~tAr and let $\(t\x,z) de-

note the kernel of the operator e~tA on the manifold M. We also introduce

£2{t\x,z\ the kernel of the operator e-t(-dl+B2-rff{u)y+r2f\uW) o n t h e i n f i n i t e c y l i n .

der (—oo, -foo) x Y. We define an operator Q(t) by defining its kernel to be

Q(t;x,z) = Σφk(χyi(t;x9z)ψi(z) , (1.5)

where {φi}2

=x is a partition of unity on M such that ψi(z) is equal to 0 for z $ N
and φ2 is a function of the normal coordinate u in N satisfying

for \u\ ^ 1/2 ίΛ *Λ

for H i 5/8 ( L 6 )

The corresponding function φi(x) is 0 outside TV and is a function of the normal
variable u in N such that

1 for \u < 3/4 /Λ _,

0 for \u i7/8 ( L 7 )



320 K.P. Wojciechowski

Similarly, φ\(x) is equal to 1 outside of N. Inside N, φ\{x) is given by the formula

, , , ί 1 for \u\ < 3/8 ίΛ O Λ

Φ^=\θ for H i 1/8 ( L 8 )

The choice of the cut-off functions implies that

) ^ i . (1.9)

We have the following result (see, for instance, [12]; Sect. 2).

Lemma 1.2. There exist positive constants c\,C2 such that for any 0 < t < 1,

\\&r(t,x9y)-Q(t9x,y)\\ < cx . e~°2 ' ^ . (1.10)

It follows from the choice of functions /,</>;, and ψj, that, up to exponentially
decaying summand, we can replace trrfΓy^(t;x,x) by

trrf(u)Γ(y)φ2(u)(y£2)(t;(u,y\(u,y)ψ2(u) . (1.11)

The trace (1.11) is equal to 0. The point is that, up to the cut-off functions, we
have trace of the kernel

(-dl+B2-rf\u)y+r2f2(uW) _ rΓye~tB2

e-t{-d2

u-rfι(u)y+r2f2{u)0>) ^

The operator y commutes with (—d\ + B2 — rf\u)y + r2f2(u)^) and we have

rΓye-t{-d2

u+B2-rf'{u)y+r2f2(uW) = _ryΓe-t{~d1

u+B2~rft{u)y+r2f2{u)^>) #

This shows that the trace of (1.11) has to be equal to 0 and we have just
finished the proof of the estimate

\Tr(Ar -A)e~tA>-\ ^ cλ e~^ . (1.12)

This takes care of the first summand in (1.4). We estimate the second summand

Tr{A{e-tA>-e-tΛl})

in the same way. We use DuhameΓs Principle to show that up to an exponentially
decaying summand this is equal to the trace of

Γ{du +B)φ(u)e-tB\t;y,z)(e-«-d»+W) - ^)(t;u9Ό)ψ(υ) , (1.13)

where φ(u) and φ(v) are the suitable cut-off functions and W denotes the operator
—rf'(u)y + r2f2(u)έP. It is easy to observe that the trace in the j -direction in
formula (1.13) is 0. This ends the proof of (1.1). Then (1.2) follows from the
corresponding estimate for the compatible Dirac operators (see [2, 8]).
We have an immediate Corollary:

Corollary 1.3. The η-invariant of the operator Ar is given by the formula (0.2):
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2. Derivative of K\AY with Respect to the Parameter

In this section we follow the argument given in Sect. 4 of [14]. We pick a small
real number c > 0 which is not an eigenvalue of A — A§. By the continuity of the
eigenvalues, there exists e ^ 0 such that c is not an eigenvalue of Ar for 0 ^ r < e.
Let Pc denote the orthogonal projection of L2(M;S) onto the subspace spanned by
the eigenvectors of A corresponding to the eigenvalues λ with \λ\ < c. Put

A'r=Ar(Id-Pc) + Pc .

Then A'r is an invertible operator for 0 :§ r < e, and depends smoothly on r. Fur-
ther, Pc has finite rank and therefore the ^-function of A'r is defined and

η(Ar;s) = η(A'r;s)+ £ sign(λj)\λj\-s - Tr(Pc) . (2.1)
\*j\<c

Formula (2.1) shows that the difference η(Ar;s) — η(Af

r;s) is a holomorphic function
on the whole complex plane. In particular, we have

ΆAr =ηA'ιmodZ , (2.2)

and we can use formula (0.2) to evaluate ηAr. We differentiate

= = J,THAle)dt+ 4= •
Vπ o vt Vπ o

= -= - lim Ve Tr(Xre-t{A'^'')\* = •= l i m

- 4= lim v^Vπ c-» o

It follows from the fact that P c is an operator of finite rank that the last two
summands are 0 and we have the following result:

Lemma 2.1. ~ηA} is given by the following formula:

Now we are ready to apply DuhameΓs Principle. We have

Are~€A' = f(u)Γye-eA> ,

and we are in exactly the same situation as we were in the first part of the proof

of Theorem 1.1 when we discussed Tr((Ar — A)e~tAf) = rf{u)Γye~tAf. We repeat
the argument and obtain
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Lemma 2.2. There exist positive constants c\ , c2 such that for any 0 < t < 1,

\Tr(Are-tA>-)\ < d e - τ . (2.4)

Equation (2.3) combined with (2.4) gives the main result of this section.

Theorem 2.3. The derivative of r\Ar with respect to the parameter r is equal to 0
and

(2.5)

3. The Additivity Formula

In the previous section we have shown that Y\A = rjA\ modZ. Now A\ is an op-
erator with invertible tangential part. The fact that A\ is not a pseudodifferential
operator does not have any influence on the proof of the additivity formula offered
in [20]. Let s$\.σ denote the operator:

{
\ dom{srf\.σ) = {se H\M2;S\M2);{Π> + σ)(s\Y) = 0} ' y ' '

We define the operator ^\.σ± on M\, using the boundary condition (17< -\-σ±),

where σ1- denotes the projection of the kernel of B onto the subspace orthogonal
to the range of σ. We follow Sect. 4 and Appendix A in [12] to show that the
^-invariants of both operators are well-defined and are given by the formula (0.2).
The next result follows from the argument given in [20].

Theorem 3.1. The η-invariant of A is given by the following formula

ΆA = n^x σ± + n^2,σ mod Z (3.2)

Proof First we repeat the proof of Theorem 0.1 from [20] for the operator A\. The
fact that A\ is not a differential operator does not change the argument. The most
important point here is that A\ has the form (0.4) in N9 which allows us to use the
specific spectral decomposition on the cylinder and the fact that A\ is a differential
operator outside of the cylinder N. This gives us

VA = ΆAX = η^i + η^\ modZ . (3.3)
l σ-1- 2 ; σ

In the second part of the proof we have to show that, at least modZ,η^ι
l;σ_L

is equal to ^ l σ ± and η^i — yj^2σ. Let us focus on η^i . The argument for
' 2,(X ' 2,<7_L

η^i goes exactly the same way. We do not have any problem with showing the
l;σJ_

formula
^ ^ ( ^ > 2 ) (3.4)

Now, once again, we replace the kernel of the operator siwe~e^^ by the cor-
responding parametrix. Let ^~(ί;x,z) denote the kernel of the operator

e-t((Γ(du+B)+rf(u)Γy)σ)
2
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where (Γ(du + B) + rf(u)Γy)σ denotes the operator Γ(du + £ ) 4- rf(u)Γy on the
infinite cylinder [0, +oo) x Y subject to the boundary condition 77 > -f σ at u = 0.

Let &~y(t;x,z) denote the kernel of the operator Γye~{^Γ^du+B^+r^u^Γy^ . We have
an explicit representation of έF(t;x,z) (see [12], Sect. 3; see also [16]) in terms of
the spectral decomposition of the operator B. This gives us the representation of
3Γy{t\x,z) as well. In particular,

//(«) tr(Γy(t; (u, y\ («, y)))dy = 0 . (3.5)
Y

Equation (3.5) implies the desired equality of the ^-invariants. We have

d 2 . Γ

dr 2-σ y/π 6-»>o

2 + σ o

= —7= lim ^ / f(u)duJtr(^y(t;(u,yUu,y)))dy = 0 . (3.6)

This ends the proof of Theorem 3.1.

Now the general additivity formula follows from the results of [14]. The main
result of [14] can be formulated in our context as follows:

Theorem 3.2. Let σ\ and σ2 denote the projection of the kernel of B onto two
different Lagrangian subspaces and let s/2i(Ji denote the corresponding bound-
ary problems on M2. We have the following formula for the difference of the
η-invariants

(3.7)

where η(σ2,σ\) is the η-invariant on the cylinder defined in the Introduction (see
Theorem 0.2 and (0.9)-(0.11)).

We apply this result. We have the following sequence of equalities mod Z

We also use the following equalities, which holds modZ, for any σ,σ\, and a^

η(σ,σ±) = 0, η(σuσ2) = -η(σ2,σι) , ιy(σ2,σ) + ??(σ,σi) = η(σ2,σ}) . (3.8)

Equation (3.8) follows from the formula for η( , ) given in Theorem 2.1. of
[14]. Now we finish the proof of Theorem 0.2.

End of the proof of Theorem 0.2.

(3.9)
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4. Cutting and Pasting of the f/-Invariant

In the last section of the paper we discuss the variation of the η-invariant under
cutting and pasting of the manifold, the bundle and the operator. We avoid the
discussion of certain technicalities, and we present here the simplest possible case of
the cutting and pasting operation. Let Φ : S\Y —> S\ Y denote a bundle isomorphism
covering / : Y —• 7, a diffeomorphism of the manifold Y. This means that for any
y G Y, the map

Φ(y) : Sy - Sf(y)

is a linear isomorphism. Assume that

= Γ(f(y))Φ(y), Φ(y)b(y;ζ) = b(f(y);(f-ιγa))Φ(y) (4.1)

for any y G Y, and for any ζ £ T*Y9 where b(y ζ) : Sy —> Sy denotes the principal
symbol of the tangential operator B. Moreover, let us assume that / is an isometry
and that Φ is a unitary isomorphism. We obtain a manifold M^ by taking M\ and
M2, and pasting them along Y using / . We identify

MXDY 3 y ~ f(y) G Y C M2 . (4.2)

Similarly we define a bundle Sφ using the isomorphism Φ.
Now we define the operator Aφ to be equal to the operator A outside the cylinder

[—1,0] x Y GMi, and equal to the operator Γ(du+Bu) inside this cylinder. The
family {Bu}ue[-\$] is defined by the formula

BU=B + h(u)(Φ~ιBΦ - B) , (4.3)

where h(u) is a smooth function equal to 0 for — 1 ^ u ^ -\ and equal to 1 for
— I S u ^ 0. Then Aφ is a compatible Dirac operator with respect to the introduced
structures. We want to find a formula for the difference ηA<p — Ϊ\A.

Remark 4.1. The corresponding problem for index was stated and solved a long
time ago (see [3, 19]; see also [6]).

We have

\,φ-χσφ 2'σ± \,Φ~lσΦ

f - t\*λfl) + »u l > f f + ^ 2 ; < J ±

\,Φ~[σΦ

~ηsΐ\σ) + VAmodZ .
\,Φ~ισΦ

In the formula above, jtfφ

φ_]σΦ denotes the operator Aφ\Mι, subject to the boundary

condition Φ~1(i7< + σ)Φ (the boundary condition is determined by the spectral
projection of the operator Φ~XBΦ). We rewrite the equality given above as follows.

ΆA* -1A= n^φ ~ Άs*λ σmodZ . (4.4)
\,Φ~]σΦ

~ f
The simplest way to interpret this formula is to introduce the manifold Mλ —

~ Φ
M\ Uf M\ and the bundle *SΊ = (S\M\) Uψ (S\M\). Now we define the operator

Ai — {AΦ\M\) U {—A\M\) equal to AΦ\M\ on one copy of M\ and equal to —{A\M\)
on the other copy (see [6] for the details of the construction).
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Theorem 4.2. ηAψ — ηA is given by the following formula:

ΆAΦ ~ ΆA — Ά Φ mod Z . (4.5)
*1

~φ
Proof. We apply Theorem 0.2. to the operator^ , and obtain

η.~Φ = η^Φ - η^λ σ mod Z . (4.6)
^1 \,Φ~λσΦ

Theorem 4.2, however, is not the result we want to have, as we would like to
achieve at least partial localization. We introduce an operator on the mapping torus.
We introduce the manifold Y? = [0,1] x 7/ ~, which is obtained from [0,1] x Y
by an obvious identification, (l,y) ~ (09f(y)). In the same way we define a bundle
of spinors (S\Y)Φ and then we introduce a Dirac operator Dφ : C°°(Yf;(S\Y)φ) ->
C°°(Yf;(S\Y)φ\

Dφ = Γ(du + B + h(u)Φ~ι[B,Φ]) . (4.7)

The main result of this section is the following theorem:

Theorem 4.3. ηAψ — ηA is equal to the η-invariant of the operator Dφ

ηA

φ
 -VA = VDΦ m°d % ( 4 8 )

We introduce a generalization of Theorem 0.2 in order to prove this result. Let
Z denote a cobordism between Y and another closed manifold W. We paste M\
and Z along Y and obtain a compact manifold X

X = Mx U Z ,

with boundary W. Let E denote a bundle of Clifford modules over X such that
E\M\ =S\M\. Once again we assume that all metric structures are products in
the collar neighborhoods of Y and W. Let Ax : C°°(X;E) -• C°°(X;E) denote a
compatible Dirac operator on X such that Aχ\M\ — A\M\. Let σ\ and 02 denote the
orthogonal projections onto a Lagrangian subspaces of ker(B), and let στ> denote the
orthogonal projection onto Lagrangian subspace of the kernel of the tangential part
of the operator Ax restricted to W. We define an operator s^χ^ as the operator
Ax subject to a boundary condition σ$ on W. We denote by Y\(AZ\ 02,03) the eta
invariant of the operator Aχ = Aχ\Z, subject to the boundary condition defined by
σ2 on Y and CΓ3 on W.

Theorem 4.4. The η-invariant of the operator stfχ,σ3 is given by the following
formula:

2-> σ3) mod Z . (4.9)

The proof of Theorem 4.4 is almost the same as the proof of Theorem 0.2. First,
we use DuhameΓs Principle and adiabatic argument\ as in [20], to prove the result
in the case of invertible tangential operators. Then we follow Sect. 1, 2, and 3 of
this paper. We leave details to the reader.

Proof of Theorem 4.3. We have already shown (see (4.4))

nA

φ - ΆA = V^Φ - n^λ σ mod z .
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Now we apply Theorem 4.4. in the case Z = [- j ,0]x7, and we obtain

±,φ-ισΦ) . (4.10)

In this formula, Az — Γ(du -\-B -f h(u)Φ~ι[Φ,B]) and the summand η(σ\,σ2) =

η(Γ(du + B);σ;σ±)9 which appears in the formula (4.9), is equal to 0. Now stf'λσ

is equal to the operator A on the manifold M[ — M\[— \,®\ x Y = M\ subject to

a boundary condition, defined by σ on {—|} x Y. It was shown by Werner Mϋller

that the ^/-invariant of the boundary problem, of the type considered here, does not

depend on the length of the cylinder (see [16]; Proposition 2.16) and we have

The only thing left is to apply Theorem 0.2 to the operator Dφ on the mapping

torus. We can assume

where we use / (and Φ) to make a pasting at u = ~\, and we use Idγ (and Ids\γ)

to paste the manifold (and bundle) at u = 0 to the manifold at u = — 1. Dφ is equal

to Γ(du +B) on [-l,-^] x Y and it is equal to Az = Γ(<3W + 5 + Λ(w)Φ"1[Φ,Jδ])

on [—^,0] x Y. Theorem 0.2 gives the equality

ηDφ = η(Az;σ
±,Φ~ισΦ)modZ . (4.12)

This allows us to finish the proof

ηA* -1A= Vs/\σ + VfΛz\^,Φ~ισΦ) - η^Xσ

= η(Az;σ
±,Φ~ισΦ) = ηDφmodZ .
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