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Abstract: It is shown that the principle of locality and noncommutative geometry
can be connected by a sheaf theoretical method. In this framework quantum spaces
are introduced and examples in mathematical physics are given. Within the
language of quantum spaces noncommutative principal and vector bundles are
defined and their properties are studied. Important constructions in the classical
theory of principal fibre bundles like associated bundles and differential calculi are
carried over to the quantum case. At the end g-deformed instanton models are
introduced for every integral index.
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Introduction

There are two essential principles in quantum field theory, namely symmetry and
locality. Especially in every gauge theory it must be explained what the symmetry
objects are and what locality means.

Since some time many theorists hope for noncommutative geometry [5] be-
coming the right tool to formulate quantum field theory rigorously. But now we are
in the dilemma that the language of noncommutative geometry provides very
general and powerful symmetry objects, the quantum groups, but not an appro-
priate method to study local aspects. This fundamental problem was the starting
point for the present paper.

Let me explain in more detail what the principle of locality in physics says. In
the algebraic framework [11] a net of C*-algebras on Minkowski space describes
the local structure of observables such that observable algebras defined on spatially
separated double cones commute. Alternatively one can require local commutation
relations [20, 13]. In any case we need mathematical methods to compare observ-
ables or fields at different space time points or neighbourhoods. But in noncom-
mutative geometry there are no points, respectively there is no topology, on a base
space where the fields and observables are defined. The problem becomes even
more serious if we want to quantise gauge theories. A field in a classical gauge
theory is a (global) section in a vector bundle. Usually those vector bundles are
described in local charts or in other words in local coordinates. Now gauge
transformations of the second kind change the field locally such that the observable
effects of the field stay the same. The principle of local coordinates and gauge
transformations is mathematically well-defined in classical geometry and physics.
The appropriate language is the theory of principal fiber bundles. But up to now it
hasn’t been possible to translate it into noncommutative geometry or rigorous
quantum field theory [11].

Mathematics also provides arguments to connect local aspects and noncom-
mutative methods. Furthermore these arguments even give a hint how to solve the
above problem. Certain structures on a locally compact topological space M like
differentiable or analytical ones are not characterised by the single algebra €,(M)
but by an appropriate sheaf on M. Additionally it is well known from complex
geometry [15] that local function algebras are in general not determined by the
global one. So it is quite natural to assume that we need a sheaf structure in the
noncommutative setting as well. This would be very helpful also in the case where
commutative function algebras are deformed. Then one can keep track of what
happens to local algebras of continuous, differentiable and analytical functions or
sections in a fibre bundle.

Because of these considerations we give a sheaf theoretical method to connect
locality and noncommutative geometry. Furthermore within this method it is
possible to define noncommutative principal fibre bundles which have quantum
groups as their “structure groups.”

In the first section we will find an equivalent description of principal fibre
bundles in the language of sheaves. Then a definition of very general noncom-
mutative spaces is given in Sect. 2. In the following noncommutative principal
bundles are defined and important objects like local coordinates, transition func-
tions and gauge transformations are carried over to the noncommutative case. By
the same concept quantum vector bundles and associated quantum vector bundles
are introduced in Sect. 4. Addtionally we study differential calculi on quantum
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vector bundles. Finally g-deformed instanton models give interesting examples
where local gauge transformations are set up in a noncommutative language.

This paper grew out of my diploma thesis [19] under the supervision of Prof.
J. Wess at the “Sektion Physik der Universitdt Miinchen.”

1. Principal Fibre Bundles

Let us repeat the well known definition of a principal fibre bundle (see for example
[6, 9, 14]).

Definition 1.1. Let P, M be topological spaces, G a topological group and n: P - M
a continuous mapping. (P, M, m, G) is called a principal fibre bundle with total space
P, basis M and structure group G, if the following conditions are satisfied.

(1) = is surjective.
(i) G acts freely from the right on P.
(iii) The equation n(u,) = n(u,) for u,, u, € P is valid if and only if u,a = u, for
anaeG.
(iv) P is locally trivial over M, i.e. there exists an open covering % = (U,),c; of
M and homeomorphisms , : n~'(U,) —» U, x G, u > (m(u), n,(u)) such that

W, (ua) = (n(u), n,(w)a), uen"'(U), acG. 8))

Remark 1.2. The homeomorphisms i, with 1 € I are the local trivializations of the
principal bundle.

The conditions (i) to (iv) in the above definition are not independent from each
other. In the next theorem we give a characterisation of principal bundles where the
defining axioms are independent. The obvious proof of the theorem is skipped.

Theorem 1.3. Let P, M be topological spaces, G a topological groupand n: P - M
continuous. Assume the following two conditions to be true.

(i) = is surjective.
(i) P is locally trivial over M, i.e. there exists an open covering U = (U)),c; of
M and homeomorphisms ,: n~'(U,) = U, x G, such that

prioy, =nlew, =1y, 2
and
Yot (x, ab)
= (X, prZ(V/l ° '70!: l(xa a)) b)’ X € Ulm Um a, b €G. (3)
Then by
u-a:= Y, (priW.@)), pra(0,w))a), uen '(U,), aeg, (4)

a right G-action on P is defined. Furthermore (P, M, n, G) is a principal fibre bundle
over M with trivialisations y,, 1€ I. On the other hand given any principal bundle
(P, M, n, G) with trivialisations ,, 1 € I the above conditions (i) and (ii) hold, and the
right G-action is given locally by Eq. (4).

We introduce some notation. Let .# (resp. &%) be the sheaf of complex and
bounded continuous functions on M (resp. G). Now .# and & are sheaves of
Banach-*-algebras. Let U, V be open in M. Then £(U) is the algebra of complex
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and bounded continuous functions on n~!(U). The canonical injections
it:U -V, u—u,
where U c V < M open define restrictions 2(i})=rp:2(V)— 2U),

S fliw)- Now 2 is a sheaf of algebras on M, or more clearly a sheaf of
Banach-*-algebras. The continuous function 7 : P — M induces a sheaf morphism

o=n*:M > 2P, n*f)=fonly, feM(U),
and the G-action on P a sheaf morphism ¢ : 2?2 - ? ® % (G) by
du(h)u,a) = h(ua), he?, uen '(U), ael. (5)
Finally the local trivialisations give sheaf morphisms
Q1. M1, ® F(G) ~ 2y,
S®g- (f®9)eVlv, geFs fedU), UcU.,.

Proposition 1.4. Let P, M be locally compact topological spaces, G a locally compact
topological group and m: P — M continuous. With the above definition of 2, M,
O the quadrupel (P, M, , G) is a principal fibre bundle if and only if the following
conditions (i) and (ii) are satisfied.

(i) The sequence 0 — M > P is exact.

(i1) One can find an open covering U = (U,),.; of M and continuous mappings
Y,:n" ' (U,) - U,xG with the following property. The sheaf morphisms
Q: My, ®Fc = Py, 1€l are isomorphisms and define sheaf morphisms
Qu-'/”lu,\@«/’c - /mu ® Fg, kel by (2,)v=(2J)u"°(Q)y. These
sheaf morphisms satisfy the equations

(QI)U(f® 1) = QU(f)3 fE %: Uc Uu (6)
((-Q»\,t)v®ld)°(1d®A) = (id®A)o('QK,I)U3 U < U:nU'n (7)
where m (resp. A) is the multiplication (resp. comultiplication) in #(G).

Proof. For U < U, open, fe #(U) and ue n~'(U) we have the equations

(2)u(f® 1) () =f(pry°y, (), ®)
ov U(f)w) =f(n(w)), ©)
and for U <« U,nU, open, fe #4(U)® #(G), xe U and a,b € G the equations
Qo (N)x, @) =fWo s ' (x, @), (10)
((id ® 4)°(Q, )u) () (x, a, b) = f (Y, °Y(x, ab)), (11)

(Qq)y ®id)°(id ® 4)) (f)(x, a, b) = f(x, pro(f,° ¥c ' (x, a)) b). (12)

First suppose (P, M, , G) to define a principal fibre bundle with trivialisations
Y, (U,) - U,xG. As m: P - M is surjective, the sequence 0 —» .# > 2 is
exact and (i) holds. Equations (8), (9) and (2) imply (6). Furthermore Egs. (11), (12)
and (3) give (7). Altogether this proves (ii).

Now we have to show the other implication. Assume (i) and (i1) being true for
(P, M, m, G). Then the relations (8), (9) and (6) entail

fprioyW) =f(nw), fe M), uen™'(U).
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As the continuous functions on U are separating, we get (2). Similarly (11), (12) and
(7) give the equation

f(dll ° lpK_ l(x’ ab)) =f(x’ p"z(l//, ° l: l(x> a)) b)

for fe #4(U)® #(G), xe U and a, b € G. Now we have shown (3) and condition
(i) in Theorem 1.3. As pry o ¥, = |y, and % = (U,),, covers M, mis surjective. That
is all. O

Corollary 1.5. Assume to be given a tupel (2, M, o0, H), where M is the commutative
sheaf of complex bounded continuous functions on a locally compact topological space
M, 2 is a sheaf of commutative C*-algebras over M, ¢ : M — P a sheaf morphism
and H a commutative (topological) Hopf algebra. (2, #, M, o, H) can be identified
with a principal fibre bundle if the following conditions hold.

(i) The sequence 0 — M % 2 is exact.

(il) There exists an open covering U = (U,),c; of M and sheaf isomorphisms
Q: M|y, ®H — Py, 1€ suchthat Q and Q, , with (2, )y = (2)v " °(2)v,
U < U,nU, satisfy Egs. (6) and (7).

Proof. One can construct the locally compact topological spaces P, M, G and the
continuous mappings 7, ¥, by the Gelfand transformation. Then the assumptions
of Proposition 1.4 hold and the corollary is shown. O

2. Quantum Spaces

In this section we define the frame in which the principle of locality and noncom-
mutative geometry can be connected. We use a sheaf theoretical language which is
already well known in the commutative setting of algebraic geometry and complex
analysis. See Appendix A for the definition of sheaves and the literature [21, 16] for
further details on sheaves.

Definition 2.1. Let A be a subcategory of the category Alg of all associative algebras.
An A-quantum space over a topological space M is a sheaf M over M with objects in
A. The category of A-quantum spaces is dual to the category of sheaves over
topological spaces and will be denoted by A-Qs.

Let .# be a sheaf over M. If we consider ./ as an object of A-Qs, we sometimes
write .#y. Now let A be a sheaf over N and f: M — N a continuous mapping.
A morphism # : A" — M - f~" of sheaves over f will be written F,: My — Ny if
regarded as a morphism in A-Qs. The A-quantum spaces over a topological space
M with morphisms over the identity idy, form a subcategory A-Qs,, of A-Qs.

The following examples of quantum spaces show that it is possible to include
a concept of locality in noncommutative geometry. They also comprise important
objects of commutative and noncommutative geometry.

Example 2.2. Let M be a topological space, A an object in A and £ the locally
constant sheaf on M with objects in A. £ is an A-quantum space.

Ringed spaces are important tools of complex analysis and algebraic geometry
[12,15]. A ringed space is simply a pair (M, O),), where M is a topological space
and Oy a sheaf of commutative rings.
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Example 2.3. Ringed spaces (M, Op) are commutative quantum spaces.

Manifolds, complex spaces and schemes can also be considered as ringed spaces
or commutative quantum spaces. To explain that let us first write down some
special ringed spaces:

(R", %), where %
(R",%"), where %"

sheaf of continuous functions on R" ne N,

sheaf of r-times continuously differentiable functions
on R", neN, re N*u{ow},

(R", #°), where %“ - sheaf of real analytic functions on R”, ne N,

(C", 0,), where €, - sheaf of holomorphic functions on C”, ne N.

|

Example 2.4. Let ne N and r e N*U{ o0 }. A ringed space (X, Ox) is called a

(i) topological manifold of dimension n, if (X, Ox) is locally isomorphic to (R", ),
(ii) differentiable r-manifold of dimension n, if (X, Ox) is locally isomorphic to
(R", €"),
(iii) real analytic manifold of dimension n, if (X, Oy) is locally isomorphic to
(R", €°),
(iv) complex manifold of dimension n, if (X, Ox) is locally isomorphic to (C", 0,),
(v) scheme, if for every x € X there exists an open neighbourhood U of x, such that
(U, Ox|y) is isomorphic to an affine scheme.

All those spaces are quantum spaces.

Supersymmetric structures (see Wess, Bagger [22]) are our first examples of
noncommutative quantum spaces. Most easily this can be seen with the definition
of superspaces according to Manin [18].

Definition 2.5. A superspace consists of a pair (M, Oy), where M is a topological
space and Oy a sheaf of supercommutative rings, such that all stalks Oy ., x € M are
local.

Supermanifolds are superspaces which locally split into an even and odd part
such that the splitting is differentiable and the odd part is a locally free module
sheaf over the even part.

Example 2.6. Superspaces and supermanifolds are noncommutative quantum spaces.

We already cite here an example of a quantum space we are going to construct
in Sect. 5.

Example 2.7. The g-deformed space time over the background S* is a noncom-
mutative quantum space.

3. Quantum Principal Bundles

3.1. The Category of Quantum Principal Bundles

Corollary 1.5 characterises principal bundles in the language of sheaves of com-
mutative algebras. If we simply leave out the requirement for the commutativity of
the local algebras we almost get the definition of noncommutative principal
bundles or quantum principal bundles. One further generalisation compared with
the commutative case has to be made. The reason lies in the fact that the tensor
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product of a noncommutative algebra and a Hopf algebra possesses “more multi-
plications” than the tensor product of the corresponding commutative objects. So
we have to specify the chosen multiplication on the local tensor products by the
methods of Appendix B.

Let M be a topological space and A a subcategory of the category of all
associative C-algebras. Suppose we are given the following objects:

(i) a sheaf .# over M with objects in A called the base quantum space,

(i1) a sheaf 2 over M with objects in A called the total quantum space,

(iii) a sheaf morphism o: .# — 2 called the projection,

(iv) a Hopf algebra H called the structure quantum group,

(v) a family of sheaf morphisms (Q),.;, @: M|y, #,H — P|y,, where
AU = (U,),; is an open covering of M and #, is a crossed product defined
according to Theorem B.2 by a weak action «,: HXx .#|y, — M|y, and
anormal cocyclei1: Hx H — ./ (U,) fulfilling the twisted module condition.

The tupel (2, 4, 0, H,(R,),.;) gives the data of an A-quantum principal bundle
over M. Its entries can be regarded as the noncommutative generalisations of
respectively the total space, base space, projection, structure group and trivialisa-
tion of a classical principal bundle.

Definition 3.1. (2, 4, o, H, (R,),. ;) is said to be an A-quantum principal bundle over
M with coordinate system (Q,),.;, if the following conditions are fulfilled.

(i) The sequence 0 — 4 S P is exact.
(ii) The algebras M (U) and 2?(U) are unitary for U < U, open.
(i) Let the sheafmorphtsms Qe Mly,~u, #. H > My,~u, #« H be defined
by (Q,.)v = ()" °(Q)y, where U < U N U, open. Then the Jfollowing equa-
tions are valid:

(QI)U(f#ll = Qu f) fe ‘/ﬂ(U) Uc Un (13)
(2, )y ®id)°(id® 4) = (id ® 4)°(Q )y, U <= UnU,. (14

Suppose we are given a second A-quantum principal bundle (2, ./, o, H, (@ )ccx)
over M with coordinate system (£, )..x being defined on the open covering (V. )cx
of M. The two A-quantum principal bundles with coordinate system are equiva-
lent, if for U <« U,nU, open, 1€ I, k € J the sheaf morphisms

Qi Mly,nu, #H > My,nu, #cH, @)u= @) @, (15)
satisfy the equation
(Qe)u ® id)o(id ® 4) = (id ® 4)°(2,)y- (16)

This relation is an equivalence relation in the class of all A-quantum principal
bundles over M with coordinate system.

Definition 3.2. An equivalence class of A-quantum principal bundles over M with
coordinate system is called an A-quantum principal bundle over M.

Remark 3.3. If no misunderstandings can arise, we will not distinguish between
quantum principal bundles with coordinate system and their equivalence classes,
the quantum principal bundles.
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Remark 3.4. The algebras /|y, ~y, #, H are examples of Hopf Galois extensions
(see [3] for further details). Therefore one can interpret quantum principal bundles
as sheaves which locally look like appropriate Hopf Galois extensions.

We would like to regard the quantum bundles as objects of a certain category. The
following definition provides the necessary morphisms of this category.

Definition 3.5. Let (P, #, 0, H, (@))..,) (resp. (N, 2, &, H, (2,).x)) be an A-QPB
over M (resp. over N), where the coordinate system (Q,), ; (resp. (@), < k) is defined on

the open covering (U)),.; (resp. (V)cek) of M (resp. N). A morphism of A-quantum
principal bundles

(’?> '//, o, Ha (U )IEJ) - ('Qa N’ é, Ha (V )xeK)
consists of a tupel (R, F , f, h) such that the relations (i) to (iv) are satisfied.

(i) f: M — N is a continuous mapping.
(i) Z:2 > Pand F : N — M are morphisms of A-sheaves over f such that the

diagram
N 2
F l lgl
M
commutes.

—4 g
['4
(iii) h: H — H is a morphism of Hopf algebras.
(iv) Let the mapping 7, ., withiel,ke€J,V < V, openand U = f~ 1 (V)" U, be
defined by

0 — —-—:—D

0 —

Q)
Ty N V)2 B 201 2

2 a2y Y s, B,

Then we have
(id ® An)° T v = (7, v @ ) (id ® 4f). 17)
By a standard calculation we get the following theorem.

Theorem 3.6. The A-quantum principal bundles and their morphisms (Definition 3.5)
form a category A-Qpb. The A-quantum principal bundles over M (resp. the
A-quantum principal bundles over M with basis M) together with the morphisms
(f, #, F, h) of the form f = idy (resp.f = idy and & = id ,) form a subcategory being
denoted by A-Qpb,, (resp. A-Qpb ).

3.2. Coaction of the Structure Quantum Group

The structure quantum group H can be regarded as a gauge quantum group. In
analogy with the commutative case H should (co-)act on the quantum bundle or in
other words should provide noncommutative gauge transformations of the first
kind. Starting from the example of commutative principal bundles we will show
how to define this coaction and derive some fundamental results about it.
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Let the sheaves .#, 2 and the Hopf algebra H be given by a principal bundle
(P, M, , G). The next question is what kind of H-coaction the G-action on
P induces. To give an answer define for all U € M open a homomorphism
¢v:2(U) - 2(U)® H by

ou(Nw, a) =f(ua), fe?U), uern '(U), aeGC. (18)
As u(ab) = (ua)b for ue n~'(U), a, b € G, (18) entails
((id ® 4)° ¢u)(f)(u, a, b) = f(u(ab))

= f((ua)b)
= ((pu ® id)° ¢py)(f)(u, a, b), 19)
that is
(id ® 4)° ¢y = (py ® id) > Py (20)
A similar consideration using ue = u for u e n~(U) proves
(id ®¢)o Py = id. (21)

Therefore ¢y gives (U ) the structure of an H-right-comodule and provides for
a sheaf-morphism ¢ : 2 - 2 ® H. If U < U,, we can express ¢y directly by the
local trivialisations , of the sheaf 2. Using (4) in Theorem 1.3 as well as (18) one
gets the relation

du(w, a) = (pri (W), pro(Y,(w) @)

= (2 ®id)°(id ® 4)° 27" (f))(u, a), 22
that is
by =(Q®id)(id®4)°Q ", (23)
Equation (23) will now be used to define a sheaf-morphism
¢0:?->2PR®H

in the general case of an arbitrary quantum principal bundle (2, #, o, H, (Q)),<1)-
Let us show that by Eq. (23) ¢ is well-defined even in the noncommutative setting.
We first have to prove

(2 ®id)°(id® 4)° 2™ ")(f) = (R ®id)(id ® 4)> 27 ')(f) 24
forall U <« U,nU, open and fe #(U). But this is a consequence from
(2 ®id)o(id® 4)° 27 )(f) = (Rc° Q\,) ® id) o (id ® 4)°(2, > 27 ))(f)
= (2 ®id)o(id® 4)°Q,,°Q, .2 Q') f)
= (R ®id)°(id ® 4)° 2. ")(f). (25)

In the second step let U ¢ M be open and fe 2(U). Then for all 1€l the
homorphism ¢y, nu(rg ~u(f)) is defined, and for all 1, k € 1,

g':\‘gr\U d)UnU( nU(f))=¢UnUnU(rgr\UnU(f))
= rGntnu® P unuro. . () (26)
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is true. As 2 ® H is a sheaf, one gets a ¢y(f) e 2(U) ® H with
ro v du(f) = (R ®id)°(id ® 4)° Q7 ")y y(f)). (27)
Now the next theorem is evident.

Theorem 3.7. Let (2, M, 0, H, (2,),.;) be an A-quantum principal bundle. Then
there exists a uniquely defined sheaf-morphism ¢ - P — 2? ® H fulfilling

du(f) = (@ id)°(id® 2)°Q ")(f), fe2(U), UcU. (28)

If (2, M, 0, H, (2),1)) is given by a commutative principal bundle (P, M, &, G), the
relation

du(f)u,a) =f(ua), fe?U), uen '(U), aeG (29)
is true.

Corollary 3.8. 2(U) is an H-right-comodule with coaction ¢y, that is the following
relations hold:

([d ® 4)° py = (Pu ® id)° ¢y, (30)
(id ® £)° Py = id. (31

Proof. As ¢ is a sheaf-morphism, it suffices to show (30) and (31) only locally for
U < U, open. We have:

(pu@id)odpy = (R ®idid)°(id® 4 ® id)°(2 ' ® id)
o(Q®id)o(id® A)o Q!
=(Q®id®id)(id® 4 ® id)°(id ® 4)° Q"
=Q®idRid)°(ld®id® A)°(id® A4)° Q'
=(id® 4)°(Q, @ id)°(id ® A) Q"
= (id ® 4)° ¢v, (32)
([d®¢)opy = (id® &) (R ®id)o(id ® 4)° Q!
=(Q®id)°(id®id® &) (id ® 4)° Q!
=Q,oQ !
= id. (33)
Quod erat demonstrandum. O

Remark 3.9. The last corollary justifies to call ¢ a noncommutative gauge trans-
formation of the first kind.

For the moment let us suppose again 2, #, o, H being defined by a classical
principal bundle (P, M, n, G). The relation n(ua) = n(u) for ue P, a € G implies

dveov(f)=0ov(f)®1, fed(U) (34)

because the equations
du° ou(f)u, a) = ¢y(fon)(u, a) = f(n(ua)), (33)
(0u(f) ® 1)(u, a) = fom(u) (36)

are true. An analogous result holds in the noncommutative case.
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Theorem 3.10. Let U = M be open. Then h € Z(U) satisfies the equation
du()=h®1 (37
if and only if h = oy(f) for a fe 4 (U).

Proof. As ¢ and ¢ are sheaf-morphism it suffices to assume U < U,. Let us first
suppose that h = gy(f) for a fe #(U). Then we get with (13):

dueo(f) = (2 ®id)=(id® 4)> 2 ")ou(f))
=((Q @id)°(id ® A))(f#.1)
=Qid)([f#1®1)
=o(N®L (38)

This gives one direction of the assertion. Now assume ¢y(h) =h® 1 for an
he 2(U). Then Eq. (28) implies:

d®c@id)(Q ' (1) =(([d®c®id)e(id® 4)°Q ")(h) =7 (h). (39)
As ((d®c®id) ('@ 1)e#(U) #, H, the relations (13) and f:=
(id ® €)° Q' (h) entail h = gy(f), which gives the other direction. d
3.3. Transition Functions
In the following we will derive some basic properties of the local coordinate
changes 2, ,. Define the linear mappings 7,,: H - #(U,nU,), 1,k € I by:
Tu(9)= ([d®¢)° Q. (1#,9), geH. (40)
Then the @, can be written in the form:
Q. (f#.9) = Q..(J#.1) Qu.(1#.9)
=(/#:1) ([d®c®id)°(id ® 4)° Q, ,)(1#,9)
=([#:1) (([d®e®id)° (2, ®id)°(id @ 4))(1#,9)

= Z (f#x 1) '(("g'nu” °© ‘Cu\')(g(l)) # K g(Z))
)

= Z(f'(r‘é'””wt.,h-)(gm)) #x902)> (41)
(9)

where fe #4(U), U <« U,nU,, and g € H, or in the form:
Q. =((m@id)°(id ® (ry""°1,,) ® id)°(id ® 4)). (42)

Let us show that the linear mappings 7, can be considered as a generalisation of
the transition functions in classical geometry. Suppose the quantum principal
bundle (2, 4, o, H, (,),.;) is given by a principal bundle (P, M, n,G) with trivial-
isations ¢, : 7~ '(U,) — U, x G. By the definition of the 7, it is obvious that they
have the form:

Tt H = MUNUL), g gon,,,

where the 7, are the classical transition functions defined by:

Viod Hx, @) = (x, 1, ,(x)a). (43)
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In the commutative case the 7, , are morphisms of algebras, whereas in general they
are only linear mappings between algebras.

The 7, are not independent from each other but fulfill certain conditions we
will derive in the sequel. Let us first give an important definition.

Definition 3.11. Let % = (U,),.; be an open covering of M, H a Hopf algebra and
M an A-quantum space over M. Further let (t,,).ne1x1 be a family of linear
mappings t,, - H — M (U,nU,) satisfying the following conditions.

() 7,,(1) =1,

(") ("g'nu”’ Tl,/’.) = (rg'nu" OTI,K) *(rgxnUA ° T;\‘,/'.)a
(iii) 7,, (9) =¢(9)"1, geH,

where U =U,NnU,NU, and the convolution product * is to be formed in the
convolution algebra Hom(H, 4 (U)). Then (t, . ),.x c1x1 is called an H-cocycle in M .!

Now the defining equation (40) implies:
1..(1) = 1. (44)
Then we have for U « U,nU,nU, open because of (42) and the definition of
O @)l ® (4 Vror, ) ® d)e (4 @ 4) = 2,
=Q; 00,
=(m@id)°(id ® (rp"""*° 1) ® id)°(id ® 4)
°o(m@id)°(id ® (ry""°7,,) @ id)(id ® 4)
=mEid)e(m®id ® id)
oid @ (ry" o1, )@ (ry* "V oty ) ® id)
o(id ®id ® A)°(id ® 4)
=m®id)o(id ®mE id)
o(id ® (Y Yo, ) @ (ry="Viot, ;) ® id)
o(id ® 4 ® id)° (id ® A4). (45)
This relation entails for g € H:
(rg"%o1,)(9) = ((id ® &)o (m® id)(id ® (ry"V°1,,) @ id) > (id ® 4))(1 ® ¢)
= ((id ® g)°(m @ id)(id @ m @ id)
(id ®(ry""o1,,) @ (rg™" Ve, ) ® id)
°(id @ 4®id)°(id @ 4))(1 ® g)

=(mo((rg"%o1,) @ (ry* "0 1,.1)) e A)(g). (46)
Finally (14) gives for 1 = k and g € H the equation:
7,.(9) = €(g)- L. (47)

Let us subsume the last results in a proposition.

! The cocycles defined here are different from the ones in Theorem B.2. The context always makes
clear which kind of cocycles are meant so that no confusions can arise.
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Proposition 3.12. The transition functions t,,: H — M (U,nU,) of a quantum
principal bundle (2, M, o, H,(R,),c;) form an H-cocycle in M .

The transition function 7, , characterise the (qQuantum) principal bundle in the
commutative as well as in the noncommutative case. We will show how to
construct a quantum principal bundle out of a family (7, ), «erx; Of transition
functions fulfilling the cocycle conditions in Definition 3.11. Let us further suppose
we are given a family (a,),; of weak actions «,: #(U,)x H — .#(U,) and a family
(1),c; of normal cocycles: : H x H — . (U,) fulfilling the twisted module condition?
According to Appendix B, Theorem B.2 the crossed products .#(U)#, H exist for
all U < U, open. It is assumed now that the linear mappings

m®id)o(id ®1,, ® id)°(id ® Ay MU,AU)#H — MU,AU)#H

are morphisms of algebras with unit.
To construct the desired quantum principal bundle we consider the algebras

Zo(U) = & MU nNU)# H (48)
el
for all U = M open and their subalgebras

2U) = {Zﬁeg’o(U):Vz,x el (rZ:QﬂmUOid)(f,)

1el

=((m®id)°(id ® (rynp:y° ) ® id)
o(id ® A)o(ry:hy. v ® id))(fx)}' (49)
Obviously U — £,(U) defines a sheaf Z, on M and U — £(U) a subsheaf 2. The

next lemma helps to characterise the sheaf 2.

Lemma 3.13. Supposey, ,f,€ Zo(U)and U < U, open. Theny _,f,€ P(U)if and
only if for all 1€ I the equation

ot nu ®id)(f) = ((m®id)e(id ® (rynp: Ay °Tun) ® id)
°(id @ 4)° (ry75. v ® id))(f) (50)
is satisfied.

Proof. Let ¥, ., f. € Zo(U) fulfill the relation (50). According to Definition 3.11 (ii)
we have for all , 4, pe I

(m@id)o(id @ (rJ:n: oy °Thr) ® id) e (id @ 4))

o((m @ id)°(id ® (ryiny: .y °T1,) @ id)° (id @ 4))
=((m®id)°(id @ m® id)

o(id ® (ry Ny au°T) ® ry g ay ©Ta) ® id)

o(id ® A ® id)°(id ® 4))
=(m@id)o(id ® (ryny: y°t,,) ® id)o(id ® 4)). (51)

2 See the appendix for further details on weak actions and normal cocycles.
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This equation as well as (50) and 3.11 (iii) imply
o0y o ®id)(fi) = (m®id)o(id ® (G0, o1, ;) ® id)e (id ® 4)
o(rUnd, o ® i) (f3). (52)
With (51) one derives the relation
(U0~ ®id)(f) = ((m®id)o(id @ (ryng y°T.) ®id)e(id ® 4)
(rGint,nu ®id))(f)
=((m®id)°(id @ (ryny:ny°T,x) @ id)(id ® 4)
2(m@id)e(id ® (v} y!ny ° Te:) ®id) o (id ® 4)
*(rging,nu ®id)) ()
=((m®id)°(id ® (ryny: y°T,.) @ id)e(id ® 4)

°(ryiNu,nu ®id)) (f3): (53)
Therefore ¥, _, f.e (U) and one part of the assertion is proven. The other one is
trivial. 0

We have to supply sheaf-morphisms @: //I - Pand Q. M|y, #, = P|y,- As for
all fe #(U), U e M open, the sum ¥, _, ry ., (f)#,1 lies in Q(U) we can set

o:M - P, op: MU)—> 2U), fr ZrU,nU(f)#‘l'

1el
The mapping Q,: M|y, #, — 2|y, shall be given by
QH//IU, #l - '?lU,a
(Ql)U:ﬂ(U)#t - Q(U% f'_) Z.f;, Uc Un
1el
fx = ((m®ld) (ld ®(ru,25 AU rll\)@ ld)
°(id ® 4)°(ryny,nu ® id))(f): (54

We have in particular f, = £ Now Lemma 3.13 shows that Q, is well-defined. By the
definition of ¢ and @, it is clear that Eq. (13) (Q)y(f® 1) = oy(f) for fe #(U),
U < U, is satisfied. If we can prove , being bijective, our considerations show that
ov is injective for U < U,. This will give the exactness of the sequence

0> M5 2P

where

Therefore it has to be proven that €, is an isomorphism which satisfies (14). Define
for U c U, open:
El . gIU, g ’WIU,#IH,

E):2U) > MU)#H, Y fi— .
Then it is easy to see v

EoQ =id und Q,ZF =id, (55)
that is Q, is a sheaf-isomorphism with inverse Z,. Further we get (14)

(Q®id)o(id ® 4) = (id ® 4)°Q, (56)
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which follows from the definition of @, and the coassociativity in H. Now we can
state the final theorem.

Theorem 3.14. Let % = (U,),.; be an open covering of M, H a Hopf algebra, 4 an
A-quantum space over M, and (1,,), xerx: an H-cocycle in M. Further let
o: MU)xH — MU, be weak actions and 1: Hx H — 4 (U,) normal cocycles
Sulfilling the twisted module condition. The linear mappings

(m®id)o(id ®1,, ®id)°(id ® 4): MU,AU)#,H > MU,AU)#H

are supposed to be morphisms of algebras with unity. Then there exists an A-quantum
principal bundle (?, M, o, H, (), 1) over M uniquely defined up to isomorphism such
that the 7, , are its transition functions or in other words such that

Qo =m®id)e(id @ (rynyny°Tux) ® id)
°(id ® 4)°(ry;ny, v ®id) (57)
is satisfied for U = U,nU, open.

Proof. Most of the theorem has been proven above, but we still have to show (57).
Let U c U,nU, be open, fe #4(U)#,H, ge M (U)#,H and g = (2, )v) (f).
Then (54) entails

9 = 9 = Pr((Qu(9)) = pr((R)u(f)) =fi = (M @ id)
(id @ (ryny:nu° T @id)e(id @ A)o(ryny ., ®id))(f),  (58)

which gives the desired equation. The statement about the uniqueness of the
quantum principal bundle up to isomorphism is clear by definition. O

4. Quantum Vector Bundles
4.1. Definition and Examples

We can also translate vector bundles in the language of quantum spaces. As typical
fibres we use quadratic algebras which according to Manin [17] are considered as
the noncommutative linear spaces. Like in the case of quantum groups the
multiplication on the tensor products serving as the local trivialisations has to be
defined by the method in Appendix B.

Suppose we are given the following objects:

(i) a sheaf .# over a topological space M with objects in the category A called
the base quantum space,
(ii) a sheaf ¥~ over M with objects in A called the total quantum space,
(iii) a sheaf morphism @ :.# +— ¥  called the projection,
(iv) a quadratic algebra A called the typical fibre,
(v) a Hopf-algebra H called the structure quantum group,

(vi) a coaction ¢: A+— H® A,

(vii) a family (I'),c, of sheal morphisms I',: 4|y, #,4 - 7|y, where
AU = (U,),¢;1s an open covering of M and #, is a crossed product which is
given according to Theorem B.6 by a weak action o, : M|y, > HX M|y,
anormal cocycle1: Hx H — /(U,) fulfilling the twisted module condition
and the coaction ¢.

v, M, o, A, H, ¢, (I'),.;) gives the data of an A-quantum vector bundle over M.
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Definition 4.1. The tupel (v, M, 0, A, H, ¢, (I',),c;) is said to be an A-quantum
vector bundle with coordinate system (I,),.,, if the following conditions hold:

(i) The sequence 0 — .4 5 V" is exact.

(ii) The algebras #(U) and " (U) are unitary for U < U, open.

(iii) Let the sheaf morphisms Iy, : M |y,~u, #,A = M|y,~u, #« A be defined by
(F'e)o=T)g" ('), where U = U,nU, open. Then one can find linear
mappings 7,,.: H - M(UNU,), 1,k €l such that the following equations

hold:
Fw(f#D)=0u(f), feM,UccU, (59)
(M )y=Mm®id)°(id® (rg'""e1,,) @ id)°(id ® ),
UcU~nU,. (60)

Remark 4.2. Equation (60) can also be written in the form

rl\',l(f#lg) = Zf‘[l,x(g(— l)) ® g(O)’ (61)

)
where fe #/(U),ge Aand U <« U nU,NnU,.

Remark 4.3. The tupel (v", 4,0, A, H, @, (I'),c;) should better be defined as
a quantum vector bundle with coordinate system similarly like in the case of
quantum principal bundles (see Definition 3.1). Quantum vector bundles were
equivalence classes of quantum vector bundles with coordinate system. But this
procedure does not give new aspects, and the technical details are analogous to the
ones in the definition of quantum principal bundles.

The transition function 7, are not independent from each other.
Proposition 4.4. The linear mappings
T, H—> MUNU), nLkel
form an H-cocycle in M over (U)),;.
Proof. This can be shown exactly like in Proposition 3.12. O

We state the next theorem but postpone the proof till we introduce noncom-
mutative associated bundles.

Theorem 4.5. Let (7)) c1x: be an H-cocycle in M, and ¢: A - H® A a left
coaction on the quadratic algebra A. Further suppose that the mappings
o HX M|y, — M|y, are actions and the cocycles 1: Hx H — M(U,) are trivial,
that means 1(h, 1) = ¢(h) ¢(I) for 1, h, | € H. Then there exists a quantum vector bundle
which has A as its typical fibre, H as its structure group and the t,, as transition
functions.

Classical vector bundles are natural examples of quantum vector bundles as
will be shown in the following.

Let n: E - M be a real vector bundle of dimension n over the topological
space M, where the structure group G < Gl(n, R) is compact. Now define the
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following objects®:

(i) A is the sheaf of continuous bounded C-functions on M.
(ii) 7 is the sheaf on M defined by

U - v (U), Uc M open,
il > ¥ (%), V < Uc M open.

Here ¥"(U) is the algebra of complex continuous bounded functions on
7~ }Y(U) and ¥ (i}) the restriction from =~ Y(U) to n~ (V).
(i) o is the sheaf morphism

kM -V,
np: MU) > ¥V (U), froforly, Uc M.

(iv) A is the quadratic algebra of complex polynomials in n variables x, ..., x,,
where the x; are the coordinate projections of R”. Further let 4 be the
x-Fréchet algebra of complex continuous functions on IR”. Then A4 lies
densely in A.

(v) G gives the (topological) Hopf algebra H of continuous functions on G.

(vi) @ is dual to the action G x R" — R”, that means ¢ is the coaction

A->HQ®A,
S Y fi- 1y ®fioy = ((a, v) = f(av)).

)

(vii) Let (U,),.; be an open covering of M such that trivialisations
,: Ely, > U, xR" exist. These induce sheaf isomorphisms

Ty, ® A - ¥y,
S®g— (f®9) ¥y,

where ge A, fe #(U), and U < U, open.
Obviously the above defined objects give rise to the following example.

Example 4.6. The tupel(V", M, o, A, H, ¢,(I',),c;) is a quantum vector bundle over M.

Example 4.7. Let ./ be an arbitrary quantum space over M, H a Hopf algebra, and
A a quadratic H-left comodule algebra with coaction ¢. Then

V=M A,
o:M -V, f—fR1,
gives a trivial quantum vector bundle (v, M4, o, A, H, o, (id)).

4.2. Associated Quantum Vector Bundles

One of the most important tools in the geometry of fibre bundles are the associated
vector bundles. They are used in physics as well. More precisely do material fields live

3 Here we use a slight topological generalisation of our concept, but don’t want to go deeper in the
subject at the moment.
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in vector bundles which are associated to a principal bundle describing the gauge
transformations. Because of their importance in geometry and physics we want to
translate associated vector bundles to the quantum language. To find the right
definition we will first examine the classical analogon and then dualise the classical
objects and relations.

In classical geometry one first forms the cartesian product P x V, where P is
a principal bundle over a topological space M and V a vector space on which the
structure group G of the principal bundle acts from the left. Now

(PxV)xG - PxV
((a,v),9) ¥ (ag, 9™ 'v), aeP, veV, geG (62)

defines a right G-action on P x V.

In the noncommutative case we have a quantum principal bundle £ over
M with coaction ¢: 2 — 2 ® H, a quadratic algebra A and a left coaction
¢:A - H® A. The left coaction is supposed to be a morphism of algebras. Now
one can construct a morphism of sheaves of complex vector spaces
Y: AP - AR ® H by

f®g = Yu(f®g) = Z f(0)®g(0)®(s_lﬁ—1))g(1), (63)
X0
where fe 4, g€ #(U) and U = M open. Furthermore we used the notation
$@) =Y 90 ®9gay and o(f) =Y fi- 1, ® fo)- (64)
(9) )

Y is the noncommutative analogon to the above G-action on Px V.

Lemmad48. yy: AQ P(U) > A® P(U)® H is aright H-coactionfor alU ¢ M
open, that is

(id @ A) oYy = Wy ® id)° Y, (65)
([d®id® e)oyy = id. (66)
Proof. Let us first show Eq. (65). On the one hand the relation
Wy ®id)oyu(f®9)
=Wv®id) Y fo®9o®E ™ fi-1)da)

f) (9

= Y fo®9a®E " fi-1) 90 ® (S fi-2) 9 (67)
@

is true. On the other hand we have with the flip operator t
AT fi-1ygm) = A7 fi-1)- 4901y
=((7'® 57t A(fi- 1) 49
=" fi-n® S fi-2) (91 ® 92))- (68)
Altogether this gives
Wy ®id)oYyy (f®9 = Y. fi0,®9oy® A4S~ fi-1,9a1y)

()@

=(d @ MYu(f/® 9). (69)
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The relation (66) is a consequence of
([dRid® &)Yy (f®9) =(e-ST'®idRiId® ) (¢ ® ) (f® g)
=E®id®id®e(p® P (f®9)
=f®g. (70)
This proves the lemma. O

In the theory of commutative fibre bundles one defines an equivalence relation
~ on PxV by

(a,v) ~ (b, w) < (a,v) = (bg, g~ 'w), ge€G. (71)

The equivalence classes of this equivalence relation form a vector bundle E over M,
the associated vector bundle.

_ Wewant to dualise this. A function fe €(P x V) is said to be lifted by a function
fe¥b(E), if fop = f for the canonical projection p: Px V — E. f can be lifted or
regarded as a function on the vector bundle E if and only if foralla e #,v e V, and
g €gq,

flag, g™ " v) = f(a,v). (72)
In the language of quantum principal bundle this means that the element
[=Y/®ficARPU), UcM (73)

can be regarded as an element of the associated quantum principal bundle if and
only if

Yy (Zﬁ ®f,~’> =i®fi®1 (74)

Therefore we define for all U < M open,
7 (U) = {Zﬁ ®fie AQ 2(U): aﬁu(Zﬁ ®f,-’> =[i®fi® 1}.

Remark 4.9. ¥ (U) is the cotensor product of A and 2(U) over H, in signs
v'(U)=A0x2(U). (75)
Theorem 4.10. Let us set
Y (U)=AOx2U),
V(ig) =ids® "%/]
for V < U < M open. This gives a sheaf of associative algebras over M, where the
multiplicationm: ¥ (U) ® ¥"(U) — ¥"(U) is defined by f-g = Y., ; fi9; ® figi, with
[=(Z,/i®f), 9= (Zi g;®¢gj)e V" (U). So ¥ becomes a quantum space.

Proof. 1t is obvious that ¥~ is a subsheaf of the sheaf 4 ® 2 of complex vector
spaces. Therefore we only have to show

‘l’U(Zfigj ®f.~’g}> =2/i9;i®figi® 1. (76)
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We get with the universal property of the tensor product:

Yy (Zf,-gj ®fi'{1}) =Y Y f0Yi0®fodio
iJ

i, J ()9, (). (g)
@S gi- ) fi- ) fimdia

=) X <Z > ﬁ(O)!lj(O)@ff(O)g}(m)

J g)g) \ i ()

® (5‘191_(_ 1))((S—Iﬁ(—l))f:{(l))g;‘(l)
=) X <Zfigj(0) ®figio® (S~ gj- 1093’(1))

7 e \
=)/9;®fig;i®1. (77)

i
O

The quantum space ¥~ will turn out to be a quantum vector bundle. We are going
to prove this and want to find appropriate local trivialisations. Let % = (U)),; be
an open covering of M such that the given quantum principal bundle
(P, M, 0, H,(Q,),e,) is locally trivial over # and the 7, are transition functions.
According to Proposition 3.12 the family (z,,),.; is an H-cocycle in .4. Now the
morphisms of sheaves with values in the category of complex vector spaces

Fﬁ«///‘u, #IA d A®9|U,a
S®g i (1o(Q®id)(id ® ¢))(f® g)
=Zg(0)®(9.(f#g(—n))
(€))

can be defined, where the crossed product /#|y, #, A is given by the weak action
o,: Hx M)y, — M|y, the normal cocycle1: Hx H — 4 (U,) and the left H-coac-
tion ¢: A - H ® Ain the sense of Theorem B.6. The I', are the local trivialisations
we are looking for. Before we can prove this, some general statements about the
I', have to be made.

Lemma 4.11. For all U < M open,

(1) (I')y is a morphism of algebras with unit,
(@ii) Im(I")y = ¥ (U).

Proof. We only show the lemma for the case of a trivial cocyclei1: Hx H — 4 (U)).
The general case goes with the same argument but requires a lot more writing. Let
f,.f'e #(U)and g, g’ € A. Then i) is a consequence of the following two equations:

r(fep(S®@aN=>T(f9-0vf ®4gnd)

@

=1 <Z (Q(f9-2S" #9-1)9(-1) ® o) 920)))

(9)

= T<Z Q(f#9-1) 2 (f #9(-1) ® g(O)QEO)))

(9)
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= T(Z Q(f#9-1) ® 90) (R (f #gi-1)) ® 920)))

(9)

=TI (f®g9 I(f®g) (78)
ri@)=01e1). (79)
As the inverse S~ ! of the antipode S satisfies the relation
Y ST 9) 9y = £9) 1, (80)
(
one gets .
Yol (f®g) =) V(9o ® Q(f#9(-1))
(9)
=Y 90 ® Q([#9-3)® S g-1)) Y(-2
(9)
=Y 90y ® Q(f#9(-2) ® &(g(- 1)1
(9)
= 9oy ® Q(f#9-1)®1
(9)
=y (f®9)® 1 (81)
This entails (ii). O

Now T, can be considered as a mapping I',: 4|y, #,A — ¥"|y,. Next we need an
inverse of this I',. Define

C1:A®91U, - «%|U, #.4,
(f®9)— ([d® )2 )9 ®f
=(d®c®id)° ("' ®id)o1(f® g).
Then the equation
LoT(f®g)=(id ® ¢ ® id)o(Q ® id)° (2 ®id)>(id ® ¢)(f® g)
=([dQ@c®id)°(id® ¢)(f®g)

=f®yg, (82)
is true and therefore
{,oT, =id. (83)
If we further set P,=T°{,: A® 2|y, > A ® 2|y,, Eq. (83) implies
P,= PP, (84)

that means (P,)y is a projection onto Im(I')y. Finally only Im(P,)y = #"(U) has to
be shown for U < U, open.
From now on we must assume 1(h, [) = ¢(h) ¢(I) 1 for all h, [ € H.

Lemma 4.12. A ® #(U), U < U, is an H-bimodule, if the left and right action are
defined as follows:

() Hx(A®2U))->AQ2(),
(hf®g) —h (f®g)=/®Q(1#h)g),
(A®2(U))xH—->A®2(U),

W f@ah —(f®g)h=r® G2 #h)
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Proof. The proof is done by an easy calculation. O
Now we have all the necessary tools to show the main proposition.
Proposition 4.13. For all 1€ 1,
Iy, #.4 > 7y,
fe®g— wZ)g«» R Q(f#9-1)
is an isomorphism of sheaves of algebras. The restriction of the sheaf morphism

Cer@glU, - ﬂ|u, #1A5
(f®9 — ([d®)®L N ®f

to V|, gives the inverse of I,. Furthermore for all 1,k € I,
I Yoo Mo (f®9) = Cve (Mo (f® 9)

=Zf'11,l\(g(—l))®g(0)’ f@geﬂ#,A (85)
)

Proof. Because of Eq. (84) it suffices to show
Im(P)y =7 (U), UcU, (86)

for the proof of the first part of the proposition. The elements fe A, ge #(U),
h € H satisfy the equation

Y(f®Qg#h) = Z Joy® Q(g#h1) ®(S™ lf(— ) he) (87)
o)t
according to the definition of . As also

P(f® Q(g#h)
=T (¢(h)g ®f)
=Y fo ® (M Qg#,-1)). (88)

0
is true, Eq. (80) and the right action in Lemma 4.12 imply the following relation:

Y Pi(fioy ® Qg #h) (57" fi-1y) hzy)
), (h)

=Y (fioy® Qg#f- 1)) ((S™' fi=2))h)

)

= ;f(o)®(9,(g#f(—n)Q.(l#(S“' (-2))Q(1#h))
o

= (;)fw) ® (Qg# (fi- )™ fi-2) QL #h))

= UZ)f«» ® (g #e(fi-1) DR(1#h))

=f® Q(g#h). (89)
For} fi®gie A® Z(U) assume w(zifi ®g;) = ij,-’ ®g;® h;. As Q, is a sheaf
morphism (87) and (89) entail P, having the property

LPS;®g) =21 ®g: (90)
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Soif ¥ /i ® gi€ ¥'(U), Eq. (90) gives
ZPl(fi®gi)=ZR(fJ{®g;')'hj=Zﬁ®gi- o1

Therefore Im(P,)y = v (U).
Equation (85) is a direct consequence of the definition of the I, {, and the
transition functions 1, .. Explicitly the relation (41) gives

CIue M (f®9) =Y ([d®e) 2 o 2(f® g-1) ® gooy

(9)
= Zf T,x(G-1) ® J(0)- 92)
(9)
Quod erat demonstrandum. O

Now we get the desired result.

Corollary 4.14. Let A be a quadratic algebra, ¢ a left H-coaction and ? an
A-quantum principal bundle over ./, where the trivialisations are defined by actions
o, HX M|y, > M|y, and trivial cocycles 1:HxH — M(U,). Then the tupel
(v, M, 0, A, H, ,(I),c1), gives an A-quantum vector bundle with transition func-
tions 1, ., 1, K € I, where ¥", T, are constructed like above, and Q is defined by

o: M -V
f=1®e()).
Proof. 1t only has to be shown that g is well-defined. Now
“ole(fNN)=0(N)®L, fedU), UcM 93)
implies
YI®ea(f)=1Q(/)® 1, %4
and that proofs g being welldefined. O

Now the proof of Theorem 4.5 can be given.

Proof (Theorem 4.5). For the H-cocycle (1, ).« 1x; CONstruct a quantum princi-
pal bundle according to Theorem 3.14. Corollary 4.14 provides the quantum vector
bundle we are looking for. O

4.3. Differential Calculus

In this section we want to define a differential calculus and connections on
quantum principal and quantum vector bundles.

First we generalise the concept of a differential calculus over an algebra [24, 23]
to quantum spaces.

Definition 4.15. Let /4 be a quantum space, 2 a bimodule sheaf over M and
d: M — 2 a sheaf morphism.(2, d) is said to be a differential calculus over 4, if for
allf,ge M (U), U c M the following conditions are satisfied:

(i) d(f9) = (df)g + f(dg).
(i) Every element w e 2(U) has the form

w = Z fkdglu
k=1

where fi, gi€ M(U), k=1, ... ,n,neN.
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If we assume to have a quantum principal bundle 0— .# % 2 and
differential calculi over .# and £, the question is in which sense the differential
calculi fit together.

Definition 4.16. Let 0 — # 5 2 be a quantum principal bundle, (2', d') a differen-
tial calculus over M and (2, d) a differential calculus over 2. (2, d) is said to induce
(2, d), if there exists a sheaf morphism 9, : 2’ — 2 over @ such that the diagram

0O — #4 S 2

a| |a

0 — 9 — 9

Qs

commutes with exact horizontal lines.
The morphism o determines the morphism g, in a certain sense. To see this
choose fi,fi € #4(U),U c M open, k =1, ... ,n. Then

o £ hdn)= 3 athrdeisp ©9)

This equation can be taken to define a morphism g,,.
Theorem 4.17. Let (2, d) be a differential calculus over a quantum principal bundle
P. If the pair (2',d') is defined by

2'(U) = { i o(fi)do(fi)e2U): fi,fre L(U), k=1, ... ,n,ne]N}
k=1

' =dlyn°0
one receives a differential calculus (2, d') over M, which is induced by the morphism
0y:9 -9
(@)v:2'(U)—>2(U)

T elh)de(f) = 3. etf)de(s.

Proof. Obvious by the above considerations. O

In the following let (U,),.; be a trivialisation covering of £2. Further assume the
cocyclesi: Hx H — (U) being trivial and the o, : H x 4|y, — My, being actions.
For an open U < U, the equations 9, = 2|y, and d,(f#,9) = d° Q,(f#.9),
fe#(U), ge H define a differential calculus on .#|y, #,H such that d,(f#,1)
= d'(f) for fe #(U) and

d(f#.9) =d(f) 21 #.9) + o(f) dQ(1#.g). (96)

Now we would like to give attention to the inverse problem and suppose there is
a differential calculus (Dy, d) on the Hopf algebra H and a differential calculus
(2',,d’) on 4. Assuming the following consistency condition we will construct
a differential calculus (25, d) on £.
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o (Consistency Condition)
The actions o, : Hx M |y, — My, satisfy the equation

Z (9(1)'1ﬁc)d'(g(2)',ﬂ) =0 97

(g1 <k<n

forall ge H, if ¥} _, fid fi = 0 with f,, fr e #4(U), U < U, open.
This consistency condition guarantees the existence of an action

a:HXZ 4y, — @//IU,,

<g, z fkdfk) = Z (g(l)'rﬁc)d’(g(Z)'tfl:)'

@, <k<n

Lemma 4.18. Define for U ¢ M open:
25(U) = (9°(U)),,

(25U)), =2 ,UnU)@H® #(U,nU)Q Dy.
Then 2%(U) is a bimodule over
Po(U)= @ AU,NnU)# H.
1el

The left and right actions are given by
(f®9P@®g + ®b) =) f(gu) d®gd +1gay ) ®@Gab) (98)

9

@®g+ RSN ®g)= ) algn, f)®gng +f(b-1)f)® (o 9g), (99

9).(b)
where f, '€ M(U,NU), 9,9 € H,ae 2 ,UnU)and b e Dy.
Proof. The following two equations
(S"®g)N®P@®g +f ®b) =} ([0 ))®I»9a®g +f ®b)
@
Z S9N (92901) @) ® 9(3) 929’

9),(g")
+ 91y G2 90)f) ® ((9(3,92) " b)s
(100)

(f"®g)NN(f®9a®g + [ ®b))
=(f"®g") <Zf(g(l)'a) ® 99 +f(9ayf)® (9(2)'b)>

(9)

= Z Sy (f9y @) ® 92929

9.9")

+ 1790y (FGay f) ® ((9292))* b)
Y G0y NG90y @) @ 93092y

). ")

+f”(g?1) 'f)((g&)g(l)) fH® (9392 b), (101)
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prove
(@9 N®g)a®g +/®b)=(/"®g)N/®ga®g +[ ®Db). (102
The rest is shown similarly. O

In the next step we will provide the derivation operator d.
d:2° > 23U), d=Y d,
& MU ADVEH > (@Y,
J#g - df®@g+f®dy.

The operator d satisfies the Leibniz rule:

d(fRINf ®9)) =Y d(fg)f)® 9 9)

9)

= Z @(f Gy SN ® g +f90)f) ®dg)9)

(@)

=2 (@ Ny f) +fdGay ) ® 99

9)
+ /9oy f) ®((d92)) 9’ + 92)(dg)), (103)
@M ®J)+ (RS ®7))
=)@ fR®g+fRdg(f ®J)+(f®9PUESf ®g +f ®dyg)

(9)

=Y NG, N ®9nd +flgu, ) ®dgu)y

)
+fdGgay ) ® g9 +1ga)y ) ® gzy(dg'). (104)

Now we have to show that every e=Y;_, ad b, ® ¢, + a; @ b dc;, with
ay, ay, b€ MU, NU), ¢, by, ci, € H has the form

e= ¥ fidf (105)
=1

with f}, f € #4(UNU,)# H. But this is an easy consequence from

n

e= ) Y (@®ce)d(S™ au b)®1) + (@@ b)d1®ck),  (106)

k=1 (¢)

where we have used that the antipode is bijective.
The 2(U)-bimodule 2,(U ) has to be defined. According to Eq. (49) the algebra
P(U) can be regarded as a subalgebra of 2,(U). Therefore we set

D4U) = B,Mod{‘; df,:Y fie ?(U))} c 2%(U), (107)

el 1

which means that 2,(U) is the (U )-left module generated by ¥, , d, f,. Because of
the Leibniz rule 2,(U) is a 2(U)-right module as well. Furthermore the relation

O« <k;fkd’f:i> =2 2 gy (f))®1+0, (108)

k=11€el



Quantum Groups on Fibre Bundles 305

with fi, fr € #M(U), 1 <k <n,neN gives a well-defined morphism ¢, : 2’ —» 2.
Then

9*< ilﬁd/f£> = ¥ Y (REDAEL, (%), (109)
k= k=1
and the diagram

0o — #

a| |a
0 — 9 &4 9
commutes. It still has to be shown that the lower sequence is exact. But this is

obvious remembering Eq. (108) and the properties of the restriction mappings. We
subsume our results in the following theorem.

Theorem 4.19. Let H be a Hopf algebra with differential calculus (Dy, d). Further let
(2’4, d') be a differential calculus on the base quantum space # . Then every quantum
principal bundle 2 which fulfills the consistency condition has a differential calculus
(24, d) induced by (2',,d").

Finally the concept of connections on a quantum principal bundle shall be
explained. It is still assumed the differential calculi (2',,d’) and (2, d) being
induced by 0: 2, - 2,. Denote by 4 ,(P) (resp A ,(2)) the basis subalgebra
(resp. basis subsheaf) of differential forms on 2, i.e.

A(2?) = Im((0x)u) and o ,(P) = Im(0y). (110)

Then &7, = ,Mod(< ,(2)) is the sheaf of horizontal differential forms on £ or in
other words is the #-submodule sheaf generated by o7 ,(2).

The motivation for this comes out of commutative geometry, where the basis
subalgebra of differential forms and the sheaf of horizontal forms are defined in an
analogous way (compare Greub, Halperin, Vanstone [9]). Now if the sheaf o7, has
a complementary sheaf <7, in Z,, we say that 7, defines a connection on Z.

Definition 4.20. A quantum principal bundle is said to have a connection, if the

sequence
0> Ay > Dy > Dyl — 0

splits. In that case the connection is a module sheaf </, such that D5 = <4, ® <, gives
the splitting.

Remark 4.21. Locally connections always exist, but it is not obvious whether they
can be glued together. In the classical case of principal bundles over paracompact
manifolds this is possible as one has an appropriate partition of unity.

5. Noncommutative Instanton Models
5.1. A g-Deformed Space Time
In the following we will construct a quantum space .#, which is a deformation of

the sheaf of continuous functions on the 4-sphere. This quantum space will be
important for the definition of the noncommutative instanton models and can
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be regarded as a noncommutative space time over the classical euclidean back-
ground S*.
Let us first introduce some notation.

M =S§* (space time),
M=S83x[-1,1] (enlarged space time),
=(0,0,0,0,1) (north pole of $%),
P=(0,0,0,0, —1) (south pole of %),
U, =S*\{SP} (northern hemisphere of S%),
U, =S*\{NP} (southern hemisphere of §%).

Let £ be the locally constant sheaf on S* with objects in the algebra SU,(2), & be
the sheaf of continuous, bounded and complex valued functions on the interval
[ — 1, 1] such that the condition

fx)=0 (111)

forfe Z(U), U = [ —1,1] open and x € { — 1, 1} is fulfilled.

Before we start with the explicit and somewhat technical construction let us
give some motivation and interpretation. The sheaf £ is being regarded as the
g-deformed spatial part of the classical background space time M = S*, the sheaf
Z as the undeformed time part. It is not possible to directly build a sheaf .# out of
% and Z. First the tensor product of Z and Z is formed which gives a sheaf .Z on
the cylinder M. In the next step S3 x { — 1} (resp. S® x {1}) are glued together to the
north pole (resp. south pole) of M. The gluing is carried over to the local algebras of
the sheaf ./#, where it gives the desired .#. Altogether one could say that ./ is
g-deformed in the horizontal direction and undeformed in the vertical direction.

Now for the construction of ./ take W, W' < S*and V, V' < [ — 1, 1] open.
Define

MY xW):=RV)® ZW),

M iysly) =yl =@ (112)
As the V x W form a basis of the topology of M, we get a uniquely defined sheaf

M on M = §*x[ — 1,1]. Let us now make precise what we mean by “gluing.”
Mathematically this is nothing other than the projection

n:S3x[—1,1] —» §4,
(15 s Yah 1) > (ST =12y, o ST =1y, 7).
This projection has an inverse on $° x ] — 1, 1[, namely
Y:S*\{NP,SP} - $*x]— 1,1,

1
(X1, --e 5 Xs5) > (ﬁ(xu ,x4),x5).
— X5

This mirrors the fact that the 4-sphere without the north and south pole is
topologically equivalent to the cylinder S*x ] — 1, 1[. Now set

MWU) = M(n~(U)) = AWY(U)) (113)
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for U < S*\{NP,SP} = U, nU,. To find the right definition for #(U),if NP e U
or SP e U, let us first have a look at the sheaf of continuous bounded functions on
the sphere S*. Each such function f defined on the northern hemisphere U, can
uniquely be written in the form

f=frea + 2, (114)

where f.a€€(U), f(NP)=0 and ze C. Furthermore the set of continuous
bounded and complex-valued functions on U; whose value at the north pole
vanish can be identified with the (topological) tensor product
%(S3)® Z(] — 1, 1[). Therefore the set of complex continuous bounded functions
on the northern hemisphere U, is isomorphic to (4(S>)® Z(] - 1,1[))® C. U,
satisfies an analogous result. The above considerations suggest to set

MUY= A(S**x]-1,1])@C=.4x""(U,)®C,
MU,) = HS*x[- LIS C= A" "(Uy)®C. (115)
Furthermore we define
MU):= Arn""U)®C, (116)

where U ¢ M and either NPeU or SPeU. The restriction morphisms
0 MU) > M(V),V < Uc M are given by the following definition.

e Let U,V =« M\{NP,SP} and fe #(U) = 4 (y(U)). Then define
o (f) =i (117)

e Let U = M and V < U, where either NPe U or SPe U, and fe #(U).
With the representation [ = f,.q + Z, frea € A (n~'(U)), z € C define

rU(f) = PO frea) + 2. (113)

For a basis of the topology of M we have defined local algebras .#(U) and
restriction morphisms such that over the basis of the topology the sheaf axioms are
satisfied. Therefore we get a sheaf # over M, which we call the g-deformed space
time over the backgroud S*.

Proposition 5.1. The g-deformed space time is a quantum space.
5.2. The g-Deformed Instanton Models

The base quantum space of the g-deformed instanton models is the quantum space
in Proposition 5.1.
Let us introduce some more notation:

Vo={xeS*:xs>a} with —1<a<l,
oV ={xeS*: x5 <b}with —1<b< 1.
Now we can define the mappings t.,.: SU,(2) » #(U,nU,) for 1,k = 1,2 by

() = e 1,
12,2(h) = ¢(h) 1,
T},Z(h) = h ® 1’

1) =Sh®1,
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where we used h € SU,(2) and the relation #/(U;nU,)=SU,2® Z(] —1,1[)
(see (113) and (112)). The following lemma is obvious.

Lemma 5.2. (t\), <.« <2 is a SU,(2)-cocycle in M over (U),_, ,.

Remark 5.3. If ¢ =1 (that means in the commutative case) we can write for
heSU,(2)=FSUQ2),xeU,nU,:

1 () = h(1) = h(11,1(x)),
72.2(M)(x) = h(1) = h(n2,2(x)),
T1,2(M ) = h(n,,2(x)),

21 () = hin,1(x)) = h(n73(x)),

where the 17,,.: U,nU, — SU(2), 1,k = 1, 2 are classical transition functions given
by
(X1, o5 Xs) > Ny 1 (Xq, e, Xs) =1,

(xl, ...,xs) — 112,2(.7(31, e ,x5)= 1,

(xl9 .--,X5) 'l")(yh oo ,yS)
=y 2(X, ., Xs) = ()/1 * l.y2 IRE + ly4>
Ya+iya y1—1y:
(X1, ooe s Xs) > M2 1 (Xq5 .00, Xs5) = '71_.12(3‘1, ey Xs).

In the following we need SU,(2)-actions on the quantum space #(U,),1 = 1, 2. The
quantum group SU,(2) acts trivially on .#(U,):

@)y :SU()x M4(U) - M(U), U < U, open

(h,f) = h-2f = e(h) f.

The family ((22)u)v < v, gives a sheaf morphism a} : SU,(2) x M|y, = M |y,. Now
define functions

(1) :SU,Q)x #({U) - M(U), U < U, open
(hf)— hf
by the following procedure:

o IfU =n(Vx]ab[)withV < S*open, —1 <a < b <1,Eqgs.(112)and (113)
prove A (U) = SU,(2) ® Z(]a, b[). In this case define for h,fe SU,(2), re
Z(]a, b[):

h(f®r)= (a{)u(h,f® r) = Z h(l)f(Sh(Z)) ®r. (119)
()

o If U =V, withc > — 1, Eq. (116) implies #(U) = SU,(2) ® Z(1c, 1[) ® C.

In that case define for h, fe SU,(2), r € Z(]c, 1[), ze C:

hei(f@r+2z)=0Nulhf®r+2) =) hyyf(Sha)@r + z (120)

(h)
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The mappings («})y are SU,(2)-actions on .#(U). Furthermore the diagram

SUQ® AU) 2 4U)

id ® iy iy
S%@@#W)IT’JW)

commutes for all U < U open with U, U € # and
B = {n(V x]a, b[), V. € Pot(M):
VcS*open, —1<a<b=<l,c> —1}.

As 4 is a basis of the open sets in U, we get a sheaf morphism aj : SU,(2) x 4|y, —
M |y,, whose components are actions.

Now we can construct the smash products |y, #,;SU,(2) and /|y,
# 2 SU,(2) with the actions ol and o). Next we will show that the noncommutative
coordinate changes

Q =m®id)(id®), ®id)°(id ® A).
MU NU,)#,SU (2 - MU, nU,)#,.5U,(_2)
are morphisms of algebras. Let 1 = 1, k = 2. Then Q, has the form

2 (f® N#h) =Y (f hay®r) #hea), (121)

(h)

where h, fe SU,(2) and r e Z(] — 1, 1[). But that is exactly the form the morphism
¢ in Theorem B.5 has, if we let u,, u, e Hom(SU,(2), #(U)) be defined by:

u(h)=h®1, heSU,2),
u (h) =¢e(h)1, heSULQ2).

The quantum space ., the SU,(2)-cocycle (z.); <, <> and the actions a,
1 = 1, 2 fulfill the conditions of Theorem 3.14. Therefore we get a unique quantum
principal bundle
('@19 ﬂ, Qla SUq(z)’ (Uz)te{l,Z})

with transition functions (t!,), <, . <, and call it the instanton model for the index
k = 1. In the case ¢ = 1 we get the undeformed instanton model with index 1.
The instanton model for the index k = 0 is the trivial one:

(2°, M, M, 0° SU,(2))
that means 2° = # ® SU,(2) and
M - 2°
f=(N)=f®1, fed(U), UcM.
Let us subsume the results in a theorem.
Theorem 5.4. The q-deformed instanton models
(P, M, M, 0%, SU (2))

with index k = 0, 1 are noncommutative quantum principal bundles, which turn into
the classical ones for q = 1.
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But there exist g-deformed instanton models for all k € Z. To see that consider
the mappings:
ul, ub e Hom(SU,(2), #(U,nU,)), keZ,

which are defined for all ne N by

U'i(h)=%h(1)' v they® 1, heSU,(2),
ws(h)y=¢e(M1®1, heSU,(2),
uy "(h) = u5(h), heSU,(2),
us "(h) = u o S(h), heSU,2).
Then for all ke Z:
wrust=1=ubxurk. (122)

Let us construct actions o} : SU,(2) X M|y, — M|y, with the u} and the following
recipe:

e If U=V,c> —1, #4(U) has the form SU,(2)® Z(]c,1])® C and we
define for h,fe SU,(2), re Z(]c,1]) and ze C:
hy(f®r+2) =@y f®r +2) =) ui(hq))(f® uz *(hy) + 2. (123)
(h)
o If U=,V,d<1, #(U) has the form SU,(2)® Z([ — 1,d[)@® C and we
define for h, fe SU,(2), re Z(]c,1]) and ze C:
hoo(f@r +2) = (B)uh f®r + 2) = Y th(ha)) (f® rur*(hy) + 2. (124)
(h)
e Butif U=mn(V x]a,b[)with V = S3open, —1 <a<b <1, #(U)has the
form SU,(2) ® Z(Ja, b[) and we set for h,fe SU,(2) and r € Z(Ja, b[):

h(f®r) =@l fOr) = Eh: u (hy) (f ® r)uz “(hez)), (125)
(h)
h(f®r)= (a’é)v(h,f® r)= Z “g(h(l))(f® r)u‘_k(h(z)). (126)

()
Altogether this provides sheaf morphisms
i SUQx My, — My,
o SUQ)% M)y, > My,
whose components (¥)y, U < U, 1=1,2 are weak actions by Theorem B.4.
Furthermore Theorem B.4 gives normal cocycles1: SU,(2) x SU,(2) — #(U,) and
crossed products #(U,) #,SU,(2).

Finally we have to find transition functions which lead to quantum principal
bundles. Theorem B.5 in the appendix gives a hint. If we define
™ :SUL(2) » M(U,nU,) for ,x = 1, 2 by

™ () = e(h)1, heSU,Q2),

5 ,(h) = e(h)1, heSU,(2),

T’i.z(h) = z u’i (h(l))ul—k(h(Z)), he SU,((2),
(h)

t50(h) =Y ub(ha)us “(hey),  heSULQ2),

(h)
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Theorem B.5 shows the mappings
Qf =m®id)°(id !, @ id)°(id ® A):
MU NUR)#,SU2) » MU nU,)#,.SU,(2)
being homomorphisms. Now by 3.14 the following is true.

Theorem 5.5. For every index k € Z there exists a quantum principal bundle 2* over
the q-deformed space time M and with structure quantum group SU ,(2) such that the
above defined ¥, are its transition functions. This quantum principal bundle is the
q-deformed instanton model for the index k. If ¢ = 1 the q-deformed instanton model
turns into the SU(2)-principal fibre bundle with index k.

A. Sheaf Theory

Sheaves provide the natural mathematical language to switch from the local to the
global and vice versa. Only the definition of sheaves and their morphisms are given.
For further details see the literature, for example Tennison [21] or Mac Lane,
Moerdijk [16].

Every topological space M gives rise to the category ), of open sets in M. Its
morphisms are the inclusion maps iy : V — U, u +— u, where V < U = M open.
Furthermore a continuous mapping F: M — N between topological spaces de-
fines a contravariant functor f ' : Ty — 7, by

U f"YU), UeO0bj(Ty),
iy > V0, V,UeObj(Zy), V < U.
Definition A.1. Let M be a topological space, and A~ a subcategory of the category
of sets. Then a contravariant functor
9 . g-M -> A

is called a presheaf of A -objects over M. The elements of the set 4(U) with U ¢ M
open are the sections of 4 over U. % is called a sheaf of A -objects over M, if the
following conditions are satisfied for each open covering (U,),; of an open set U = M:

@) If s, s’ e9(U) and
G0,(5) = 90,(5), (127)

foralliel, thens =5
(i) Let (s,),c; be a family of sections s, € 4(U)), such that for all 1,k € I

Gy v 8) =% (50)- (128)
Then there exists a uniquely defined s € 4(U), which fulfills the relation
Guls)=s,
foralliel.

The language of sheaves provides for an abstract characterisation of local function
algebras. Important examples are given by the sheaf €y, (resp. €ag, €, Opn) of
continuous (resp. differentiable, analytical, holomorphic) functions on a topolo-
gical space (resp. differentiable, real analytic, complex manifold) M.
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Definition A.2. Let f: M — N be a continuous mapping between topological spaces,
and let
G: Ty > A

G Iy

be sheaves over M resp. N with objects in the category A . A morphism of sheaves
from % to ¥’ over f is given by a morphism of functors

F Y - Gof 1,

If f: M > N is a continuous mapping, the pull back f*:%y — %) gives an
example of a morphism of sheaves.

B. Crossed Products and Smash Products

Crossed products and smash products serve to define a multiplication on the tensor
product of a Hopf algebra and an algebra. Most of the definitions and theorems are
given according to Blattner, Cohen and Montgomery [2]. All algebras are sup-
posed to have a unit.

Definition B.1. Let H be a Hopf algebra and A an algebra over the field k. A weak
H-action on A is a bilinear mapping

HxA - A
(h,a) — h-a,
such that for all he H and a,b € A:
(i) h-ab =3 (h) a)(h)b),

(h)
(i) h-1=¢h)-1,
(i) 1-a=a.
An H-action on A is given by a weak action fulfilling the condition
(iv) h-(I-a) = (hl)-a
forallh,le Hand ae A.

Theorem B.2. Let the Hopf algebra H weakly coact on the algebra A. Furthermore
let 0: Hx H — A be a mapping which satisfies:

(i) (normality condition)
o(l,h)=a(h,1) =¢(h) forall he H.
(i) (cocycle condition)

Y (hayallay, may) a(hey, Layme,)
), (D, (m)

= Z G'(h“), l“))o'(h(z)l(z),m) fOr all h, I, meH.
(h), ()
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(i1) (twisted module condition)
Y. (hay- Uy @) o(hey, L)
(h), (D)

= Z O'(h(l), 1(1))(]7(2) 1(2)'(1) for all h,lEH, aeA.
(h), (1)

Then the equation
@@hb) =) alhy ba(hy, ) ® ha)le (129)
X0

gives a multiplication on A ® H, which defines an algebra A# ,H called a crossed
product with unity 1 ® 1. The elements a ® h of A# ,H are sometimes written in the
form a#h.

Proof. See Blattner et al. [2], Corollary 4.6. O

Example B.3. Let the Hopf algebra H act on the algebra A. The bilinear mapping
6:HxH — A shall be trivial, which means that for all h, le H

a(h, ) = ¢e(h)e()1.

Then the assumptions of Theorem B.2 are satisfied and the crossed product A# ,H is
defined. We call it the smash product of H and A and simply write A#H. The
multiplication on the smash product is given by

@#h)b#1) =Y alhyy-b) #hayl, (a#h),(b#]) e A#H. (130)
(h)

Theorem B.4. Let H weakly act on A. Suppose the weak action is defined by an
element of the convolution algebra Hom(H, A), i.e. there exists an invertible element
ue Hom(H, A) with u(1) = 1 such that for allhe H,ae A

h-a=Y u(hg)au™(hy)). (131)
)
Define the bilinear mapping 6 : Hx H — A by
O'(h, 1) = Z u(h(l))u(l(l))u_l(h(z)l(z)). (132)
). ()

Then o is a normal cocycle fulfilling the twisted module condition. Therefore the
assumptions of Theorem B.2 are satisfied and the crossed product A#,H exists.

Proof. See Blattner et al. [2], Example 4.11. O

Theorem B.S. Let u,, u, € Hom(H, A) be invertible and u,(1) = u,(1) = 1. For each
i€ 1,2 define the weak H-action

a,:HxA - A

(hya) = h-a =Y uhgy)au; ' (he).
(h)

Further construct the bilinear mappings
ogi:HxH — A

(h, 1) = oi(h,]) = Z ui(h(l))ui(l(l))ui-1(h(2)l(2))
(h), (1)
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and the crossed products A#, H and A# , H according to Theorem B.4. Then the
linear mapping

O:A#, H— A#, H
(a#h) — Y auy(hay)uz '(ho) #h,
(h)

is a morphism of algebras with unit.
Proof. See Proposition 1.19, Theorem 5.3 and Corollary 5.4 in Blattner et al.
(2] O

Suppose we are given a Hopf algebra H acting on an algebra B and an
H-comodule algebra A4 with coaction ¢: A - H® A. Then define a bilinear
mapping

m:(B® A)x(B® A) — (B® A)

(f®9(f®9)—(fRg (f®g)
=Y 1)® g9

@

on the tensor product B® A. An easy calculation shows m being associative.
Additionally we have for (f® g), (/' ® g') € (B® A)

1®)(f®9)=(f®9)
(f®g)1e)=(®J) (133)
This proves the first part of the following theorem.

Theorem B.6. Suppose the Hopf algebra H acts on the algebra B and A is an
H-comodule algebra. Then the mapping

m:(B® A)x(B® A) — (B® A)
(f®9,(f®9)—(fR®Rg (f®g)
= fG-1S)® 909
(9)

turns the vector space B ® A into an algebra with unit 1 ® 1. This algebra is called
the smash product of B and A and will be notated by B# A. If H acts only weakly on
B and o : Hx H— B is a normal cocycle fulfilling the twisted module condition, the
term

m:(B® A)x(B® A) - (BX® A)

(f®9),(f®9)—(f®g)(f®F)
= Y fG-21)0Gc-1)9-1) ® g0y 90)

9).(9")

defines an algebra structure on B® A with unit 1 ® 1. The algebra defined in this
way is called a crossed product and will be written B#, A.

Proof. The first part has been shown above, the second one can be proven by an
analog argument. 0

Note added in proof. After having submitted this paper I received a preprint of the
paper [4] by T. Brzezinski and S. Majid which is concerned with a similar matter.
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