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Abstract: We study the time evolution of the support of a vortex patch evolving
in M2 according to the Euler Equation for an incompressible fluid and we bound its
growth. Furthermore we discuss the same problem in the framework of a simplified
model. Finally we consider a similar problem for the Navier-Stokes flow.

1. Introduction

In this paper we study the behavior of a non-viscous incompressible fluid in R2.
In particular we consider the so-called vortex patch, that is a system in which the
vorticity ω(x,0) is proportional to the characteristic function χ of a region Λo:

ω(x, 0) = aχ(Λ0) α 6 M. (1.1)

We suppose that initially Λo has a bounded diameter 2R0. Then we evolve the
vorticity by means of the Euler Equations: ω(x,0) —> ω(x,t). As it is well known
ω{x,t) has the form:

. (1.2)

Denote by 2Rt the diameter of Λt. We want to control its growth in time. This
problem is interesting both for theoretical reasons, to understand deeply the dynamical
behavior of the Euler equation and for applied ones (see for instance pollution
problems).

In the present paper we want to find α, b for which we have:

Rt < (Rl

0

/a + bt)a for t > 0. (1.3)

It is trivial to observe that the boundedness of the velocity of the flow particles
assures that Eq. (1.3) holds with a = 1; however this bound is very bad and not so
interesting. We want to improve this estimate. We observe that the main part of the
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vorticity remains in a bounded region (as consequence of stability results for circular
vortex patch, see [WaP85, MaP85, Dri88]), but thin filaments have a complicate
motion and may be pushed away. On a particle of the extreme part of the filament
mainly act two fields: the first is due to the vorticity near the center, the second is
due to the vorticity contained in a region close to the particle. The first one is easily
controlled and gives a velocity field less than a constant times R~[2. The second is
more complicated as we shall see later. In any case, also if we neglect the last term,
we cannot obtain a bound better than

d constant

JtR^-W~' ( L 4 )

which implies Eq. (1.3) with a = ^. This seems the optimal estimate that we can find

using the general argument only. In the present paper we prove exactly this bound.
This result is valid for any initial configuration. For particular initial data the

bound on Rt might be better. Actually different parts of the vortex patch could turn
around with different speeds so that a sort of homogenization happens asymptotically
in time. As a consequence, the radial velocity decreases in time faster as the circular
symmetry is reached. Moreover, when a particle of a filament is far from the center
of vorticity, it moves slowly, so that the freedom degrees of particles near the center
are "fast variables" for it. Their action can be averaged on a large interval of time.
This is a further effect of homogenization (temporal homogenization). An example of
this effect arises in the so-called Kirchhoff ellipse (see the appendix). In conclusion,
if the homogenization happens, it is natural to suppose that a <C | . We believe that
the main part of the initial condition gives rise to some homogenization, but it is very
difficult to prove it and to exclude that some "resonant" situation could happen for
which bound (1.3), with a — | , is the best possible. In the next section we obtain
bounds valid for any initial data and we do not take care of this interesting but difficult
phenomenon. In Sect. 3 we discuss a simplified model more easy to investigate that
exhibits this homogenization effect. For numerical pictures see [Dri89] and references
quoted therein.

Finally in Sect. 4 we study the problem for a Navier-Stokes flow. In this case
the viscosity produces an immediate diffusion and the vorticity has an unbounded
support. However we can study the growth of a region out of which the vorticity
mass is exponentially negligible. We find a bound analogous to that obtained in the
pure diffusive case.

2. Euler Flow

Consider an incompressible non-viscous fluid of unitary density moving in R2. The
Euler Equation in term of the vorticity reads:

dtω(x, t) + (u VMx, t) = 0, (2.1)

V u(x, t) = 0, (2.2)

ω = curlu = dxu2 — d2u{ , ω(x, t) = ω0 , x Ξ (x 1 ?x 2) G R2 . (2.3)

Here u — (uι,u2) denotes the velocity field.
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If u decays at infinity, as we suppose in this paper, we can reconstruct the velocity
field by means of ω as

f
u(xΛ t) = / K(x - y)ω(x11) dy , (2.4)

K = V±G(x), (2.5)

where

V-1 = (0 2 ,-d,) (2.6)

and

G(x) = - - ? - In |x | . (2.7)
2π

As well known, Eq. (2.1) means that the vorticity is constant along the particle
paths, which are the characteristic of the Euler Equation. Therefore

ω(x, t) = ω(xo(x, - t ) , 0), (2.8)

where the trajectory x(xo,t) of the fluid particle initially in x0 satisfies:

x(xQ, t) = u(x(x0, t), t), x(x0,0) = xQ, (2.9)

u(x,t)= K(x-y)ω(x,f)dy. (2.10)

We want to study the Euler Equation when the initial data have the form

, α e l (2.11)

and χ(Λ0) denotes the characteristic function of i 0 c I 2 . Then we need a weak
formulation of Eqs. (2.1), (2.2), (2.3) which is given by Eqs. (2.8), (2.9), (2.10) or by
the equivalent form

^ t t (2.12)

where / is a smooth function and

ωt[f]= ( f(x)ω{x,t)dx. (2.13)

In conclusion

, (2.14)

where Λt is the time evolution of Λo by Eqs. (2.9), (2.10), i.e.

χ(xQ,t)eAt iff χoeλo. (2.15)

As well known the Lebesgue measure of Λt is equal to the measure of Λo. (For the
standard results on the Euler Equation see, for instance, [MaP94]).

We prove the following result:

Theorem 2.1. Suppose that
(2.16)
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where Σ(R) in the circle with center in the origin and radius R. Then for any a > ^
there is a constant b > 0 such that

Λt C Σ(Rt) (2.17)

with
Rt < (Rl

0

/a + bt)a for t > 0. (2.18)

(Of course the sharpest bound is obtained when a = ^.)
The technique of the proof is inspired to the papers [Mar88, MaP92], developed

however in a different context.
The strategy of the proof is the following: we find an upper bound for the radial

component of the velocity field ur computed in a point x such that \x\ = Rt. In
particular we prove that

\ur\ < R^β (2.19)

(from now on C denotes a positive constant). Then

dt t - ι y }

This differential inequality implies Eq. (2.18) with

a = — . (2.21)

We remark that the bound (2.18) becomes more sharp as a decreases (i.e. β

increases). So a must be as small as possible. We shall see that for a = ^ (i.e.

β = 1) the proof is quite simple, while the general case is more inolved.

Proof for a = ^

From now on for simplicity we suppose a = 1 and measylo = 1.
We write

X X f X f
ur — —- - u(x, t) — —- - I K(x - y)ω(x, t)dy = —Γ / K(x - y)dy . (2.22)

\x\ \x\ J x\ J
Λt

Hence

K(x-y)dy

Λt

We divide the integration domain Λt into two sets:

(2.23)

Π Λt (2.24)
\ ^ /

and
^ Λ t (2.25)

(where Σc is the complement of Σ). Then

Jκ(x-y)dy = J + J. (2.26)
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The first integral is easily evaluated by using the obvious inequality

\K(x)\ < C\x\~ι .

Hence

K(x - y) dyI

(2.27)

(2.28)

To evaluate the second integral we observe that a bound on it is obtained considering
the integral performed on a circular domain centered on x and with area equal to
meas AΊ:

K{x - y) dy h-y)dy

2π η

where

πη2 — meas A2 => η =
meas AΊ

(2.29)

(2.30)

We denote by mt(r) the vorticity out of Σ(r) at time t. Then we use the fact that
the quantity

= / CJ(X, t)x2 dx (moment of inertea) (2.31)

is conserved during the motion (as can be verified by direct computation).
We have trivially

I > r2mt(r) (2.32)

which implies

mt(r) < Cr - 2 (2.33)

R

1
(2.34)

Observing that mΛ — ) = measA2, inserting Eq. (2.33) in Eq. (2.29), from

Eq. (2.23) we have

that is Eq. (2.19) with β = 1 (i.e. a = i ) . D

Proof of Theorem 2.1. Define

rt = (Rl + b{t]

where bγ shall be fixed later.

Let ΐ* > 0 a time such that for any t, 0 < t < t*9 the inequality Rt < rt holds.

(£* is surely larger than zero for bx large because of the boundness of the velocity

field). Then we prove in \x\ = rt a bound like (2.19) with β — 2 with β — 2 and

so a bound like (2.18) with a = | with the same bx. In the proof ^ is obtained

independent of £*. Hence t* •—> oo and the theorem is proved for b = b}.

(2.35)
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To evaluate the radial velocity field in x, \x\ = rv we divide the circle Σ(rt) into
many different annulii:

(ak) - Σ(ak_x)] U [Σ(rt) - Σ(ak*)],
k=\

where

fc* is such that α f c*+ 1 < rt and ak*+2 > rt

(2.36)

(2.37)

The radial velocity in x in given by Eq. (2.22). It can be expressed by the sum of
the contributions obtained when the vorticity is contained in each annulus:

/ K(x - y) dy

[Σ(ak)-Σ(ak_O]nΛt

1 K(x)dy

[Σ{ak)-Σ(ak_ι)]ΠΛt

X

Tϊ [K(x-y)-K(x)]dy. (2.38)

[Σ(ak)-Σ(ak_{)]nΛt

The first term in the right-hand side of Eq. (2.38) vanishes because of x K{x) = 0.
Moreover, by the explicit form of K(x), we have

\K(x -y)- K(x)\ < C 7 if < 7

Hence

rt(rt - 7)

[K(x -y)- K(x)] dy

(2.39)

<C

[Σ(.ak)-Σ{.ak_ι)]nΛt

ak I dy

[Σ{ak)-Σ{ak_ι)]fλAt

(by estimate (2.33))

C C

We put Eq. (2.40) into Eq. (2.38) and we have

Σ
k=\

I K(x - y) dy c
k*

^,2 / > γ.2
>t ,k=l

(2.40)

(2.41)

It remains to evaluate the integral (2.22) in the domain [Σ(rt) — Σ(ak*)] Π Λt. It
is easy to do in the region in which the integrand is bounded. In fact its contribution
is smaller than CV^2, as it follows from estimate (2.33) which reads

Cakl, (2.42)
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v
and the obvious observation that αfc* > —. When the integrand becomes unbounded

we need a more accurate estimate on mt(ak*). To evaluate mt(ak*) at time t, we
prove that it depends on mt(ak* — Ro) at a time before and so on, starting an iterative
procedure. More precisely we introduce a function WR G O^OR2), r —> WR(r)
depending only on |r|, not increasing in \r\,

1 if \r\ < R

0 if \r\>R-
WR(r)= Λ .Γ [ Z „ . r, , (2-43)

and such that for some Cλ > 0,

\VWR(r)\ < Cλ , (2.44)

' ' ( 2 . 4 5 )

Then we define a smooth version of mt(R):

f
μt(R) = 1 - / M^β(x)α;(.τ,t)dτ. (2.46)

Hence, using the Euler equation (2.12), we have:

7 />

— μt(R) = - / ώ φ , έ)
(26 y

= — dx dy VWR(x) • K(x — y) (by the antisymmetry of K)
j j

Λι At

= ~ I dx ί dy [VWR(x) - VWR(y)\ K(x - y). (2.47)

At At

We want to estimate this term for R = nR0, n > 1. We divide the integration
domain into the following sets:

= {

if

= {

if

= {

if

= {

if

[z, y)

h <

[x, y)

h =

h <

{x, y)
h -

eΛtxΛt

k,

e Λt x At xS

k

eΛtxΛt yί

k,

eΛtxΛt

k.
yί

I Σ(IIRQ),

t Σ(nR0),

t Σ(nR0),

ί Σ(nR0),

y

y

X

X

e

i

G

i

lΣ(ah)

% * - .

\Σ(ah)

Σ(.ak_i

—

)}

-

)}

Σ(ah

Σ(ah

_l)J}

(2.48)

(2.49)

(2.50)

(2.51)

where ah are defined in Eq. (2.37).
We choose k such that ak+] < nR0 and ak+2 > nR0.

k

Notice that the integrand in Eq. (2.47) vanishes in the complement of (J (Th USh).
h=\

Thanks to the identity VWnHϋ(x) K(x) = 0 and the fact that VWnRo(y) = 0
if y e [Σ(ah) - ΣXtt^])], /ι < A;, the contribution on the integral (2.47) due to Th,
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h < k is bounded by

1

2
j dx J dy VWnRQ(x) [K(x -y)- K(y)]

< (by (2.44), the fact that VWnRo(x) = 0 if \x\ < nR0 and inequality (2.39))

2h

(nR0)
2

mt(nR0)

[mt(Σ(ah)) - mt(i;(oΛ_i))]fnt(nΛ0) < (by (2.33))<C

<C

To estimate the contribution due to Γfc, we use the obvious inequality
Cl^l" 1 , Eq. (2.45) and the bound

\{VWR(x) - VWR(y)} K(x -y)\<C,

and we obtain that it is smaller than

, mt(nR0)C
(nR0)

,2 '

(2.52)

(2.53)

(2.54)

In conclusion, let A3 = \J Th, then
h=\

j dx dy [VWnRa{x) - VWnRo(y)] • K(x - y)

<C
mt(nRQ)

(nR0)
2

h=[

, mt(nR0)

(nR0)
2

(2.55)

The terms due to [j Sh can be handed exactly in the same way. Hence
h=\

We observe now that trivially

mt(nR0) < μt((n - l)R0).

Hence the identity

t

/
I

dτ — μT(nR0)

o

gives, by Eqs. (2.56), (2.57),

(2.56)

(2.57)

(2.58)

μt(
τ

nRQ)<cJ dτ
μt((n - l)R0)

(nR0)
2

(2.59)

because μo(nRQ) = 0 for n > 1.
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We are now able to apply an iterative procedure.

We start from n — 2k ~ι — 1 and we arrive at 1. We apply many times Eq. (2.59)
and then Eq. (2.57). We have

mt(ak*)<—^j. (2.60)

Since
t < r3

tb~3 (2.61)

and
rt<Cn, (2.62)

using the Stirling formula

Inn! > n ( l n n - 1) (2.63)

we have

'"" ' U < Cnb7n . (2.64)

We choose bλ large enough (independently of n) to obtain

mt(ak*) < Cnb~n < C2n~4 . (2.65)

We have so obtained an accurate bound on mt(ak*). To evaluate the radial field in
x, |x| = rt, due to the vorticity out of Σ(ak*) we use the same technique of Eq. (2.29)
and we prove that it is smaller than

C3(ak*Γ2 < C4r^2 . (2.66)

In conclusion adding estimate (2.41) to estimate (2.66), we obtain that the radial
velocity field in x, \x\ = rt is smaller than

^ (2.67)

with C independent of bx and C4 decreasing as b1 increases. Equation (2.67) gives a

bound like (2.18) with a = | and b = 3(C -h C4). So we can choose b{ large such

that bλ > 3(C + C4), and then Rt < rt for any time. D

In Theorem 2.1 b depends, of course, on the initial conditions. It is natural to prove
that b —•> 0 as the initial vortex patch becomes circular. More precisely:

Theorem 2.3. Let b defined by Eq. (2.18). Then

b -> 0 as I -> Io , (2.68)

where I is the moment of inertia defined by Eq. (2.18) and Io = (2π)~ι is the moment
of inertia of a circular vortex patch of unitary mass.

Proof. The proof is based on an improvement of the bound (2.33).
With fixed mt(r), we observe that the configuration which gives a minimal / is the

following: Λo is the sum of two regions, the first consisting of an annulus of interior
radius r and area rat(r), the second one consisting in a circle of area 1 — mt(r). Then

Π r2

f r3dr + 2π fI>2π f r3dr + 2π f r3dr, (2.69)
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where rγ and r 2 are defined by the relations

2π rdr = mt{r),

r

2π rdr=l - mt

Hence

(r).

l - m t ( r )

2π

(2.70)

(2.71)

and so

m t(r) <

(2.72)

(2.73)

Obviously r > Ro > (π)" 1 / 2 and so that bound (2.33) holds with a constant vanishing
as / —> /0. Since this bound appears as a multiplicative factor in all the later steps, b
also vanishes as / I o . D

Remark. Until now we have considered ω0 of the form of a characteristic function of
a set but all the previous considerations apply without any change if ω0 is a generic
bounded function of definite sign with a compact support.

3. A Simplified Model

In the previous section we have neglected completely the effects of the homoge-
nization. The nonlinear nature of the model makes it very difficult to take them into
account. To simplify the problem we can introduce some new, more tractable, models,
that are schematic approximations of the vortex patch dynamics and which exhibit
the homogenization effects. We discuss briefly one of them:

U J ? O U Ξ O , (3.2)

where Σ is the circle of radius —= and
/

Ωn = I x e -Ί= < \x\ < f(θ) > (ρ, θ) = polar coordinates , (3.3)
Vπ )

f(θ) being a smooth periodic function such that f(θ) > —=. Finally Ξo is a compact
set. vπ

We assume that the initial vorticity ω0 evolves in ωt,

ωt = χ(Λt) (3.5)
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and At is obtained from Λo by the following rules: a point of Σ ( —=. ) U Ωo moves

/ \ VvWi
according the velocity field produced by Σl —= alone, while Ξo evolves in the

/ i \ \V*J
velocity field produced by Σ —= U Ωo but not by itself.

VvW

Of course this model is a first order approximation for Ωo and ΞQ small of the

stationary solution Λo — Σ ( —=
y

We can easily prove that this model exhibits the property of spatial homogenization,
as we show briefly. In particular we find a bound on the growth of Rt:
Theorem 3.1. Suppose

Λ o C Σ Oϊo), (3.6)

then Λt

ΛtcΣ(Rt), (3.7)

where
Rt < (R3

0 + 61n(l + £))1 / 3 t > 0. (3.8)

Proof. We only sketch the proof. We evaluate the radial velocity field in the point
x, \x\ = Rt. We prove that it is smaller than Cf~ι. Then Eq. (3.8) follows from the
integration of the differential inequality (2.20).

The main observation for the proof is the following: points of ΩQ with different
ρ move with different angular velocity. In fact the angular velocity 7 of a point of
radial coordinate ρ is

7 = ^ . (3-9)

Hence during the motion points with different ρ have different phases and this fact
makes it rise to a spatial homogenization.

More precisely, we put ourselves in a reference frame turning around the origin

with an angular velocity ^ We denote by

( 3 1 0 )

we divide the interval (£ m a x , 0) in N disjoint intervals In = (6n, bn_ι) such that each
point in In has made n— 1 turns and not n turns. We study the size of In. We compute
the angular velocity 7 corresponding to extremal points bn and bn__{. We have

2π
Ί(bn)=τn, (3.11)

7(&n-l)= γ ( n - l ) . (3 1 2 )

Hence

( 3 1 3 )

In In the angular velocity changes linearly up to a correction of order £~2, so that
the size of In is of the order of t~ι.

Moreover it is easy to see that the particles with ρ G In are uniformly distributed
in the corresponding annulus up to a correction of the order t~ι. Of course a circular
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distribution cannot produce a radial velocity field. Then the radial velocity field
produced by the particles with ρ £ In on a particle in x, \x\ = Rt can be bounded

where μ(/n) is the measure of the set of Ωo corresponding to ρ G / n , which is constant
during the motion because the velocity field is divergence-free.

By summing on n, we have

— Rf<—~ . (3.15)
dt ι ~ R\ 1 + t

Hence, by integration of this differential inequality, we obtain Eq. (3.8). D

We do not know if bound (3.8) is the best possible in this model. In fact we
have not fully used the temporal homogenization, when we have neglected an overall
angular motion. To take into account this temporal homogenization effect we need to
consider the sign of the radial velocity variable in time and this is a difficult task.
However we notice that for practical purposes bound (3.8) is undistinguishable from
a constant bound. Moreover this model, perhaps useful for intermediate times, falls
surely asymptotically in time, when the nonlinear effect may become relevant.

4. Navier-Stokes Flow

In this section we study the time evolution in R2 of a vortex patch, when the
viscosity is present. In this case the Euler equation (2.12) modifies in the Navier-
Stokes equation:

j^tUλ = ωt([u V/] + vωt[Δf] v > 0. (4.1)

Obviously, adding a viscosity term the asymptotic in time behavior of the fluid
changes drastically. In fact the fluid diffuses immediately in the whole plane and
so an equivalent of Theorem 2.1 is meaningless. However we can study the region
Σ(rt) in which the main part of the vorticity is concentrated and bounds its growth
in time (that is the equivalent of Theorem 2.3). More precisely we want to find for
which a > 0 we have

m t ( r t ) < C e x p [ - 7 r £ ] 7,6 > 0 ,

if rt > Cta t > 0.

(Of course the bound is sharper as a is smaller.) For the Stokes equation (when the
transport term ωt(\u V/] is absent) the problem is easily solved by the explicit

solution and we find that the inequality (4.2) holds for any a > | . In this section
we prove that we obtain the same result when we consider the whole Navier-Stokes
equation:

Theorem 4.1. Suppose that

( 4 3 )

with
ΛocΣ(Ro) R0>0. (4.4)
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Then for any ot> \, 0 < <5 < 2 - a~ι we have

f 7 > 0 if rt > Cta ,

519

(4.5)

where mt(r) denotes the vorticity mass at time t out of a circle of radius r and the
fluid evolves according to the Navier-Stokes Equation (4.1).

Proof The proof is based on the following result:

Lemma 4.1. Define

In(t)= I dx\x\2nω(x,t). (4.6)

Then

and hence

= 0

(n\)H

if n = 0

if n > 1.

k=\
[(n-/c)!]2/c! '

(4.7)

(4.8)

Proof of the Lemma. The inequality (4.7) can be proved by direct computation. In
fact, using Eq. (4.1), we have:

where

A= I dxω(x,t)u-V\x\2n,

B = u dxω(x,t)Δ\x\2n,

(4.9)

(4.10)

(4.11)

and so the proof of Eq. (4.7) for n = 0 is trivial. For n > 1 we study the two terms
A, B separately. The second one can be explicitly computed, remembering that in
polar coordinates (r, θ) we have: Δf = r~ιdr(rdrf) + r~2dgf. We obtain:

= u(2n)2In_ι(t). (4.12)

Then we study term A, using the expression of the velocity field given by Eq. (2.4)
and the antisymmetry of K,

A= dx dyω(x,t)ω(y,t)K(x - y) • V|x|2n

= \f dx Jdyω(x,t)ω(y,t){Vx\x\2n - Vy|j/|2n} K(x - y)

= n ίdx ίdyω(x,t)ω(y,t){\x\2n-2x - \y\2n~2y} • K(x-y)

= ^ /'dx f dyω(x,t)ω(y,t)[{\x\2n-2 - \y\2n'2} (x + y)- K(x - y)

+ {\χ\2n~2 + \y\2n~2} (χ-y) K(x - y)]. (4.13)
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The last term of the sum vanishes, as we can prove using the explicit form of K:

1 \x y) j^

2π \x-y\2 ' ~ 2 ' ι

Hence

\A\ < — dx dyω(xΛ)ω(vA)\\x\2n~2 — \y\2n~2\ , (4.14)
I 1 ^ — A M f tx \ 1 / \tJ / - ' i l l 1 tP I I I \ ' \ /

where we have used the well-known fact that ω(x, t) remains non-negative during the
motion. Using the identity

n-2

\ χ \ 2 n - 2 - \ y \ 2 n ~ 2 = ( χ - y ) - ( χ + y ) Σ \ x \ 2 n ~ A ~ 2 k \ v \ 2 k n > 2 , ( 4 . 1 5 )
k=0

we have

\A\ < γ \dx ί dyω(x,t)ω(y,t)(\x\2

/

r, Π — 1

dx / dyω(x,t)ω(yit)J2\x

^ k=0

Π— 1

2n~2~2k\y\2k

We observe that for any k G [0, n — 1],

\χ
2n~4~2k\y\2k < \x\2n~2 + \y\2n'2\y\2k < \x\2n~2 + \y\2n'2 (4.17)

(To prove it, it is enough to put \y\ = j\x\ and Eq. (4.17) becomes η2k < 1 -f η2n-2

which is verified for any 7 and 0 < k < n — 1.)
Using Eq. (4.17), Eq. (4.16) gives:

r?2 /" f 2n2

\A\<— dx dyω(x,t)ω(y,t){\x\2n-2 + \y\2n-2} Vn-i© (4.18)
7Γ J J π

Since /0 is constant during the motion, adding Eq. (4.18) to Eq. (4.12), we have proved
Eq. (4.7).

To obtain Eq. (4.8) we integrate Eq. (4.7) n times:

In(t)<In(0) + C

< In(0) + Cn2/n_1(0)t + C2n2{n - I)2 / dt{ ί dt2ln_2(t22n_2(t2)

0 0

(4.9,
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The initial conditions assure that

/n_fc < I0RT'k) > (4-20)

and so the lemma is proved. D

We use the previous lemma to bound mt(rt). In fact by definition (4.6) we have

In(t) > m(rt)r2

t

n , (4.21)

and hence by Eq. (4.8),

We suppose now that t > 1 (otherwise the proof of the theorem is trivial). Then

( 4 2 3 )

where

( " ! ) 2 <4.24>

We choose t > Cr/a. Hence

mt(rt) < CnnMnr
(

t

ι/a~2)n . (4.25)

We bound Mn. The maximum of

= n 2 ( n - l ) 2 . . . ( n - f e + l)2

[(n-k)l]2k\ k\ { }

is reached for k = k* when the term added in the numerator is smaller than fc, that
is the greater k such that

(n - k + I) 2 > k , (4.27)

that is

k* = Integer part of (n + | - [in + | ] 1 / 2 ) > n - C^/n + C . (4.28)

We put Eq. (4.28) into Eq. (2.24), we neglect the term [(n - A;)!]2 and we use the
Stirling formula

en(lnn-l) < n | < n n _

We obtain

j C ^ (4-29)

Putting Eq. (4.29) in Eq. (4.25), we have

mt(rt) < exp{Cn + nInn + C^/nInn + n(a~ι - 2 ) l n r J . (4.30)
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The theorem is proved by choosing

n = Integer part of [Crf] with δ<2-a~ι. D (4.31)

In the previous theorem we have supposed ω0 of the form of a characteristic
function of a set, but the statement and the proof remain unchanged if ωQ is a generic
bounded function of a definite sign with a compact support. On the contrary for
non-compact initial data the statement is similar but the proof changes a little.

Theorem 4.2. Suppose

ωo(x) < Cexp{-Ί\x\δ} , 7,« > 0. (4.32)

Then

mt(rt) < Cexp[-7Vf ] η' > 0 if rt > Cta for any 6' < 6 < 2- - . (4.33)

Proof. The proof follows the lines of the previous one and we sketch it only. We
observe that

Ik(0) = [ dx\x\2kω0(x) < C ί dx\x\2kexp{-j\x\δ}

( 4 3 4 )

where Γ(z) is the gamma function.
From Eq. (4.22) we have

™ (n
 Σ

 ((n _ L.\2(n-k)/δ

! r

We choose

and

t < Cr\/a (4.36)

n « rf , (4.37)

so that

(l/α-2)fc
mt{rt) < C

k=0

We proceed as in the previous theorem. We look for the maximum of the addendum
in the sum which is reached for k = fc*, where k* is the greater k for which:

/ 7 -ι\2 ̂  7 2θ /o — I/O; / ̂  or\\

{n — k -\- \) >_ κrt . (4.39)

We put A:* « n^ and we choose δf so close to δ (this is the more difficult case) that

n « r^ and δ ; < δ < 2 - a~ι imply β < 1.



Bounds on Growth of the Support of a Vortex Patch 523

Hence

mt(rt) < exp < Cn + In ( — - 1 J In rt \ (4.40)

I \° J )

and, by using Eq. (4.37), the proof is achieved. D

AppendixFor the sake of completeness we prove that a fluid particle moving in the velocity field
generated by a Kirchhoff ellipse [Lam32] remains uniformly in time in a bounded
region.

It is well known that a vortex patch with an ellipse shape turns around with
a constant angular velocity 7 without changing its form. We put ourselves in the
reference frame in which the ellipse is at rest. In this frame a test particle moves
under the action of the velocity field produced by the ellipse plus a tangential velocity
of intensity —ηρ\

u = V±φ-V±(\Ίρ
2), (A.I)

where φ is the stream function of the velocity field produced by the ellipse.
It is immediate to verify that the following quantity is conserved during the

motion:

Ψ — \ ΊQ2 — const. (A.2)

Since φ diverge at infinity as In ρ it cannot compensate the quadratic term, and so the
particle remains in bounded regions.
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Note added in proof. As a corollary, in the present paper we have proved that a fluid particle,
initially in x0 and moving via the Euler equation, goes away from the initial position at most:
I \x(t)\ — \xo\ I < constant έ1/3, t > 1. A stronger result is obtained for the model of Section 3:
j \x(t)\ - \XQ\\ < constant [ln(l + t ) 1 / 3 ] , t > 1. Recently Emanuele Caglioti and Carlotta Maffei
in the paper "Asymptotic Behaviour of Vortex Patches: A Case of Confinement", Dipartimento
di Matematica, Universita "La Sapienza", Roma (Italy) Nota Interna 93/22 (1993), Boll. Unione
Matematica Italiana (in press) have studied the model of Section 3 and they have proved the
confinement of the system when f(θ) has a finite number of nondegenerate critical points. A deeper
analysis of the model is in progress by the same authors.
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