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Abstract. The restricted quantum universal enveloping algebra {( (sl,) decomposes
in a canonical way into a direct sum of indecomposable left (or right) ideals. They
are useful for determining the direct summands which occur in the tensor product of
two simple qu(5[2)—m0dules. The indecomposable finite-dimensional qu(s[?_)-modules
are classified and located in the Auslander-Reiten quiver.

1. Introduction

One of the basic problems in the theory of quantum universal enveloping algebras is
to decompose a tensor product of simple modules into a direct sum of indecomposable
ones and hence to elucidate the structure of the corresponding fusion rule algebra.
Although this problem is solved for £ (s,), it might still be interesting to derive the
solution in a new way; at least in principle, the method used here can be generalised
to higher rank quantum universal enveloping algebras. A distinguishing feature is that
neither the quantum Casimir operator nor the R-matrix appears explicitly, nor occurs
any tedious calculation whatever. Then, the finite-dimensional U, (sly)-modules are
classified, partly because there seems to be some interest in that (see [Sm]). Still, at
least the result should be known to the experts and also to some readers of [RT].

In Sect. 2 we set forth the algebra i (sl,) at ¢ = exp(mim/N).

The main issue of Sect. 3 is Theorem 3.7, which states how 4,(s1,) decomposes
into a direct sum of indecomposable left ideals. In due course, several indecomposable
i, (sly)-modules will emerge, among these the modules P,, which have the property
that if

0—-L—-FE—-=P,—0 and 0—-P,—-—F—->M-—0

are short exact sequences of {(sl,)-modules, then P, embeds as a direct summand
into E and into F'. The algebra i (sl,) exemplifies many useful concepts from alge-
bra: the Jacobson radical, Loewy layers, the Cartan matrix, and so on. Furthermore,
U, (sly) nicely illustrates the multiplicity relations pertaining to Frobenius algebras.
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In Sect. 4 we solve the problem mentioned at the beginning of the introduction for
U, (shy). Tt is easy to find out what the composition factors of the tensor product of
two finite-dimensional 4l (sl,)-modules are. If one of the factors in the tensor product
is a module P, , it likewise follows what the indecomposable direct summands of the
tensor product are. These pieces of information suffice to solve the problem.

In Sect. 5 we leave the tensor category of finite-dimensional left U (sl,)-modules
and peer at the abelian category y (,;,)mod of finite-dimensional left {4, (sl,)-modules.
Each module in uqmz)mod is in an essentially unique way a direct sum of indecom-
posable modules in ;. ;mod (Krull-Schmidt theorem). The classification of the latter
modules uses a result of Kronecker’s. In addition to the classification, we deduce the
Auslander-Reiten quiver of ﬂq(5[2) in a nontechnical fashion.

For the reader’s convenience, Sect. A recalls the fundamentals of Auslander-Reiten
theory.

In Sect. B we find the example i (s,) at ¢ = exp(i /4) worked out explicitly.

2. Summary of 4,(slz)
We fix an integer IV > 2 and an integer m such that 2N, m are coprime. This then
determines the primitive 2N root of 1,
mm
= —_ . 2.1
q=exp(TT) @0

U, (sl) is the associative C-algebra ! with 1 generated by K, E, ' and subject to
the relations 2 '

KN =1, EN =0=FV,
KEK-! = ¢’E, KFK-' =g?F, 22)
el
EF-rp=""K_
4—q

This algebra is, in fact, a (quasi-triangular) Hopf algebra, whence the tensor product
L& M :=L®cM of the two i (sl,)-modules L, M again acquires the structure of
a U (sl,)-module (and L& M = M ® L as i, (sl,)-modules). The comultiplication
will be recalled as we will need it, later.

Another piece of notation consists in the introduction of g-numbers: for n € Z put

n __ ,—n
) =1 —9_ 2.3)
q—q
Since m is odd, definitions (2.1) and (2.3) show that
[n+ Nl=—[n]=[-n]. (2.4

As a convention, by ¢ we shall always denote an element in Z/2NZ, which
means that £ + 2N = {. Nonetheless, expressions like, for example, K¢, [0, or

! In order not to bother anyone with ring problems

2 These relations define what is in fact a restricted quantum universal enveloping algebra. In some
respect, it would be more natural to consider an infinite-dimensional algebra generated by K, K~!,
and divided powers of E and F. (Recall that for an algebraic group scheme the appropriate thing
to study is its algebra of distributions, not its Lie algebra.) Even so, the algebra considered here is
a bona fide object in the realm of finite-dimensional algebras
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¢+ 1 = 0(mod N) are well-defined. Another example is given by introducing the

K-eigenvectors
. —h€ grh
(106 = Z q K 9
h€Z/2NZ
such that

Kopy= ¢ K = ’IEW» Epp=¢E, Fo,=¢, ,F. 2.5)
The next lemma is well-known (cf., e. g., [Lu2]) and is basic for what follows.

Lemma 2.1. The 2N? vectors F*K'E® € 4, (s,), where a,b € {0,...,N — 1} and
{ € ZL/2NZ, constitute a vector space basis for 8, (sl,).

Corollary 2.2. U (sl,) = P CF%p,E" as a vector space.
L€Z/2NTZ
a,be{0,....N—1}

3. A Canonical Decomposition of l,(slz) into PIMs

Our aim is to decompose 4 (s[,) into a direct sum of indecomposable left ideals. Such
a decomposition is not unique. However, we shall introduce some favourable gradation
of 4,(sl,) and then require a decomposition into homogeneous indecomposable left
ideals. That decomposition will be shown to exist, and, furthermore, uniqueness will
be saved.

The promised gradation is not far from the decomposition of the adjoint represen-
tation into K-eigenspaces and is given by

N1
)= P Y,6h), .

s=—(N-—1)

where
dsh), == P CFipE".
a—b=s
(EL/2INT
abe{0, ...N—-1}
We say the elements in U (sl,), have height s. Note how K, FE.F respect the
gradation.

The Modules P,. The modules P,, whose definition or construction concerns us
next, turn out to be certain maximal indecomposable left ideals in £ (sl,). We shall
construct these modules step by step, starting with a (left and right) K-eigenvector
of highest height, viz. FN "1y, .

Two special instances of the formula which calculates the commutators [E", F'*]
will be needed (cf. [Lul]):

Es-l Kq—(]—s) o K-lql*s
q—q"
N—1 h—1
EN-IpN-T = Z(nonzero coeff.) FN—I-hpN=I-h H
. q—
h=0 =0

[F,E°] = ~Is]

3.1)

Kqg7-K'¢

— . (32



362 R. Suter

Lemma 3.1. FESFN_Igo( =—[s]l{ + s+ I]ES"‘FN“Icpe for s € Z.
Proof.

FESFN_IQOZ
(2.2) N—1 8;; 1Kq—(lﬁs)‘K_lql‘s N—1
DR B FNp, B (s B o S
2.5
3

2 sl 42— (1= ) B oy PV E (sl s+ 11BN g,
O

We define

modly : Z — {1,...,N},

mody : Z — {0,...,N—1}

such that mod,i\,(h) = h(mod N). Recall that, by our convention, the functions modﬁ
are defined on Z/2NZ as well.

Corollary 3.2. min {s € Z , | FE*FN 'y, =0} = mod},(—¢ - 1),
max {s € Z_y | FESFN"'p, =0} = mody(—¢— 1) .

Thus, the N-dimensional left ideal U, (s1,)FN ', may be represented schematically
as

o q,:=FN-lyp,

1

o FEq,

)

[ ] EZOZZ

1

1 (3.3)

od T (—f—1)—1 .
Emodn( o, =,

o EmINGEDg, =g,

11

1" )
o EN-lg, =5,
Each dot stands for the 1-dimensional subspace spanned by the named vector. Upward
(resp. downward) pointing arrows indicate a nonzero left-multiplication action by F’
(resp. by E). In the diagram pictured above, the single downward pointing arrow does
not appear for £ 4 1 = 0(mod V), as then o, = &, (or, equivalently, 3, = 3,); we
put
Vo =y for /+1=0(mod N). (3.4
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For /+ 1 # 0 (mod ) we have FN_‘ﬂe =0, and 3, can be written as

By = Fry,, (3.5)
for a unique vector v, of the form
Y= > CanpFle E’ withc,,,€C.
a€{0,...,N-2}
h€Z/2NT.
be{0,...,N—1}

Observe that v, and &, lie in the same homogeneous component of £ (s1,) and have
the same left and the same right K-eigenvalues; in particular,

Ky =q ", (3.6)
which also holds for £ + 1 = 0 (mod N).
Lemma 3.3. FE®y, — E°3, = [s][{ — s+ 1] E*" !y, for s € Z_,,.
Proof.

) ) K ~(l—s)_K—l I—s
By = B, R By E s Sy,

3.6

22__3; @4

—[sl—C = (1 = ) By, = [s]16 — s + 11 E* 1y,

[This calculation applies to all values of . For £+ 1 = 0 (mod V) simply notice that
E*B, = 0= E°F~,; but then Lemma 3.3 says the same as Lemma 3.1.] O

Corollary 34. FN-'EN=1v, is a nonzero multiple of &,. In particular, E*~, # 0
forse{0,...,N—-1}.

Let us now illustrate the left ideal U (sly)y, for £+1 % 0 (mod N):

e
1
1
' ﬂ[
!
Yo ® ° 6‘6
w70
TR (3.7)
w70
Op 1= Em(’dgf(e)’ye ° . B@
/!
;/[ = Emod]j\:,(é—rl),yz °
)
11
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It is clear that for s € {0,...,mod,(¢) } the two vectors E®v, and E°@, are linearly
independent.
Now we define P, : for ¢ € Z/2NZ let [cf. (3.7), (3.3) and (3.4)]

P, =4 (sh)y, -

The modules P, and P,, ,; yield the same skeleton-of-dots-and-arrows. That makes
it reasonable to put

P,:=P, .

So we get an involution on the set of modules {P, | ¢ € Z/2NZ}. Another involution,
¢ — ¢, now written on the set of indices Z/2N7Z itself, is defined via the equation
0+ 0= -2

e For /+ 1 # 0(mod N) we set [cf. (3.7)]

Vi=tshey,, V)= (sh)s,,

'S, =Vl +V] S, :=P,/'S G
e V¢ 2> e e 4

and get
P, D 2'S, D2V, DVinV] Do,
P, D 0'S, 2V, 2V;NV] D0

as composition series built from homogeneous submodules, both series with compo-
sition factors isomorphic to S,,S;,S;,S, . The maximal semisimple submodule of P,

is the simple module Vé N Vg, hence P, is indecomposable.

e For £+ 1 =0(mod N) the module P, = P; is a simple left i (sl,)-module. These
modules, St := Py _, and St (= P,y _,), are termed the Steinberg modules. Just in
order to have the correct notation, we put 2'S, := 0 C P, and S, :=P,/2'S,.

The next proposition takes up some of the discussion above.
Proposition 3.5.

e For{+ 1% 0(mod N) we have [cf. (3.7)]

N-1
P, = @ ((CEha[ ® (CEhw) as a vector space,
h=0

and this 2N -dimensional left L[q(5[2)-module is indecomposable.
e For {4+ 1= 0(mod N) we have [cf. (3.3)]

N-1
P, = @ CE"a, as a vector space,
h=0

and this N-dimensional left 4 (sl,)-module is simple.
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The Decomposition.

Lemma 3.6. Right multiplication by E" defines an isomorphism P, — P,E" of left
iU, (sly)-modules for h € {0,...,mody(¢) }.

Proof. We must show that right multiplication by E™~® maps P, injectively onto
P,E™N®  This follows from

EN—ICX( Emod;\,(l) ;é 0 and EN—I,YZ EmodI_V(E) # 0.
The first of these two formulae implies the second, for FN~1EN ~ly, is a nonzero

multiple of @, = E™INEDy,

EN_IOZZ Emodrv(é)
33 EN-IRN-1y, Fmody (0

6.2 N-—1 h—1 Kq_j _K_lqj B
=" " (nonzero coeff.) PN =1 mh NI TT 58— o, ™o

g1
h=0 7=0 qa—4q

2.5) N-1 h—1
@3 Z(nonzero coeff.) FN-I-hpN-1-h <H[€ - j]) @, EmIN©

h=0 3=0
@.5)
22) ~
% (nonzero coeff.) FN-Immody@OpN=l, £Q.
O
Remark [cf. (3.7)]. P, E™INOF! = g (s1,)8; C Py for £+ 1 # 0(mod N).
mod  (£)
Theorem 3.7. i (s,) = & D P,E" as a left U, (sly)-module is the unique
¢€Z/2NT h=0

decomposition of U, (sl,) into a direct sum of homogeneous indecomposable left ideals.

mod , (£) N—1
N
Proof. The sum 5. P,E" (or even Y PeEh) is in fact a direct sum because
h=0 h=0

the summands lie in different right K-eigenspaces. Also, the outer sum is a direct
one: Vj N Vg = Vj/ N Vg/ for £ % (', and U, (sly) is a Frobenius algebra (see below).
A dimension count now shows that we have completely exhausted &, (sl,). This being
established, we also have the stated uniqueness. [J

Thus, we have decomposed i, (sl,) into a direct sum of indecomposable left ideals,
each being isomorphic to P, for some ¢ € Z/2NZ. A left ideal in U, (sl)) which is
isomorphic to P, for some ¢ is called a (left) principal indecomposable module (PIM
for short).

To construct the decomposition of &l (sl,) into homogeneous indecomposable left
ideals, we started with a vector of highest height, produced P,, and shifted P, to
Pth. Of course, we could have started with a vector of lowest height. We would
then construct the left module which contains EV !¢, and whose skeleton-of-dots-
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and-arrows looks like this:

Tl

T

TN\
N1

T.l \ T‘l

N T

Tl

T

Tl

or

!

R. Suter

Finally, we would shift such a module @ to QF" for suitable values of k. By unique-
ness, this procedure then yields the same decomposition of il (s,) into PIMs. From
now on, we shall draw the skeleton-of-dots-and-arrows in a more symmetric fashion.

Here is the diagram for N = 4 [see Sect. B, where the case m = 1 [cf. (2.1)] is
worked out explicitly]:

P,

i

o = N W
3

P,E

P,

7\
L] L]
X u
L L]
X
L] L]

N/

7N\
L] L
it X u
L L]
X
L] L

NS

[

P,E P,E?
.
7N\
L] L] L]
it X i 7N\
L] L] L] L]
X it X1
. L] L] L]
N/ T X!
L[] . L]
N/
L]
.
7N\
L] ° L]
it X it 7N

X it it X1

. o o .
N/ itxX
. . .

N/

St

L
i1

1

[

11

11
A
i

i
it
11

i
i
i

it
ir
i

StE®

i
i
i

i
1T
i1
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Remark. Tt is not an accidental coincidence that each P, occurs with multiplicity
dim$§, (see the remark about the “dimension formula” below).

Some Notions from Algebra. The decomposition of il (sl,) in Theorem 3.7 cor-

responds to a decomposition of 1 € & (sl)) into a sum of primitive orthogonal

idempotents: 1 = Zej , where e e, = 6,,e,, and the adjective “primitive” means
J

that the decomposition cannot be refined. Each e; belongs to some PZE’Z (i.e.,

U (sle; = PZEh), and it turns out that e, is a vector of height 0.

Theorem 3.7 together with the knowledge of the architecture of the PIMs yield
several obvious corollaries. But first we review some terminology from algebra.

Let us dwell on the concept of projectivity. An object P in an abelian category
A is termed projective if the functor Hom 4(P, ) from A to the category of abelian
groups maps short exact sequences to short exact sequences. If we take for A the
category y_,ymod of finite-dimensional left &( (sl;)-modules, the requirement for P

to be projective is the following: for any epimorphism M —— L in dq(sipymod, the

corresponding map Homuq(slz)(P, My Homuq(ﬁh)(P, L) of abelian groups (here,
in fact, complex vector spaces) also has to be surjective (since the Hom-functor is
always left exact, this is already sufficient). In other words: given a homomorphism

P -2 L, there exists a homomorphism ¢ making the diagram

p
Vole

M I L — 0

commutative. In the special case where L = P and ¢ = idp, % is a section of T,
that is, M = kern @ imvy = kerm & P. In this situation, we may, in particular,
choose M to be a finite-dimensional free i (sl,)-module which projects onto P.
Hence projective modules are direct summands of free modules. On the other hand,
this property characterises the projective modules because for a direct summand of
a free module it is clear how to construct a required lift. An injective module is a
module which fulfils the concept dual to that of projectivity.

A projective cover of a module M is a projective module P which projects onto
M (or, more precisely, the epimorphism P — M) and is minimal with respect to
this property. It is then unique up to isomorphism. For example, P, is a projective

cover of S, or of P,/V}; when £+ 1 % 0(mod N), the module £2'S, has P; & P; as
a projective cover. An injective hull of a module is defined via the dual concept.
Recall that the nonsemisimplicity of a finite-dimensional algebra A over an
algebraically closed field is measured by a two-sided ideal: the (Jacobson) radical
J(A), which is always a nilpotent ideal. It is the minimal two-sided ideal such that the
algebra A/J(A) is semisimple, i.e., A/J(A) is a direct sum of full matrix algebras.

modj_\,(é)
Corollary 38. [cf 3.8)). J:=JW (sL)= & @ 9'S,E",
LEZ/2NZ h=0

U6/ I=F,  F=0.

If P = Aeis a PIM, then Ae/J(A)e is a simple left A-module. Ae — Ae/J(A)e
induces a bijection between the set of isomorphism classes of indecomposable
projective modules and that of simple modules.
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Corollary 3.9. For each h = 0,...,N — 2 there are the two (h + 1)-dimensional
modules S, and S, TN and, together with St and St, these 2N modules provide a
nonredundant list for the isomorphism classes of simple { (sl,)-modules.

For a finite-dimensional module M one defines its radical, rad M, as the
intersection of the maximal submodules of M and its socle, soc M, as the sum of the
minimal (i. e., simple) submodules, which is then a semisimple submodule of M.

Corollary 3.10. For £+ 1 # 0(mod N) the Loewy layers of P, look like

P,/radP, = P,/JP, = §, (the head of P,),
radP,/socP, = JP,/J°P, = S; & S;  (the heart of P,),
socP, = JZPE = 5, (the socle of P, ).

It is known (see [LS]) that finite-dimensional Hopf algebras over a field (or, more
generally, over a principal ideal domain) are Frobenius algebras, which means that
the two regular representations are equivalent. (These Frobenius algebras must not
be mistaken for the Frobenius algebras showing up, for example, in [Ma].) The two
regular representations being equivalent, in turn, implies self-injectivity, namely, that
each finite-dimensional module is projective if and only if it is injective. Hence every
short exact sequence of uq(slz)—modules

0—-L—-FEF—-M-—0
splits, that is, £ = L @ M, if L or M is projective.

Remark. The “dimension formula” for Frobenius algebras (for a more precise
statement see [CR, (61.13) or (61.16)]) in our context reads

dimil(sl,) = Y dimP,-dim(P,/radP,).
LEL/2NT

In order not to rely upon the statement made above — that finite-dimensional Hopf
algebras over a field are Frobenius algebras — we may argue as follows. Look at the
vector A = &, = f, = EN"'FN=lyp,, which is a basis for the module soc P .
Since K- A=A, E-A=0,and F'- A =0, it follows that soc P, realises the trivial
representation, that is, the representation afforded by the counit or augmentation ¢ :

X -A=eX)A forall X €U (sl,). (3.9)

Equality (3.9) tells us that A is a left integral in U (sl,). The nonsingular bilinear
form on the dual ilq(s[z)* of the Hopf algebra qu(stz)

®, @) — pg(A)

provides an isomorphism ilq(slz)* = 4, (sly) as left 4 (sl,)-modules (actually, even
as left Hopf modules), showing that f (sl) is a Frobenius algebra. As
dim(P,/rad P)) = 1, the space of left integrals is 1-dimensional — which follows
from dimsoc By = 1 because &l (sl,) is a Frobenius algebra. The subspace CA is thus
a two-sided ideal of il (s,), and the equality A - K = A then shows that A is a
two-sided integral in U, (sly), that is, (3.9) and

A-X =e(X)A forall X €4 (sl) (3.10)

hold. Equation (3.10) follows because there is only one further equivalence class of
1-dimensional representations of [ (s,), which has K acting by —1. Hence &/ (sl,)
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is a unimodular Hopt algebra. Actually, H,(sl,) is an algebra of an even more special
kind, which we shall show in Sect. 5.

Since 4 (s1,) is a Frobenius algebra, decomposing U, (sl,) into right PIMs does not
yield anything essentially new. But what we shall do is to give the decomposition of
i (sl,) into indecomposable two-sided ideals. For this purpose, we have to combine
PIMs into blocks. As we already know the composition factors of the PIMs, this is
immediate (in fact, we needn’t even know that and simply would apply the remark
after Lemma 3.6):

mod y. N () mnd ((

P rE @ P.E"  for (+ 1% 0(modN),
h==0 h=0
N —1

By = P SE".

h=0

N—1
Bg’[ = @ S_[Eh .

h=0

B,

Corollary 3.11. i (sl,) = < @ B ) Bg, <& Bg; is the (unique) decomposition of
=0
the algebra U, (sl,) into indecomposable two-sided ideals.

Corollary 3.12. The Cartan matrix of t,(sl,) (i. e, the matrix whose ((, h)-entry is
dim H()muq(sm(lePf ), which is the same number as the multiplicity with which the

simple module P, [J P, occurs in a composition series of P, ) looks like

2 2
2 2 O

0 1

1

where the row and column indices run over 0,0. ..., I N-2.N—-2.N—-1.2N —1.

Remark. The Cartan matrix above has the form C' = ‘DD for a “decomposition
matrix”

— =
[ESTQ—Y

0

[T
—

0 1

1

It has some connexion with the composition series of the modules V;[ and Vg , which
were defined in (3.8).
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4. Tensor Products

Fact 1. In a finite-dimensional associative C-algebra, each finite-dimensional projec-
tive module is isomorphic to a direct sum of PIMs.

[This follows immediately from the Krull-Schmidt theorem.]

Fact 2. In a Hopf C-algebra H, the tensor product of a finite-dimensional projective
module P with an arbitrary module M is projective.

[On H ® M = H ®: M we have two tensor product structures: the usual one given
by gth@m):=3" 9ah @ ggym (here Ag) = > 91y ® Yz 18 a convenient notation
for the comultiplication A) and the tensor product structure as an induced module
(where M is treated merely as a vector space), namely, g(h ® m) := gh ® m. The
crucial point to note is that these two left H-modules are indeed isomorphic: the two

morphisms given by h ® m —— Yohyy® S(h(2)>m (where S is the antipode) and

h®m s > by ® hgym are two mutually inverse isomorphisms between the two
tensor product structures. Let us compute «vo 3 :

aof(h@m)= hay® S(hm(z)) ham

= Z hg,® S (h(z)(l)>h(2)(2>m by coassociativity

= Z by ® 5<h(2)>m by the antipode axiom
(e is the counit)

= Z by s(h(z)) ®m =h®m by the counit axiom.

A similar computation shows that fo o = id.

According to Fact 1, we may assume without loss of generality that P is a PIM.
So we have to pass from H to a direct summand of H, and it is here that the structure
of M as an H-module comes into play.]

Our aim is to decompose P, ® S, into a direct sum of indecomposable modules.

Facts 1 and 2 show that P, ® S, = P P;Ba’ , where the multiplicities a; remain
JEL/2NZ

to be determined. The computation of the a.’s is just a combinatorial exercise. To

explain this last statement, we recall that the comultiplication is given by

NE)=E®1+KQE,
AF)=FQK '+1®F.

With the first formula, we can compute the dimensions of the left K-eigenspaces.
This knowledge is not sufficient. But the last two formulae show that tensor product
formation is compatible with the height structure. More precisely, we may decompose

P, ® S, as a vector space into a direct sum of subspaces 3,

P,®8, = @(Pz ® Sh)s =P (®), & (S)).,

t+u=s

3 Since £2'S,, is a homogeneous submodule of P, S;, inherits the gradation from P,
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such that E (resp. F) maps (P,®S,,), into (P,®S,),_, (resp. into (P, ®Sh)s+l)
by left or right multiplication. A left K-eigenvalue of highest height determines a
module isomorphic to a PIM which is a direct summand of P, ® S, . We then delete
the corresponding K-eigenvalues and continue splitting off direct summands.

An example may clarify the procedure. Let us compute for N = 5 the tensor prod-
uct P, ® S;. The height-and-left- K -eigenvalue-structures of P, and S;, respectively,
may be pictured as [cf. (3.7), (2.5) and (3.6)]

4

6

8 8 ;
00 and |
22 3
4

6

where a number ¢ stands for a K-eigenvalue ¢*. Now we do the tensor product and
get

1 1
3 3 3 3
55 5 5 5 5 5 5
77 77 7 7 7 7 77 77
99 99 9 9 —- 9 99 99
1 11 11 11 11 11 11 1
3 3 33 33 3 33 3
5 5 55 5 S 5 5
7 7 7 7
9 9

from which we read off that
PSS, =StoP &P, &P, St.

In order to compute P, ® S, in general, we may restrict ourselves to the cases
where the conditions

(L+2NZ)N{0,....,N—=1}#@ and (h+2NZ)n{0,.... N—1}+#o

are both fulfilled. It is because the modules P, and P, = P, (resp. S, and
S, :=S,,, ) differ in their height-and-left- K -eigenvalue-structures by the replace-

ments of each left K-eigenvalue ¢/ with ¢/t = —¢’ only that this reduction is
possible. In other words,

P,©S, =P a8,

! che 4.1)
P®S, =P oS, =P &S,

where the last expression is defined in the obvious way by extending the involution
P, — P, to the set of isomorphism classes of (finite-dimensional projective) modules.
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It is useful to introduce certain quantities: we define o by

{0} = (+2N) UE+2N)) N {0, ,N =1} for (£ 1I
. oL |01 2345678
(e'g"f‘“N‘S' o) |0 1 2 3 4 3 2 1 0)

and put [cf. (3.7), (3.4) and (3.3)]

N-—1

lA’e = @ (CEhoze G}CEhfye) )
h=0

that is, (cf. Proposition 3.5) lA’g = P, for £+ 1 # 0(mod N) but IA’Z = P, P, for
£+ 1 = 0(mod N). Each of the modules P, is 2/N-dimensional.

Proposition 4.1. For “0 < h < <N ” (i.e., 0 < mod;y(h) < mod; () < N) we
have

h
P,®8;, = EB Po—hs) -
=0

For “0 <t <h<N”(ie,0<mod,y®¥) <mod,y(h) < N)we have

P,®S, =P, ®S, &Py ®S, , .

Furthermore,
P,®S,=S,0P,.

Proof. The last part, that is, the commutativity property follows because 13[ ® S,

and S, ® IA’,Z have the same height-and-left- K-eigenvalue-structures. (So we need not
mention quasi-triangularity here.)

Generating functions in y represent the height-and-left- K-eigenvalue-structures 7
for the various modules under consideration in the following way, where we put
x = yq* to abbreviate the notation:

1 — ght!
NS =" g "yt =g for “0 < h < N”,
_ _ _ _ 1 _xﬁ—N+l )
n(Sy) = q‘h + yq_’H'2 +...+ yh‘th = q”h‘ 1—_x—t0r “O<h<N-17,
NPy = (1 +y™M)nSy + 2y V(S for“0<f< N —17,
nPy_p):=2nSy_),
so that
N -1 — xZ—N‘Fl _ 1— xe—)—l
n®)=1+y")g* 0 42yt Nt o for 0< i< N7,
— X — T

and finally
77(1A)2N—1) =1+ y™MnSy_,) -
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Let “0 < h < ¢ < N”. To prove the first formula in the proposition we shall see
that

h
n®Y1(S,) =Yy n @, o)
9=0

for a suitable set of exponents { f, ,(j)|j =0,...,h}. We find

o ,
fen) =5 (0t =h+2j) = € =) .
Now let “0 < £ < h < N”. Then we have
n®) NS, = y" @) (S + 1@y 1S, 1)

which proves the second formula in the proposition. [

Remark. Using Proposition 4.1, we can calculate 1315 ® M, where M is an arbitrary
(finite-dimensional) $f,(sl;)-module. In fact, up to isomorphism the tensor product
remains the same if we replace M by, say, the direct sum of the composition factors
of M.

In the same vein as Proposition 4.1 we prove the next lemma, which amounts to
nothing more than the classical Clebsch-Gordan theorem.
Lemma4.2. For “0<h <{<N”(ie,0<mod,y(h) < mod;y(f) < N)the two
modules [cf. (3.8)]
h

h
S, %S, and D Sy @ B S,y
j=0

J=0 Jj=
“f—h+2j<N” “—h+2)>N”

have the same composition factors, that is, their classes are equal in K (qu(siz)), the
Grothendieck ring of U (sl,).
Corollary 4.3. For “1 </ < N —1” (i.e.,, | <mod,y(¢) < N — 1) we have
S;®8, =8, DSy, ;
furthermore,
So®8, =8, and Sy_,®S, =Py_,.
Proof. The first of the last two formulae is trivial, the second is contained in
Proposition 4.1. By Lemma 4.2 we have
class(S, ® 8;) = class(S,_; ® Syy;) in K (s,)).

As S,_, and S, , belong to different blocks, the equation above implies that
S, @S =S, B8y

Alternatively, from P, — S, we get P, ® §; - S, ® §,, and now we employ
Proposition 4.1. O

Proposition 4.4. The indecomposable direct summands of S, ® S, are either simple
or projective.

Proof. Without loss of generality, we consider the cases “0 < h < £ < N” only.
The standard proof then goes as follows (cf. [GK]): Corollary 4.3 shows that the
modules S, and S, occur as direct summands of suitable tensor powers of S, and
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that Proposition 4.4 holds for h = 1. Now we invoke Fact 2, and the general case
follows. (I

Theorem 4.5. For “0 < h < /£ < N” (i.e, 0 < mod;y(h) < mody(£) < N) we
have

h h
~y
S, ®8, = @ Se_hi2j @ @ | AT
Jj=0 =0
Mo, p(2)=1 He p(J)=2
“O—ht2g<N”

where for j € {0,...,h} we put
W?h(j):z#{je{o,...,h}\a(f—h+23)=a(€—h+2j)} e{1,2}.

Proof. Put Proposition 4.1, Lemma 4.2, and Proposition 4.4 together. O

Now we can compute S, ® §;,, = S, ® S, for all values of £ and h by means of
applying formulae analogous to (4.1).

5. Finite-Dimensional 4, (slz)-Modules

This section deals with the abelian category  (,ymod of finite-dimensional left

uq(s l,)-modules. Here we have to consider the representation theories for each block
of ,(sl,). The blocks By, and Bg — both isomorphic to Mat(N x N, C) — deserve no
further comment.

For almost the rest of this section we fix £ such that £+ 1 # 0(mod N).

An Equivalent Category. We begin investigating the category Bzmod of finite-
dimensional left B,-modules. Recall that P, and P; represent the two types of PIMs
for B, = B;. Put

B = Bndy, (P, @ P;) = Endg, (P @ P;) .

The algebra B°P is the opposite algebra (i.e., the multiplication is reversed) of B. It
is a standard fact — known as Morita theory — that the categories 5,mod and zpmod
are equivalent. In fact, we may view P, ® P; as a B,-B°-bimodule; the vector space
Homyg z(PZ @ P;,B,) then becomes a B°P-B,-bimodule, and the functors

HomBg(Pe &) PZvBlz)@Bg : Bemod — gopmod ,
(P, ®P)®pop : gpmod — p mod
provide an equivalence of abelian categories Blmod ~ gopmod. The algebra B is

the basic algebra of B, ; every simple (left) B°°-module is 1-dimensional.
We shall describe the algebra B explicitly. In matrix notation B may be written as

Homg, (P, P;) Homg (P, Py) /-
Homyg (P, P,) is generated as a vector space by the two IB,-homomorphisms given

by [see (3.7)] v, — 7, (i.e., idp) and 7, — &,, whereas Homg (P,,P;) is the
vector space generated by the two IB,-homomorphisms given by € : v, — 4; and
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f: 7, — ag. Similarly, we have Homg, (P;, P,) = Ce & Cf, where & : ~; — ¥, and

f : «; — a,. The algebra B is thus the 8-dimensional C-algebra generated by

= i - 0 O

27 = (1de 0 ; ZZ = . )
0 0 0 1sz
0 0 0 e

= =(en) o)
00 f

F .=<f 0) | 0) |

Besides the obvious relations among the elements of B defined above, the identities
FE = EF and FE = EF follow from fe = &f and fé = ef. Moreover, we have
EE = FF = EE = FF = 0. Note that the three elements ZZ, E + E, and F + F
already generate 53 as an algebra with 1.

Look at the inclusions for classes of finite-dimensional algebras

T m

i [0
TN TN
o O O

{self-injective algebras} O {Frobenius algebras} D {symmetric algebras} .

The first two types of algebras were defined in Sect. 3. A symmetric algebra A over
the field k is an algebra which admits a linear form ¢ : A — k such that no left (and
no right) ideal of A different from the zero ideal lies in the kernel of ¢ and such that,
in addition, t(xy) = t(yx) for every z,y € A. The group algebras of finite groups
over a field form a prominent subclass of the class of symmetric algebras. Certainly,
i, (sly) is not a group algebra. But il (s1,) is a symmetric algebra. To see this we
must show that each block of 4l (sl,) is a symmetric algebra, which is certainly true
for the simple algebras Bg, and Bg;. Let us consider the generic block B,. Symmetry
of algebras is not affected by Morita equivalence — like self-injectivity, but unlike the
property of being a Frobenius algebra. The linear form B° — C defined by

722,72, FE,FE+— 1, E,E,F,F~—0

reveals that B°P and thus B, are symmetric algebras. Now the symmetry of the algebra
}Jq(slz) again implies (cf. [Hu]) that the Hopf algebra ilq(5[2) is unimodular, as already
observed in Sect. 3.

Let

K :=CIX,Y]/(X*,Y?)

be the Kronecker algebra over C. By abuse of notation we shall write X instead of
X mod (X?,Y?) and Y instead of Y mod (X 2,_Y2).
The algebra B, generated by Z, Z,E, E, F,F (or just by Z,Z,E,F), is defined by

the requirement that
7 0 0 ’ 0 1
1 0 0 0/

(6 5):
(2 0)

Ifll II\N

fﬂ
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define an isomorphism B Mat(2x2,K); and we identify B as a subalgebra of B.

It might be instructive for the reader to draw diagrams for the PIMs of B and of B.
We want to get rid of the “°”. This is achieved by means of the isomorphism

B = B> given by

Z—2Z, 2Z—2Z, E—E, F~F.

K

It restricts to an isomorphism B =, B,
The algebra Mat(2x2, K) has basic algebra K, so that we get the relations between
algebras

B, ~ B® ~ B C B = Mat(2x2,K) ~ K,

where ~ denotes equivalence of the respective left module categories. What remains
to be done is to compare zmod with zmod and to describe ,mod.

Let M be a (ﬁniAte—dimensional) left B-module. We have M = ZZM ®ZZM , and
we define the left B-module

M :=ZZM & ZZM & Z(ZZM) & Z(ZZM)

in the obvious way.

An indecomposable (finite-dimensional) B-module L decomposes via restriction
to B into a direct sum of two indecomposable B-modules, L|z = L, @ L,, where ZZ
(E F) acts on L, (resp. L2) as ZZ (E,F) acts on L, (resp. L)). In partlcular each
B-module is isomorphic to M for some B-module M ; and we have L| g2 L®L as
B-modules. Thus M +— M yields

isomorphism classes isomorphism classes
of indecomposable 2:1 of indecomposable
(finite-dimensional) (finite-dimensional)
left B-modules left B-modules

Finally, we recall the relevant facts concerning ,-mod. First note that the radical
of L is JIK) = CX @ CY & CXY . Assume M is a finite-dimensional C-module
without projective summands. Then soc £ = J(K)? = CXY annihilates M, and
JIKYM C soc M. Choose now a vector space basis for M whose first elements
constitute a basis for soc M. The matrices of X and Y, respectively, are exactly the

matrices of the form _ .
<0 X> and (O Y) . (5.1
0 0 0 0

We are thus left with classifying pairs of matrices (5.1) under simultaneous conjugation

by invertible matrices of the form (3 :) , that is, we may replace X by AXB and

Y by AY B, where A and B are invertible matrices.

The problem of classifying such pairs of matrices was solved by Kronecker more
than a century ago [Kr]. His result yields the following nonredundant, exhaustive
list, which tells us the isomorphism classes of indecomposable finite-dimensional
K-modules.
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C (the simple K-module)
KC (the PIM)

e For eachn =1,2,... the K-module corresponding to the nx(n+ 1)-matrices

1 0 0 0 1 0
0 1 0 0 0 1

For each n = 1,2, ... the K-module corresponding to the (n+1)xn-matrices

1 0 0 0
b R )

1 0

0 0 0 1

For each A € CU {o0}, n =1,2,... the K-module corresponding to

X=1,, Y=J0 ifxrecC,
X=J, 0, Y=1, if \=o0,

where J,, (1) denotes a Jordan block matrix of size n with eigenvalue p.

Remark (see [Ka]). The modules listed under the first and the last three points

correspond to the positive roots of the affine Lie algebra sl,. The correspondence is
one-to-one for the real roots, whereas with every positive imaginary root is associated
a variety of modules parametrised by the sphere P'(C).

Remark (cf. [Ba, HR]). The Kronecker algebra over k, k[X,Y]/(X?,Y?), for k a
field of characteristic 2 is isomorphic to the group algebra over k& of the Klein four
group (z,y|z* = y*> = 1,2y = yz). An isomorphism is given by X ~ 1 + z,
Y—1+4y.

Remark. Of course, the theory developed further, going beyond what shall be used
here. There is Ringel’s classification for the dihedral 2-groups [Rin1], which uses part
of [I'TI, GP] in a new shape (functorial filtrations). You may also look at [BS]. More
recently, there are [WW, BR, Er] to name but three items.

To introduce some notation, we give the list which classifies the isomorphism
classes of indecomposable left B,-modules which parallels the list given above for
the K-modules.

¢S, S;

P, P;

e Foreachn =1,2,...: 2"S,,2"S;

e Foreachn =1,2,...: 27"§,,027"S,

e Foreach A € CU {oo}, n=1,2,...: M}(X), M7(N).

There are no new notations introduced under the first two points. Let us make a
digression on the next two points and on the last point.
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Digression on Ext. The modules 'S, and £2'S; have already been introduced
[cf. (3.8)]. As the notation suggests, the modules Qi"Se and Qi"Sz are related
to the loop space functor in algebraic topology. In fact, the projective modules play
the role of the homotopically trivial objects.

It may be useful to depict the modules 2%"S,, 2"S; by means of diagrams.

Let us write
¢ & oo

for the four modules P,, P;, S,, S;, respectively. If we compare these diagrams with
those displayed earlier, we should note two things. Firstly, within a whole diagram,
o and e stand for mod};(¢ + 1)-dimensional and mod};(¢ + 1)-dimensional vector
subspaces, respectively. As we know, this is of minor importance. Secondly, whereas
in the pictures in earlier sections the head was on the left- and the socle on the right-
hand side, they are now at the top and bottom, respectively, such as we see it in
Corollary 3.10.

Recall how a minimal projective resolution of a module M is constructed:
.. B, Po:pyr R Poiy B, Py B, M - 0,

N / N / N\ / N /

Q¥M LM QM LM =M

where Py (or, more precisely, Py — X') denotes a projective cover for the module
X and is then unique up to isomorphism; 27 M := ker 0;_, for j € Z,; and the
0’s are such that the diagram commutes. The horizontal sequence is thus an exact
one. Here is “the” minimal projective resolution of S, in diagrammatic form:

= Qoo — Dol - & -
/ N o o7 Ne WS N
YWV VW Y 5.2)
Interchanging black and white dots leads to “the” minimal projective resolution of S;.

This gives us the V -, VW -, WV -, ... shaped modules ™S, and 2"S;. To construct

A-, M-, M-, ... shaped modules, we use minimal injective resolutions of S,
and S;. For a module M it reads

N

8° 8t 8% 83
0 - M — In — Io-1ym — Ig-apy - cee

N 7N / N\ 7/ N\ 7
M=0°M QM QM QM

where [y (or, more precisely, X — Iy ) denotes an injective hull for the module X
and is then unique up to isomorphism; 279 M := cokerd~! for j € Z; and the
0’s are such that the diagram commutes. The horizontal sequence is thus an exact
one. Here is “the” minimal injective resolution of S, in diagrammatic form:

O\H/Q\_)/[Q)®(Oj\_}/§®§@§\ -

JOA M AR

(5.3)
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And again, we may interchange black and white dots. We have thus seen the modules
£27"S, and 27"S;, too.

Given two 4 (sl,)-modules M and L, the C-vector space Extﬁlq(slz)(M , L) classifies
extensions of M by L, that is, isomorphism classes of short exact sequences

0O—-L—>F—-M-—>0

with fixed end terms. The Ext functors may be calculated as

( n+1)
ker(Homu sty)(Pon gy L) —— Homy o\ (Pontipg, L))

EXty (1, (M, L) = AT
im (Homuq(ﬂz)(Pm_l wv L) —— Homy,_ (Pon s L))

an+l

ker(Homu 6tyM; Ig-np) —3 Homy (o, (M, IQ_W,;)L))

TL)*
1m<Homii 6y M, L g-m—np) —— Homy (M, - nL))

The first formula calculates the right derived functors of the contravariant functor
Homy (L), and the second formula gives the right derived functors of the
covariant functor Homuq(slz)(M , ).

If L = S is a simple module, the differentials 0* are zero: if the composite

6n+1
Poneiyy —— Ponyy — 5

were nonzero, Ppn.,, would have a direct summand isomorphic to Pg lying in
im0, ;. But then we could split off direct summands isomorphic to Pg from each
of the modules Pn+1,, and Pn,, in the projective resolution of M we used; that
contradicts minimality. Hence

Extﬁq(ﬁlz)(M7 S) = Homu (5[2)(PQRM,S) Homy, (5[2)((2 M,S) .

Similarly, for M = S a simple module, the differentials 0, are zero: if the composite

antl
S — I_Q~nL — IQ~(n+l)L

were nonzero, I,—»; would have a direct summand isomorphic to /g which injects
into I,—m+1;, by 8. Again, this is impossible because of the minimality of the
injective resolution used here. Hence

Ext (5[2)(5’ L) = Homy, (5[2)(5 Io-n;) = Homg (5[2)(,5' 27 "L) .

Here are some sample computations in case n = 1:

| N Homy 1, ( v , o) =0
EXtuq(glz)(O ,0) [ u A 0 D
Omu (5[2) (O, ) =
Exil N Homuq(g[z)(\[ , o) =Ne
XIL(q(slz)(o’.) = Homu » )(o A) ~ 2 2)
q(sh ’ -

Extgq(s,z)(o, V) = Homy (0,00 =C . 3)
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(1) Here we only have the isomorphism class of the split extensions.
(2) An explicit isomorphism of Extl_ o (VNV}, ViNV]) ( 2 Bxth Sy s@))
[cf. (3.8)] with C? may be given as follows: the isomorphism class of the split

extensions corresponds to (0,0) € C?; for (u,v) € C* — {(0,0)} the corresponding
isomorphism class of short exact sequences is represented by [cf. (3.7)]

0 — U, (sh)a; — U (sh) (uF; + vag) — Y, (s,)a, — 0
Gy Gy, uyy +vag — &, .

The modules qu(slzj (u¥; + vog) and U, (sly)(u'5; + v'a;) are isomorphic if and
only if (u,v) and (u/,v’) € C* — {(0,0) } represent the same point A in the complex
projective line P!(C). This gives us the family of modules M}()).

3) Exthq(slz)(se, 12'S,) is spanned by the class of 0 — 'S, — P, — S, — 0.

The notation for each pair of modules M7 (\) and M?(/\) for n > 2 has not been
fixed yet. We do this now by declaring that M7 ()) is the module whose head is
isomorphic to SEB" (rather than S?”), which then conforms with the example (2)
above.

Remark. A word about not necessarily finite-dimensional B,-modules: surely, having
in mind the diagrams (5.2) or (5.3) for the modules Qi"Se, we now can construct
B,-modules whose number of composition factors has any prescribed cardinality.

Having the minimal resolution of the trivial module S, [(5.2) for £ = 0] we may
consider the cohomology ring

H(8,(s1)) := EP Extf_1,(S0,Sy) -

n=0

We may also splice (5.2) and (5.3) to get a complete resolution of S, and consider
something like the Tate cohomology. To fill in the details might be an interesting
exercise for the reader.

The Auslander-Reiten Quiver. An appealing way of organising the set of isomorphism
classes of indecomposable finite-dimensional B,-modules is to locate them in the
Auslander-Reiten quiver (cf. Sect. A). We shall thus construct the Auslander-Reiten
quiver of B,.

Theorem 5.1. The components of the Auslander-Reiten quiver of B, containing the
PIMs have the form

P,
I,:= / \
L BPS) BRSNS 2 R7IS,) 2278 =
[P;]
Iy =) / N\

LSS RS2SRSS, =

The translation T shifts the stable part of these quiver components two places to the

left.
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Proof. The Auslander-Reiten sequence from Proposition A.6 for P = P, reads
(cf. Corollary 3.10)

0— 'S, —S;oS;0P, — 27'S, — 0.

The Auslander-Reiten sequence with cokernel term S; has DTrS; = QZSZ as kernel
term. The last isomorphism follows by the remark after the proof of Theorem A.2.
Propositions A.4 and A.5 help us concoct an Auslander-Reiten sequence having the
form

0— 2°S; — 'S, & 'S, E' —S; — 0.

Counting dimensions (or composition factors), we see that £’ = 0. Induction shows
that the “left half” of the component of the quiver I, containing the vertex [P,] is
as given in the theorem. Similarly, starting with

0—8S; — 27'S,®N7'S,® B — TtDS; = 27°S; — 0,

we obtain the remaining part of the quiver component. We also get the component
containing [P].
An alternative is suggested in [AR, pp. 15-16]. O

In order to derive the components of the Auslander-Reiten quiver containing the
vertices [My(\)] or [M?()\)], we shall calculate within the algebra B, which is
isomorphic to the basic algebra B of B,. So let M7 (\) [resp. MZN), Py, Prl
be B-modules (determined up to isomorphism) which correspond to the B,-modules
M7 () [resp. M7(A), Py, Py .

We compute a minimal projective presentation for M7 (X), A € C. With respect
to a suitable basis for that 2n-dimensional B-module we have

_ 0 0 = 0 1 = 0 J n
ZZ-(O 1), E+E_<O O)’ F+F=<0 0) on My(A),

where, here and later, 1 :==1_, and J :=J () is an nxn Jordan block matrix with
eigenvalue A\. We may choose a basis for PZ@” such that

1 0 0 O 0 01 0
= 0 0 O — 0 0 0 1

ZZ_OOOO’E+E_OOOO’
0 0 0 1 0 0 0 O
01 00
= 0 0 00

F+F= on
+ 00 0 1 on P;

0 0 0O

The matrix (8 (1) g ?) is then the matrix of a B-homomorphism P;" —» MP()),

which is already a projective cover. Its kernel, 2! M7()\), embeds into P;B" by the

1 0
matrix ( ) , so that

-J

1

0
(10 _ (0 1 = (0 —J Lo
ZZ_(O NE E-I—E-(0 0), F+F_(O 0) on 22 My(N).

o OO
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Since J,(—A) is the Jordan canonical form of —J = -], ()\), we obtain the
isomorphism 2! MP(X) = MZ(=)X). At the same time, we get 2'Mp(-)\) =
M?%(X) because B, = B;. In particular, we have 22M7(\) & MP(N).

But let us directly compute a projective cover of 2! M7 ()\). We may choose a
basis for ’szB" such that

0 00O 0010
= 01 00O = 0 0 0 1
77 = =
0oo0o10| E*E=lo 000"
00 00 00 0O
01 00
= [0 0 0O on
F+F= 00 0 1 oan .
0 00O
. 0 1—-J 0 . —_ @n 1 aqn
The matrix 00 0 1 describes the projective cover Pz, — (2 MB(N).

To sum up, we have the minimal projective presentation of M7 ()

0 1-J
00 0-
00 O
00 0

pn Pt MG -

o -G o

Now we look closer at the middle term of the Auslander-Reiten sequence with
cokernel term M7 ()). In order to do so, we simply use the pullback diagram which we
considered while proving Theorem A.2 — the existence of Auslander-Reiten sequences.
The same bases for the modules M7 ()), PEB", P?" as above are used. The pullback
diagram is (cf. the remark after the proof of Theorem A.2)

0 1-J 0
00 0-J
00 0 1
00 0 O

0 A
00
pullback 9Mg<>o= (0 0) .
00
E MG

It suffices to know that the morphism 6, ;) has a matrix of the form as indicated in
the diagram above. This form is dictated by the fact that 0 M2 is a B-homomorphism.
The pullback E is the submodule of the direct product of ’szB" with M7 (X) consisting
of those elements that have the same image in 7359" . The result reads, w.r.t. a suitable
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basis,
0 0 00 0 010
5 0 00O = 0 0 0 1
“Z=loo0 10| ETE=lo 00 0f"
0 0 0 1 0 0 00O
00 J A
= 00 0 J
F+F= 00 0 0 on E.
00 0 O
Since the geometric multiplicity of the eigenvalue of the matrix (‘é ‘3) can not

exceed two, we see that one of the following alternatives holds:

E= M0,

E = M;FO) @ MyTE) for some k, 0 <k <n . ©4
Note that A is not the zero matrix, otherwise L%S\)\))) o w%;’\)»(id M ) would be
zero, which is absurd. Thus, we get an Auslander-Reiten sequence

0 — DTr My(N\) & 2° Mp(\) = M\ — M3(\) — M\ — 0 .
Using Propositions A.4 and A.5, we know that the Auslander-Reiten sequence with
cokernel term M%(A) looks like
0 — M2\) = ML E — M3(\) — 0.

By (5.4) we have E' & Mz()\). We then inductively get Auslander-Reiten sequences
of the form

0— MPON) — M7y @ MPH) — MB(N) — 0

forn > 2.

Finally, 1 assert that the calculation above goes through for A = oo mutatis
mutandis.

Let us formulate the result again using the language of B,-modules.

Theorem 5.2. For each A € P!(C) we have two 1-tubes as components of the
Auslander-Reiten quiver of B,, viz.

I My(M)] = [M2O)] =2 M) = ...

>

and

(I =) MOV = M) = M= ...
The translation T act as the identity.

Returning to the whole algebra 4 (sl), that is, letting vary ¢, we summarise the
main issue of the present section in the theorem below.

Theorem 5.3. (cf. Theorems 5.1 and 5.2).
The Auslander-Reiten quiver of U (sl,) is

P ({Q}o Q{FM}) 5 {isa) & {isa}

£+1#£0(mod N) AePL(C)
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A. Addendum: Auslander-Reiten Theory

The main statement of Auslander-Reiten theory is that the Auslander-Reiten quiver
of a category with Auslander-Reiten sequences is locally finite.

An attempt at giving the necessary background in Auslander-Reiten theory (also
known as the theory of almost split sequences) is the content of this section. The
existence proof for Auslander-Reiten sequences is adapted from [Ga2].

Let A be a finite-dimensional associative k-algebra with 1, where k is an
algebraically closed field.

Fun A is the category of all contravariant additive [i.e., M,N € ,mod, f,g €

Hom (N, M), F € FunA = F(f + g) = F(f) + F(g) € Hom(F(M),F(N))]
functors from ,mod to Ab, the abelian category of abelian groups. Morphisms in
Fun A are natural transformations, as usual. For F <%+ G to be a morphism in Fun A,
the requirement is that for each M € ,mod there is F'(M) M, G(M) in Ab such
that if N LN M is a morphism in ,mod, then the diagram

FIN) X vy

F(h) T T G(h)

FOD 2 qorn

be commutative. Each ' € Fun A takes values in  Mod, the category of (not

necessarily finite-dimensional) k-vector spaces. Fun A is an abelian category. Here is

the way how exactness is measured in Fun A: F' %+ F £ P/ is exact in Fun 4

if and only if F'(M) M F(M) LA F'"(M) is exact in Ab for every M € ,mod.
For N, M € ,mod one puts (N, M) := Hom,(/V, M) in order to abbreviate the
notation. With this notation we have (, M) € Fun A for every M € ,mod.
The Yoneda lemma tells us that ¢ — ¢,,(id,,) provides an isomorphism

HomFunA(( aM)aF) i F(M) s
which is functorial in M € ymod and F € Fun A. Using the Yoneda lemma we see
Homg, 4 (( M), ) : Fund— Ab

is an exact functor, i.e., that ( ,M) is a projective object in Fun A. A finitely
generated object in Fun A is, by definition, an epimorphic image of some ( , M)
with M € ,mod. Every finitely generated projective object in Fun A is isomorphic
to (, M) for some M € ,mod.

The radical rad F' of F' € Fun A is the intersection of all maximal subfunctors n?f F.

Here is a description of rad( , M) for M € ;mod : fix a decomposition M=@M,
j=1

with the M;’s indecomposable. Let N € ymod, and decompose N = @N with the

N,’s indecomposable. Any homomorphism f € (N, M) determines a matrlx (f;4)»

Where fii € (N;, M )

Lemma A.l. f € rad(N, M) := rad( ,M)(N) if and only if none of the f;'s is

invertible.
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Proof. Put
E(N):= {f € (N, M) ’ none of the fﬁ’s is invertible} .

Hence if N; ¥ M;, then f;; € (N,,M,) without any further restriction. But for
N, = M; we have (N;,M;) = End,M;, which is a local ring (because M, is

indecomposable), and { fii € (N, M 5) { [, is not invertible} corresponds to the

maximal ideal of End, M, . For (N’ L, N) € (N',N) it follows that f € E,;(N)
implies fog € E,;(N'). We thus see that E,;, C ( ,M) - and E,; g ( M)
m

unless M = 0. By construction E,; & P FE M, SO that it remains to be seen
J=1

E,, =rad( ,M)if M € ,mod is indecomposable. So let M be indecomposable,
and suppose F' g ( ,M). We shall show that ' C E,,. Since the members
of Fun A are additive by definition, it suffices to show that F(N) C E,,;(N) for
every indecomposable N € ,mod. Let N be such, and let n € F(N) C (N, M).
The element n corresponds, by the Yoneda lemma, to the natural transformation
( \N) = F S ( ,M) with uy(idy) = n = (N,n)idy), which shows that
n : N — M is not invertible, whence n € E,,(N). O

If M € ,mod is indecomposable, the functor S,, := ( ,M)/rad( ,M)is a
(M)
simple object in Fun A. Denote by 7™ the natural projection ( , M) s M

Theorem A.2. Let M € ,mod be indecomposable. The simple functor S;; has a
minimal projective resolution in Fun A of the form

O_')( )MZ)_)( aMl)_')( 7M)—>SM__)O

Moreover, M, = 0 if M is projective, whereas for a nonprojective M, the module M,
is indecomposable.

Proof. We first treat the case where M is a projective module. We then have
rad( ,M)=( ,rad M), considered as subfunctors of ( , M) [“D” is surely true;

for “C” note that NV L M not split epi implies im f C rad M ]. Hence we have the
minimal projective resolution

0—( ,radM)—( ,M)— S,; — 0.

Suppose now that M is not projective. There are several duality functors
Hom,( ,k), namely, from ;mod to ,mod, or from ,med to mod, (=the cat-
egory of finite-dimensional right A-modules) and back, or also from the subcategory
of Fun A° consisting of covariant additive functors ;mod — ,mod to the subcate-
gory of Fun A consisting of contravariant additive functors ;mod — ,mod and back.
We shall, by abuse of notation, denote all of these different functors by D and shall
identify D? with the corresponding identity functor.

We define (‘™) € Homg,, A(SM,D(M, )) by the requirement that D)

correspond to id, € DS,,(M) = Dk via the Yoneda isomorphism (for covariant
functors). Clearly, D:™ is an epimorphism, whence :*" is a monomorphism.

We begin to construct the required resolution by deriving a (minimal) projective
presentation of D(M, )in FunA. Let

2P M—0
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be a minimal projective presentation of M in 4mod. For every N € ,mod the

(p1,N)
sequence 0 — (M,N) — (PO,N) pl (P, N) is exact, and therefore

D(py,
D(P,,N) ——p—l——> D(F,, N) ——» D(M,N) — 0 is exact, which means that

Dy, ) D(py,
D(p,, ) —— D(F, )—>D(M )—0

is exact in Fun A.

For the functor Hom,( ,4) : ,mod — mod, we use the notation P p
on objects and f +— 'f on morphisms (cf. [DM]). The functorial morphism in
P,N € ,mod

P®,N — (P,N)
fen — (p— form)

is an isomorphism under the assumption that P be projective. The adjunction
isomorphism

Hom,c(l5 ®, N, k) =, Hom , (N, Homk(ﬁ‘, k))
gives us the functorial isomorphism D(P ® A ) =, ( ,DP). Composition yields
P.pp )y-DP®, )—( ,DP),

which is functorial in P and is an isomorphism if P is projective.
We may construct the following commutative diagram with exact rows:

D(py, D(po,
o, )22 o, )2 o, ) — 0
o) | (1) olPo) | =
(2) ( » ‘Pl) -
0 —( ,kerD'p,)— ( ,DB) ( ,DPB) 0
(4) ( o) (3)
pullback
Ny M) -
0 —( ,kerD'py)—( ,DP xpp, M)—( ,M) Sy 0
(5)

(1) Naturality of o'*) in P.
(2) Hom, (NN, ) is left exact for each NV € ;mod.

~1
(3) D@y, )o (a‘P 0)> is an epimorphism and ( , M) is projective imply that

(M) o M) factors through (, DBy), giving M om, DE, by the Yoneda lemma.
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(4) The pullback in Fun A stems from the pullback in smod. Firstly, let N € ;mod,
and apply the functor (IV, ) to a pullback in 4mod. The functor (N, ) is a right
adjoint functor (right adjoint to N @, ), so preserves arbitrary inverse limits and,
in particular, pullbacks. Secondly, having the pullbacks from the first part for each
N € ,mod, one simply checks that the universal property holds in order to get a
pullback in Fun A.

(5) Exactness at (, M) follows by a diagram chase — use that +*) is a monomor-
phism for showing that it is a complex and the pullback for showing that we have

kerw‘M)gim<( DB, % pp M) = ( ,M)).

It remains to be seen that the projective resolution got in the last row is minimal. To
this end we show that ker D'p, is indecomposable.

We shall recall the operation of transposing a module (cf. [AB]). To a finite-
dimensional left (resp. right) A-module M without nonzero projective direct sum-
mands one associates a finite-dimensional right (resp. left) A-module Tr M with-
out nonzero projective direct summands in such a way that Tr'TrM = M and
Tr(M, ® M,) = TrM, © Tr M,. It is constructed in the following way: from the

.. . . P
minimal projective presentation P, A B P, — M — 0 we chose above, one forms

Tr M := cokerp,, so that from P, LN P, — TrM — 0 we get another exact

. Db y
sequence, 0 — DTrM — DP, - DPF,, so that DTr M = ker D&)l . which
is thus indecomposable ( TrD ker D&yl =~ M ; note that Tr'Tr M = M holds because
projective modules are reflexive). O

Remark. For a symmetric algebra, the modules DM and M are isomorphic; and, in

particular, using the minimal projective presentation P, RN Fy— M — 0, we
get
DTr M = ker D'p, = kerp, = 2*M ,

the second syzygy module of M.

Definition. Let M € ,mod be an indecomposable module which is not projective,
and let
«,n) « ,m)
O—>( aN) ( 7E) ( 7M)—>SIVI——)0
be a minimal projective resolution of S,; in Fun A. Then

0—wNE™ M-—0

is a short exact sequence and is termed an Auslander-Reiten sequence.

Exactness follows by inserting A. Since M is not projective, we have S;,(4) = 0
indeed.

Remark. The proof of existence of Auslander-Reiten sequences showed that the kernel
term is N = DTr M and hence that the cokernel term is M = TrDN.

Remark. Unicity of Auslander-Reiten sequences up to equivalence (of short exact
sequences if we fix the end terms) follows from the unicity of projective resolutions.

Proposition A3. Let M € ,mod be an indecomposable module which is not
projective, and let

0—NSFE S M—0
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be a short exact sequence which does not split. Then the following two statements are
equivalent.

(1) The sequence above is an Auslander-Reiten sequence.

(ii) N is indecomposable, and every morphism x € rad(X, M) [i.e, v : X — M is
not split epi ] factorises via m (X running through X € smod).

Proof. A morphism X — M which factorises via m is of course not split epi, that is,
rad(X, M) D im(X,m). The other inclusion, rad(X, M) C im(X,m), is equivalent
to each = € rad(X, M) factoring via m.

(i) = (ii) We already know that N is indecomposable. Furthermore, we have
rad( , M) =ker7®™ =im( ,m), which yields the assertion.

(i) = (i) rad( ,M) = im( ,m), by assumption. As ker7™ = rad( , M),

(,n) ¢ ,m)
the sequence 0 — ( 7N)—n>( ,E)—m>( , M)y — S;;, — 0 is exact

at ( , M), too. The minimality of this projective resolution follows because N is
indecomposable. [

Remark. The criterion given in the last proposition is what is usually taken for
being the definition of Auslander-Reiten sequences. It explains the term “almost split
sequence”.

Remark. There is an analogous criterion for a short exact sequence
0—N-"S5ES M-—0 (A1)

to be an Auslander-Reiten sequence, dual to that of the previous proposition. Namely,
(A.1) shall not split, the modules N and M shall be indecomposable, and every
y € rad(N,Y) [i.e., y : N — Y is not split mono] shall factorise via n (Y running
through ¥ € ;mod).

Definition. Let X,Y € ymod. One calls f € (X,Y) an irreducible morphism if f is
neither split mono nor split epi and if, in addition, for every factorisation through any
Z € y,mod,

N
z

either g is split mono, or h is split epi.

Remark. By considering the factorisation X — im f — Y of f (or, alternatively,
X — X/ker f —Y), we see that an irreducible morphism is either mono or epi.

Remark. Let X,Y € ,mod be indecomposable modules. The set of irreducible
morphisms from X to Y is

rad(X,Y) —rad*(X,Y) .
This follows from

rad®(X,Y)= > rad(ZY) o rad(X,2)
N —r’ N———

Z € pmod “not split epi” “not split mono”
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Definition. Let X,Y € ,mod be indecomposable modules. The module of irreducible
morphisms from X to Y is defined as

Irr(X,Y) = rad(X, Y)/rad*(X,Y) .

The following two propositions connect the notion of an Auslander-Reiten se-
quence to the notion of irreducible morphisms. For proofs see [Rin2], for example.

Proposition Ad4. Let 0 — N - E ™ M — 0 be an Auslander-Reiten
sequence. Assume that the indecomposable modules P,1 € ;mod are projective and
injective, respectively. Finally, let 0 # X € ,mod. Then the irreducible morphisms

XM X S Ey—Ey®E =EM

X P X = Ey—Ex®E =radP — P ,
are exactly N N , Where in

N—-X N E=Ey®F »Ey — X

I1—-X

I—»1I/socl=Ex®E —»Ey — X
these compositions — and —» denote the respective natural inclusions and natural
projections.

Proposition A.S.
(i) Let

ny

7:/1 (my...mg m")
0—N——2%gp —— LS M-—0

be an Auslander-Reiten sequence with Z € ,mod indecomposable and such that no
direct summand of E' is isomorphic to Z . Then we have the equality dim, Irt(Z, M) =
dim, Irr(N, Z) = d.

(ii) Let P € ymod be an indecomposable projective module, and suppose

(my...mg m’

0— Z% g F

P — P/radP — 0

is a short exact sequence with Z € smod indecomposable and that no direct summand
of E' is isomorphic to Z. Then we have dim,, Irt(Z, P) = d.

(iii) Let I € ymod be an indecomposable injective module, and suppose

ny

nq
’

0—socl = —""Lz%ap 0

is a short exact sequence with Z € ,mod indecomposable and that no direct summand
of E' is isomorphic to Z. Then we have dim, Irr(I, Z) = d.

Here, the residue classes (modulo the respective radical squares) of n,,...,ny
or my,...,my form vector space bases for the respective modules of irreducible
morphisms.
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The next proposition describes the Auslander-Reiten sequence whose middle term
contains the indecomposable module P as a direct summand, provided the module P
is both projective and injective.

Proposition A.6. Let P € ,mod be an indecomposable module which is both
projective and injective. Then there is an Auslander-Reiten sequence

0 —radP —rad P/socP & P — P/socP — 0.

Definition. The Auslander-Reiten quiver I'y of the algebra A is the quiver
whose set of vertices is the set of isomorphism classes of all the indecomposable
modules X € ,mod. The vertex corresponding to X is denoted by [X]. There is
a dim, Irr(X, Y)-fold arrow from [X] to [Y].

If one deletes the vertices (and the arrows which begin or end there) [I], [DTr ],

[(DTr)?I],... , where I is injective (and indecomposable), and the sequence stops
if a projective module occurs, and one also deletes the vertices [P], [TrDP],
[(TrD)?P],... , where P is projective (and indecomposable), and the sequence stops

if an injective module shows up, one obtains the largest subquiver of I', for which
DTr induces an automorphism 7, the translation; this subquiver is termed the stable
quiver. It is a quiver satisfying the axioms of a stable representation quiver. Such
quivers were studied by Riedtmann [Ri], while she classified the representation-finite
self-injective algebras over algebraically closed fields.

B. Appendix: {,(sl2) at ¢ = exp(ni/4)

The following table displays the modules P,.

P, P,
F3g F3¢;
A A
~V2F%py + F*p,E —F2¢, + F3p3E
i /ol
2F o — V2F2 0, E + F2 o, B? —Fop1 + F2p3E F3psE?
/1 im0
200 — V2F 0, E + F2p, E? F3¢sE3 —¢1 + Fo3sE + F2 o5 E? F2p5E? + F3p1E?
7/ 7/
F2oeE? FosE? + F2 o1 EB®
17 11
~V2Fps B3 ~ps B2 — For B3
1
2¢6 B3
P, P, =St
F3p, F3gs
/7l 11
F2o, F3o.E F2p3 + F3ps E
i 2 u N
V2Fgp; + F2p E V2F? o, E + F3pg E? 2F 3 + 2F2p5 E + F3pyE?
it /7 A
203 + 2v2Fp4E + F? g B? 2Fp4E + V2F2 9 B* + F2 o B* 203 + 2Fps E + F2p1 E* + F20, B3
/

!
2¢4E + V2F g6 E? + F2 o E®
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P,=PF,=P; P,=P =P;
Flp, F3pg
) )
V2F2p, + F2psE F2py + F3p B
N /1
2F 4 + V2F2 g6 E + F? oo E? Fos + F2p1E F3p, E?
' I 2 n
204 + V2F g6 E + F2 o E? F3p,E® ~¢5 — ForE + F2p, E? ~F2%p, E? + F3 3 E®
7 L/
F2p,B® —~Fp1E? + F2py E°
11 In
V2F ¢, B? ~¢1E? + Fp3 B
i1
2¢2E3
P,=F, = P; P, =5
F3gg F3¢pq
7l N
F2pq F3p0E —F2p; + F3p, E
w2 n 1
~V2Fpe + F2E ~V2F2pE + F3p, B2 2Fpr — 2F2 01 F + F3 @3 B?
I 2 u i
206 — 2v2FpoE + F2 ¢, E? 2FoE — V2F? 93 E? 4 F2 o, E° ~2¢7 + 2F 1 E — F293 B? + F2pg E?
/

!
200E — V2F gy E? + F2 o, E?

1 e are the primitive orthogonal idempotents such that &, (sl)ef = P,E".

) = 200 — VZF 02 E + F2p,E? 4 V2F3 s B®

&) = 2¢) — 2Fp3E — 2F2 o E? e} =2Fp  E — 2F2p3 E?
eg = 293 — F2peE* — \/2F3 o E* eg = V2F 93 E — F2 o E? — \/2F3ps E® e; = F2p,E? — 2F3 ¢, B3
&0 =2¢3 + 2Fps B+ F201E% + F30  E® €} = 2F3E + 2F2ps E? 4 FAor B3 €2 = F2p3E? + FA s B?

e = FJ‘P:’EJ

3

22 = 204 + V2F @6 E + F2 o E? — \/2F3, B*
¢g = 295 + 2F o1 E — 2F% ¢, E? cg = —2Fps E — 2F2 1 E?
& = 295 — F202 E? + V2F%p, E? el = —VZFsE — F2 gy E? + \2F3 0, B3 €2 = F2 s E? + v/2F% o B®

e} =2¢p7 — 2Fp E + F2p3E? — F3psE® e} = ~2FprE + 2F2p  E? — F3o3E® e = F2p,E* — F2p, E®
& = —F3prE®

Here are the block idempotents (qu(s[z)bgC = bxilq(slz) =B,):

bo (2(00 + 206 ~ V2F 3 E — V2F@E — F2@oE? — F2 02 E? + F2 o E? + F? g E?

_ 1
16
+ V230 B® + V2F3 0, B3 + 2F3 o, B® + ﬁstsEs)
8
1
by = % (2<pz + 204 + V2ZF3E + VIFp6E + F* o E? + F2 0, B? — F2? o, B? — F? s EB?

— VEF3 9o B — \/aF3 0, B® — IFS 0, B — \/EFsveEs)

1
by = 1 (g,, 405 + Fo1E — Fo3E — FosE + ForE — FRp B2 — F2p3 B? — F2g E? — F’:p-,Ez)

1
bsi = o5 (2m +2Fp3E+2Fps E+ F? @3 E® + 2F2 o5 B? + F2 01 B2 4 F2 01 B3 + F2 03 B® + F2 s B +F°<p-,E")

-

1
b= = (zm —2F g1 E—2F 1 E+2F 0, B + F? g3 B 4 F? 1 B — F3 1 B — F3 03 E° - F* g5 B —F3¢7E3)

2
-
=)
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