
Commun. Math. Phys. 163, 359-393 (1994) CommUΠICatiOΠS IΠ

Mathematical
Physics

© Springer-Verlag 1994

Modules over U

Ruedi Suter

Mathematikdepartement, ETH Zentrum, CH-8092 Zurich, Switzerland

Received: 26 November 1992

Abstract. The restricted quantum universal enveloping algebra ίlq(sί2) decomposes
in a canonical way into a direct sum of indecomposable left (or right) ideals. They
are useful for determining the direct summands which occur in the tensor product of
two simple iXq(s\2)~modules. The indecomposable finite-dimensional ttq(sl2)-modules
are classified and located in the Auslander-Reiten quiver.

1. Introduction

One of the basic problems in the theory of quantum universal enveloping algebras is
to decompose a tensor product of simple modules into a direct sum of indecomposable
ones and hence to elucidate the structure of the corresponding fusion rule algebra.
Although this problem is solved for iiq(sl2), it might still be interesting to derive the
solution in a new way; at least in principle, the method used here can be generalised
to higher rank quantum universal enveloping algebras. A distinguishing feature is that
neither the quantum Casimir operator nor the i?-matrix appears explicitly, nor occurs
any tedious calculation whatever. Then, the finite-dimensional ίlg(sί2)-modules are
classified, partly because there seems to be some interest in that (see [Sm]). Still, at
least the result should be known to the experts and also to some readers of [RT].

In Sect. 2 we set forth the algebra ίlq(sl2) at q = exp(πim/N).
The main issue of Sect. 3 is Theorem 3.7, which states how ίi (sl2) decomposes

into a direct sum of indecomposable left ideals. In due course, several indecomposable
ilg(sί2)-modules will emerge, among these the modules P^, which have the property
that if

0 - > L - > £ - + P £ - + 0 and 0 - > P ^ - » F - > M - * 0

are short exact sequences of ίlq(sί2)-modules, then P£ embeds as a direct summand
into E and into F. The algebra ίlρ(5l2) exemplifies many useful concepts from alge-
bra: the Jacobson radical, Loewy layers, the Cartan matrix, and so on. Furthermore,
ilq(sί2) nicely illustrates the multiplicity relations pertaining to Frobenius algebras.
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In Sect. 4 we solve the problem mentioned at the beginning of the introduction for
ίiq(sl2). It is e a s Y t 0 find out what the composition factors of the tensor product of
two finite-dimensional ilg(sί2)-modules are. If one of the factors in the tensor product
is a module P£, it likewise follows what the indecomposable direct summands of the
tensor product are. These pieces of information suffice to solve the problem.

In Sect. 5 we leave the tensor category of finite-dimensional left ilg(sl2)-modules
and peer at the abelian category u ( s [ ^ o d of finite-dimensional left il^($l2)-modules.
Each module in u (3(2)mod is in an essentially unique way a direct sum of indecom-
posable modules in u ( s ( ^ o d (Krull-Schmidt theorem). The classification of the latter
modules uses a result of Kronecker's. In addition to the classification, we deduce the
Auslander-Reiten quiver of iiq(sί2) in a nontechnical fashion.

For the reader's convenience, Sect. A recalls the fundamentals of Auslander-Reiten
theory.

In Sect. B we find the example ίίq(sl2) at q = exp(τπ/4) worked out explicitly.

2. Summary of iiq (s l2)

We fix an integer N > 2 and an integer m such that 2iV, m are coprime. This then
determines the primitive 2iVth root of 1,

/ττim\

{ - (2Λ)

iXq(sl2) is the associative C-algebra with 1 generated by KΊ E, F and subject to

the relations2

= 1 , EN = 0 = FN ,

KEK~X =q2E, KFK

EF - FE K ~ K

-1 _ Λ-2j (2.2)

q- q~ι

This algebra is, in fact, a (quasi-triangular) Hopf algebra, whence the tensor product
L <g) M := L 0 C M of the two ilg(sί2)-modules L, M again acquires the structure of
a lt^(s[2)-module (and L ® M = M ® L as ίlg(s[2)-modules). The comultiplication
will be recalled as we will need it, later.

Another piece of notation consists in the introduction of (/-numbers: for n G Z put

[n] := 1 ^ - . (2.3)
q-q~ι

Since m is odd, definitions (2.1) and (2.3) show that

As a convention, by ί we shall always denote an element in Z/27VZ, which
means that £ + 27V = ί. Nonetheless, expressions like, for example, K£, [ί], or

1 In order not to bother anyone with ring problems
2 These relations define what is in fact a restricted quantum universal enveloping algebra. In some
respect, it would be more natural to consider an infinite-dimensional algebra generated by K, K~ι,
and divided powers of E and F. (Recall that for an algebraic group scheme the appropriate thing
to study is its algebra of distributions, not its Lie algebra.) Even so, the algebra considered here is
a bona fide object in the realm of finite-dimensional algebras
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1 + 1 Ξ 0 (mod TV) are well-defined. Another example is given by introducing the
if-eigenvectors

Ψe:= £ q-"Kh,

such that

Kφ£ = φ£K = q£φ£ , Eφ£ = φί+1E , Fφ£ = V ^ ^ ( 2 5 )

The next lemma is well-known (cf., e. g., [Lu2]) and is basic for what follows.

Lemma 2.1. The 2N3 vectors FaK£Eb e ίlq(sl2), where α, b e { 0, . . . , N - 1 } and
I G Z/2NZ, constitute a vector space basis for ίlq(sl2).

Corollary 2.2. il (sl2) = Θ CFaφ£E
b as a vector space.

3. A Canonical Decomposition of ίlg($l2) into PIMs

Our aim is to decompose iiq($l2) into a direct sum of indecomposable left ideals. Such
a decomposition is not unique. However, we shall introduce some favourable gradation
of ίl (sl2) and then require a decomposition into homogeneous indecomposable left
ideals. That decomposition will be shown to exist, and, furthermore, uniqueness will
be saved.

The promised gradation is not far from the decomposition of the adjoint represen-
tation into K-eigenspaces and is given by

J V - l

where

^(sί 2), := 0 CFaφtE» .
a — b—s

/
α , 6 G { 0 , ..,7V—1}

We say the elements in ϋ g (s l 2 ) s have height s. Note how K,E,F respect the
gradation.

The Modules P£. The modules P£, whose definition or construction concerns us
next, turn out to be certain maximal indecomposable left ideals in ίiq(si2). We shall
construct these modules step by step, starting with a (left and right) fί-eigenvector
of highest height, viz. FN~ιφ£.

Two special instances of the formula which calculates the commutators [£? r,F s]
will be needed (cf. [Lul]):

[ F , ^ ] = - [ S 1 ^ - ' ^ ^ r ^ , (3.1)
q q ~ ι

N-1FN-IE N - 1 F N - I = y ( n o n z e w c o e f f , ) F N ~ i ' h E N ~ i - h τ τ K q K W

U i o q~q
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Lemma 3.1. FEsFN-{φe = -[s][£ +s + l]Es-ιFN~ιφe for s e Z > 0 .

Proof

FEsFN-[

Ψi

<H> Kq-{l"s) -K-[ql~s

q-q-1

(2.5)

D

We define

mod~y : Z — > { 1 , . . . , N } ,

mod" : Z — • { ( ) , . . . , J V - 1 }

such that mod^(/i) = h (mod AT). Recall that, by our convention, the functions
are defined on Z/2NZ as well.

Corollary 3.2. min {s e Z > 0 | FEsFN~[φ£ = 0} = mod^(-^ - 1) ,

max {s e Z<N I FEsFN~xφί = 0} = mod^(-^ - 1)

Thus, the iV-dimensional left ideal ίίq(si2)FN~ιφJβ may be represented schematicallyίq(si2)FN~ι

as
• at:=FN-ι

IT
• Eaί

IT

IT

IT (3.3)

• Em<^-^~{ae=:βe

I
• EmodN(-£-{)a£ =: ^

IT

IT

Each dot stands for the 1-dimensional subspace spanned by the named vector. Upward
(resp. downward) pointing arrows indicate a nonzero left-multiplication action by F
(resp. by E). In the diagram pictured above, the single downward pointing arrow does
not appear for ί -f- 1 = O(modiV), as then aί = δcί (or, equivalently, βί — βg)\ we
put

7 := a for ί + 1 Ξ 0 (mod JV). (3.4)
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For £ + 1 φ 0(modTV) we have FN~ιβί = 0, and βt can be written as

βι = FΊί, (3.5)

for a unique vector ηί of the form

7f= Σ ca^bF
aψhE

b w i t h c α Λ 6 G C .
o€{0,...,iV-2}

hZ/2V

Observe that 7£ and α£ lie in the same homogeneous component of ilg(5l2)
 a n d n a v e

the same left and the same right if-eigenvalues in particular,

which also holds for £ + 1 = 0 (mod N).

Lemma 3.3. FEs

Ίί - Esβ£ = [s][£ - s + 1]

(3.5) s (3.1) s _ i Kq ^ s"ϊ — K 1 g 1 s

'n — Eβn = [F. E ] Ύp = —[s]E ; 7«

(3.6)
(23) . p S _ ι (2_4) „ »J.11P«-L

[This calculation applies to all values of ί. For £+ 1 = O(modΛΓ) simply notice that
I? s /^ = 0 = EsFje but then Lemma 3.3 says the same as Lemma 3.1.] D

Corollary 3.4. FN~ιEN~ιjc is a nonzero multiple of άe. In particular, Esje ψ 0
for s e { 0 , . . . , TV - 1 }.

Let us now illustrate the left ideal ttq(sl2)je for ί + 1 φ 0 (mod TV):

• ae
IT

IT
• ft

/ I
Ίί on

IT / IT
: : : (3.7)

IT / IT

I /

IT

IT
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It is clear that for s G { 0, . . . , mod^(f)} the two vectors Esη£ and Esά£ are linearly
independent.

Now we define V£ : for £ e Z/2NZ let [cf. (3.7), (3.3) and (3.4)]

The modules P£ and P£+N yield the same skeleton-of-dots-and-arrows. That makes
it reasonable to put

So we get an involution on the set of modules {P£ \ £ G Z/2iVZ}. Another involution,

£ \—> £, now written on the set of indices Z/2iVZ itself, is defined via the equation

£ + I = —2.

• For £ + 1 φ 0 (mod TV) we set [cf. (3.7)]

and get

p£ D Ωιs£ D \\ D y\ n vj D o,

p, D Ω% D vl D vinvί DO

as composition series built from homogeneous submodules, both series with compo-

sition factors isomorphic to S^, S^, S^, S^. The maximal semisimple submodule of P£

is the simple module \£ Π \\, hence P£ is indecomposable.

• For t+ 1 = O(modiV) the module P£ — P£ is a simple left ilg(sί2)-module. These

modules, St := P i V _ 1 and St ( = P2JV-I)> a r e termed the Steinberg modules. Just in

order to have the correct notation, we put ΩιS£ := OCP^ and Ŝ  := P£/Ω{Se.

The next proposition takes up some of the discussion above.

Proposition 3.5.

• For £ + 1 φ 0(mod N) we have [cf. (3.7)]

N-\

CEha£ Θ CEhηλ as a vector space,

and this 2N-dimensional left iiq($ί2)-module is indecomposable.

• For£+\=0 (mod N) we have [cf (3.3)]

N-l

Ϋ£ = ^ ^ CEha£ as a vector space,

h=0

and this N-dimensional left iiq{5i2)-module is simple.
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The Decomposition.

Lemma 3.6. Right multiplication by Eh defines an isomorphism P^ -zl-> F^Eh of left

ίίq(sl2)-modules for h e { 0, . . . , moά^ii) }.

Proof We must show that right multiplication by EmodN^ maps F£ injectively onto
ά-{£) h i s f o l l o w s f r o m

EN-{a£E
modN{i) φ 0 and EN~x

ΊίE
mod~N^ φ 0 .

The first of these two formulae implies the second, for FN~xEN~xη£ is a nonzero

multiple of άe = EmodN{~ι-χ)a^

h=0

(2.5) JV-1 ίh-\ \
(2=3) ] Γ (nonzero c o e f f . ) ^ " 1 - ^ ^ - 1 - ^ f j [^ - j])φ£E

modN^

h=0 \j=0 /

(2.5)
(2.2)
( = 3 ) (nonzero c o e f f . ) ^ " 1 - 1 1 1 ^ ^ ^ - V_, φ 0.

D

/?mαrέ [cf. (3.7)]. F£E
modN^^ = ίlq(sl2)&£ C P^ for £ + 1 ψ O(modiV).

Theorem 3.7. ilg(sl2) = 0 φ P^Eh α5 ύf /e/ί ίXq(sl2)-module is the unique
£eZ/2NZ h=0

decomposition ofίlq($l2) into a direct sum of homogeneous indecomposable left ideals.

Proof The sum ]P P^^^ ( o r even Σ F£E
h) is in fact a direct sum because

/ι=0 ^ /ι=0 ^

the summands lie in different right K-eigenspaces. Also, the outer sum is a direct
one: \\ Π VJ ψ v\, Π v], for f ^ f, and H9(sί2) is a Frobenius algebra (see below).
A dimension count now shows that we have completely exhausted il (sl2) This being
established, we also have the stated uniqueness. D

Thus, we have decomposed Ug(sί2)
 m t 0 a dkect sum of indecomposable left ideals,

each being isomorphic to Yt for some ί e Z/2NZ. A left ideal in ίXq(sϊ2) which is
isomorphic to P^ for some ί is called a (left) principal indecomposable module (PIM
for short).

To construct the decomposition of llg(sl2) into homogeneous indecomposable left
ideals, we started with a vector of highest height, produced Yί, and shifted F£ to
F£E

h. Of course, we could have started with a vector of lowest height. We would
then construct the left module which contains EN~ιφ_^ and whose skeleton-of-dots-
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and-arrows looks like this:

n

π
ΐ
•
n

n
•

\

\

\

\

•
τι

u
•T

u
or

U

τι n
•

Finally, we would shift such a module Q to QFh for suitable values of h. By unique-
ness, this procedure then yields the same decomposition of iiq(Bί2) into PIMs. From
now on, we shall draw the skeleton-of-dots-and-arrows in a more symmetric fashion.

Here is the diagram for N — 4 [see Sect. B, where the case m — 1 [cf. (2.1)] is
worked out explicitly]:

3

2

1

o
- 1

- 2
_ 3

3

o

1

o

- 1

- 2

- 3

P o

IT
#

IT
φ

/ • \

\ /

Γί
IT

P o = P 2

#

IT

IT
•

/ \

\ /
«

IT
#

IT

Px

#

IT

•IT X IT

\ /

IT
φ

p>pτ

#

IT

•IT X IT

\ /
#

IT

VXE

#
IT
#

/ \

IT X IT

\ /

IT

IT

#

/ \

IT X IT•\ /
IT

P 2

#

•IT X IT•
IT X IT

\ /

^ = Po

#

/ \

IT X IT•
IT X IT

\ /

V2E

φ

/ \•IT X IT

IT X IT•\ /

/ \•IT X IT

IT X IT•\ /

V2E
2

•
/ \

IT X IT•
IT X IT•

/ \
IT X IT•IT X IT•

st

#
IT
•
IT
•
IT

st

#
IT

IT
«
IT

•
IT
•
IT

IT
•

IT

IT

IT
#

c

•
IT

IT
•
IT
φ

IT

IT

IT

HE

IT
«
IT
φ

IT

IT
#

IT

IT
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Remark. It is not an accidental coincidence that each Pe occurs with multiplicity
(see the remark about the ''dimension formula" below).

Some Notions from Algebra. The decomposition of ίlq(sl2) in Theorem 3.7 cor-
responds to a decomposition of 1 e ltg(sί2) into a sum of primitive orthogonal
idempotents: 1 = X^e^ , where β Je j / = ^ y β j , and the adjective "primitive" means

3

that the decomposition cannot be refined. Each ê  belongs to some PeE
h (i.e.,

ίiq(sl2)ej = V^E11), and it turns out that eJ is a vector of height 0.
Theorem 3.7 together with the knowledge of the architecture of the PIMs yield

several obvious corollaries. But first we review some terminology from algebra.
Let us dwell on the concept of projectivity. An object P in an abelian category

A is termed projective if the functor Horn^P, ) from A to the category of abelian
groups maps short exact sequences to short exact sequences. If we take for A the
category u ( 5 l 2 )mod of finite-dimensional left ίlg(sί2)-modules, the requirement for P

to be projective is the following: for any epimorphism M - ^ L in u (5[2)mod, the

corresponding map Homu ( s [ ̂ (P, M) - ^ Homu ^S{)(P,L) of abelian groups (here,

in fact, complex vector spaces) also has to be surjective (since the Hom-functor is

always left exact, this is already sufficient). In other words: given a homomorphism

P -^U L, there exists a homomorphism ψ making the diagram

P
•Φ/ I

M -^ L —•» 0

commutative. In the special case where L = P and φ = \άP, ψ is a section of π,
that is, M = kerπ Θ i m ^ = kerπ 0 P. In this situation, we may, in particular,
choose M to be a finite-dimensional free i!g(sl2)-module which projects onto P.
Hence projective modules are direct summands of free modules. On the other hand,
this property characterises the projective modules because for a direct summand of
a free module it is clear how to construct a required lift. An injective module is a
module which fulfils the concept dual to that of projectivity.

A projective cover of a module M is a projective module P which projects onto
M (or, more precisely, the epimorphism P -» M) and is minimal with respect to
this property. It is then unique up to isomorphism. For example, P^ is a projective
cover of S£ or of Vjv\ when ^ + 1 ^ 0 (modiV), the module ΩιSί has P-£ 0 P-£ as
a projective cover. An injective hull of a module is defined via the dual concept.

Recall that the nonsemisimplicity of a finite-dimensional algebra A over an
algebraically closed field is measured by a two-sided ideal: the (Jacobson) radical
3(A), which is always a nilpotent ideal. It is the minimal two-sided ideal such that the
algebra A/3(A) is semisimple, i.e., A/3(A) is a direct sum of full matrix algebras.

mod~(£)

Corollary 3.8. [cf. (3.8)]. J := J(ίl (s^)) = 0 0 Ω%Eh ,
££Z/2NZ h=0

ίίq($l2)/3 = 32, 33 = 0 .

If P = Ae is a PIM, then Ae/3(A)e is a simple left Λ-module. Ae ι-> Ae/3(A)e
induces a bijection between the set of isomorphism classes of indecomposable
projective modules and that of simple modules.
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Corollary 3.9. For each h = 0, . . . , TV — 2 there are the two (h + \)-dimensional
modules Sh and Sh+N, and, together with St and St, these IN modules provide a
nonredundant list for the isomorphism classes of simple ίlq($l2)-modules.

For a finite-dimensional module M one defines its radical, radM, as the
intersection of the maximal submodules of M and its socle, soc M, as the sum of the
minimal (i.e., simple) submodules, which is then a semisimple submodule of M.

Corollary 3.10. For t+\φ O(modiV) the Loewy layers ofP£ look like

P^/radP£ = P£/JF£ = S£ (the head of~P£),

rad P^/soc P^ = J P£ /i2P£ ^ S | θ S | (the heart of P£),

socP^ = ίΣYί 2* Ŝ  (the socle of V£).

It is known (see [LS]) that finite-dimensional Hopf algebras over a field (or, more
generally, over a principal ideal domain) are Frobenius algebras, which means that
the two regular representations are equivalent. (These Frobenius algebras must not
be mistaken for the Frobenius algebras showing up, for example, in [Ma].) The two
regular representations being equivalent, in turn, implies self-injectivity, namely, that
each finite-dimensional module is projective if and only if it is injective. Hence every
short exact sequence of ίlq(£l2)-modules

0 - > L - + £ - > M - + 0

splits, that is, E = L φ M, if L or M is projective.

Remark. The "dimension formula" for Frobenius algebras (for a more precise
statement see [CR, (61.13) or (61.16)]) in our context reads

dimίlρ(sl2) =
e

In order not to rely upon the statement made above - that finite-dimensional Hopf
algebras over a field are Frobenius algebras - we may argue as follows. Look at the
vector A := ά0 — β0 = EN~xFN~xφQ, which is a basis for the module socP0.
Since K - Λ = Λ, E Λ = 0, and F A = 0, it follows that socP0 realises the trivial
representation, that is, the representation afforded by the counit or augmentation ε:

XΆ = ε(X)Λ for all X e ί l q(sl 2). (3.9)

Equality (3.9) tells us that A is a left integral in ilq(sl2). The nonsingular bilinear
form on the dual ίi (sl^)* of the Hopf algebra iiq($i2)

(p, q) i—> pq(Λ)

provides an isomorphism ίlq($l2)* = Uq(sί2)
 a s left Ug(sl2)-modules (actually, even

as left Hopf modules), showing that iiq(sί2) is a Frobenius algebra. As
dim(P0/radP0) = 1, the space of left integrals is 1-dimensional - which follows
from dim soc Po = 1 because ίίq(si2) is a Frobenius algebra. The subspace CΛ is thus
a two-sided ideal of ίlq(sί2), and the equality A K = A then shows that A is a
two-sided integral in ίlg(sl2), that is, (3.9) and

Λ X = ε(X)A for all X G ϋq(sϊ2) (3.10)

hold. Equation (3.10) follows because there is only one further equivalence class of
1-dimensional representations of iiq(sϊ2), which has K acting by - 1 . Hence Uς(sί2)
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is a unimodular Hopf algebra. Actually, ίlq(sl2) is an algebra of an even more special
kind, which we shall show in Sect. 5.

Since ilς(.el2) is a Frobenius algebra, decomposing li(i(5ί2) into right PIMs does not
yield anything essentially new. But what we shall do is to give the decomposition of
ii ($l2) into indecomposable two-sided ideals. For this purpose, we have to combine
PIMs into blocks. As we already know the composition factors of the PIMs, this is
immediate (in fact, we needn't even know that and simply would apply the remark
after Lemma 3.6):

for ί+ 1 =£0(modJV),

r

(: : =

.__

n o d Λ Γ ( .

Θ
h--=0

N-\

ί)

P^Eh

StEh .

θ

modΛτ(^)

θ
h=0

Λ r - 1

ΛSt •-

h=Q

N-2

% is the (unique) decomposition ofCorollary 3.11. U (s(2) =

the algebra ίiq($ί2) into indecomposable two-sided ideals.

Corollary 3.12. The Cartan matrix of iiq($12) (i.e., the matrix whose (t.li)-entry is
dimHom^ ( s ! o ) ( P / ? , P^), which is the same number as the multiplicity with which the
simple module P / ? / J P / ? occurs in a composition series ofPg) looks like

C =

2 2
2 2

0

0

2 2
2 2

ϋJ/
where the row and column indices run over 0, 0 . . . . , TV — 2. N — 2, N — 1, 2N — 1.

Remark. The Cartan matrix above has the form C — {DD for a "decomposition
matrix"

/ Π Π r, \1 1
1 1

0

1 1
1 1

0

1

It has some connexion with the composition series of the modules VJ and V] , which
were defined in (3.8).
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4. Tensor Products

Fact 1. In a finite-dimensional associative ^-algebra, each finite-dimensional projec-
tive module is isomorphic to a direct sum of PIMs.

[This follows immediately from the Krull-Schmidt theorem.]

Fact 2. In a Hopf C-algebra H, the tensor product of a finite-dimensional projective
module P with an arbitrary module M is projective.

[On H <8) M := H 0 C M we have two tensor product structures: the usual one given
by g(h 0 m) := ^ g^h (8> g^m (here Δ(#) = Σ 9(\) ® 9(2) ι s a convenient notation
for the comultiplication Δ) and the tensor product structure as an induced module
(where M is treated merely as a vector space), namely, g(h (8) m) := gh <8> m. The
crucial point to note is that these two left ϋf-modules are indeed isomorphic: the two

morphisms given by h 0 m ι-̂ -> Σfyi) ® ^ ( ^ ( 2 ) ) m ( w n e r e S is the antipode) and

h® m i—> Σ \\) ® ^(2)m a r e ^ w o mutually inverse isomorphisms between the two
tensor product structures. Let us compute aoβ:

a o β (h 0 m) = ^ ^(iχi) ® S ί /2(1)(2) j h^rn

^y coassociativity

ί /ι ( 2 ) )) m by the antipode axiom

(ε is the counit)

= V^ h(Uε{ hΠλ) ® m = h® m by the counit axiom.

A similar computation shows that β o α = id.
According to Fact 1, we may assume without loss of generality that P is a PIM.

So we have to pass from H to a direct summand of H, and it is here that the structure
of M as an iί-module comes into play.]

Our aim is to decompose P̂  (8) S^ into a direct sum of indecomposable modules.

Facts 1 and 2 show that J*£ (8) S^ = 0 P̂  °J, where the multiplicities a^ remain
jeZ/2NZ

to be determined. The computation of the α^'s is just a combinatorial exercise. To
explain this last statement, we recall that the comultiplication is given by

A(K) = K®K ,

A(E) = E 0 1 + K (8) E ,

With the first formula, we can compute the dimensions of the left iίΓ-eigenspaces.
This knowledge is not sufficient. But the last two formulae show that tensor product
formation is compatible with the height structure. More precisely, we may decompose
P£ 0 S^ as a vector space into a direct sum of subspaces3,

( P / ) t ® ( S Λ ) u ,
t-\-u=s

Since Ω{Sh is a homogeneous submodule of P^, S^ inherits the gradation from P^
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such that E (resp. F) maps (P£ 0 S^) s into (P^ <g> S^ι)s_1 ί resp. into (Pe ® S^) s

by left or right multiplication. A left ^-eigenvalue of highest height determines a
module isomorphic to a PIM which is a direct summand of P ^ S f t. We then delete
the corresponding K-eigenvalues and continue splitting off direct summands.

An example may clarify the procedure. Let us compute for N = 5 the tensor prod-
uct P2 0 S 3 . The height-and-left-iί-eigen value-structures of P2 and S3, respectively,
may be pictured as [cf. (3.7), (2.5) and (3.6)]

4
6

8 8
0 0
2 2

4
6

and

where a number i stands for a K-eigenvalue qί. Now we do the tensor product and
get

1

3

5 5

7 7

9 9

1

3

3

5

7 7

9 9

1 1

3

5

5

7

9 9

1 1

3 3

5

7

7

9

1 1

3 3

5 5
7

9

1

3

5

7

9

3

5

7

9 9

1 1

3

5
7

7

9
1

3

5

7

9
1

3

5

7

9

1

3

5

7

9

1

3

5

1

3

5
7

9

from which we read off that

P2 0 S3 = St

In order to compute Pέ

where the conditions

, θ P3 θ P3 θ St .

in general, we may restrict ourselves to the cases

(i-\-2NZ)Π{0, . . . , JV- 1 } ^ 0 and (h + 27VZ) n {0,... ,7V - 1 }

are both fulfilled. It is because the modules P£ and F£ = P^+ i V (resp. S^ and
Sh := S^+iV) differ in their height-and-left-K-eigenvalue-structures by the replace-
ments of each left î Γ-eigenvalue qJ with qJ+N = — qJ only that this reduction is
possible. In other words,

(4.1)

wherejhe last expression is defined in the obvious way by extending the involution
P£ i—» P£ to the set of isomorphism classes of (finite-dimensional projective) modules.
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It is useful to introduce certain quantities: we define σ by

{ σ(£)} : = ((£ + 2NZ) U (ϊ + 2iVZ)) Π { 0, . . . , N - 1 } for ί φ - 1

0 1 2 3 4 5 6 7 1
e.g., for iV = 5:

0 1 2 3 4 3 2 1 0

and put [cf. (3.7), (3.4) and (3.3)]

N-\

Oig 0 C£7 7^ 1 ,

that is, (cf. Proposition 3.5) Fe = P£ for I + 1 ^ O(modiV) but P̂  = P̂  Θ P̂  for

1 + 1 Ξ O (mod TV). Each of the modules P£ is 27V-dimensional.

Proposition 4.1. For "0 < h < ί < N " (L e., 0 < modζN(h) < m o d ^ ^ ) < N) we
have

h

For "0<i<h< N" (i. e., 0 < mod~N(^) < moά~N{h) < N) we have

Proof. The last part, that is, the commutativity property follows because F£ (g> S^

and S^ (8) P̂  have the same height-and-left-i^-eigenvalue-structures. (So we need not

mention quasi-triangularity here.)
Generating functions in y represent the height-and-left-K-eigenvalue-structures η

for the various modules under consideration in the following way, where we put
x := yq2 to abbreviate the notation:

η(Sh) := q~h + yq-h+2 + . . . + yhqh = q~h * ~ * χ

+ for "0 < ft< TV",

v g s = g"7' ^ ^ for "0 < h< N - 1",
1 — x

[Sf) f o r ' 4 0 < ^ < A T - 1 " ,

so that

,,(?.) = (1 + yN)q~
ι — + 2ye~N+lq~e for "0 < i < N",

1 — x 1 — x
and finally
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Let "0 < h < t < N". To prove the first formula in the proposition we shall see
that

h

3=0

for a suitable set of exponents { fe h(j) \ j — 0, . . . , h }. We find

Now let "0 < i < h < TV". Then we have

ηφ£) η(Sh) = yh~£η(Ph) η(βέ) + η(P2N^) η(Sh__£_,) ,

which proves the second formula in the proposition. D

Remark. Using Proposition 4.1, we can calculate P ^ M , where M is an arbitrary
(finite-dimensional) ϋg(5ί2)-module. In fact, up to isomorphism the tensor product
remains the same if we replace M by, say, the direct sum of the composition factors
of M.

In the same vein as Proposition 4.1 we prove the next lemma, which amounts to
nothing more than the classical Clebsch-Gordan theorem.

Lemma 4.2. For "0 < h < ί < N" (L e., 0 < mod^f t ) < mod^CO < N) the two
modules [cf. (3.8)]

h h

S^S, and 0 Sf_h+2j θ 0 ΩιSσ{l_h+2j)

j=0
"^/2

have the same composition factors, that is, their classes are equal in K(ίlq($l2)), the
Grothendieck ring ofiiq(sί2).

Corollary 4.3. For "1 <f < N - \" (i.e., \ < mod^OQ < N - \) we have

furthermore,
S Q ^ S J ^ S J and SN_{ 0 Sj = PN_2 .

Proof. The first of the last two formulae is trivial, the second is contained in
Proposition 4.1. By Lemma 4.2 we have

class(S£ <g> Si) = class(S^_! θ Si+ι) in K(ίlq(sl2)).

As S^_! and Sί+ι belong to different blocks, the equation above implies that

Alternatively, from P£ -» Ŝ  we get P£ 0 S1 -»• S£ 0 S1, and now we employ
Proposition 4.1. D

Proposition 4.4. The indecomposable direct summands of Ŝ  0 S^ are either simple
or projective.

Proof. Without loss of generality, we consider the cases "0 < h < £ < TV" only.
The standard proof then goes as follows (cf. [GK]): Corollary 4.3 shows that the
modules S£ and S^ occur as direct summands of suitable tensor powers of Sι and
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that Proposition 4.4 holds for h = 1. Now we invoke Fact 2, and the general case
follows. D

Theorem 4.5. For "0 < h < ί < N" (i. e., 0 < moά~N(h) < mod"^) < N) we
have

h h

s,£_h+2j θ

j=0 j=0

where for j G { 0, . . . , h } we put

Proof. Put Proposition 4.1, Lemma 4.2, and Proposition 4.4 together. D

Now we can compute S ^ 0 S ^ = S ^ S ^ for all values of ί and h by means of
applying formulae analogous to (4.1).

5. Finite-Dimensional iίq (5 [2) -Modules

This section deals with the abelian category u ( s l 2 )mod of finite-dimensional left
U9(5ί2)-iΏθdules. Here we have to consider the representation theories for each block
of Ug(sl2) The blocks BS t and J%t - both isomorphic to Mat(iVxiV,C) - deserve no
further comment.

For almost the rest of this section we fix ί such that ^ + 1 ^ 0 (mod N).

An Equivalent Category. We begin investigating the category B^mod of finite-
dimensional left B^-modules. Recall that P^ and P-£ represent the two types of PIMs
for B£=MI. Put

B := En\(sh) ( p £ θ p z ) = E n d B , (Fi θ p ^ )
^ \ / * • \ /

The algebra Bop is the opposite algebra (i.e., the multiplication is reversed) of B. It
is a standard fact - known as Morita theory - that the categories B mod and β o pmod
are equivalent. In fact, we may view P^ 0 P^ as a B^-#op-bimodule the vector space

(P* Θ P/,B.) then becomes a £>op-Brbimodule, and the functors

provide an equivalence of abelian categories B mod c± β o p mod. The algebra Bop is

the basic algebra of B^; every simple (left) #op-module is 1-dimensional.
We shall describe the algebra B explicitly. In matrix notation B may be written as

/ Hom l £(P^, Pέ) HomB £(P z, P,)

VHom % (P, ; P^) HomB /(P 2,P 2)

^ is generated as a vector space by the two B£-homomorphisms given
by [see (3.7)] ηt »-> ηί (i.e., idP^) and ηί ι-> ά£, whereas HomB^(P^,P^) is the
vector space generated by the two B^-homomorphisms given by e : 7^ *—> 7^ and
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f : 7£ i—> OLJ . Similarly, we have HomB (P^, Pe) = Ce Θ Cf, where e : 7^ 1—> j e and

f : jj 1—» α^. The algebra S is thus the 8-dimensional C-algebra generated by

IP, 0\ _= / 0 0

. ^ 0,

E : = V e 0

0

0

0

0

0

id

e
0

f

0

Besides the obvious relations among the elements of 23 defined above, the identities
FE = EF and _FE = JΞF follow from fe = ef and fe = ef. Moreover, we have
EE = FF = EE = FF = 0. Note that the three elements ZZ, E + E, and F + F
already generate B as an algebra with 1.

Look at the inclusions for classes of finite-dimensional algebras

{self-injective algebras} D {Frobenius algebras} D {symmetric algebras}.

The first two types of algebras were defined in Sect. 3. A symmetric algebra A over
the field k is an algebra which admits a linear form t : A —» k such that no left (and
no right) ideal of A different from the zero ideal lies in the kernel of t and such that,
in addition, t(xy) = t{yx) for every x,y £ A. The group algebras of finite groups
over a field form a prominent subclass of the class of symmetric algebras. Certainly,
ίl (sl2) is not a group algebra. But it (5I2) is a symmetric algebra. To see this we
must show that each block of ίlq(sl2) is a symmetric algebra, which is certainly true
for the simple algebras BS t and B§-t. Let us consider the generic block M£. Symmetry
of algebras is not affected by Morita equivalence - like self-injectivity, but unlike the
property of being a Frobenius algebra. The linear form Bop —> C defined by

ZZ,ZZ,FE,FE^—> 1, E,E,F,Fκ->0

reveals that BΌp and thus B^ are symmetric algebras. Now the symmetry of the algebra
ίlq(sl2) again implies (cf. [Hu]) that the Hopf algebra ίlq(sl2) is unimodular, as already
observed in Sect. 3.

Let

be the Kronecker algebra over C . By abuse of notation we shall write X instead of
X mod (X 2 , Y 2 ) and Y instead of Y mod (X 2 , Y 2 ) .

The algebra £>, generated by Z, Z, E , E , F , F (or just by Z,Z, E , F ) , is defined by
the requirement that

0 o\ 2 ^ ( o 1
1 oy ' \o 0
0 o\ - fox
x 0) ' ' '\o 0
0 0\ - /0 Y

Y oj ' *~* lo 0
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define an isomorphism B —^ Mat(2x2, /C); and we identify B as a subalgebra of B.
It might be instructive for the reader to draw diagrams for the PIMs of B and of B.

We want to get rid of the " o p " . This is achieved by means of the isomorphism
g -E+ goP g i v e n b y

It restricts to an isomorphism B -z-^ Bop.
The algebra Mat(2x2, /C) has basic algebra /C, so that we get the relations between

algebras

Me ~ # o p - B C B ^ Mat(2x2,/C) - /C,

where ~ denotes equivalence of the respective left module categories. What remains
to be done is to compare ^mod with gmod and to describe ^mod.

Let M be a (finite-dimensional) left 23-module. We have M = ZZM Θ ZZM, and

we define the left £>-module

M := ZZM Θ ZZM Θ Z(ZZM) Θ Z(ZZM)

in the obvious way.

An indecomposable (finite-dimensional) ^-module L decomposes via restriction

to B into a direct sum of two indecomposable 23-modules, L\B = L{ 0 L 2 , where ZZ

(E,F) acts on Lγ (resp. L2) as ZZ (E,F) acts on L2 (resp. L{). In particular, each

>B-module is isomorphic to M for some £>-module M ; and we have L\B = L φ L as

£>-modules. Thus M \-+ M yields

isomorphism classes ^ j ' isomorphism classes
of indecomposable I 2 : 1 I of indecomposable
(finite-dimensional) ί | (finite-dimensional)
left i^-modules J [ left ^-modules

Finally, we recall the relevant facts concerning ^mod. First note that the radical
of K, is J(/C) = CX φ C F θ CXY. Assume M is a finite-dimensional /C-module
without projective summands. Then soc/C = J(/C)2 = CXY annihilates M, and
J(/C)M C socM. Choose now a vector space basis for M whose first elements
constitute a basis for socM. The matrices of X and Y, respectively, are exactly the
matrices of the form

X) and (° Ψ ) . (5.1)) and (

We are thus left with classifying pairs of matrices (5.1) under simultaneous conjugation

by invertible matrices of the form (* *) , that is, we may replace X by AXB and

Y by AYB, where A and B are invertible matrices.
The problem of classifying such pairs of matrices was solved by Kronecker more

than a century ago [Kr]. His result yields the following nonredundant, exhaustive
list, which tells us the isomorphism classes of indecomposable finite-dimensional
/C-modules.
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• C (the simple /C-module)

• K (the PIM)

• For each n — 1,2,... the /C-module corresponding to the nx(n+ l)-matrices

- - ί 1 ° °) γ-(° -1 °)
~ V 0 i o j \0 o J

• For each n = 1,2,... the /C-module corresponding to the (n+l)xn-matrices

0 ••.
X = Y =

• . o

\0 i,

For each λ e C U {oo}, n = 1,2,... the /C-module corresponding to

X = J n (0) , = l

i f λ e C ,

if λ = oo ,

where J n (μ) denotes a Jordan block matrix of size n with eigenvalue μ.

Remark (see [Ka]). The modules listed under the first and the last three points
correspond to the positive roots of the affine Lie algebra sί2. The correspondence is
one-to-one for the real roots, whereas with every positive imaginary root is associated
a variety of modules parametrised by the sphere P^C).

Remark (cf. [Ba, HR]). The Kronecker algebra over fc, k[X,Y]/(X2,Y2), for k a
field of characteristic 2 is isomorphic to the group algebra over k of the Klein four
group (x,y\x2 = y2 — l,xy = yx). An isomorphism is given by X H^ 1 + X,
7 H l+y.

Remark. Of course, the theory developed further, going beyond what shall be used
here. There is RingeΓs classification for the dihedral 2-groups [Rinl], which uses part
of [ΓΠ, GP] in a new shape (functorial filtrations). You may also look at [BS]. More
recently, there are [WW, BR, Er] to name but three items.

To introduce some notation, we give the list which classifies the isomorphism
classes of indecomposable left Me-modules which parallels the list given above for
the /C-modules.

• For each n = 1,2,... : ΩnSe, ΩnS-£

• For each n = 1,2,... : Ω~nS£, Q~nS-£

• For each λ G C u { o o } , n= 1,2,... : M?(λ), M?(λ).

There are no new notations introduced under the first two points. Let us make a
digression on the next two points and on the last point.
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Digression on Ext. The modules ΩιS£ and ΩιSj have already been introduced
[cf. (3.8)]. As the notation suggests, the modules i? ± n S^ and Ω±nS-e are related
to the loop space functor in algebraic topology. In fact, the projective modules play
the role of the homotopically trivial objects.

It may be useful to depict the modules Ω±nSe, Ω±nSι by means of diagrams.
Let us write

for the four modules P^, P^, S^, S^, respectively. If we compare these diagrams with
those displayed earlier, we should note two things. Firstly, within a whole diagram,
o and stand for mod^γ(£ -f l)-dimensional and mod^(£ + l)-dimensional vector
subspaces, respectively. As we know, this is of minor importance. Secondly, whereas
in the pictures in earlier sections the head was on the left- and the socle on the right-
hand side, they are now at the top and bottom, respectively, such as we see it in
Corollary 3.10.

Recall how a minimal projective resolution of a module M is constructed:

.. . - ^ P&u - ^ i W - ^ PM - ^ M -> 0,

Ω3M Ω2M Q1M Ω°M = M

where Px (or, more precisely, Px -» X) denotes a projective cover for the module
X and is then unique up to isomorphism; ΩjM := k e r ^ ^ for j G Z > 0 ; and the
d's are such that the diagram commutes. The horizontal sequence is thus an exact
one. Here is "the" minimal projective resolution of Ŝ  in diagrammatic form:

Interchanging black and white dots leads to "the" minimal projective resolution of S^.

This gives us the V -, W -, V W -, . . . shaped modules ΩnSe and ΩnS-£. To construct

Λ -, ΛΛ -, ΛΛΛ -, .. shaped modules, we use minimal injective resolutions of Ŝ

and S^. For a module M it reads

0 - * M — > IM — > J Ω - I M — > J Ω - 2 M —»• ••• >

M = Ω°M Ω~λM Ω~2M Ω~ZM

where Ix (or, more precisely, X c—> Ix) denotes an injective hull for the module X
and is then unique up to isomorphism; Ω~^M := cokerδ 7 " 1 for j 6 ^>>Q\ and the
d's are such that the diagram commutes. The horizontal sequence is thus an exact
one. Here is "the" minimal injective resolution of Ŝ  in diagrammatic form:

Λ /A ΛV\ (53)
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And again, we may interchange black and white dots. We have thus seen the modules
Ω~nSe and J?~nS^, too.

Given two iiq(sί2)-moάu\cs M and L, the C-vector space Ext^ (5[ }(M, L) classifies

extensions of M by L, that is, isomorphism classes of short exact sequences

0 -> L -> E -> M -> 0

with fixed end terms. The Ext functors may be calculated as

U ς ( 5 [ 2 ) ( P β n + i M , L)J

The first formula calculates the right derived functors of the contravariant functor
Homu ( 5 l )( ,L), and the second formula gives the right derived functors of the
covariant functor Hom^ (Sι2)(M, ).

If L = S is a simple module, the differentials 9* are zero: if the composite

were nonzero, P β n M would have a direct summand isomorphic to Ps lying in
i m d n + 1 . But then we could split off direct summands isomorphic to Ps from each
of the modules PΩn+ιM and PΩnM in the projective resolution of M we used; that
contradicts minimality. Hence

, S) 9έ H o m U 9 ( s [ 2 ) ( P β n M , S) Sέ Hom U 9 ( s [ 2 ) (β"M, S) .

Similarly, for M = S a simple module, the differentials d+ are zero: if the composite

dn+\

S > IQ-ΠL > /β-(n+l)i

were nonzero, IQ-UL would have a direct summand isomorphic to Is which injects
into / Ω _ ( n + i ) L by dn+ι. Again, this is impossible because of the minimality of the
injective resolution used here. Hence

(,h)(S, IΩ-nL) * Homnqish)(S, Ω~nL) .

Here are some sample computations in case n = 1:

. ( . (2)
HorniM s (2) \,

(3)
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(1) Here we only have the isomorphism class of the split extensions.

(2) An explicit isomorphism of E x i ^ ^ ί V j Π v ] , \\ Π vj) ( * E x t ^ ^ , S 2 ))

[cf. (3.8)] with C 2 may be given as follows: the isomorphism class of the split
extensions corresponds to (0,0) G C 2 ; for (u,υ) G C 2 — {(0,0)} the corresponding
isomorphism class of short exact sequences is represented by [cf. (3.7)]

0 -+ i y s l 2 )ά^ -> ίlq(sί2) (ur£ + vaj) -» iίq(0ί2)α£ -> 0

The modules i t 9 ( 5 l 2 ) ( ^ + va{) and H9(5ί2)(w/7^ + vfa-£) are isomoφhic if and
only if (u, v) and (u*', ?/) G C 2 - {(0,0)} represent the same point λ in the complex
projective line P^C). This gives us the family of modules M_J(λ).

(3) Exti (S(2)(S£, ΩλS£) is spanned by the class of 0 -» β ^ ^ -> Pe -> S£ -> 0.

The notation for each pair of modules M^(λ) and M^(λ) for n > 2 has not been
fixed yet. We do this now by declaring that M^(λ) is the module whose head is
isomorphic to Sfn (rather than S®n), which then conforms with the example (2)
above.

Remark. A word about not necessarily finite-dimensional B^-modules: surely, having
in mind the diagrams (5.2) or (5.3) for the modules Ω±nS£, we now can construct
B^-modules whose number of composition factors has any prescribed cardinality.

Having the minimal resolution of the trivial module So [(5.2) for ί = 0] we may
consider the cohomology ring

71=0

We may also splice (5.2) and (5.3) to get a complete resolution of So and consider
something like the Tate cohomology. To fill in the details might be an interesting
exercise for the reader.

The Auslander-Reiten Quiver. An appealing way of organising the set of isomorphism
classes of indecomposable finite-dimensional B^-modules is to locate them in the
Auslander-Reiten quiver (cf. Sect. A). We shall thus construct the Auslander-Reiten
quiver of Me.

Theorem 5.1. The components of the Auslander-Reiten quiver of M£ containing the
PIMs have the form

[P/]
Γt:= / \

... =t [Ω%] ^ [Ω%] =t [S-e] =* [Ω-%] =| [Ω-%] =* ...

(Γ2 =) / \

...=t [Ω%] =t [ΩιS-t] =4 [Se] z4 [Ω-%] =4 [Ω~2Se] =t ...

The translation τ shifts the stable part of these quiver components two places to the
left.
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Proof. The Auslander-Reiten sequence from Proposition A.6 for P = P£ reads
(cf. Corollary 3.10)

0 0 .

The Auslander-Reiten sequence with cokernel term Ŝ  has DTrS-£ = Ω2S-£ as kernel
term. The last isomorphism follows by the remark after the proof of Theorem A.2.
Propositions A.4 and A.5 help us concoct an Auslander-Reiten sequence having the
form

Counting dimensions (or composition factors), we see that E' = 0. Induction shows
that the "left half" of the component of the quiver ΓB^ containing the vertex [P£] is
as given in the theorem. Similarly, starting with

v O - i s (Φ> O " 1 ^ ffi F" y TrΠ<s- — <9~2Sί-0 o,
we obtain the remaining part of the quiver component. We also get the component
containing [P^].

An alternative is suggested in [AR, pp. 15-16]. D

In order to derive the components of the Auslander-Reiten quiver containing the
vertices [M™(λ)] or [M^(λ)], we shall calculate within the algebra £>, which is
isomorphic to the basic algebra # o p of Me. So let ΛΊJ?(λ) [resp. Mj{X),Ve,Vι\
be ^-modules (determined up to isomorphism) which correspond to the B^-modules
M?(λ)[resp.M?(λ),P€ ,P?].

We compute a minimal projective presentation for Λί^(λ), λ e C. With respect
to a suitable basis for that 2n-dimensional i3-module we have

ZZ =
0 0

0 1

0 1

0 0

0 J

0 0
on MnAX),

where, here and later, 1 := l n , and J := J n (λ) i s a n n x n Jordan block matrix with
eigenvalue λ. We may choose a basis for Vfn such that

/I 0 0 0\
0 0 0 0
0 0 0 0

\0 0 0 1/

on?!•φn

The matrix (°0
ι

Q

 J

Q is then the matrix of a #-homomorphism Vfn -» M]>(X),

which is already a projective cover. Its kernel, i?1Λ/ί^(λ), embeds into Vfn by the
Ί 0^
0 - J

matrix , so that

ZZ =
0 1

0 0

0 - J

0 0
on Ω^M^iλ).
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Since Jn(—λ) is the Jordan canonical form of —J = — J n (λ) , we obtain the

isomorphism ΩιM^(X) = M%(-\). At the same time, we get ΩιM?(-X) =

Λ4]?(λ) because M£ = M2. In particular, we have i?2Λ4^(λ) = Λ4J?(λ).
But let us directly compute a projective cover of ΩιM™(\). We may choose a

basis for Vfn such that

ZZ =

/0 0 1 0\

0 0 0 1

0 0 0 0

\0 0 0 0/

/0 1 0 0\

0 0 0 0

0 0 0 1

\0 0 0 0/

on

The matrix (° *~£ °) describes the projective cover Vfn -» ΩιMΐ(\).

To sum up, we have the minimal projective presentation of M^X)

(0 1 J 0\

\0 0 0 l)

Now we look closer at the middle term of the Auslander-Reiten sequence with
cokernel term M^iλ). In order to do so, we simply use the pullback diagram which we
considered while proving Theorem A.2 - the existence of Auslander-Reiten sequences.
The same bases for the modules Mίl(\\Vfn,Vfn as above are used. The pullback
diagram is (cf. the remark after the proof of Theorem A.2)

E

pullback

It suffices to know that the morphism

MnΛX)

has a matrix of the form as indicated in

the diagram above. This form is dictated by the fact that θMn(λ) is a #-homomorphism.

The pullback E is the submodule of the direct product of V®n with M™(λ) consisting

of those elements that have the same image in Vfn. The result reads, w. r. t. a suitable
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basis,

-

5Ϊ2)

/o
0

0

\o

0

0

0

0

0

0

1

0

0

0

0

1

383

E + E =
f°1 0

0u
(0

0

0

Ko

0
0

0

0

0

0

0

0

1
0

0

0

J

0

0

0

0
1

0

o,
A

J

0

o

on E.

can not

(5.4)

Since the geometric multiplicity of the eigenvalue of the matrix [

exceed two, we see that one of the following alternatives holds:

E £* M2

£

n(X) ,

E 9* M^"k(X) Θ ΛΊ?+fc(λ) for some k, 0 < k < n .

Note that A is not the zero matrix, otherwise ^ τ f (

(

λ

λ

)

) ) o π ^ ( ^
) ) ( i d Λ / ί n ( λ ) ) would be

zero, which is absurd. Thus, we get an Auslander-Reiten sequence

0 -> DΊxM\{\) ̂  Ω2M\{\) = M\{\) -+ M\{\) -> M\{\) 0 .

Using Propositions A.4 and A.5, we know that the Auslander-Reiten sequence with
cokernel term M2Λ\) looks like

0 -> MJ(X) -> M\{X) Θ J5' 0 .

By (5.4) we have ^ ; = Λ^|(λ). We then inductively get Auslander-Reiten sequences
of the form

0 0

for n > 2.
Finally, I assert that the calculation above goes through for λ = oc mutatis

mutandis.
Let us formulate the result again using the language of B rmodules.

Theorem 5.2. For each X e P ! ( Q we have two 1-tubes as components of the
Auslander-Reiten quiver ofM£, viz.

(Γlλ = ) [M)(λ)]^[λ^

77Ϊ^ translation r act as the identity.

Returning to the whole algebra ίiq(sί2), that is, letting vary t, we summarise the
main issue of the present section in the theorem below.

Theorem 5.3. (cf. Theorems 5.1 and 5.2).
The Auslander-Reiten quiver of ίlq(sl2) is

LJ f{^}ύ 0 {r4)W[st]}ύ{[st]}.
^+1^0(mod N) \ λePkQ / /
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A. Addendum: Auslander-Reiten Theory

The main statement of Auslander-Reiten theory is that the Auslander-Reiten quiver
of a category with Auslander-Reiten sequences is locally finite.

An attempt at giving the necessary background in Auslander-Reiten theory (also
known as the theory of almost split sequences) is the content of this section. The
existence proof for Auslander-Reiten sequences is adapted from [Ga2].

Let A be a finite-dimensional associative /c-algebra with 1, where A: is an
algebraically closed field.

Funyl is the category of all contravariant additive i.e., M , N G ̂ mod, / , ρ G

HomΛ(TV,M), F G Funyl => F(f + g) = F(f) + F(g) G Hom( F(M),F(N)

functors from ^mod to Ab, the abelian category of abelian groups. Morphisms in

Fun A are natural transformations, as usual. For F •—> G to be a morphism in Fun A,

the requirement is that for each M G Λmoά there is F(M) —^U G(M) in Ab such

that if N —> M is a morphism in ^mod, then the diagram

F(N) - ^ G(N)

T ΐ
F{h) G{h)

F(M) — • G(M)

be commutative. Each F G Funyl takes values in fcMod, the category of (not
necessarily finite-dimensional) A:-vector spaces. Fun A is an abelian category. Here is

the way how exactness is measured in Fun A: F' -̂ -» F —> F" is exact in Fun A

if and only if F'{M) ^ F(M) ^ H F"(M) is exact in Ab for every M G Λmod.
For N,M e ^mod one puts (TV, M) := HomΛ(7V, M) in order to abbreviate the

notation. With this notation we have ( , M) e Fun A for every M G Λmod.
The Yoneda lemma tells us that φ ι-> ΨM^M) P r o γides an isomorphism

H o m F u n Λ ( ( , M ) ,

which is functorial in M G Λmod and F G Fun/1. Using the Yoneda lemma we see

H o m Fun Λ(( I M ) Ϊ ) : Fun /I -^ Ab

is an exact functor, i.e., that ( ,M) is a projective object in Fun/I. A. finitely
generated object in Fun yl is, by definition, an epimorphic image of some ( , M)
with M G Λmod. Every finitely generated projective object in Funyl is isomorphic
to ( , M) for some M G ̂ mod.

The radical rad F of F G Fun yl is the intersection of all maximal subfunctors of F.
m

Here is a description of rad( , M) for M G Λmod : fix a decomposition M = φ Mo

n 3 = 1

with the Mj's indecomposable. Let TV G Λmod, and decompose TV = 0 N{ with the

N^s indecomposable. Any homomoφhism / G (N,M) determines a matrix (f3i),
where/^ eiN^M^.

Lemma A.I. / G rad(iV, M) := rad( ,M)(N) if and only if none of the f^'s is
invertible.
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Proof. Put

EM(N) := I f e (N, M) none of the /^'s is invertible \ .

Hence if N{ ψ Mj9 then / ^ G (Nt,M ) without any further restriction. But for
Nτ = Mj we have (A^,M ) = End^M , which is a local ring (because M is

indecomposable), and If^ G {N^M3) fjτ is not invertible I corresponds to the

maximal ideal of EnάΛM3. For (Nf -^ N) e (Nf,N) it follows that / G EM(N)

implies fog G EM(N'). We thus see that EM C { ,M) - and # M g ( ,M)
m

unless M = 0. By construction E M = φ EM , so that it remains to be seen

EM = rad( , M) if M G Λmod is indecomposable. So let M be indecomposable,
and suppose F ^ ( , M). We shall show that F C . E M . Since the members
of Fun yl are additive by definition, it suffices to show that F{N) C EM(N) for
every indecomposable N G Λmod. Let N be such, and let n G F(N) C (N,M).
The element n corresponds, by the Yoneda lemma, to the natural transformation
( ,iV) -̂ -> F ξz ( ,M) with ^ ( i d N ) = n = (iV,n)(idN), which shows that
n : AT -^ M is not invertible, whence n G EM(N). D

If M G Λmod is indecomposable, the functor SM := ( ,M)/rad( ,M) is a
π(Λί)

simple object in Funyί. Denote by π ( M ) the natural projection ( , M) — ^ SM.

Theorem A.2. Let M G ^mod be indecomposable. The simple functor SM has a
minimal projective resolution in Fun A of the form

Moreover, M2 = 0 if M is projective, whereas for a nonprojective M, the module M2

is indecomposable.

Proof We first treat the case where M is a projective module. We then have
rad( , M) = ( , rad M), considered as subfunctors of ( , M) ["2" is surely true

for " C " note that TV —> M not split epi implies im/ C radM]. Hence we have the
minimal projective resolution

Suppose now that M is not projective. There are several duality functors
Homfc( ,/c), namely, from fcmod to fcmod, or from ^mod to modΛ ( = the cat-
egory of finite-dimensional right yl-modules) and back, or also from the subcategory
of Fun Aop consisting of covariant additive functors ^mod —> ^mod to the subcate-
gory of FunΛ consisting of contravariant additive functors ^mod -^ ^mod and back.
We shall, by abuse of notation, denote all of these different functors by D and shall
identify D2 with the corresponding identity functor.

We define t{M) G Hom¥unΛ(sM,D(M, )) by the requirement that DL{M)

correspond to iάk G DSM(M) = Dk via the Yoneda isomorphism (for covariant
functors). Clearly, DL{M) is an epimorphism, whence άM) is a monomorphism.

We begin to construct the required resolution by deriving a (minimal) projective
presentation of D(M, ) in Fun A. Let

p\ -^ po - ^ M —+ 0
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be a minimal projective presentation of M in Λmod. For every iV e ^mod the
(P0,N) (pι,N)

sequence 0 —> (M,N) > (PQ,N) > (P{,N) is exact, and therefore
D(puN) D(po,N)

D(PUN) > D(P 0 , N) > D(M, N) —> 0 is exact, which means that

D(p0,
JD(M, 0

is exact in Fun A.
For the functor Homyl( ,Λ) : ^mod —> mod^ we use the notation P \—> P

on objects and / »-»• ι/ on morphisms (cf. [DM]). The functorial morphism in
P, AT G ^mod

P®AN—>(P,ΛΓ)

f(p)nj

is an isomoφhism under the assumption that P be projective. The adjunction
isomorphism

P 0 Λ N, k) - ^ HomΛ (N, Hom fc(P,

( , D P ) . Composition yieldsgives us the functorial isomorphism D(P ®Λ )

, )->D(P®A

which is functorial in P and is an isomoφhism if P is projective.
We may construct the following commutative diagram with exact rows:

D{PU

(2)

(1) Naturality of α ( P ) in P .

(2) HomΛ(AΓ, ) is left exact for each N G Λmod.

(3) D(p0, )o ί α ( P o ) ) is an epimoφhism and ( ,M) is projective imply that

L(M) o π(M) f a c t o r s through ( , DP0), giving M - ^ J9P0 by the Yoneda lemma.
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(4) The pullback in Fun/I stems from the pullback in ^mod. Firstly, let TV E ^mod,
and apply the functor (TV, ) to a pullback in ^mod. The functor (TV, ) is a right
adjoint functor (right adjoint to TV <g>k ), so preserves arbitrary inverse limits and,
in particular, pullbacks. Secondly, having the pullbacks from the first part for each
TV E ^mod, one simply checks that the universal property holds in order to get a
pullback in Fun A.

(5) Exactness at ( , M) follows by a diagram chase - use that ^ M ) is a monomor-
phism for showing that it is a complex and the pullback for showing that we have

kerτr ( M ) C i m ί ( , DP{ x D P Q M) -»( ,A

It remains to be seen that the projective resolution got in the last row is minimal. To
this end we show that kerD^j is indecomposable.

We shall recall the operation of transposing a module (cf. [AB]). To a finite-
dimensional left (resp. right) /1-module M without nonzero projective direct sum-
mands one associates a finite-dimensional right (resp. left) yl-module TrM with-
out nonzero projective direct summands in such a way that TrTrM = M and
Tr(Mj Θ M2) = TrMj Θ TrM 2 . It is constructed in the following way: from the

minimal projective presentation Pι —U Po —> M —> 0 we chose above, one forms

TrM := coker'pj, so that from Po —U Pχ —> TrM —> 0 we get another exact

sequence, 0 —> DTTM —> DPX U D P 0 , so that DΎrM = kerityj, which
is thus indecomposable (ΎxDkerDtpι = M ; note that TrTrM = M holds because
projective modules are reflexive). D

Remark. For a symmetric algebra, the modules DM and M are isomorphic and, in

particular, using the minimal projective presentation P{ —U P o —> M —> 0, we

get
i^TrM = kerD^i = ktvp{ = Ω2M ,

the second syzygy module of M .

Definition. Let M E Λmod be an indecomposable module which is not projective,
and let

( ,n) ( ,ra)

be a minimal projective resolution of SM in Fun A. Then

0 —> TV -^ E -^ M —>0

is a short exact sequence and is termed an Auslander-Reiten sequence.

Exactness follows by inserting A. Since M is not projective, we have SM(A) = 0
indeed.

Remark. The proof of existence of Auslander-Reiten sequences showed that the kernel
term is TV = OTr M and hence that the cokernel term is M = TΓJDTV .

Remark. Unicity of Auslander-Reiten sequences up to equivalence (of short exact
sequences if we fix the end terms) follows from the unicity of projective resolutions.

Proposition A.3. Let M E ^mod be an indecomposable module which is not
projective, and let
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be a short exact sequence which does not split. Then the following two statements are
equivalent.

(i) The sequence above is an Auslander-Reiten sequence.

(ii) N is indecomposable, and every morphism x £ rad(X, M) [i.e.,x : X —* M is
not split epi] factorises via m (X running through X £ ^mod).

Proof. A morphism X —» M which factorises via m is of course not split epi, that is,
rad(X, M) 2 im(X, m). The other inclusion, rad(X, M) C im(X, m), is equivalent
to each x £ rad(X, M) factoring via m.
(i) = > (ϋ) We already know that TV is indecomposable. Furthermore, we have
rad( , M) = ker τr ( M ) = im( , m), which yields the assertion.
(ϋ) = > (i) rad( ,M) = im( ,m), by assumption. As k e r π ( M ) = rad( ,M),

( ,n) ( ,m)

the sequence 0 —> ( , N) > ( , E) > ( , M) —> SM —> 0 is exact
at ( , M), too. The minimality of this projective resolution follows because N is
indecomposable. D

Remark. The criterion given in the last proposition is what is usually taken for
being the definition of Auslander-Reiten sequences. It explains the term "almost split
sequence".

Remark. There is an analogous criterion for a short exact sequence

0 — > N -^ E -^ M—>0 (A.I)

to be an Auslander-Reiten sequence, dual to that of the previous proposition. Namely,
(A.I) shall not split, the modules N and M shall be indecomposable, and every
y e rad(iV, Y) [i.e., y : N —> Y is not split mono] shall factorise via n (Y running
through Y e ^mod).

Definition. Let X,Y e Λmod. One calls f e (X, Y) an irreducible morphism if f is
neither split mono nor split epi and if in addition, for every factorisation through any
Z £ ^mod,

X M Y ,

,\ Λ
z

either g is split mono, or h is split epi.

Remark. By considering the factorisation X —• im / ^ Y of / (or, alternatively,
X -» X/keτf —> Y), we see that an irreducible morphism is either mono or epi.

Remark. Let X, Y £ ^mod be indecomposable modules. The set of irreducible
morphisms from X to Ϋ is

rad(X, Y) - rad2(X, Y) .

This follows from

rad 2 (X,Y)= ^ rad(Z,Y) o rad(X,Z)

«not
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Definition. LetX, Y G ̂ mod be indecomposable modules. The module of irreducible
morphisms from XtoY is defined as

Irr(X, Y) := rad(X, , Y)

The following two propositions connect the notion of an Auslander-Reiten se-
quence to the notion of irreducible morphisms. For proofs see [Rin2], for example.

Proposition A.4. Let 0 —> N -̂ -> E -^» M —> 0 be an Auslander-Reiten
sequence. Assume that the indecomposable modules P, / G ̂ mod are projective and
injective, respectively. Finally, let 0 φ X G ̂ mod. Then the irreducible morphisms

' X -=-> EΎ <-+ EΎ®E' = E -^ M
X -> M

X -> P

N ->X
are exactly

X

N

x

Ex

X
, where in

these compositions
projections.

Proposition A.5.

(i) Let

and
I -» I/socI = Ex θ Ef -» Ex -=^> X ,

-» denote the respective natural inclusions and natural

0 —> iV 0

Z?̂  β« Auslander-Reiten sequence with Z G ̂ mod indecomposable and such that no
direct summand of E' is isomorphic to Z. Then we have the equality dim^ Irr(Z, M) =
άimklrr(N,Z) = d.

(ii) Let P G Λmod be an indecomposable projective module, and suppose

0 —> zφd θ E'
(m /)

P -^ P/radP 0

is a short exact sequence with Z G Λmod indecomposable and that no direct summand
of E' is isomorphic to Z. Then we have dimfc \n(Z^ P) = d.

(iii) Let I G ̂ mod be an indecomposable injective module, and suppose

0 soc/ 0

is a short exact sequence with Z G ̂ mod indecomposable and that no direct summand
of E' is isomorphic to Z. Then we have dimfc Irr(J, Z) = d.

Here, the residue classes (modulo the respective radical squares) of Πj , . . . 1nd

or ral5...,rad /orm vector space bases for the respective modules of irreducible
morphisms.
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The next proposition describes the Auslander-Reiten sequence whose middle term
contains the indecomposable module P as a direct summand, provided the module P
is both projective and injective.

Proposition A.6. Let P G ^mod be an indecomposable module which is both
projective and injective. Then there is an Auslander-Reiten sequence

0 rad P —> rad P/soc P Θ P —> P/soc P 0

Definition. The Auslander-Reiten quiver ΓΛ of the algebra A is the quiver
whose set of vertices is the set of isomorphism classes of all the indecomposable
modules X G Λmod. The vertex corresponding to X is denoted by [X]. There is
a ά\mk Irr(X, Y)-fold arrow from [X] to [Y].

If one deletes the vertices (and the arrows which begin or end there) [/], [DΎv / ] ,
[(ZTΓr)2/],... , where / is injective (and indecomposable), and the sequence stops
if a projective module occurs, and one also deletes the vertices [P], [TrDP],
[(TrD) 2 P],. . . , where P is projective (and indecomposable), and the sequence stops
if an injective module shows up, one obtains the largest subquiver of ΓΛ for which
DΎr induces an automorphism τ, the translation this subquiver is termed the stable
quiver. It is a quiver satisfying the axioms of a stable representation quiver. Such
quivers were studied by Riedtmann [Ri], while she classified the representation-finite
self-injective algebras over algebraically closed fields.

B. Appendix: ί l ^ s b ) at q — exp(ττi/4)

The following table displays the modules P £ .

2φ0 - yf2Fψ2E + F2φ4E
2

1
F2φ6E

3

IT
-y/2Fψ6E

3

IT
2φ6E

3

F2φ2

IT
V2~Fφ2 + F2(ptE

IT
2<p2 + 2<v/2F^4F' + F2φ6E

2

1
2y>4# + V^-Fyβί?2 + F2φQE3

y

p 2

f

s

/
/

IT
-VΪFφo + F3¥>2^

IT
2Fv>0 - \/2F2φ2E + F3v>4^2

1
F3v>6£

3 -Vi -

F3^2

1
F3

ΨAE

IT
V2F2<piE + F3φ6E

2

IT
2Fv>4F, + V2F2φ6E

2 + F3φ0E
3

-Fv>!

FV.5F2 +

-VsF,2

F V
IT
F 2

V .

IT
2Fv>;

IT

f F 2 v> 3 F
IT

F2φhE
2

1
F2V7^3

IT
- Fv>7#3

p 3

i +F 3

V 5-B

IT
-F2v?i + F 3 ¥ > 3 #

/ 1
F3φsE2

S IT
F2<psE2 + F3φγE3

= st

, + 2F2φbE+F3φrE
2

2^3 + 2FφbE + F2φγE2 + F3<p1E
3
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IT IT

IT / I
2Fy>4 + y/2F2 φ6E + F 3 φoE2 Fφ& +F2φ7E

/ \ IT S IT
2v?4 + y/2Fφ&E -f- F2φQE2 F3φ2E

3 -<ps - F
I /

F2φ2E
3 -FH

IT IT
,F/3 -φχE2+Fφ3E

3

IT

P7 = St

F 2 v> 6

IT
-\/2Fv?6 + F 2 ^ o E

IT
2*>6-2v/2F<poF, + F2v>2Fί

2

1
2φ0E - V2Fφ2E

2 + F2φ4E
3

S 1
F3v>o#

/ IT
-v^F2^^^-^3^^2

/ IT
2Fφ0E - V2F2φ2E

2 + F3φ<l

IT
-F2y>7 + F3v>iF/

IT
2F<p7 - 2F2φiE + F3φ3E

2

IT
S3 — 2̂ >7 + 2Fφ\E — F2φ3E

2 •

^ e^ are the primitive orthogonal idempotents such that iiq(si2)e1l = ̂ ιEh.

el = 2Vo - V2Fφ2E + F2v»4^2 + V ^ F 3 ^ ^ 3

ej = 2 V 1 - 2FφzE - 2F2φ6E
2 e\ = 2FΨlE - 2F2φ3E

2

e§ = 2φ2 - F2φ6E
2 - V2F3φ0E* e\ = y/2Fφ2E - F2φAE

2 - V2~F3<p6E
3 e\ = F2ψ2E

2 - V2F*φ4

e% = 2φz + 2FψhE + F2φ7E
2 + F3<p!E3 e\ = 2Fφ3E + 2F2φhE

2 + F3φ7E
3 e2 = F2φzE

2 + F3φ*>E3

3 3 E 3

- V2F3ψ2E
3

- 2F2

ΨlE
2 e\ = -2Fφ*>E - 2F2

Ψ7E
2

ej = -

e2 = F2v?7F
2 -

e3 = -F3ψ7E
3

Here are the block idempotents

— (2^0 + 2φ6 - V2Fψ2E - V2Fφ6E - F2φ0E
2 - F2ψ2E

2 + F2φ^E2 + F2<p6E
2

16 \

61 = I (φi +φs+FφίE- Fφ3E - F V 5 F + FΨ7E - F2

ΨlE
2 - F2φ3E

2

2Fφ2E + V2Fφ

- V2F3φ2E
3 - y

b2 = —
16

bst = —
16
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