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Abstract. It is proven that integral expressions for conformal correlators in

WZW model found in [SV] satisfy certain natural algebraic equations. This im-

plies that the above integrals really take their values in spaces of conformal

blocks.
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1. Introduction

Let P 1 be a complex projective line with a fixed coordinate z, A1 = P 1 — {oo}. Let rjj

be a complex simple Lie algebra with a fixed invariant scalar product (, ) defining the

symmetric invariant tensor Ω e g ® β , L 1 ? . . . , L n + 1 its irreducible representations.

Set

W = (L1(8)L2<8)...(8>Ln+1)

* The second author was supported in part by the NSF grant DMS-9202280. The third author was
supported in part by the NSF grant DMS-9203939
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(For a representation M, we will denote be MQ the space of coinvariants M/gM.)

Consider the trivial vector bundle W* over the n-dimensional affine space An

with the fiber W. The system of the Knizhnik-Zamolodchikov differential equations
(cf. [KZ])

dφ(z) = 1 y^ Ωtjφ(z)
dzi κ J£ zi ~ ZJ

i = 1,. . ., n, defines the flat connection in W. Here φ(z) = φ(zλ,..., zn) £ W, ΩZJ

are the usual linear operators in W defined using i?, K, Φ 0 is a complex parameter.
Suppose that K — k + g, where g is the dual Coxeter number of g, and k is

a positive integer. Let 0 £ g be the highest root normalized in such a way that
(0,0) = 2. Suppose that highest weights i of representations Li satisfy inequalities

(ΐ>0) < k. In that case the flat bundle W is not irreducible: it admits a certain
remarkable quotient W defined by some set of algebraic equations.

Let us describe this quotient bundle explicitly for the case g = si (2). Pick
Chevalley generators e, /, h £ g. Suppose that Z^ has the spin mi/2. Then the
fiber of W at the point (z{,..., zn) is the quotient of W over the subspace spanned
by elements of the form

n

iJ ) x \Δ)

for some x, where / ( 2 ) denotes the operator / acting at the ith factor. For details,
see Sect. 2 below. This quotient was described (in a slightly different form) in
[TK].

For an arbitrary g the definition is analogous, cf. [FSV]. The bundle W is the
fundamental object of the Wess-Zumino-Witten model of the Conformal Field Theory
(with the central charge k). We will call it the bundle of conformal blocks since its
horizontal sections are called "conformal blocks" by physicists.

In the work [SV] we have constructed horizontal sections of the dual bundle
$P^*, i.e. solutions of KZ equations, using generalized hypergeometric integrals.
The main result of the present paper (Theorem 3.4.1, Corollary 3.4.2) and of the

next one says that the above integrals actually lie in the subbundle W* c W*.
In other words, the above solutions satisfy the algebraic equations dictated by the
operator (2) (or its analogue for an arbitrary g). This result was announced in
[FSV].

The present paper treats the case g = 5/(2). We decided to devote a separate paper
to this case since it is simpler in formulation and admits a proof which is simpler
and different from the general case. The next paper will be devoted to the case of a
general simple Lie algebra.

2. Spaces of Conformal Blocks

Throughout this paper g will denote the complex Lie algebra si (2). N will denote the
set of nonnegative integers.
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2.1. Representations of $

Fix the Chevalley generators e, /, g e g; put n_ = C/, n + = Ce, \) = Ch, so that
Q = n_ Θ ί) Θ n + is the Cartan decomposition. We fix an invariant form (, ) on
Q normalized in such a way that (ft, ft) = 2. If M is a representation of f) we set
Mm — {x e M I hx = rax}.

For a complex number m denote by M(ra) the Verma module over Q which is
generated by a vector i? subject to the defining relations ev = 0 and /IT; = mt>. The
Shapovalov form is the unique symmetric bilinear form

M(m) 0 M(m) -> C

characterized by the conditions

;, 2/) = 5(^,62/)

for all x,y G M(m). One deduces easily from them that S(fpυ, fqυ) — 0 for p ψ q,
and S(fPυJ*>υ) = cmtP, where

m,p - 1) (m - p + 1). (3)

We can consider S as a map

5 : M->M*,

where M* = ΘM*, M* being the dual space to Mp. The quotient L(m) = M/ ker 5
is irreducible. If m ^ N then 5 is an isomorphism. If m G N then ker^S is the
submodule generated by the singular vector fm+lv and we have an exact sequence

0 -* M(-m - 2) -> M{m) -> L(m) -> 0.

22. Representations of g

2.2.1. Let g be the corresponding affine Lie algebra: g = g[T,T~ι] 0 Cc with the
bracket

* - [α,

α,6 G 0 (see [K], ch. 7). Set / 0 = e T " 1 , ^ = /, e0 = /T, ex = e, ft0 = c - ft,
hx = h. These elements generate g and satisfy the usual relations corresponding to
the Cartan matrix of type A\ι\ [K]. Throughout the paper we fix k e N (the value of
central charge). The action of c on all representations of g will be the multiplication
by k.

2.2.2. Verma modules, Weyl modules and irreducible representations. For m G C w e
denote by M(k — m, m) the Verma module over g generated by one vector υ subject
to the defining relations eζΌ = 0, i = 1,2; hov — (k — m)v, hxv = mv.

Set g+ = g[T] c g; let e : &+ —> 0 be the homomorphism sending T to 0. For a

representation M of g, consider the g-module induced from e*M by the imbedding

g4" C g; denote by M the quotient of this module by the relation c = k. M is called

f/ze Weyl module corresponding to M. For example, M(m) = M(k — m,m). For

typographical reasons, we shall denote this module M(m).
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If ra e N, then M(m) has singular vector xx — f™+lv, and we have an exact
sequence

M(-m - 2) -> M(m) -> L(m) -> 0. (4)

If in addition m < k then M(m) has another singular vector x0 = /O

f c~m +V We

define L(m) to be the quotient of M(ra) over the submodule generated by x0 and xx.

It is the unique irreducible quotient of M(m). Such irreducibles are called integrable
([K], 10.4.6); they will be the most important for us.

We have an exact sequence

L(2k - ra + 2) -> L(ra) -* Z(m) -> 0. (5)

2.23. Set /Q = fT~\ Jλ = e, e0 = eT, eλ = /, to0 = h + c, ft2 = -to. These
elements give another set of the Chevalley generators of Q.

Suppose that m G N, m < k. Let M(fc—ra, ra) denote the Verma module generated

by v subject to the relations etυ = 0, hoυ = (k - m)υ, hλv — mυ. Let L(ra) be its
irreducible quotient. We have an isomorphism

Z(ra) ^ L(ra), (6)

sending v to fmv.

23. Spaces of Coinvariants

Consider a complex projective line P 1 with a fixed coordinate z, and n -f 1 distinct
points zv...,zn, zn+ι = oo in it. Set £/ = P 1 - {^,..., zn+ι}\ let Q(U) be the Lie
algebra of algebraic functions on U with values in &.

At each point zi we have a local coordinate, namely z — z for 0 < i < n, and
1/z for z = n + 1. This defines the embedding

9(U)^Q[[T,T-ι]]n+\ (7)

sending a function to a collection of its Laurent expansions at points 2 1 ? . . . , 2 n + 1 .

Let 5 n + 1 denote the central extention of g[[T, τ~ι]]n+ι with the one-dimensional
center, corresponding to the sum of cocycles (2.2.1). By the residue theorem, (7) lifts
uniquely to the map

the lifting being defined by the same formula (7). Now, given representations
Nλ,..., iVn+1 of g, their tensor product Nλ ® (g> N n + 1 is naturally a g n + 1 module,
hence a g(ί/)-module, and we can form the space of coinvariants (Nλ0- <g)iVn+1) ( { 7 ) .

2.3.1. Lemma. Suppose we are given n + 1 ̂ -modules Mλ,..., M n + 1 . Γ/zβ canonical

embeddίngs M% -* Mi induce the isomorphism
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Proof. Since the embedding Mx <g> 0 M n + 1 —> M 1 0 - 0 M n + 1 is a homomoφhism
of g-modules, it induces the map

U β (Mj Θ - <8) M n + 1 ) -4 Ml ® . . . (8) M n + 1 . (9)

(Ug denotes the enveloping algebra.)

Claim. The map (9) is an isomorphism.

Proof of the claim. Let us pick a C-base {gλ,... ,gΛ} of g. This gives an ordered
C-base of g:

From the Poincare-Birkhoff-Witt (PBW) theorem follows that for a g-module M, the

module M is a direct sum of subspaces

where the indices are: 0 < j λ < j 2 < < j k \ I < ip < A; ip < ip+ι if j p = j p + ι .
On the other hand, it is not difficult to see that the functions z\ i > 0,

(z — zp)
j, j < 0, form a C-base of the ring (9'{ϋ) of algebraic functions on U.

Analogously, this gives an evident basis of g(U), and from PBW it follows that
Ug(ί7) 0 U g (Mγ <£)-•<$ M n + 1 ) is a direct sum of subspaces

(z -

) M n + 1

which map to the tensor product of subspaces (10) by the map (9). The claim follows
from this.

Our lemma follows from it and from the Shapiro lemma.

2.3.2. Suppose we are given n-f 1 numbers m 1 ? . . . , τnn+ι G N such that all mι < k.
The space of coinvariants

W(z) = W(zu. ..zn) = (LimJ 0 <8> L(mn+ι)\{U)

is called the space of conformal blocks (at a point (zι,..., zn+ι)). It is the main object
of our study. When the point (zγ,..., zn) varies, spaces W(z) form a vector bundle
W over An — U(diagonals). It is called the bundle of conformal blocks. The system
(1) defines the flat connection in W. In this Subsection we compute W(z) in terms
of the finite dimensional algebra g.

First, by Lemma 2.3.1 we have the isomorphism

(LimJ 0 • 0 L(mn+ι)\{U) ^ (Lim^ 0 0 L(m n + 1 )) f l .

set L = Lim^^ §§L{mn). The space L is a sum of its ^-homogenous components

where we put m = ^ m^. The operator / acts as / : Lp —> ^ p _ 2 , and e acts in the

opposite direction. Set
Wp = Lp/fLp+2.
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In other words, W may be defined as

Wp = Ln_p .

Pick a lowest vector υ^+x G L(m n + 1 ) , i.e. such a vector that eυ^+x = 0, ^ + 1 φ 0.

2.3.3. Lemma. TTze mapping

xχ 0 0 χ n —> a?! 0 0 xn 0 i^ + 1 (11)

induces the isomorphism

W

Proof. Let us consider dual spaces. We have

((L(mx) 0 0 L(m n + 1 )) f l )* = Homβ( JL(mn + 1),L*)

(in this proof L* denotes the dual representation, and not the contragradient one).
The assignment φ ι-> φ(v^+x) establishes the isomorphism of the last space with the
space {x G ̂ * m n I fx = 0}, and this space is evidently isomorphic to W^

2.3.4. The space Wm ι may be non-zero only if the difference mx + + m n — m n + 1

is a nonnegative even integer. Set N = (mx + + mn — mn+x)/2; s = k — mn+x.
Let us consider the operator

Ts(z) = ^ g ,,/«J : ̂ mn+)+2(s+1) -, Wmn+ι , (12)

where / ( ί ) : L —> L is the operator acting as / on the ith factor LCm )̂ and as the
identity on other factors. We will call Ts(z) the truncation operator.

Set _
W(z) = Wmn+ι/ImTs(z).

Here we set W% = 0 if i > Σ ™>t. so W(z) = W m n + ] if m n + 1 + 2(s + 1) > f ) ™*
2 = 1 n 2 = 1

In other words, T5(z) is non-trivial only if

s < N. (13)

This condition is equivalent to

raj + h m n + 1 > 2fe, (14)

which is symmetric in mz (note that the sum is an even integer). We will call any of
these equivalent conditions the truncation condition.

From (5) and 2.2.3 it follows that we have an exact sequence

L(2k - m n + 1 + 2) -> L(mn+ι) -> L(mn+ι) -> 0. (15)

Here the first arrow takes v° e L(2k - m n + 1 -f 2) to ( / T " 1 ) ^ 1 ^ G £ ( m n + 1 ) ,

where we denoted by v° G L(m) the vector / m υ . Let us apply to (15) the functor

(L(m 1 )0 (g)L(ran)(g)?)0(ί7). Using Lemma 2.3.1 and Lemma 2.3.3 we get an exact

sequence

W2k-mn+ι+2 -> Wmn+1 ~+ &™ΰ ®"'® L(mn) 0 ϊ (m n + 1 ) ) f l ( C / ) -> 0.
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Note that 2k - mn+ι + 2 = mn+ι + 2(s + 1). The first arrow is identified with Ts{z).
Hence we get an isomorphism

W(z) ^ (L(mx) 0 0 L(mn) <8> L(mn+ι)\{U). (16)

It follows that we have an epimorphism

W{z) -> W(z). (17)

2.3.5. Lemma. The map (17) is an isomorphism.

This result is due to A. Beilinson and the first author. The proof will appear
elsewhere.

Summing up all the previous constructions, we get

2.3.6. Theorem. The mapping (11) induces the isomorphism W(z) = W(z).

3. Sending to Differential Forms

3.1. Configurational Arrangements

3.1.1. Let X denote the TV-fold product (P 1 )^ with fixed coordinates ( t 1 ? . . . ,tN),
^ G C U { O O } . Pick n distinct complex numbers Zj , . . . , zn; set zn+ι = oo.

We shall consider the following set W of hyperplanes in X:

&={Hij:tt = tj;i,j = l,...,N;i<j;

Hi,r : lι = zn i = l , . . . , iV; r = l , . . . , n + l }

We set 17 = X - UHe^H. We shall identify X - U ίf l iT l+1 with the TV-dimensional

affine space A ^ .

3.1.2. Twisted de Rham Complex. Pick complex numbers m 1 ? . . . , m n and ^ ^ 0.
Let us assign to each hyperplane H e ^ the number α(iϊ) as follows: set

a{Hvr) = ai;r = -TΠJK
for r 7̂  n + 1,

The last numbers are determined from the requirement that for every line L \ tx —
t2 = • = ti = ti+2 = = tN = z r the sum of the numbers α(iJ) over all iJ
meeting L transversally equals 0.

Let us consider the following complex of C-vector spaces Ω. By definition, Ωι is
the space of complex holomorphic i-forms on U; set

d = dDR + a:Ωi -> Ωi+\ (18)

where dΌR is the usual de Rham differential, and α is the left exterior multiplication
by the form

a= ^ α ^ d l o g ί ί . - ^ + ^ α y d l o g ί ί , - ^ ) . (19)
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We shall write elements of Ω% in the form lω, where ω is a holomorphic z-form on
U, and

U Π ~ Ψ^ > (20)

where one should consider / simply as a formal symbol. The formal differentiation
gives

d(lω) = Idω + (dΐ)ω = Idω + laω = l(dDR + α)ω,

since a — dl/L Hence the twisted differential (18) takes the form of the usual exterior
differential.

The geometrical meaning of Ω is as follows. The form a defines the integrable
connection V = dΌR + a on the sheaf (9υ of holomorphic functions on U. Ω is the
complex of global sections of the de Rham complex of ( ^ , V). If we denote by 5^
the locally constant sheaf of horizontal sections, the cohomology H'(U,5^) is equal
to H'{Ω). When the points zx,...,zN are moving these cohomology groups (and
dual homology groups H(U,S^*)) form a vector bundle with a flat connection (the
Gauss-Manin connection). It is clear that the symmetric group ΣN

 a c t s o n ^ an<^
on Ω by permutations of coordinates t{.

3.2. Resonances at Infinity

From now on we pick the numerical data and adopt the notations of 2.3. Namely,
we pick a positive integer k\ integers mt, 0 < mτ < k; i = 1,.. ., n + 1. We set
ft = k+2 and m = m1 -J- + ̂ n We suppose that m — mn+ι is an even nonnegative
integer, and set N — (m - ran+1))/2. We suppose that mι + + m n + 1 > 2&. Set
s = fe - m n + 1 . We have 0 < s < N (cf. 2.3.4).

The rest of this subsection will not be needed in the sequel, although it sheds some
light onto the reason for the appearance of new algebraic equations on our differential
forms.

If L is any intersection of hyperplanes from W, we set

a(L) = Σ a(H).
HDL

For a set of distinct i l 5 . . . , ip, 1 < z < TV set

i{...ip ~ Hιλ;n+\ Π Γl Htp.n+ι .

We have

a(Liι...iJ = + ^ = - ( f c - s + p + 1 ) ,

since m = k -f- 2AΓ — s. It follows that for p = s -\- 1,

It is a positive integer, and we say that these edges L^ i have "resonances."
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3.3. The Map to Differential Forms

3.3.1. Suppose we are given a sequence of integers (z 1 ? . . . , iq), 0 < q < N such that
for every j 1 < i < n. Set

ldtx Λ Λdtq

Set

where the symmetric group acts by permutations of coordinates. Forms ηi i do
not depend on the order of indices.

Let us define the map

x) ® • M(mn))m_2q -+ Ωq

as follows. Suppose we are given nonnegative integers p l 5 . . . ,j9n; Y^pi = q Choose
any sequence i l 5 . . . 1iq of int
among ^ ' s there are exactly p
last condition symbolically as

any sequence i l 5 . . . 1iq of integers such that for all j , 1 < i- < n and such that
among ^ ' s there are exactly px of Γs, p2 of 2's,... , p n of n's. We shall write the

di

Set

Set
Lύ — ( n n r> / K \ 71

^ J i \ . . . % q V r n i , P i m 2 , P 2 '' m n , P n * ) ' l i

and

where constants cm p are as in (3).

From 2.1 it follows that ωq induces maps

ωq : {L{mY) Θ L(m n )) m _ 2 ( ? - . ί? 9. (21)

3.3.2. Lemma, (i) ηq = Ofor q < N - 1.

(ii) For any x e (L(mx) ® ^ ( m n ) ) m _ 2 ( J V _ 1 ) we have

Proof. Direct calculation, or see [SV, 5.13, 6.6].

3.3.3. Corollary. 77*e map ωN induces the map

ω : Wmn+ι ^ ffw(i2). (22)
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3.4. Truncation

Let us consider the truncation operator

Ts(Z) : Lmn+ι+2(s+\) ^ Lmn+ι

(cf. (12)), where we denote for brevity L = L(m{) ® 0 L(mn).

3.4.1. Main Theorem. The map ωN (21) maps the image ofTs(z) into dΩN~ι.

3.4.2. Corollary. The map ωN induces the map

ω : W{z) -> HN{Ω). (23)

Given a horizontal family of cycles c(z) G HN(U,S^*), the integration gives the
horizontal section of the dual bundle of conformal blocks W*,

- / •

c(z)

z)= I ω £ W*.

In other words, integral solutions of the KZ equations constructed in [S V] and given
by the formulas from 3.3 lie in the bundle of conformal blocks.

3.4.3. Remark. In [V, (13), (14)] it is proven that maps (23) are injective.

3.5. Proof of Theorem 3.4.1

We shall use the following trick. Let us interchange in our projective arrangement
the points zx and zn+ι. More precisely, let us make the change of variables:

u% — &i — z\)~li i — 1? -> N. We have t% — u~ι + zx\ dt% = —u^du^ hence

for j φ i, where zr = (zr — zλ)~ι. Hence we have

i i;r>2

where A(z) = Π zr

Nrrir/κ. Hence
r>2

= ±A{z) Y[ M < m * + i + 2 ) / Λ

t - uάf
lκduλ Λ Λ

Kj

Let us set

i i;r>2 ι<j

N o w let us rewrite forms η, ω in terms of n e w variables. Pick i1,... ,iN such that

{ix,..., iN} = { l P i , . . . , n*>n}. We have

1 ^ ^

t% -zr
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Suppose that px = 0, i.e. all z > 1. Then we have

N _z

±A(z)T[ %

where ηf denotes the form η corresponding to V. Since

Σ σ

it follows that
TV

(zι-zi]Γ
ιωl.ΛN, (24)

where iJ > 1 for all j and the sign ± is the same for all ( i 1 ? . . . , % ) .

Now recall that mn+ι — k — s, 0 < s < N — 1, i.e. (mn+ι + 2)/« = 1 — s/κ. It
follows that

I'du = Π WΓβ/Λ J ] (ut - J r)"^/« [](^ - U j ) 2 ^ du.
i i;r>2

In other words, the function V corresponds to the situation when the representation
L(s) lives at the point 0 , and L(mr), for r > 2 live at the points z r. It follows that

" ί . . . i W . . i N = 0 (25)

for all is+2i ? %• ^ n m e o m e r hand, by Lemma 3.3.2 (ii) for any ( i 1 ? . . . , % - i )
we have

iX,,...^-,^0' (26)

w h e r e ω' d e n o t e s t h e c l a s s m o d u l o e x a c t f o r m s . L e t u s fix is+2,... , i N > 2 . W e h a v e

~ ωl...Hs+2,...,ιN

Hence,

^!,...,z
0. (27)

Since
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we deduce that (27) holds true for any i 5 + 2 , . . . , iN (there might be indices equal to
1 among them). Again, from (28) follows that

So, we can rewrite (27) in the form

Z3\ ' ' ' Z3s+iωJl- -Js+lis+2 iN ~~ '
h> >3s+l

which is equivalent to saying that
ω(Ts(z)y) is an exact form for every y e Lrnn+i+2{s+iy QED.
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