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Abstract: In this paper we study the Cauchy problem for the generalized equation
of finite-depth fluids
up

O — G(0%u) — 0, (—) =0,
P

where G(-) is a singular integral, and p is an integer larger than 1. We obtain the
long time behavior of the fundamental solution of linear problem, and prove that the

solutions of the nonlinear problem with small initial data for p > 5/2 4+ 1/21/2 are
decay in time and freely asymptotic to solutions of the linear problem. In addition
we also study some properties of the singular integral G(-) in L(R) with g > 1.

1. Introduction

In this paper we shall consider the Cauchy problem for the generalized equation of
finite-depth fluids

Oyt — G(Pu) + 0 (%”) ~o, M

where p is an integer larger than 1, G(f) = lim,_o f} 2 e>0 f(x —y)K(y)dy with

K@) = 2—15 (coth %- sign y) is a singular integral, here ¢ is a positive real which
characterizes the depth of the fluid layer. Equation (1) was first derived by Joseph
[5, 10] to describe the propagation of internal waves in the stratified fluid of finite
depth. It is known [1] that Eq. (1) reduces to the nonlinear Korteweg—de Vries
(KdV) equation

P
a,u—a§u+a<”—> =0,
P
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and the Benjamin—-Ono (BO) equation
uP
Ou — H(O*u) + 0 <;> =0

for p = 2 as the depth J tends respectively to zero and infinity, where H(-) denotes
the Hilbert transform. From the view point of mathematics, there is an amount
of work devoted to studying large time behavior problem for the solutions of the
nonlinear KdV equation and BO equation (see [3, 6, 7, 11, 12] and the references
therein). In particular, if we denote by U(-) and V() the free evolution group which
solve respectively the Cauchy problems of linear KdV equation d,u — d2u = 0, and
the linear BO equation d,u — H(0%u) = 0, then one has the following available re-
sults:

lwosll, <302, (22)

and

sl < ) 17, (2b)

for all 121, and p=2, p' =p/(p — 1). In the present paper we shall obtain a
similar decay estimate for the fundamental solution of the linear problem

ou—G@Bu) =0, u(x0)=f(x), 3)

i.e. we gave

lullp = 2 (3) 4 6073 0By 110 @)

for all ¢ = 1. Furthermore, we shall substitute the decay estimate (4) into the integral
equation associated with the nonlinear equation (1) to obtain long time behavior for
the nonlinear problem (1). However, as we shall see, because of the complication
of the symbol P({), which characterizes the dispersive relation of Eq. (1), it is
much more difficult to prove the decay estimate (4) for the linear problem (3), and
requires more a elaborate calculation than to obtain the estimates (2) for the linear
KdV equation and linear BO equation. In fact the dispersive relation P(£) for Eq.

(1) is (2n&)? (coth(2n5€) — ﬁ), while for nonlinear KdV equation and BO

equation the dispersive relations are respectively the simple forms & and |&|£.

This paper is organized as follows. In Sect. 2 we state some basic lemmas, and
give certain properties for the singular integral G(-). In Sect. 3 we consider the
fundamental solution of the linear problem (3). The decay estimate (4) is proved by
applying the Van der Corput Lemma [14]. Finally in Sect. 4 we exploit the results
of Sects. 2 and 3 to derive the time decay estimate and free asympotic property for
the nonlinear problem (1).

To conclude this section, we give the main notation used in this paper. By C
we denote various positive constants which may be different from line to line, and
is independent of time ¢ and the functions to be estimated. For all p,1 Sp=<oo0, we
denote by |+||, the norm in LP(R).
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2. Preliminary Results
We denote by f and f the Fourier transform and its inversion for function f(x), i.e.
f© = [fEe2dx, f(x) = [f(&)e?™ e .
R R

For the singular integral G(:), we can derive the following properties

Lemma 1. For any function f(x), g(x) € C§°(R), we have

a. [GN] = —i [coth(2n5§) . 2—7}—52} 7,

b. G(0.f) = 0:G(f),

c. [xfG(gdx =— [,9G(f)dx,

d. [y f(GUPdx + 5 [ f1GU)dx = § [(feP s,
e. |[GON=Ifl2 -

Proof. See Zhou Yulin, et al. [17].

The above lemma shows that the singular integral G(-) is a linear bounded
transform from Hilbert space H*(R) into itself for s = 0. It is to be noted that the
inequality (e) in fact can be extended to the case of a function taking value in
Sobolev space LP(R), for 1 < p < oo.

Lemma 2. For any function f € LP(R), 1 < p < oo, we have

IGN=CDIIf Il »

where the positive constant C is independent of f.
In order to prove Lemma 2, we need the following results.

Lemma 3. Suppose the kernel K(x) satisfies the following conditions:

|K(x)|<Bx|™!, for|x] >0, %)
f Kx)dx =0, for0 <R <R <0, (6)

R; <]x|<R2
[ |K&x—-y)—K@x)|dx<B, forly| >0, (7)

Ix] = 2|y

where B is a positive constant. Then for any f € LP(R), 1 < p < oo, we have

I =CPISp -
where T(f)(x) = lime—g [, 5 .o f(x = Y)K()y.

Proof. See EM. Stein [13]

Lemma 4. For |y|+0, we have
2

1 o0
2 _ 1.3 43
ycothy =y + 3 2y kZ_Z_l PERE 1) ®)
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y*cothy = y|y| <1 + 2k§jle—2k'yl) ) ©)

Proof. The first expansion (8) was given in [1]. Here we need only to show the
second expansion of y?cothy. In fact, for y > 0,

2 _ & +e™” 2 e~ ¥
y“cothy =y 5o =Y 1+—1_e_2y

o0 o0
=5? <1 +2e_2yZe_2ky> =y? <l + 226_2"5’) .

k=0 k=1

And for y < 0 we can obtain

oo
y*cothy = —y? (1 +2Ze2"y> .
k=1

Therefore, we obtain (9).
Now we are in a position to prove Lemma 2. On account of Lemma 3, we need

only to check that the kernel K(x) = 21—5(coth% — signy) satisfies the conditions
3)-.

Proof of Lemma 2. First, for |x|+0, By using lemma 4, we see that

o0 —
K(x) = 6 'signxy e~d kil
k=1

This gives us

5~ x|

_——T_—S
e5 n|x|_1_

A sl _ 1
[xK(x)| = & lxlkz_:le o7 mklx| — % -

Next, for 0 < R} < R; < oo, one can easily check (6) by using the expansion (9).
Finally, we prove condition (7). For |y|+0, we have

S} -
[ Kx—y)—K@dx=26" [ |sign(x—y)>e® tfx—y|
x| = 2ly| x| = 2|y| k=1
x —1
— signx > e™* i |dx
k=1
oo o0
— 5——1}:[ f ie—ké_ln(x—y) _ e—-ké_lnxldx
k=12]y|

T 1=k — k™ L+
+ [ le ™ _e )| dx ]
2Jy|

=1(y).

We now split the proof into two cases. First, for y > 0, we have
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o -1 -1 -1
() =53 [e k0 mrgy (ek(S W _ ko ny)
k=12y
1 =

_ Z% (e—ka—lny _ e—3k5"17ry)

Ti=1

(e3é_lny _ l)eé‘lny

<3 (10)

= —In =-.
T e35—1ny(66—1ny _ 1) 7

By a similar manner, we can also see that the inequality (10) valid for y < 0. The
proof of Lemma 2 is then complete.

Lemma 5. Let ¢(y) =xy + y*cothy, then for |y|+0, we have ¢'(y) = ¢'(—y),
0" (V)| = ¢"(ly]). Moreover, for |y| > 2, we have |¢"(y)| > 2.

Proof. From Lemma 4, we can easily deduce that

P'(y) =x+ 2| + 43 (v - kA)e M, 1)
k=1
¢"(y) = signy (2 + SkZl (yzk2 = 2[ylk + %) e‘”‘M) , (12)
and
00 A nds2 2,24 6
¢"(y)=2y—2y220k n'y” + 18k“m°y* + 6y (13)

= k2n2(k2nf+y2)3

2 2 3
Furthermore if we set h(y) = 200y + 18ay_+ 6y

, fora > 0, y > 0, then we have

(@a+y)
o 4d*(5a—y)
W(y)= @ty (14)

Therefore, the results of the lemma can be derived simply by using (11)—(14).

Lemma 6. For any function f € C§°(R), we have

[£6@ iz ANy = BIf T

where the positive constants A and B are independent of f.

Proof. On account of Lemma 1, and by using the Parseval identity
[£G@xf ydx = [2mE (coth2mo8) — 5idsz ) I P
R R
=2n( [ + [), 5)

1El>ky €Ik
where kg is a positive number to be chosen later.
Since lim¢) o0 (coth(2n5£) — Fléé) = sign(¢), thus there exists a sufficient large
constant kg > 0, such that, for all |£| > ko, the first integral in (15) satisfies
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on [ ¢(coth@nod) — plsz)IfPaEzn [ lIfPae. 6

1¢1>k 11>k

Moreover, in order to handle the second integral in (15), we apply Lemma 4,

m [ f(coth(Znéé) )|f1 dé

[E|<ko
4% 4%k, A
=|f|£ko ¢ ( 5 85Eﬁfm) VARS
4725

= Tﬁo f 52|f|2df B
[¢l<ko

2 . o,
where we have used the identity: Z,fil # = %, and the g is a positive constant

depending only on ¢ and k.
Therefore, from (16), (17) it follows that

[f6@Ndrzn | e\ fPde + 200 [ a2 fpae

11>k 1¢1=ko

—n [ EfPde+AES |+ fpde- 40§ fpae
|€]>ko [€] <k [¢]=ky

24 [(1+ |EDIS P dE ~ B [& de
R R
= A”f”Hl/Z(R) =B fll2

where 4 = min{rn, 87%5¢y/3}, B = A + 4n?3ep/3.

3. Linear Estimates

In this section we shall obtain the decay estimate concerning the fundamental so-
lution of the linear problem

ou— G@u) =1, (18)

u(x,0) = up(x) . (19)
Define the unitary group W(¢)ug = g * up, where

i) = fei(Zn{)z (coth @rod)— 5 ) t+2mitx de (20)
R
then the solution of (18), (19) can be written as

u(x, ) = W(uo(x) + fW(t — §)f(x,5)ds . @1)
0
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Our purpose in this section is to estimate the oscillatory integral g,(x) for all #=0.
Lemma 7. Let § > 0 be a constant, then
lg:@lleo SCE™2 + @717,
for all t=1, where the constant C is independent of t and 9.
Let # =2n6¢, 1=6"2t, and y = %5 — 1, then g,(x) can be rewritten as

Se(y) = 2nbg,(x) = [el oot gy (22)
R

In order to bound S:(y) for all y € R, we need the following classical Van der
Corput lemma [14]

Lemma 8. Suppose that y € CL(R) and ¢ € C*(R) such that |¢"(£)|=1 on the
support of . Then

I{e,-ww@dgl <A Wloo + W11}

where the constant C is independent of A, ¢ and \y. The prime denotes the deri-
vative.

Proof of Lemma 7. We write S,(x) as

Sxy= [ e¥Mdy+ [ "W dn=Sx)+S*x), 23)
[n]=3 [n]>3

where ¢(1) = x5 + 4 coth 7.
We shall split the proof into two parts to bound respectively S;(x) and S(x) for
all x € R.

Part 1. Taking the variable-transform ¢ =%y, y =+**(1 +x), and applying
Lemma 4, we have i
Stxy=¢"17 [ *Dae, (24)
|| <2013
- _ 12 3 oo t-1/3 f 2
where @¢(&) = y& + §f =283, n2k2(n§k2 n (2—1/35)2) .
In what follows, we shall show that the identity

[ &% g¢ (25)
HEXRIE

is bounded uniformly for all =0, y € R.
In fact, one can easily see that the boundedness of (25) is equivalent with the
boundedness of the following integral for all £=1 and y € R:

jt[e"<5<<><z>(é> dé, (26)

where the cut-off function @(¢) € C*°(R), satisfies 0<@p=1,and ¢ =1 for 2=|¢| =
3t13, 3 =0 for |¢| < 1 and |£] > 3¢ + 1, and such that |¢(&)|<C.
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On account of Lemma 8, the boundedness of (26) can be immediately obtained
by checking the positive upper estimate of |q§”(€)| in the support of @(¢), i.e.

[43"(5)[2/10, for all £ € supp {@(&)}, and Ag is a positive constant. In fact, by
using Lemma 5,

16" = 3(¢" ()|

>20¢| (1 _ §20k4n4(t”1/35)2 18R + 6(t—1/3f)6)
k=1 k2m2(k2n? + (¢~ 13 ¢E)2)

>2 (1 _ $320k7%16 4 18KP2*(16)° + 6(16)2>

- k=1 k2m2(k2m? + 16)3

x 6
——‘/10>2(1—EW>20,

k=1
for all £ € supp {@(&)}, and £=1. Therefore, we obtain
IS/ )| =Ct™1 27)
fort >0, x eR.
Part 2. In order to bound the integral

Six)y= [ €"Wdy, ($(n) = xn+ n*cothn)
|n|>3

for t > 0, x € R. We set a cut-off function @¢(n) € C*°(R), which satisfies 0=
oM =1, @o(n) =1 for |n| > 3, @o(n) =0 for all |y| < 3 — ¢, and such that

|0y @o(m)| SClk)e™
for k =1, 2, where ¢ € (0,1) is a number to be chosen later. Therefore

ISF) = | [ € @o(ydn — [ ™M go(n) dn|
R |n]<3

<| [ e go(n)dy| + 2e . (28)
R

In what follows we shall split the proof into two cases to bound the integral in
(28).
Case 1. Assume that x > —(3 — 8> 7°,(2k — 1)e~#). Then from Lemma 5 we can

verify that |¢”(n)| = ¢"(In]) > 2, and ¢'(n) = ¢'(In]) > ¢'(2) > 1 for all || > 2.
Therefore

1{ i) @0(,1)(1,7' l [ e ﬁq"sogn) dﬂ' o |<P0(71)¢"(71)| dn

tr (@7
<c ‘Po(”l)“ (wo(n)) -1 || 2o ()
=¢ ¢'(m) ¢'(n) (@' (m)?
<CP(loglloo + ll0g (n)lloomeS{3 —e&<|n| <3}

, ¢" oDl "Dl
* oot 3—s<j|‘i1|<3 (¢'(m)? e lnl>f3 —e (¢’(’7))2

SCE '+, (29)

ll
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where we have used integration by part, and Lemma 8.
Case 2. Assume that x=< -3 - SZ,‘:"I(Zk —1)e ). We note that
~(3—83 2,2k — e™*) = — (3 8(e + 1)) = —x9 < —2. Therefore, in or-

(' -1y
der to bound the integral S*(x) in this case, we consider two domains
Q= {n;|¢'(m|=x|/2}, (30)
= {n;|¢'m)| <Ix|/3}, (31

where ¢'() = (xn +1n cothn)’ =x +2{n| +4 372 (In| — kp?)e =M.
The proof in this case is based on the version of the following three lemmas
concerning the two domains 2, and 5.

Lemma _9. Let x< — xo, then there exists a constant 6q > 0 such that {n;|n| <
do} C (1)

Proof. Since

4n dn?e®
/ (2 [ —
¢'(m) = (n°cothn +xy)" = x +2n + —— @ — 1y’
and -
, 4n 4n”e
lim (2 - =
=0 ( (=T T 1)2) 1

thus there exists a constant 5y > 0 such that, for all |§| < Jp, we have

4n an*e*
e —1 (e —1)?

¢’ (m| > x| — ’2r1+ > |x| — x0/2=x|/2 .

This implies the result of the lemma.

Lemma 10. There exists a constant Cy, such that
mes{@ N {[n| > 2}} <[x| + Co
for x< — xo.

Proof. From (30), we have

X
2, {n| >2}={ il ~ 25— e
3 _
<< 3B =25 o — e
and || >2}.

This gives us
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mes{ 1 {0l > 21} 52 swp {5144 S ~ ez |
k=1

|n|>2

=|x|+Co.

{"" + Z(kn |n|)e‘2’°'"'}

|n]=2

Lemma 11. Let ry = dist{Qz,(Ql)”}, then there exists a positive constant C, =
Cy(8o) such that ry > Cylx| for x< — xo.

Proof. For any &) € (2, U {|n] < do})’, and & € Q,, we have |¢/'(¢))| > |x|/2,
|9’ (&) £ |x|/3, which gives us |¢/(&1) — ¢'(&)| > |x|/6, and

X _
r=1& - &) > |6—I|¢”(50)| o
where the point &, is on the line connecting &, with &. Therefore

= inf  |a-clz inf, 160" =

L e &ER, 6 g

x| 1
6 Sup|z|ss, 97|

where

sup |¢”(E)| £ sup 2+ 8§(52k2 + 2|€)k + 1/2)e ey = C(8) > 0,
|€]> 6o 1£]> 6o k=1

and which finishes the proof of the lemma.

Now we are in a position to consider Case 2. On account of the above three
lemmas, we construct a unitary decomposition of R, namely we expect two functions
such that @1(n), @2(1) € C*°(R), 0=s¢;1 =1, 0= ¢ =1, and 1(n) + @2(n) = 1
for all # € R. In addition, supp {¢1(n)} is contained in Q;, @2(n) =0 for all n € Q,,
and

|0k ei(m)| < Clkyrg* < Clx|™*,

for k = 1,2, and all n € R.
The integral in (28) can be then written as

| [ €D go(n)dn| <| [ oo(n)pi(n) dyl
R R

. 32
+| 1{ "M o (n)pa(n) dn| . 32

If @2(n) * 0, i.e. n & Q,, then we have |¢'(n)| > % Note that |x| +4 > oo, (—kn* +
[n])e=2#1"l > 0 for all |5| > 2, we can thus obtain

[¢' (| = C'(|x] + 2[n| + 42(—1012 + e~y > ac’,

for all |#| > 0 and n & Q,, where C’ is a positive constant.
Therefore, by applying integration by part and Lemma 8, we have
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| 90 punoatndn] =] [ e"¢<">( gt ) |
; 2 40

P { 12 [ || Lolme2(n) “ <po(n)<pz(n)
- @'(m) TP
ST @o(me5(n) “ <P0('1)<P2('1)
&' (m) O

N ] ¢" (M eo(me2(n) ]] }
(¢'(n))?

o PAGI
+ 1ozl + llog (Mllcomes{3 — ¢ < [n] < 3}
+ om0l @3 ()| comes{3 — & < |5 < 3}
+ 92l comes{s N {|n] > 2}}

¢l/(rl)
+ 120 oo ” @' l11n1>2)
/ ¢//(},’) }
+ o2l oo ” (@' Nl 1y >2)
T M) Li(n|>2)
<cr e o)+ Crt. *

Moreover, if # € €1, then

l,{ e o(me1(mdn| < Ct™ (|| @o(me1(M]loo + I(@omer(m)|I1)

<G+ flpy)llcomes{3 — & < [n] < 3}
+ llooMllcomes{Q: N {|n| > 2}})
<cr 2, (34)

Finally, combining (33), (34) with (28), and taking & = ¢~"/2, we thus have

IS2(x)|sCt™12 (35)

forall x e R and t > 1.
Therefore, on account of the transform (22), we then obtain the desired decay
estimate of Lemma 7 by combining (27), (35) and (23).

Theorem 1. Suppose that g,(x) is the unitary group generated by the linear problem
of Eq. (1). Let u(x,t) = gi(x) * up(x), then for p € (2,00),
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e, ), <C (r%(l‘é) + (&)—%(1—%)) o)l -

Sor all t=1, with p~' +q~! = 1, where the constant C is independent of t and .

Proof. By using Lemma 7, and the L?(R)-conservation law of the linear problem
(3), the result of the theorem then follows from the Riesz—Thorin interpolation.
Remark. Since the constant C in Theorem 1 is independent of 6 > 0, we thus
see that the decay estimate (2b) for the linear BO equation is a consequence of
Theorem 1.

4. Decay Estimates for Nonlinear Problem

In this section we consider the following nonlinear problem:
du — G(Fu) = 0:(uPp) , (36)
u(x,0) = uo(x) , (37

where p=1 is an integer. It is known [1, 17] that for any function wuy(x) €
H*(R) (s=2), there exists a positive constant 7 such that the nonlinear equation (1)
with the initial data uo(x) admits a unique solution in L*°(0, T; H*(R)).

Lemma 12. For any initial data uy(x) € H*(R), then the solution u = u(x,t) of
problem (36), (37) such that

t
lulls < lolls exp(C [ @) g ) (38)

for p=2.
Proof. Since, for k > 2,

dif[c?’;u|2dx =2 [ oku[o*uP="0,u) — uP~10% uldx
Ir R
+2 [ okuoktuwr =" dx
R

S Cllokull2(10:P ™ Yoo l|0%ull2 + || 0xullco |05 P~ H]2)
+ (p = D)||0st] o |ue]|25 2 | 0%ul |3
SCulB?|0xull oo | 0%u|3

-1
éclluliyz,q(R)“al;uH% > (39)

where we have used the calculus of inequalities [4].
By applying the Gronwall lemma, (39) is then implying the result of the lemma.

Theorem 2. Let & € (0,00),q = 2p, and p > 5/2 + \/21/2. Assume that the initial
data uy(x) is sufficiently small in H>(R) N\ W>2P/@P=D(R). Then the solution u of
nonlinear problem (36), (37) such that
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-1 ( 1— Z)
lu@®llp2qm=CA+0) 3V 74/,
for all t =0, where the constant C is independent of u and t.

Proof. Since the nonlinear problem (36), (37) can be written into the following
formula:
t
ut) = g *uo + [ gi—s * Ox(uP(s)/p)ds .
0

By using Theorem 1 and Holder inequality, we obtain
@)l w2.ary = 19 * uollw2ay

+ Oft”gt—s * Ox (P [p)|| y2.q(ryds
<ca+ 0 30-9) l[uol e gy + C f(z — gy 0-3) 10x @ /Pl yy2.q' gy s
<+ 07 gl gy + cm — ) s o Nlrs ey s
<+ 07 D gl o + Clluolls f(t— 930D il

- exp <Cf||u(r)HW2q(R) ) ds .

1(1=2 -
Let M(f) = supy<,<,(1 + 5)3( q) ”u(s)”qu(R)’ and 0= “u0”H3(R)
+ |luoll y2.2p/2p—1) (). The above inequality then gives us

M(1)<Cé + Cof (NMP~ (1) exp(Ch()MP~ (1)), (40)
where 70 =1+ 03070 [ =971 0-8) (1 1975 (=5) g, ho) =
0

—1
fot(l + s)_%— (lﬁll’) ds.
Note that p > 5/2 + v/21/2, one can easily check that there exists a constant C
such that f(#)<C, and A(t)=C, for all + > 0. Therefore, (40) gives us

M) SCo + COMP™(t) exp(CMP~()) . (41)

Let K(m) = cd(1 + mP~exp(CmP~")) —m. Since K(0)=Cd > 0, and K'(m)
> 0, for all m > 0, we take § > 0 sufficiently small so that K(m)=0 ad-
mits a positive zero m,. Then set C§ < my, as K(M(£))=0 for all ¢ > 0, and
M(0) = Cd < my, so on account of the continuity of K(M(¢)), we finally obtain

2
that M(1)<m, for all 120, ie. [[u(@®)|lp2qp Smi(1+ t)_%(lﬂg), for all =0, and
g=2p > 5++21.

Theorem 3. Under the conditions of Theorem 2, the solution of the nonlinear
problem (36), (37) is freely asymptotic to the solution of linear problem (3).
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Proof. Denoted by u(t) € L®°(R*; H*(R) N W>2%/@r=1)(R)) the solution of the non-
linear problem (36), (37), we shall prove that there exists a function u.(¢) €
L°(R*; HX(R)), such that

dus () — G(Ohus(9) = 0, (42)

and
lu(®) — ur (Ol g2ry — 0
as t — +oo. In fact, from Lemma 12 and Theorem 1, we have

“u(t)“H3 é“u()“H3 eXp(C{ ||u(T)“‘L;V—2,1q(R) d‘[)éc 5

Therefore, we define as in [7, 12]

+0o

ur(®) =u() — [ gi—s* 0(uP/p)(s)ds .

t

One can easily find that above function satisfies the linear equation (42), and such
that

+o00
ut) = ur @iz SC [ ()| l1uls)ll > ds
t

—1?

+o00 -1 +o0 =D
<C [ U+ T Pds=C [ (145 @ ds—0,
t t

as t — o0, for p > 5/2 + +/21/2. The proof of the theorem is then complete.
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