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Abstract: In this paper we study the Cauchy problem for the generalized equation
of finite-depth fluids

dtu - G(82

xu) - dx (-) = 0,

where G( ) is a singular integral, and p is an integer larger than 1. We obtain the
long time behavior of the fundamental solution of linear problem, and prove that the
solutions of the nonlinear problem with small initial data for p > 5/2 -f Vΐΐ/2 are
decay in time and freely asymptotic to solutions of the linear problem. In addition
we also study some properties of the singular integral G( ) in Lq(R) with q > 1.

1. Introduction

In this paper we shall consider the Cauchy problem for the generalized equation of
finite-depth fluids

dtu - G(d2

xu) + d (— J = 0 , ( 1 )

where p is an integer larger than 1, G(f) = limε_+0 f\y\^ε>of(
χ-y)κ(y)dy with

K(y) = J^ (coth ^T — sign y) is a singular integral, here δ is a positive real which

characterizes the depth of the fluid layer. Equation (1) was first derived by Joseph

[5, 10] to describe the propagation of internal waves in the stratified fluid of finite

depth. It is known [1] that Eq. (1) reduces to the nonlinear Korteweg-de Vries

(KdV) equation

dtu - δά

xu + 3 [ — 1 = 0 ,
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and the Benjamin-Ono (BO) equation

dtu - H(d2

xu) + d (—) =0
\P J

for p = 2 as the depth δ tends respectively to zero and infinity, where //(•) denotes
the Hubert transform. From the view point of mathematics, there is an amount
of work devoted to studying large time behavior problem for the solutions of the
nonlinear KdV equation and BO equation (see [3, 6, 7, 11, 12] and the references
therein). In particular, if we denote by £/(•) and F( ) the free evolution group which
solve respectively the Cauchy problems of linear KdV equation dtu — d\u — 0, and
the linear BO equation dtu — H(β\u) = 0, then one has the following available re-
sults:

p p , (2a)

and

\\V{t)f\\pίCΓϊ(ι-ϊ)\\f\\p, (2b)

for all t^ 1, and /?^2, p1 =p/(p— 1). In the present paper we shall obtain a
similar decay estimate for the fundamental solution of the linear problem

) = 0, u(x,0)=f(x), (3)

i.e. we gave

| | « | | ^ C ( Γ K ' - I ) +(δt)-lΐ(ι-$))\\f\\p, (4)

for all t ̂  1. Furthermore, we shall substitute the decay estimate (4) into the integral
equation associated with the nonlinear equation (1) to obtain long time behavior for
the nonlinear problem (1). However, as we shall see, because of the complication
of the symbol P(ζ), which characterizes the dispersive relation of Eq. (1), it is
much more difficult to prove the decay estimate (4) for the linear problem (3), and
requires more a elaborate calculation than to obtain the estimates (2) for the linear
KdV equation and linear BO equation. In fact the dispersive relation P(ξ) for Eq.

(1) is (2πξ)2ίcoth(2πδξ) — ~ K, j , while for nonlinear KdV equation and BO

equation the dispersive relations are respectively the simple forms ξ3 and \ξ\ξ.
This paper is organized as follows. In Sect. 2 we state some basic lemmas, and

give certain properties for the singular integral G( ). In Sect. 3 we consider the
fundamental solution of the linear problem (3). The decay estimate (4) is proved by
applying the Van der Corput Lemma [14]. Finally in Sect. 4 we exploit the results
of Sects. 2 and 3 to derive the time decay estimate and free asympotic property for
the nonlinear problem (1).

To conclude this section, we give the main notation used in this paper. By C
we denote various positive constants which may be different from line to line, and
is independent of time t and the functions to be estimated. For all p, 1 ̂ p ̂  oo, we
denote by H Ĥ  the norm in LP(R).
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2. Preliminary Results

We denote b y / and/ the Fourier transform and its inversion for function/(x), i.e.

f(ξ) = ff(x)e~2^xdx, f(pc) =
R R

For the singular integral G( ), we can derive the following properties

Lemma 1. For any function /(x), g(x) G CQ°(R), we have

a. [G(f)]A = -/ [coth(2π^) - ^ ] f ,

b. G(dxf) = dxG(f),
J

R R

d. JRfx(G(fx)fdx + I JRffxG(fx)dx = i /ΛOi)3Λ ,

/ See Zhou Yulin, et al. [17].
The above lemma shows that the singular integral G( ) is a linear bounded

transform from Hubert space HS(R) into itself for s ^ 0. It is to be noted that the
inequality (e) in fact can be extended to the case of a function taking value in
Sobolev space LP(R), for 1 < p < oo.

Lemma 2. .For αrcy function f £ LP(R\ \ < p < oo, we have

\\G{f)\\p^C{p)\\f\\p,

where the positive constant C is independent off.

In order to prove Lemma 2, we need the following results.

Lemma 3. Suppose the kernel K(x) satisfies the following conditions:

\K(x)\^B\x\~\ for|x| > 0 , (5)

/ K(x)dx = 0, for 0 < Rλ < R2 < oo , (6)
Rl <|jc|<^2

/ \K(x -y)- K(x)\dx^B, for \y\ > 0 , (7)
1*1 ̂  2\y\

where B is a positive constant. Then for any f e LP(R), 1 < p < oo, we have

\\T(f)\\pίC(p)\\f\\p,

where T(f)(x) = lime_0 fw έ ε>J(*-y)K(y)dy.

Proof. See E.M. Stein [13]

Lemma 4. For \y\ φθ, we have

/ l y / ^ 2 + j ; 2 ) , (8)
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/ oo \

y2cothy=y\y\(l+2Σe-2kM) . (9)

Proof The first expansion (8) was given in [1]. Here we need only to show the
second expansion of y2cothy. In fact, for y > 0 ,

cothj; - y2 = y2 ( 1 + ^
γ ey -e~y y V 1 -e~2y

k=0

And for y < 0 we can obtain

y2cothy = —y2 ( 1

Therefore, we obtain (9).

Now we are in a position to prove Lemma 2. On account of Lemma 3, we need

only to check that the kernel K(x) = A ( c o t h S — signj;) satisfies the conditions

(5K7).

Proof of Lemma 2. First, for |JC| ΦO, By using lemma 4, we see that
oo __,

^ p—δ πk\x\

k=\

This gives us

\xK(x)\ = δ~ι

'^ -

Next, for 0 < Rι < R2 < oo, one can easily check (6) by using the expansion (9).
Finally, we prove condition (7). For [y|ΦO, we have

OO

- 1\K(x-y)-K(x)\dx=δ-1 J
\x\*2\y\ k=\

δ

k=\

t=l 2M

We now split the proof into two cases. First, for y > 0, we have
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k=\2y V

7-kδ~ιπy _ p - 3

lπy 3

l) =

By a similar manner, we can also see that the inequality (10) valid for y < 0. The
proof of Lemma 2 is then complete.

Lemma 5. Let φ(y) = xy + j/2cothy, then for [y|+0, we have φ1\y) = φ'\—y),
\φ"{y)\ = φ"(\y\). Moreover Jor \y\ > 2, we have \φ"(y)\ > 2.

Proof From Lemma 4, we can easily deduce that

φ'(y) =x + 2\y\+4Σ(\y\-b>2)e-2kM, (11)
k=\

φ"(y) = signj ^2 + 8 g (y2k2 - 2\y\k + i ) e~2kw\ , (12)

and

Furthermore if we set h(y) = 20a2y "*" l %ayl + 6y*, for a > 0, y > 0, then we have

Therefore, the results of the lemma can be derived simply by using (11)—(14).

Lemma 6. For any function f £ CQ°(R), we have

JfG(dxf)dx^A\\f\\H^R)-B\\f\\2,

where the positive constants A and B are independent off.

Proof On account of Lemma 1, and by using the Parseval identity

ffG(dxf)dx = J2πξ (coth(2π<50 - ^j) \f\2dξ

= 2π( / + / ) , (15)

where ko is a positive number to be chosen later.

Since limj^^oo ίcoth(2π^ξ) — ^ \Λ = sign(ξ), thus there exists a sufficient large

constant k0 > 0, such that, for all \ξ\ > ko, the first integral in (15) satisfies
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2π / ξ(coth(2πδξ)-j^)\f\2dξ^π J \ξ\\f\2dξ. (16)

Moreover, in order to handle the second integral in (15), we apply Lemma 4,

In J ξ(coth(2πδξ)-Λz)\f\2dξ
\ξ\ik0

^ / f

1 2

where we have used the identity: ΣlcLi ~τ ~ 7r> a n c * the εo is a positive constant

depending only on δ and k0.
Therefore, from (16), (17) it follows that

JfG(dxf)dx>π f \ξ\\f\2dξ+^p£ f ξ2\f\2dξ
R ]ξ\>k0

= π J \ξ\\f\2dξ+^M J
\ξ\>kθ

^Af(l + \ξ\)\f\2dξ-Bf\ξ\2dξ
R R

where A = min{π, Sπ2δεo/3}, B = A + 4π2c5εo/3.

3. Linear Estimates

In this section we shall obtain the decay estimate concerning the fundamental so-
lution of the linear problem

dtu-G(82

xu)=f, (18)

φ,0) = uo(x). (19)

Define the unitary group W{t)uo = gt*uo, where

R

then the solution of (18), (19) can be written as

u(x,t) = W(t)uo(x) + JW(t - s)f(x,s)ds . (21)
o
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Our purpose in this section is to estimate the oscillatory integral gt(x) for all f Ξg 0.

Lemma 7. Let δ > 0 be a constant, then

for all t^il, where the constant C is independent oft and δ.

Let η = 2πδξ, τ = δ~2t, and y = -^ — 1, then gt{x) can be rewritten as

Sτ(y) = 2πδgt(x) = Je^n2^thη+yη) dη # ( 2 2 )

In order to bound Sτ(y) for all y e i?, we need the following classical Van der
Corput lemma [14]

Lemma 8. Suppose that φ £ Cl(R) and φ £ C2(R) such that \φ"(ξ)\^l on the
support of φ. Then

where the constant C is independent of λ, φ and φ. The prime denotes the deri-
vative.

Proof of Lemma 7. We write St(x) as

St(χ)= J eu^dη+ J eit^dη = S}(x) + S?(x), (23)
\η\Z3 \η\>3

where φ(η) — xη -j- η2 coth η.
We shall split the proof into two parts to bound respectively S\(x) and 52 (x) for

all xeR.

Part 1. Taking the variable-transform ξ = tι/3η, y = ί2 / 3(l +x), and applying
Lemma 4, we have

S}(x) = Γι/3 J e^dζ, (24)

$?- 2? ΣΓwhere fa =yξ+$?- 2? ΣΓ=, ^
In what follows, we shall show that the identity

(25)

is bounded uniformly for all t^. 0, y G R.
In fact, one can easily see that the boundedness of (25) is equivalent with the

boundedness of the following integral for all t^l and y € R:

(26)

where the cut-off function φ(ξ) e C°°(R% satisfies 0 ^ φ ̂  1, and φ = 1 for 2 <; \ξ\ ^
1 / 3 Ξ 0 for |£| < 1 and \ξ\ > 3tι/3 -f 1, and such that \φ(ξ)\^C.
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On account of Lemma 8, the boundedness of (26) can be immediately obtained

by checking the positive upper estimate of \φ (ξ)\ in the support of φ(ζ), i.e.

\Φ ( ί) l^^o, for all ξ G supp {φ(ξ)}9 and λo is a positive constant. In fact, by
using Lemma 5,

\ = tι/3\Φ"(tι)\

,,, ( _

= | ζ | V
20k4π\rι'3ξ)2

k2π2(k2π2

ί ~20A;4π4 16+18A:2π2(16)

= V ~ * = i k2π\k2%2 + 16

for all ξ e supp

16)3

, and t^.1. Therefore, we obtain

(27)

for t > 0, x e R.

Part 2. In order to bound the integral

Sf(x)= f eu^dη,
\η\>3

for t > 0, x G JR. We set a cut-off function φo(η) e C°°(R), which satisfies 0 ^
) ^ 1, φo(*7) = 1 for |?/| > 3, φo(η) = 0 for all |fy| < 3 — ε, and such that

for k = 1, 2, where ε G (0,1) is a number to be chosen later. Therefore

(28)

In what follows we shall split the proof into two cases to bound the integral in
(28).

Case 1. Assume that x > - (3 - 8 Σ™=ι{2k - l)e~Λk). Then from Lemma 5 we can
verify that \φ"(η)\ = φ"(\η\) > 2, and φ'(η) = φ'(\η\) > φ'(2) > 1 for all \η\ > 2.
Therefore

f e»*W φo(ri)dη itφ{η) ΦQO?)

φ'(η)

Ψo(η)

dη

oo

+

I r \ψθ(η)Φ"(η)\ dn

(η)Y

(φ'o(ri)\

\Φ'(n)J
Ψo(η)Φ"(η)

- β < \η\ < 3}

j JS-.
(29)
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where we have used integration by part, and Lemma 8.

Case 2. Assume that x^ - (3 - %ΣZ\(2k ~ Όe~4k)- We note that

( ) ~x° < ~z τ h e r e f o r e > in or-
der to bound the integral Sf(x) in this case, we consider two domains

Ωi = fa |0'(ι?)|^ 1*1/2} , (30)

O2 = fa |Φ'0ί) |£ 1*1/3} , (31)

where φ'(η) = (xη + f/2cothfj)' = x + 2\η\ + 4 Σ £ i ( k l ~ kη2)e~lk^.
The proof in this case is based on the version of the following three lemmas

concerning the two domains Ώi and Ω2.

Lemma 9. Let x^ —XQ, then there exists a constant δQ > 0 such that {η;\η\ <

δo} C (Ωi)c.

Proof. Since

φ'(η) = (f/2coth?y + xη)1 = x + 2η
(e2η _

and

= 1 ,

thus there exists a constant δo > 0 such that, for all \η\ < δo, we have

4η 4η2e2η

\φf(η)\ > \x\ - 2η
e2η _

This implies the result of the lemma.

Lemma 10. There exists a constant Co, such that

mes{ΩiΠ{|/7| > 2}}^|x| + C0

for x^ — xo

Proof From (30), we have

Ωin{|»/| > 2 } =

= ' • " = 4

and 1̂1 > 2

This gives us
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mes{Ωi Π {\η\ > 2}} ^2 sup < -γ+^(kη2 - \η\)e~2k^ >
\η\>2 I ^ k=\ )

. \vί\Λ^~2k\^\

2 £=1
= xl + Co .

Lemma 11. Let r0 = dist{O2,(^i)c}, then there exists a positive constant C\ =
r0 > Ci|x| /or x ^ - x 0 .

/ For any ξι € (Ωx U {\η\ < δo})c, and ξ2 e Ω2, we have \φ'(ξι)\ > \x\/29

\φf(ξ2)\^\φ, which gives us 1^(50 - φ'{ξ2)\ > |x|/6, and

r=\ξχ-ξ2\>ψφ"

where the point ξo is on the line connecting ξ\ with ξ2. Therefore

1 4 - V- I - X Λ I / // • 4-X I 1 X A

6 ί >βn O

where

sup \φ"(ξ)\ ^ sup (2
\ξ\>δ0 \ξ\>δ0 k=\

and which finishes the proof of the lemma.
Now we are in a position to consider Case 2. On account of the above three

lemmas, we construct a unitary decomposition of R, namely we expect two functions
such that φι(η)9 φ2(η) e C°°(R), O^φi ̂  1, 0 S ψi ύ 1, and φx{η) + φ2(??) = 1
for all η G R. In addition, supp {φi(fθ} i s contained in Ωi, 2̂(>?) = 0 for all η G Ω2,
and

|3>i(i7)| ^ C(k)r~k ^ C\x\~k ,

for k= 1,2, and all ̂ € ^ .
The integral in (28) can be then written as

φo(η)dη\ ^ \ fe**™ φo(η)φι(η)dη\
R

If φ2(rj) φ 0, i.e. η 0 Ω2, then we have \φ'(η)\ > ψ. Note that |x| + 4 Σ£=i(-*f 2 +

> Q for ajj I^I ;> 2? w e can thus obtain

\φ'(η)\ ^ C'(\x\ + 2|ι/| + 4Σ(-kη2 + Ii/IK2*!"!) ^ AC ,

for all \r\\ > 0 and η £ Ω2, where C7 is a positive constant.
Therefore, by applying integration by part and Lemma 8, we have



Long Time Behavior for Equation of Finite-Depth Fluids

I J J

11

^crι<t•-U/-1/2

φ'(η)
(

Λ-t
-1/2

{ - e < |?/| < 3}

- e < |>?| < 3}

+

+

+

C
1 (33)

Moreover, if η £ Ω\, then

I f e
R

l/2 (\\ψo(η)φι(η)\\oo + \\(φo(η)φM)'h)

- ε < \η\ < 3}

> 2}})

Finally, combining (33), (34) with (28), and taking ε = Γxβ, we thus have

(34)

/2, (35)

for all x e i ? and / > 1.
Therefore, on account of the transform (22), we then obtain the desired decay

estimate of Lemma 7 by combining (27), (35) and (23).

Theorem 1. Suppose that gt(x) is the unitary group generated by the linear problem
of Eq. (1). Let u(x, t) = g,(x) * uo(x), then for p € (2, oo),
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for all t^.1, with p~ι + q~ι — 1, where the constant C is independent oft and δ.

Proof By using Lemma 7, and the L2(i?)-conservation law of the linear problem
(3), the result of the theorem then follows from the Riesz-Thorin interpolation.
Remark. Since the constant C in Theorem 1 is independent of δ > 0, we thus
see that the decay estimate (2b) for the linear BO equation is a consequence of
Theorem 1.

4. Decay Estimates for Nonlinear Problem

In this section we consider the following nonlinear problem:

Btu - G(d2

xu) = dx(u'/p), (36)

u(x9θ) = uo(x), (37)

where p^l is an integer. It is known [1, 17] that for any function uo(x) G
HS(R) C?^2), there exists a positive constant T such that the nonlinear equation (1)
with the initial data uo(x) admits a unique solution in L°°(0,T;Hs(R)).

Lemma 12. For any initial data uo(x) G Hk(R), then the solution u = u(x,t) of
problem (36), (37) such that

\\u\\H3U\\u0\\H3 exp(C/ | | ι ι (τ ) |^ ( Λ ) A ) , (38)

Proof Since, for k > 2,

^ / \dk

xu\2dx =2fdk

xu[dk

x(u?-ιdxu) - uP-χdk

x

+ιu\dx
at R R

k

xu\\l, (39)

where we have used the calculus of inequalities [4].
By applying the Gronwall lemma, (39) is then implying the result of the lemma.

Theorem 2. Let δ e (0,oo),q = 2p, and p > 5/2 + V21/2. Assume that the initial
data uo(x) is sufficiently small in H3(R)Π W2^2pl{2p-ι\R). Then the solution u of
nonlinear problem (36), (37) such that
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for all t^O, where the constant C is independent of u and t.

Proof Since the nonlinear problem (36), (37) can be written into the following
formula:

t

u(t) = gt*u0+ J gt-s * δx(up(s)/p)ds .
o

By using Theorem 1 and Holder inequality, we obtain

\\u(t)\\W2,q{R)S\\gt * uo\\W2,qiR)

t

+ fht-s * dx(uP/p)\\W2,q{R)ds

uo\\w2,q> (R) + cj(t - s)-Kι-i) h ^

\uo\\w2y(R) + CHiioll^ / ( t - sΓl

o

Let M(t) - s u p o g s g f ( l +s)ϊ v1"^) \\u(s)\\w2,q(R), and δ = \\uo\\H3{R)

\\uo\\W2,2P/(2p-i)(Ry The above inequality then gives us

S-Cδ -h Cδf{t)Mp'\t) exv(Ch(t)Mp-\t)), (40)

where f(t) = (1 + 0^ ̂ " ^ /(ί ~ ^ Γ K 1 " ^ (1 + j)" V l1-^) ^ h(t) =
o

Note that/? > 5/2 -f- Λ/21/2, one can easily check that there exists a constant C
such t h a t / ( O ^ C , and h(t)^C, for all t > 0. Therefore, (40) gives us

M(t)^Cδ + CδMp~\t) exp(CMp~ι(t)). (41)

Let K(m) = cδ{\ + m^"1 expίCw^-1)) - m. Since ^(0) = Cδ > 0, and ^ ( w )
> 0, for all m > 0, we take I > 0 sufficiently small so that K{m) = 0 ad-
mits a positive zero m\. Then set Cδ < m\, as AΓ(M(0)^0 for all t > 0, and
M(0) = C<5 < m\, so on account of the continuity of K(M(t)), we finally obtain

that M(t)^mx for all t^0, i.e. | |w(0II^2.^)^^1(1 + 0 ~ ^ 1 ~ ^ > f o r a 1 1 ^ ° ' a n d

^ = 2p > 5 + V2Ϊ.

Theorem 3. Under the conditions of Theorem 2, //?£ solution of the nonlinear
problem (36), (37) w freely asymptotic to the solution of linear problem (3).
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Proof. Denoted by u(t) e L°°(R+;H3(R) n W^2pl{2P-ι\R)) the solution of the non-
linear problem (36), (37), we shall prove that there exists a function u+(t) £
L°°(R+;H2(R)\ such that

dtu+(t) - G(d2

xu+(t)) = 0 , (42)

and

\\u(t) - U+(t)\\H2{R) -> 0 ,

as t —>• +oo. In fact, from Lemma 12 and Theorem 1, we have

\W(t)\y £\\uo\y exp(C/ \\u(τ

Therefore, we define as in [7, 12]

+00

«+(/) = « ( 0 - / gt-s*dx(uP/p)(s)ds.
ί

One can easily find that above function satisfies the linear equation (42), and such
that

+00

\\u(t)-u+(t)\\H2SC J \\u{s)\\^2)q\\u{s)\\H,ds
ί

p γ 2

t

as ί —> +00, for p > 5/2 + \fjXj2. The proof of the theorem is then complete.
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