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Abstract: The sί2 quantized Knizhnik-Zamolodchikov equations are solved in
g-hypergeometric functions. New difference equations are derived for
general g-hypergeometric functions. The equations are given in terms of
quantum Yang-Baxter matrices and have the form similar to quantum
Knizhnik-Zamolodchikov equations for quantum affine algebras introduced by
Frenkel and Reshetikhin.

Introduction

The Knizhnik-Zamolodchikov (KZ) differential equation is the fundamental dif-
ferential equation of the Conformal Field Theory with very rich mathematical
structures. The KZ equation connects representation theories of Lie algebras and
quantum groups [KZ, D, K? KL, SV, V]. Quantization of the KZ equation is of
great importance. It is expected that the quantized KZ equation also will connect
two representation theories. The first is presumably the theory of representations of
quantum groups and the second is the theory of representations of a yet undefined
structure that may be called "a double quantum group" or "an elliptic quantum
group," see [FR].

The KZ equation coincides with the Gauss-Manin differential equation for
general hypergeometric functions [SV]. General hypergeometric functions are
integrals of special hypergeometric forms over suitable cycles depending on para-
meters. The special hypergeometric forms are naturally identified with objects of
the representation theory of Lie algebras, the cycles are naturally identified with
objects of the representation theory of quantum groups, the integration of hyper-
geometric forms over cycles gives a natural correspondence between representation
theories of Lie algebras and quantum groups [FW, V].

There are two ways to quantize the KZ equation: through representation
theory and through geometry. The quantization through representation theory
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was suggested by I. Frenkel and N. Reshetikhin [FR]. The KZ equation in the
Conformal Field Theory is the differential equation for the matrix coefficients of
the product of intertwining operators for an affine Lie algebra g. The KZ differen-
tial equation takes values in the tensor product of representation of the corres-
ponding simple Lie algebra 9. I. Frenkel and N. Reshetikhin quantize the
Knizhnik-Zamolodchikov differential equation deriving difference equations for
the matrix coefficients of the product of intertwining operators for the quantum
affine group Uq(§). The quantized KZ equation takes values in the tensor product
of representations and is written in terms of suitable solutions for the quantum
Yang-Baxter equation.

The geometric way to quantize the KZ equation is to quantize the differential
equation for general hypergeometric functions, namely, to replace hypergeometric
forms, cycles, hypergeometric integrals, the differential equation for hypergeo-
metric integrals by their difference discrete analogs: difference forms, difference
cycles, Jackson integrals, a difference equation for Jackson integrals, respectively.
The study of general Jackson integrals has been started recently by K. Aomoto, Y.
Kato, K. Mimachi, and A. Matsuo [A, AK, AKM, M, Mi]. In this work we derive
new difference equations for Jackson's integrals. The difference equations are
written in terms of solutions for the quantum Yang-Baxter equations as in the I.
Frenkel and N. Reshetikhin quantization. The open problems are to compare the
two quantizations and to give an interpretation for the discrete geometry of
Jackson integrals in terms of representation theory.

In recent very interesting works [M], A. Matsuo states formulas for solutions of
the Frenkel-Reshetikhin difference equations corresponding to the quantum affine
group Uq(s£2). The solutions are given as suitable g-hypergeometric functions. A.
Matsuo partially proves these formulas for some important cases. In Sect. 3
we extend the Matsuo results and prove the formulas for solutions to the
Frenkel-Reshetikhin difference equations for Uq(s£2).

In Sect. 1, we define new solutions for the quantum Yang-Baxter equation. The
solutions take values in suitable spaces of forests. In Sect. 2, we derive new
difference equations for Jackson integrals. The equations are written in terms of the
solutions to the Yang-Baxter equation defined in Sect. 1. Section 3 is devoted to
integral solutions to the Frenkel-Reshetikhin equations for Uq(s£2).

1. Tensor Coordinates and the Yang-Baxter Equation

(1.1) Tensor Coordinates. Let Vl9...,Vn be C-vector spaces. Let W=

W{zu. . . , zn) be a (C-vector space depending on parameters zu. . . , zπ, where
Zγ,. . . , zn are pair-wise different complex numbers. Assume that for every element
σ of the permutation group Sn a linear isomorphism

L σ ( z u . . . , z n ) : Vσ(ί) ® ® V σ { n ) ^ W ( z u . . . 9 z H ) (1.1.1)

is given.
The set of these linear maps {Lσ} will be called tensor coordinates on

W(zu . . . , zn). For arbitrary σ, veSn the map

Lσ^=L-γLσ: F σ ( 1 ) ® ® Kσ ( B )->K v ( 1 )® ® VHn) (1.1.2)

will be called a transition function. It is a function of z l 9 . . . , zn.
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Assume that for every ί and j a linear map

R(Uj9 zi9z2): Vt ® Vj-+Vj ® Vι (1.1.3)

is given, where zl9 z2 are different complex numbers. Let σ l 5 . . . ,σ n - i be the
standard generators of Sn9 where σt permutes i and i + 1 .

(1.1.4) Tensor coordinates will be called /oca/ with respect to {R(i9j, zί9z2)} if for
any σeSπ and any ie{l,. . . , n —1} the transition function

^σ,σσ,: Vσ{1)®" ® F σ ( n ) - + F σ ( 1 ) ® . . . Vσ(i+i)® Vσ{i)- "®Vσ{n)

is the operator acting as R{σ{i)9 σ(i+ί)9 zσ(ih zσ(ί+1)) on Vσ(i) ® F σ ( i + 1 ) and as the
identity on other factors:

£ σ , σ σ , = #u+i( σ (O>tf(z>l), z σ ( 0 , z σ ( ί + 1 ) ) .

(7.7.5) Example. Every tensor coordinates are local if n = 2.

(1.1.6) Lemma. For /oca/ tensor coordinates, the operators {Rij} form a solution to
the Yang-Baxter equation:

(i) K23(σ(2), σ(3), z 2 ? z 3)Λ 1 2(σ(l), σ(3), zl9 z3)R23(σ(l\ σ(2), z l 9 z2)

= Λ1 2(σ(l), σ(2), z 1 ? z2), K23(<7(1), σ(3), Zi, z3)Λi2((7(2), σ(3), z2, z3)

/or a// pair-wise different σ(l), σ(2), σ(3)e{l,. . . , n}. Moreover, this solution is
unitary:

(ii) R(i,j, zl9z2) R(j> U z2, z i ) = 1

/or all i and j .

(1.1.7) Tensor coordinates will be called homogeneous if

Z^vCsZ!,. . . 9 5Z Λ )=Z σ f V (z l 9 . . . ,ZΠ)

for all 5φO and all σ, veS,,.

(7.2) Γftc Weight Semigroup. Let IN (resp. M +) be the set of all non-negative (resp.
positive) integers. An admissible sequence is an infinite sequence λ = (λ1, λ29. . . ) of
non-negative integers such that all of them but a finite number are equal to zero.
Set

\λ\ = λt+λ2 + ' . (1.2.1)

For admissible λ9 v, we say that λ^μ if λjt^μj for all j . Let M be the set of all
admissible sequences. M forms a semigroup:

We call M the weight semigroup. Introduce the subset of primitive weights

Λ = {(λuλ2,.. . ) e M | μ ^ l for all i} . (1.2.2)

Elements of A are in one-to-one correspondence with finite subsets of the set of
positive integers. For any finite subset J c=]N+, define λ(J) c A by

λ.= l ifjeJ, λj = O otherwise. (1.2.3)
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For any λeΛ9 define the subset J(λ) c N by

jeJ{λ)iSλj>0 . (1.2.4)

(1.3) Tensor Coordinates on a Weight Component. Assume that all spaces
Vl9. . . 9Vn9 W(zu. . . ,zn) of Sect. (1.1) are graded by elements of the weight
semigroup M:

Vj= ® VJtλ9 W=@Wλ.
λeM λeM

These weight decompositions induce the weight decomposition of the tensor
product:

Vn)λ:= 0 Vuλί ®- ® VΛtλu
λlt...,xn

For a graded space, set

We will be interested in the tensor coordinates on one of the weight components.
Fix λeΛ. Assume that for every σeSn an isomorphism

Lσ(zu . . . , zn):(Vσ(ί) (x) (x) Vσin))λ-*W{zl9. . . , zn)λ

is given. The set of these maps will be called tensor coordinates on Wλ. Define
transition functions by the same formula: Lσv:=L^ί Lσ.

Assume that for every i and j a linear map

R(Uj9zl9z2): {Vi®VJ)ύλ'+(Vj®Vi)ύλ (1.3.1)

is given. Assume that the map preserves the weight decomposition.

(1.3.2) Tensor coordinates will be called local if for any σeSn and any ie
{ 1 , . . . 9n — 1} we have

Lσtσσι = Riti+i(σ(ί)9 σ(i+ί)9 zσ(i)9 zσii+1)) .
cf. (1.1.4).

(1.3.3) For local tensor coordinates the operators {Rij} form a unitary solution to
the Yang-Baxter equation, see (1.1.6).

(1.4) Trees and Forests. Let T be a tree. Denote by v(T) the set of its vertices and
by e(T) the set of its edges. For a finite set J c M + let λ(J)eΛ be the corresponding
primitive weight. A weighted tree of weight λ(J) is a tree T with | J | + 1 vertices
numbered by Ju {0}. A vertex with number j is denoted by (j). Vertex (0) is called
the root of the tree.

Let Ju . . . , JM cz N+ be finite subsets. A weighted forest of length n and multi-
weight (A(Ji),. . . , λ(Jn)) is an ordered collection of trees F = (Tl9. . . 9 Tn\ where

Ti is a tree of weight λ(Jt) for all i. The weight /l = A ( J O + +λ(Jn) is called the

weight of the forest.

(1.4.1) A weight form is a collection of non-zero complex numbers b = (fet 7 ), where
i,je]N+, such that bij = bji for all ij.

(1.4.2) A highest weight is a sequence of non-zero complex numbers C = (CJ), where
eN.
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Let T be a weighted tree. A weight form and a highest weight define a color of
every edge of the tree. The color of the edge connecting vertices (i) and (j) for

+ is the number btj. The color of the edge connecting vertices (0) and (j) is the
number cΓ

We say that a weighted tree is admissible with respect to a weight form and
a highest weight if the colors of all its edges are different from one. We say that
a weighted forest ( Γ 1 ? . . . , Tn) is admissible with respect to a weight form b and
highest weights c 1 , . . . , cn if the tree Tt is admissible with respect to b and cι for all i.

The space of admissible trees with a weight form b and a highest weight c is the
C-linear space V=V(b, c) with the basis { [7] }, where T runs through all weighted
trees admissible with respect to b and c.

The space of trees has the weight decomposition:

) λ , (1.4.3)
λeΛ

where the space V(b, c)λ is the subspace with the basis {[T7]}, T runs through all
weighted admissible trees with weight λ.

(1.4.4) The space of admissible forests of length n with a weight form b and highest
weights c1,. . . , cn is the (C-linear space

V(b, c 1 , . . . , cn)=V(b, c1) ® ® V(b, cn) .

The space of forests has the basis {[Γ x] ® ® [Γπ]} numerated by admis-
sible forests ( Γ l 5 . . . , Tn). The space of forests has the weight decomposition:

V= © Vλ ,

FΛ= © F^c^Θ ΘF^c")*,, (1-4.5)

where M is the semigroup of weights.

(1.5) Realization of a Primitive Weight Component of the Space of Forests as a Space
of Functions. Fix a weight form b and highest weights c/f = (c{, c{,. . . ) for
{— 1,. . . , n. Fix a primitive weight λ = (λι,λ29. . . )eA We realize the space

as a space of suitable rational functions.
Note that this will be done only for a primitive weight.
Let J = J(λ) be the finite subset of N + corresponding to λ. Consider the space

<C|A| with coordinates {tj}jeJ. Fix pair-wise different complex numbers z l 5 . . . , zn.
For any /e{l, . . . , n) and any jeJ such that c jφ 1 define the hyperplane

For every i, jeJ such that i<j and frίi7 =t= 1 define the hyperplane

Hij:ti-bijtj=0.

The collection of all these hyperplanes will be called the configuration of hyper-
planes associated with λ, b, c 1 , . . . , c", zu . . . , zn. Notations:

C , . . . , C , Zί9 . . . , Zn) .
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An edge of a configuration is a non-empty intersection of some of its hyperplanes.
A vertex of a configuration is a zero-dimensional edge. Let F = (Tl9 . . . , Tn) be
a forest of weight λ admissible with respect to b, c 1 , . . . , cn.

(1.5.1) For any tree TV of F and for any of its edges e define the edge function fe on
| A | : if the edge connects vertices (i) and (j) for i, j e J and i<j, we set

if the edge connects vertices (0) and (j), we set

fe = Z,/(c'jZ,-tj).

The edge function is a rational function and its poles form a hyperplane of c€.

(1.5.2) For any tree T of the forest define its tree function by the formula

/τ=Π/e>
eczT

where / e is the edge function of an edge e of T and the product is taken over all
edges of the tree.

If a tree T has weight (0,0,. . . ,) and consists of its root, we set

/r=l

(1.5.3) Define the untwisted forest function of a forest F = (T1,. . . , Tn) by the
formula

(1.5.4) The space of forest functions of weight A admissible with respect to
b, c 1 , . . . , cn is the C-linear space

consisting of all C-linear combinations ̂ F % / F ? where i 7 runs through the set of all
forests of weight λ admissible for b, c 1 , . . . , cw, and {αF} are complex coefficients.

Let Vλ(b, c1,. . . , cn) be the space of all forests of weight λ, see (1.4.4) and (1.4.5).
There is the natural linear map

(1.5.5)

namely, let [7\] ® ® I T J e F i be the basic vector corresponding to a forest
F = (TU. . . , Tn\ then we set

(1.5.6) Lemma. 77ze map f is an isomorphism for non-degenerate λ,b,cλ,. . . , c" in
the sense defined below.

Denote by (C*) μ ι c= C μ ι the subset of all points with non-zero coordinates. For
any admissible forest F define the point

p(F) = {te&λι\l/fe(t) = 0 for all edges e of F} .

p(F) is a vertex of the configuration ^, and p(F)e(C*)μ ι. Any vertex of V lying in
(C)μ ι may be written in this form.
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(1.5.7) We say that λ, b, c1,. . . , cn are non-degenerate if the points {p(F)} are
pair-wise different for pair-wise different admissible forests.

The proof of the lemma is obvious

(1.5.8) Remark. The configuration ^(λ, b, c 1 , . . . , cn, z^,. . . ,z n) and forest func-
tions homogeneously depend on z l 5 . . . , zn. Namely, for seC* the transformation
(Cμι-*(Cμι, sending t to st, sends # ( z l 5 . . . , zn) to ̂ (szu . . . , s z j and forest func-
tions to forest functions.

(7.5.9) Remark. For any permutation σeSn9 the configuration #(λ, b, c σ ( 1 ) , . . . ,
cσ(n\ zσ(i), > σ̂(«)) coincides with the configuration #(λ, b, c 1 , . . . ,
cn, z 1 ? . . . , z j , and the space Wλ{b, cσ(ί\ . . . , cσ ( n ), z σ ( 1 ) , . . . , zσ(π)) coincides with
the space Wλ(bι, c 1 , . . . , c", z 1 ? . . . , zΛ). Therefore, for any σeSn, we have con-
structed the linear isomorphism

f(b, c ' ( 1 \ . . . , c^n\ z σ ( 1 ) , . . . , z σ W

(7.(5) Tensor Coordinates on a Primitive Weight Component of the Forest Space. Fix
λeλ, b^c1,. . . ,cn,zu . . . , zn as in (1.5). We define local homogeneous tensor
coordinates on Wλ(b, c 1 , . . . , c", z 1 ? . . . , zπ). Let J = J(λ) be the finite subset of
N+ corresponding to the primitive weight λ as in (1.5).

(1.6.1) For every iJeJ define the twisting function by the formula

Dij^tj-bijtMibijtj-ti) .

For every /G{1, . . . , n) andjeJ define the twisting function by the formula

D'jH^-φMc'jZ.-tj).

(1.6.2) Properties of twisting functions:

(1) Twisting functions are rational functions homogeneous with respect to
transformations (ί, z) \-+ (si, sz).

(2) D 0.= l i f f t y = l .

£>^=1 if c j = l .

(3) Dy = 6y + (1 - (foι7)
2 ίj/ίftyίj -U)= (fty) " X + ((fey) ~ X - fey) tt /(fey ί̂  - ίf).

Let F = (Γi, . . . , Γw) be an admissible forest of length n and weight λ. Let
Ai,. . . , AΛ be the weights of the trees Tu . . . , Tn, resp. Let J l 5 . . . , JM czN+ be the
subsets corresponding to A l 5. . . , λn9 resp.

(1.6.3) For such a forest F and a permutation σeS,,, define the twisting function by
the formula

Here the first product is taken over all pairs (ij) c J such that

(1)
(2) ieJσ{a)JeJσ{b) for some

The second product is taken over all ye J and *fe{l,. . . , n} such that jeJσ(a) and
/ = σ(fe) for some α > b.
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(1.6.4) Example. For n = 2, J 1 = {1}, J 2 = {2}, and the single non-trivial permuta-
tion σeS2, we have

and for J1 = {2}9 J2 = {1} we have

(1.6.5) For any admissible forest F of length n and weight λ and for any permuta-
tion σeSn, define the twisted forest function

where fF is the untwisted forest function defined in (1.5.4).
This construction defines a linear map Lσ(zu. . . , zn) of the forest space

(V(b, c σ ( 1 ))) ® ® F(fo, c σ ( 1 ) )) A defined in (1.4) to the space of rational functions
on C μ ι . Namely, let a forest F = (TU. . . , Tn) be admissible to 6, c \ . . . , cn, then
the forest (Γ σ ( 1 ) , . . . , Γσ ( n )) is admissible to b9 c

σ ( 1 ) , . . . , cσ{n) and
[Γ f f ( 1 )] ® ® [Γ σ ( π ) ] is a basic vector in (F(ft, cσ(1)) ® ® F(δ, cσ ( w )))A. We
set

L σ ( z l 5 . . . , zB): [Γ σ ( 1 ) ] ® ® [ Γ σ ( n ) ] ^ / F , σ . (1.6.6)

(1.6.7) Theorem. Let λ, b be path non-degenerate in the sense defined below. Then
the previous construction defines a map

Lσ(zu . . . , zn): {V{b, c σ ( 1 ) ) ® ® V(b9 c*M))λ^Wλ(b, c\ . . . , c\ zu...9 zn) .

In other words, any twisted function is a linear combination of untwisted forest
functions.

Define the notion of path non-degeneracy.
A path in J is a sequence j l 9 . . . J^eJ of pair-wise different elements, where

ί>2. Define the graph of the path as the graph with ( vertices ( Ί ) , . . . , (jn) and
{ edges e1=(jl9j2)9 e2 = {J2,J3), ? ^ = 0 Λ J I ) Consider the system of equations

where/e is the edge function of the edge e. This is a system of t linear equations on
£ variables tjl9. . . , i j V. We say that the path is non-degenerate if the space of
solutions to the system has codimension /.

The pair A, b will be called path non-degenerate if all paths in J are non-
degenerate.

Theorem (1.6.7) is proved in (1.8).
Assume now that λ, b, c 1 , . . . , c", are non-degenerate in the sense of (1.5.7) and

λ, b are path non-degenerate. Then the map (1.5.5),

f(b, c\ . . . , c\ zl9. . . , zH): {V(b9 c1) ® ® V(b9 cn))λ

is an isomorphism, and the map (1.6.7)

Lσ{zu. . . , zH): (V(b9 c σ ( 1 ) ) ® ® V(b,

-+Wλ(b9c
1

9...9c
n

9zl9...9zn)

is well defined for all σeSn.
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The space Wλ has the basis {fF} of untwisted forest functions. This basis is
parametrized by forests F = (Tl9. . . , Tn) admissible to ft, c 1 , . . . , cn. The space
{V(b, cσ ( 1 )) ® ® F(fc, cσ(w)))A has the basis {[Γ σ ( 1 )] ® ® [Γσ(M)]} paramet-
rized by forests F = ( Γ l 9 . . . , Γn) admissible to b, e 1 , . . . , cn. For these bases, the
map Z,σ(z1 ?. . . , zn) has a matrix (Lσ(zl9. . . , zn)F,F') The entries of this matrix are
rational functions of {bij9 Cj9zl9. . . , zn).

(1.6.8) Lemma. The determinant of the matrix (Lσ(zl9. . . , zn)F%F>) is a non-trivial
rational function.

(1.6.9) Coro l lary . F o r generic values of {biJ9Cj9zί9. . . 9zn} the maps
{Lσ(zl9. . . , zn)}9 σeSn, are isomorphisms, and therefore form tensor coordinates on
Wλ(b,c1

9...,c
n,zl9...9zH).

Proof of the lemma. Let all parameters {bij9 Cj} tend to 1. Then all twisted forest
functions tend to the corresponding untwisted functions, see (1.6.2). Hence the
matrix of Lσ(zί9. . . , zn) tends to the unit matrix. The lemma is proved.

(1.6.10) Lemma. The tensor coordinates {Lσ(zί,. . . 9zn)} are homogeneous with
respect to zl9. . . 9zn9 see (1.1.7).

The lemma is obvious, see (1.5.9) and (1.6.2.1).
We have constructed tensor coordinates simultaneously for all primitive

weights λsΛ and all n. It turns out that these tensor coordinates are simultaneously
local with respect to the same operators R{i9j9 zl9z2).

Namely, set

(V(b9 cι) ® V(b9 cj))Λ=@ (V(b9 cι) ® V(b9 cj))λ .
λeΛ

This is the sum of components with primitive weights of the space of admissible
forests with two trees, see (1.4).

Set

WA (b9 c\ c\ zuz2) = @ (Wλ(b, c\ c\ zl9z2))λ .
λeΛ

This is the space of forest functions with primitive weights and two trees.

Let σ, veS2 be the trivial and non-trivial elements, resp. The tensor coordinates

LΛzi,Z2)' (V(b9c
i)®V{b9c

J))A-+WΛ(b9c
i

9c
i

9zl9z2)9

Lx{zuz2y{V{b,ci)®V{b,ci))Λ-*WΛ{b,c\c\zuz2) (1.6.11)

defined above give the transition function

LσfΛzl9z2): (F(fe,c')® V(b9c
J))A->(V(b9c

J)® Vfoc^h . (1.6.12)

Denote the transition function LσtV(zl9 z2) by R(i9j9 zl9z2).

(1.6.13) Lemma. The tensor coordinates {Lσ(zl9. . . , zn)} defined in (1.6.7)
and (1.6.9) are local with respect to the operators {R(i9j9zl9z2)} defined in
(1.6.12).

See the definition of local coordinates in (1.1.4) and (1.3.2).
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The lemma is obvious because each factor of a twisting function DFσ is defined
by two of n sets J l 9 . . . , Jπ, see (1.6.1) and (1.6.3).

(7.7) Example, cf. [Ml]. Let n = 2 and λ = (0,0,. . . ). Fix b, c\ c2. Denote by T°
the tree consisting of its root (0). Denote the vector [Γ°]eF(b, c1) by t^, the vector
[Γ°]eK(b, c2) by ι>2. The spaces (K(b, c1) <g> V(b9 c

2))λ and (K(b, c2) ® V{b, cx))Λ

are 1 dimensional with the basic vectors vx ®v2 and v2®vu resp. The space
Wλ(b, c1, c2, z1}z2) is 1 dimensional, it consists of constants. It has the basic vector
fF = 1, where F = (Γ °, T °) is the single forest of weight λ. The tensor coordinates are
trivial:

Lσ(zl9z2): υ1®v2h^l9Lv(zί9z2): v2®v1^\

where σ,veS2 are the trivial and non-trivial elements respectively. The transition
function

Lσ,Λzu z2): (V(b, c1) ® V{b, c2))λ-^(V(b, c2) ® V(b9 c'))λ

is the transposition of factors.
Let λ = (l, 0, 0,. . .). Assume that c1 and c2 are such that c\ φ 1 and c2 Φ1. Set

c1=c{,c2 = cί. Denote by 7\ the tree consisting of the edge connecting the root (0)
with the vertex (1). Denote the vector [T^eVφ.c1) by fvu the vector [ Γ ^ e

2

The space {V(b, c1)® V(b, c2))λ is 2 dimensional with the basis fv1 ® v2,
*>i ®foi The space (V(b, c2) ® V(b, c1))^ is 2 dimensional with the basis fv2 ® vt,

The space fΓλ(b, c1, c2) is the 2 dimensional space of linear combinations of
functions

where F1=(Tί,T°), F2 = (T°,T1) are the forests of weight λ admissible to
b,c\c2.

The tensor coordinates are given by the formulas:

Cl

h

h

c2

-c1z1

ti-z1

-c1z1

-c2z2

h-z2

-z2

tί-c2z2

_z

Lσ{zl9z2):

Lv(zl9z2):fv2®v1ϊ
Lί-C2Z2

(1.7.1)
tί-C2Z2 h-

The transition function is given by:

(ί s* \ I I T

Lσ,v(z1,z2):fv1 ®v2t-+— -fv2®
c c z z

f 2 ® 1

cίc2zί-z2 c1c2z1-z2

f 2 ι ~1)Z2v2®fvx. (1.7.2)
CίC2Zί-Z2 C1C2Z1~Z2
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This transformation is well known in the theory of quantum groups, see [Ml-2],
(3.1) and (3.4.4).

(1.8) Proof of Theorem (1.6.7). The theorem follows from the three lemmas for-
mulated below.

Let weN+, n>l. Let z9 b, cθ9 cl9. . . , cn be numbers, t = (tl9 . . . , tn). Consider
the rational functions

= (t1-a)(t2-t1). . . ( ί M - ί w - i)( ί M -b),
= (co + cxt1 + -" +cntn)/F(t)9

fi(t) = (tί-ti-1)/F(t)ϊoτί = 2,...,n.

(1.8.1) Lemma. g = mxf1 + +mn + 1fn + 1for some numbers m 1 ? . . . ,mn + 1.

The lemma is obvious.

Let rce]N+, n > 2. Let ai9 bu ct for i = 1,. . . , n be numbers. Consider the rational
functions

= (a1t1-b1t2)(a2t2-b2t3). . . (a^^-^b^^^a^-Kt,),
= (cih + - +cntn)/F(t), fn(t) = (antn-bnt1)/F(t\

for ί = l , . . . , n - l .

(1.8.2) Lemma. If the functions (a1t1-b1t2),. . . Λan-itn-ι-bn-itn)9(<*ntn-bnti)
are linearly independent, then

g = mff1 + - +mnfn

for some numbers m 1 ? . . . , mn.

The lemma is obvious.
A forest with artificial edges of weight λeΛ admissible to a weight form b and

highest weights c1,...,cn is a graph obtained from an admissible forest
F = (TU. . . , Tn) by attaching new (artificial) edges so that the total number of
initial and artificial edges connecting any two vertices is not greater than one. The
number of artificial edges will be called the degree of the forest with artificial edges.

For an artificial edge e connecting vertices (i), (j% where iJeJ(λ), define its edge
function fe by setting

see (1.6.1). For an artificial edge e connecting vertices (j) and (0) where jeJ(λ) and
(0) is the root of the tree Ti9 define its edge function fe by setting

Je ^j ?

see (1.6.1). Define the forest function of a forest F with artificial edges [e] by setting

where fF is the untwisted forest function defined in (1.5.3) and the product is taken
over all artificial edges.
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(1.8.3) Example. A twisted forest function/F σ defined in (1.6.5) is a forest function
of a forest F with suitably attached artificial edges.

(1.8.4) Lemma. For an arbitrary forest F with k artificial edges, there exist forests
F 1 , . . . ,FN with k—ί artificial edges each, such that the forest function of F is
a linear combination of forest functions of F1,. . . , FN.

The lemma easily follows from Lemmas (1.8.1) and (1.8.2).
Theorem (1.6.7) follows from Lemma (1.8.4).

2. ^-Hypergeometric Functions, Difference Equations for Jackson's Integrals

(2.1) Hyper geometric Functions. In this section we discuss some basic facts on
multidimensional hypergeometric functions motivating our study of g-hyper-
geometric functions.

Fix n, ke~N+. Set t = (t1,. . . , tk\ z = (zu . . . , zn), and dt = dt1 Λ Λ dtk. Fix
complex numbers {αί<7 } for i,je{l, . . . , & } , i<j, and {aj} for 7*6(1,. . . , k}9 ίe

( 1 , . . . , n}. The function

F(t,z) = Π (U-tjY ΎKtj-z,)*', (2.1.1)
i<j j,l

is a holomorphic multivalued function with singularities where {tt = tj] or {tj = zίf}.
A general hypergeometric function associated with F is an integral of the form

I(z;φ;y)= J φF dt . (2.1.2)
y(z)

Here φ is a rational function of ί, z regular outside singularities of F. y(z) is a family
of suitable /c-dimensional cycles continuously depending on z in a natural sense, see
for example [SV, V].

For fixed y and φ, the function / is a multivalued holomorphic function with
singularities where some of z 1 ? . . . , zn coincide.

(2.1.3) Example.

I(zuz2,z3;l;y)= j (tλ-z^ (t1-z2)"> (h-z3)«> dt, ,
γ(z)

where y(z) is a curve in (C shown in Fig. 2.1.

Obvious homology reasons may be applied to studying hypergeometric func-
tions. For a fixed z, the form φF dt is closed. Hence l(z\ φ; y1) = I(z; φ; y2) for all
φ and homologous yx(z) and y2(z)- If

t — φ2Fdt =

then 7(z, φu y) = I(z9 φ2, y) for all y.
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y(z)

Fig. 2.1.

Therefore, instead of studying infinite-dimensional space of general hyper-
geometric functions associated with F, it suffices to study only a finite-dimensional
family of hypergeometric functions {/(z, φα, yβ)}a,β if for this family the differential
forms {φaFdt} generate the corresponding cohomology group and the cycles
{φβ(z)} generate the corresponding homology group for all z with pair-wise
different coordinates.

Below we define such a family of differential forms.
The Orlik-Solomon algebra A associated with F is the finite dimensional

exterior (C-algebra generated by differential forms d(ti — tj)/(ti — tj)9 d(ti — z^)/
(ti — Zf) for ije{l,. . . , fe}, /e{l, . . . , n). The algebra is graded:

where Ap is the space of p-forms.
A hypergeometric differential form associated with F is a differential form Fω for

ωeA.
A hypergeometric function associated with F is an integral

J(z;ω;y) = J Fω (2.1.4)
γ(z)

where ωeAk

9 and y(z) is a family of cycles as in (2.1.2).
The finite-dimensional family of hypergeometric differential form {Fω} for

ωeAk has two remarkable properties:

(2.1.5) Under certain conditions [ESV, SV], the forms {Fω}, ωeAk, generate the
corresponding cohomology group, and, therefore, an arbitrary general hyper-
geometric function I(z;φ,γ) of the form (2.1.2) may be represented as a linear
combination

/(z; φ; y) = Yjca{z)J(z\ ωα; y) ,
α

where ωaeAk and {ca(z)} are rational functions of z independent of y.
(2.1.6) For a basis ω l 5 . . . , ω, in Ak, there exists a set of constant r x r-matrices
{β / m |^, me{l,. . . , n} and Ωίm = Ωmί} such that for any family of cycles y the
vector-function

I(z) = l J F ω 1 ? . . . , j Fω,
V y(z) γ(z)
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satisfies the system of differential equations

d l γ Ω(m

φ zi~zm

see for example [SV].
The statement (2.1.6) says that, independently on (2.1.5), the subspace in

the corresponding cohomology group, generated by hypergeometric forms {Fω}
for a fixed z, is invariant with respect to the corresponding Gauss-Manin
connection.

Interrelations of multidimensional hypergeometric functions with the repres-
entation theory of Kac-Moody Lie algebras come through this distinguished finite
dimensional space of hypergeometric forms {-Fω} [SV]. The space {Fω}, ωeAk, is
interpreted as a weight component of the tensor product of n modules dual to
Verma modules, £2/m as the Casimir operator acting in the / t h and mth factors of the
product, and the system of differential equations (2.1.6) as the Knizhnik-Zamolod-
chikov equations in the Conformal Field Theory.

Analogously, there is a distinguished finite dimensional chain complex comput-
ing the homology groups. The cycles {yp(z)} are constructed as linear combinations
of cells of the chain complex. The chain complex is interpreted in terms of quantum
groups, see [V].

The integration of hypergeometric forms over chains of the complex gives
a pairing between the corresponding objects of the theory of Kac-Moody algebras
and the theory of quantum groups.

Therefore generalizing the theory of hypergeometric functions to the case of
g-hypergeometric functions, it is reasonable to look for an analog of the finite
dimensional family of hypergeometric forms {Fω} with properties (2.1.5) and
(2.1.6), and for an analog of the finite dimensional chain complex that would
provide possible connections with representation theory.

In the next sections we describe such a ^-analog of hypergeometric forms.

(2.2) g-Λnalogs of Differentiation and Integration [A, FR, M]. The g-analogs of
differentiation and integration are given by the formulas

dqfίΛ_U(qt)-f(t)

dqt
{t)~t

\f(t)dqt = ξ(l-
0 H^O

]f(t)dqt = ξ(l-q) £ f{ξq")q" . (2.2.1)
ξ M<0

when q->l, these operations become the usual differentiation and integration.
Set

ξco d t °°
$ f{t)-ϊ- = (l-q) Σ f(ξq"). (2.2.2)

This sum is called the Jackson integral along a ^-interval [0, ξoo\.
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There is a ^-analog of the Stokes theorem:

0 ugι ι

The multiple Jackson integral is similarly defined where a g-cycle takes place
instead of a ^-interval.

TLk acts on <Cfe:

(2.2.4) For any a = (al9. . . , ak)eZk, set

M(a): C k ->C*,

Zfc acts on functions on (Cfc:

(2.2.5) For any aeZk, set

(2.2.6) For an arbitrary ξe((C*)k the Zk-orbit of ξ is called a k-dimensίonal q-cycle
and denoted by [0, ξoo]^. The Jackson integral of a function/(ίi,. . . , tk) over
a 4-cycle [0,

f / ( ί i , . . . , ί k ) « (2.2.7)
[O.ξoo],

for Ω = (dqt1/tί) A - Λ (dqtk/tk) is the sum

(1-4)* Σ f(ξiqaί, .,ξkqak) (2.2.8)
—oo<α 1, . . . ,α f t <oo

if it exists.
For any aeZk, we have

J M(α)(/)Ω= f / Ω . (2.2.9)
[O,ξcx)]a [0,ξoo]9

(2.3) q-Cohomology and q-Hypergometric Functions, [A, AK], Set

(t)o0=(t;q)m=f[(l-q' t),
n = 0

m

(ί)M=Π(l-β"ί) (2-3.1)
n = 0

A g-analog of the function (1 — t)2a is the function

(g"αt)°° O32)
(ί 't)« ' ( )

This function tends to (1 —ί)2 α when ̂ ->1.
(2.3.3) Fix n, /CEN+ . Fix complex numbers {bij9 c{

m am] where ij, me{l,. . . , k},
i<j, and /e{l,. . . , n}. We assume that b^ φO and c^φO for all i,j, £, m. A number
bij or c^ will be called essential if it is not equal to 1.
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Set

Φ(t, z) = i f φ Π φtJ Π < ( 2 3 4 )
i<j £,m

Φ is a g-analog of the function F(t, z) in (2.1.1).
Functions Φtj and Φ^ have the properties:

Φ y = l iffty=l. Φ ^ = l if ά = l. (2.3.5)

ΦtJ(qti9 tj^bijDijiU, tj) Φij(th tj) ,

Dφu qt^ΦtjiU, qtjWbij)-1 Φu(th tj) , (2.3.6)

where Dtj is defined in (1.6.1).

Φ'miqtm, Z,) = c'mD'm{tm, Z,)Φ'm{tm9 Zt) ,

D'm(tm9 qz<)Φ'm(tm9 qz^^ciy'Φ'jt^ z<) . (2.3.7)

where D^ is defined in (1.6.1).

(2.3.8) For aeZk let T(a) be the operator defined in (2.2.5). Then

M(a)(Φ) = raΦ,

where ra is a rational function of t and z.
A general q-hypergeometric function associated with Φ is a Jackson integral of

the form

I(z;φ;ξ)= f φΦΩ, (2.3.9)
[0,ξoo]g

where φ is a rational function of t and z, and [0, ξoo\ is a k-dimensional g-cycle.

(2.3.10) Remark. We will discuss formal algebraic properties of such integrals and
will not discuss their convergence.

For aeZk set

Wa(φ) = φ-raM(a)(φ). (2.3.11)

Then by the Stokes theorem we have

j Va(φ)ΦΩ = 0. (2.3.12)
[0,ξoo]q
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We will restrict the class of admissible functions φ in (2.3.9) and will consider
only functions that belong to the vector space Ϋ~ defined below. Roughly speaking,
Ψ* is the space of functions that have no poles outside singularities of Φ.

More precisely, Ψ" consists of all rational functions of t and z having the form

ήtΐΊl ((bijΓ'ti/tjhj Π (q
i=ί i<j i<j

( 2 3 1 3 )

where P is a polynomial of t and z, {αi5 rij9 r^ , Sfm, s'^m} are arbitrary natural
numbers.

Now let z° = (zi,. . . , z°) be a set of pair-wise different non-zero numbers.
Define the space of rational functions of t by the formula

r{z°) = {ψ\z=zo, where φer} .

The space V(z°) contains 1 and is invariant with respect to the operators {Va \z=zo},
see [A, AK].

(2.3.14) The kth cohomology group associated with Φ for z = z° is

I aeZk

(2.3.15) The fcth homology group associated with Φ for z = z° is the group Hk(Φ, z°)
d u a l t o # k ( Φ , z ° ) .

It turns out that the group Hk(Φ, z°) is finite dimensional, and, moreover, the
dimension of the group is equal to the number of suitable forests. Namely:

(2.3.16) Let λ = (λ1, λ2,. . .) be the sequence in A such that λj=l for j^k and
^• = 0 for j>k. Let b = (bij) be a weight form such that the numbers {ftfJ } for
i<j^k coincide with the numbers {fr0} in (2.3.3). Let
c 1 =(c{, c\,. . . ) , . . . , cn = {cn

u c?2, . . ) be highest weights such that the numbers
{c4} for / G { 1 , . . . , n) and me{l,. . . , k) coincide with the numbers {c^} in (2.3.3).

(2.3.17) Theorem [A, AK]. Under generality conditions on z°, on the numbers {αm},
and on the essential numbers {fc/7 , c^} in (2.3.3), the dimension of the group Hk(Φ, z°)
is equal to the number ofn-forests of weight λ admissible with respect to the weight
form b and the highest weights c 1 , . . . ,c".

For the proof, see [A, AK]. In [A, AK2] the theorem is proved only in the case
where all numbers {bfj , c4} in (2.3.3) are essential. However, a similar proof is valid
in the present situation.

(2.4) q-Analog of Hyper geometric Forms. Let $F be the set of all n-forests of weight
λ admissible with respect to the weight form b and highest weights c 1 , . . . , cn,
where λ, b, c1,. . . , cn are defined in (2.3). Fix a set of pair-wise different non-zero
numbers z = (zu . . . , zn).

A forest F = (Tl9. . . , Tn) has k edges. There are 2k different orientations of the
edges. Assume that the edges of the forest are oriented.

Define the edge function fe of an oriented edge e of F, see [A].
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(2.4.1) Let TV be a tree of F, e its oriented edge. Let e connect vertices (ί) and (/)
such that i</ and i,je{l,. . . ,k}Af e is oriented from (i) to (j\ then set

If e is oriented from (j) to (/), then set

fe = z,/{qtj-bijti) ,

cf. (1.5.1).

Let e connect vertices (0) and (m). If e is oriented from (0) to (m), then set

If e is oriented from (m) to (0), then set

fe = z,/(qz,-c'mtm) .

(2.4.2) For an oriented forest F, define its oriented forest function by

where/e is the function of an oriented edge, and the product is taken over all edges
of F, see [A].

There are two distinguished orientations for a forest.
The orientation is called natural if each edge is oriented from the vertex with the

smaller number to the vertex with the greater number.
For a naturally oriented forest F, its oriented forest function defined in (2.4.2)

coincides with the forest function of an unoriented forest F defined in (1.5.3).
The orientation is called terminal if each edge of each tree of the forest is

oriented in the direction opposite to the direction to the root of the tree.
Let us consider three finite dimensional spaces of functions: the space B of

all C-linear combinations of all oriented functions of forests in 3F9 the space
Bo of all C-linear combinations of all terminally oriented forest functions of forests
in 3F9 and the space B1 of all C-linear combinations of all naturally oriented forests
i n # \

B1 coincides with Wλ(b, c 1

v . . , c " , z l 5 . . . , z n ) defined in (1.5.4). We have

If N is the number of forests in J% then

dimβ = 2kN, dimB0 = dimB1 = N

for b, c1,. . . , cn, zl9. . . , zn in general position.
Obviously, B c i^(z\ where 1^(z) is defined in (2.3.13). This inclusion induces

homomorphisms

i1:B1-^Hk(Φ9z). (2.4.3)

(2.4.4) Theorem [A]. Under generality conditions on z, on the numbers {αm}, and on
the essential numbers {bij9 c^} in (2.3.3), the homomorphism i0 is an isomorphism.
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In [A] the theorem is proved only in the case where all numbers are essential
and n = 1. However, a similar proof is valid in the present situation.

(2.4.5) Theorem. Under generality conditions on z, on the numbers {αm}, and on the
essential numbers {ft̂ , c^} in (2.3.3), the homomorphίsm zΊ is an isomorphism.

It suffices to prove that i1 is a monomorphism under generality conditions. It
may be done similarly to Lemma 5.5 in [A] proving that a suitable determinant has
a nontrivial asymptotics. The proof will be published elsewhere.

(2.5) q-Dijference Equations for q-Hyper geometric Functions. For a function
h(zί9. . . ,zn), set

Zj. h(zu. . . ,zn)\->h(zx,. . . 9qzj9. . . , zM) , (2.5.1)

where j= 1,. . . , n. We will describe the action of the operators Zl9. . . , Zn on q-
hypergeometric functions /(z, φ, ξ) for φeBx. We will define some linear operators

Aj(zl9...,zn):B1-+B1

for j = 1,. . . , n so that

Zj:I(z9φ9ξ))->I(z9Aj(z)φ9ξ)

for all fc-dimensional ̂ -cycles [0, ξco\.

In (1.6) we have constructed tensor coordinates on B1. In particular, we have
identified Bγ with the space

of all ^-forests of weight λ admissible to b, c1,. . . , cn, where A, b, c 1 , . . . , cn

are defined in (2.3.3). We'll define the operators Aj(z) as linear operators on
Vλ, the operators will be defined in terms of transition functions for those tensor
coordinates.

First, define n diagonal operators D 1 ? . . . , Dn on Vλ. Set

1) (2.5.2)

for i = 1,. . . , n. We have

Vλ= 0 {V^®-"®^)^. (2.5.3)
λi+ '•' +λn = λ

(2.5.4) F o r any re{l,...,«} define the linear operator

Dr: Vλ-^Vλ

by the stipulation that for any λί,...,λn the operator Dr restricted to
( ^ I K ® ' ' ®(Yn)λn is the operator of multiplication by the number d(λ, λr)
defined below.

Let J(λ) and J(λr) c= N+ be the subsets corresponding to λ and λr, see (1.2.4).
Set
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Here the first product is over ue J(λr). The second product is over all i <j such that
ie J(λr) a.ndjeJ(λ) — J(λr). The third product is over all ϊ < / such that/6 J(λr) and
i'eJ(λ) — J(λr). The fourth product is over all meJ(λr) and /e{l, . . . , n}, / φ r . The
fifth product is over all mfeJ(λ) — J(λr).

(2.5.6) Example. For J(λ1) = {l} and J(λ) = {l,2}, we have

For ije{l9. . . , n}, ίΦy, let

Λ(i,7, z 1 ? z 2): (Ki ® ^ - ( F , ® F ^ (2.5.7)

be the transition function introduced in (1.6.12).

Let

P:(Vj®Vi)A-+(Vi®VJ)A (2.5.8)

be the transposition of factors. Set

R(i9j9zl9z2) = PR(i9j9zl9z2): (Vt® Vj)A^(Vt ® Vj)A . (2.5.9)

For any z,je{l,. . . , w}, /<;, defined the linear operator

Rtj(zi9Zj):Vλ^Vλ9 (2.5.10)

acting as R(iJ,zi9Zj) on Vi®Vj and as the identity on other factors of FA.
Rij homogeneously depends on zu zj9 see (1.6.10).

For any;G{l,. . . , n}9 set

Aj(zl9. . . , zn) = R;J+1 (zj9 zj+1). . . Rjtn(zj9 zn)DjRUj{zu qzj). . . JRJ _1, J (z j_ 1, qzj)

(2.5.11)

Let
L(z)=L ld(zu.. . ,zΛ): V^B^W&c1,. . . , c " , z l 9 . . . , zn) (2.5.12)

be the isomorphism constructed in (1.6.6). Here ideSn is the identity permuta-
tion. This isomorphism sends an admissible forest F to the twisted forest function

(2.5.13) Theorem. For any xeVλ and any je{l,. . . , n}, we have

Zj . I(z, L(z)x, ξ)»I(z, L (z) Aj(z)x, ξ)

for all k-dίmensional q-cycles [0, ξoo]. More precisely, we have

ZjL(z)x-L(z)Aj(z)xeΣ Vα|
k

see (2.3.14).

This theorem is a ^-analog of (2.1.6).
The theorem is proved in (2.6).
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(2.5.14) Example, cf. [Ml-2]. Let n = 2, fc=l. Set

(pi(ti,zl9z2)= -zί/(t1-c1/zί) ,

, ctί-zί -z2

tί-c1z1 tί-c2z2

cf. (1.7.2). Set

Ij(zl9z2) = I(zl9z29 φj9 ξ)= j φjΦdqt1/t1
[0,ξoo],

for a 1-dimensional #-cycle [0, ξoo] r Then

)( Λ u 2 n
\C1C2Z2-Zί C1C2Z2-Zί

)
I 2 ( q z u z 2 ) J I Λ z u Z 2 ) ^

\C1C2Z2-Z1 C1C2Z2-Z1

This transformation is inverse to the transformation PLσv given in (1.7.2), up to the
factors q*lc2 and (ci)" 1 .

Theorem (2.5.13) may be reformulated as follows.
Let Vf be the space dual to KA. A basis in Vλ is formed by vectors

{[Ti] ® ' ' ' ® C^n]}? where F = (Tl9. . . , Tn) runs through the set & of all admiss-
ible forests of weight λ. Let {δF}, Fe^, be the dual basis in Vf. Let Af(z): Vf-^Vf
be the linear operator dual to Aj(z). We have

Af(z)(zl9...,zH)

= Rl1J(zj-uqzj).. . Rtj(zl9qzj)DfR];i*(zj9zH). . . RjJ^Zj, zj+ί) (2.5.15)

for j= 1,. . . , n. Define the system of ^-difference equations a F*-valued function
ψ(zl9. . . , zn) by the formulas

Afφ(z) (2.5.16)

for 7 = 1,. . . , n.

(2.5.17) Corollary of Theorem (2.5.13). For any k-dίmensional q-cycle [0, £00]^ the
V*-valued function

ψ(z,ξ)=

is a solution to the system (2.5.16).

Denote by N the number # J ^ d i m Vλ.
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(2.5.18) Corollary of (2.3.17) and (2.4.5). Under generality conditions on z, on the
numbers {αm}, and on the essential numbers {fcί7 , c^} in (2.3.3), there exist such
q-cycles [0, ξ1 oo]β,. . . , [0, ξNco~]q that the vectors ψ(z, ξx),. . . , ψ(z9 ξN) form
a basis in V*.

(2.5.19) Remarks.

1. I. Frenkel and N. Reshetikhin in [FR] derived a g-difference system of equa-
tions for the matrix coefficients of the product of intertwining operators for
a quantum affine group. Their system is a g-deformation of the KZ equation. The
Frenkel-Reshetikhin system of equations has the form (2.5.15-16), where the
function ψ takes values in the tensor product of finite dimensional representations
of the quantum group and {Rij} are the K-matrices acting in the corresponding
factors, see [FR] and Sect. 3.

An interesting open problem is to compare the two systems of q-difference
equations. According to A. Matsuo [ M l ] , system (2.5.16) for k= 1 coincides with
the Frenkel-Reshetikhin system for Uq(sd2) restricted to the first non-trivial weight
subspace, see also Sect. 3.

Integral solutions for the Frenkel-Reshetikhin system in the Uq(s?j) case
observe in [Ml-2] and Sect. 3, see also [R]. Integral solutions for the Uq(g/^-case
were found resently in [TV].

2. In [A, AK, AKM] asymptotics of g-hypergeometric functions are considered.
Matrices connecting g-hypergeometric functions with different asymptotics are
constructed. The connection matrices are linear operators in spaces of forests
satisfying the Yang-Baxter equation. Their entries are g-periodic (elliptic) func-
tions. This solution for the Yang-Baxter equation is different from the solution
described in Sect. 1, our ^-matrices are rational functions of parameters. The
situation here is similar to the situation with the Kniznik-Zamolodchikov equa-
tion: the equation is given in terms of Casimir operators of a Lie algebra, and its
monodromy is described in terms of the universal .R-matrix of the corresponding
quantum group.

(2.6) Proof of Theorem (2.5.13). First, we prove the theorem for the operator Zx.
Let id, σeSn be the identity permutation and the permutation

(σ(l),. . . , σ(ή)) = (2, 3,. . . , n, 1), resp.
Let F = (TU . . . , Tn)e^ be an admissible forest of multi-weight (λu . . . , λn).

Let/ F ) i d and/F > σ be its twisted forest functions defined in (1.6.5).
Let UF be the transformation sending a function h of {ίf}, ie{l,. . . , k}, to the

new function UFh obtained from h by the substitution U-^qU if ieJ(Λi) and ί^ί f if

(2.6.1) Lemma.

where d(λ, λx) is defined by (2.5.5).

The lemma is a direct corollary of (2.3.6), (2.3.7) and definitions of twisted forest
functions.

(2.6.2) Corollary.

aeΈk
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The map
M: JBx-BxJj^ i-dμ, λx)fFtσ , (2.6.3)

may be described as follows.

(2.6.4) Lemma. Let

Q: (Vx ® V2 ® ® Vn)λ^(V2 ® ® KB ® KO*

foe ί/ie permutation of factors. Then

M=Lσ(zu. . . , zn)QΌxL\d

γ (zl9 ...9zH)

where Lid,Lσ are the coordinate maps constructed in (1.6.7), D1 is the operator
defined in (2.5.4).

The lemma is a direct corollary of the definitions of the maps LσyLid.

(2.6.5) Lemma. For the map

L^{zu. . . 9zn)MLid(zl9. . . 9zn)\ Vλ->Vλ ,

we have the following formula:

1 = Rϊ2

1(zuz2).. . R^KzuzJD^A^Zu.. . , zn) .

The lemma is a direct corollary of the definitions of operators {Rίj}, the locality
property (1.6.13), and the unitarity properties (1.1.6) and (1.3.3) of the tensor
coordinate constructed in (1.6).

The proof of the theorem for Z ; , j>ί, is analogous to the proof for
Zλ. Let μ,veSn be the permutations given by the formulas: (μ(l),. . . ,μ(ή)) =
0; 1,2,. ..J-lJ+l,. . . , n) and (v(l),. . . , v(n)) = (l, 2,. . . J - l , j + l , . . . ,n,j).
Let F = (TU . . . , Tn)eϊF be an admissible forest of multi-weight λ 1 ? . . . , λn. Let
Up be the transformation sending a function ft of {ίj, Je{l,. . . , k], to the new
function U'fh obtained from h by the substitution U-^qti if ieJ(λj) and £;—•£; if

(2.6.6) Lemma.

Theorem (2.5.13) for Z7 easily follows from Lemma (2.6.7) as Theorem (2.5.13)
for Zγ follows from Lemma (2.6.1).

3. Integral Solutions to the Frankel-Reshetikhin Equations for Uqs?2

In this section we prove the Matsuo conjecture which gives solutions to the
Frenkel-Reshetikhin g-difference equations for the Uq(s22) case. We follow [M2].

(3.7) The Frenkel-Reshetikhin Equations for Uq(s?2) [M-2, FR]. The quantum
group Uq = Uq(si?2) is the algebra generated by

X^X^K*1,^1 (3.1.1)
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subject to the relations

foriφ;,

for ί Φj. Here g is a generic complex parameter.
The comultiplication Zl: Uq->Uq ® C/q is defined by

(3.1-3)

Set A' = σή where σ(a ® b) = 6 ® α in Uq®Uq.
The subalgebra ί/4 = t/j5/2) is generated
For each xe(C, there is an algebra homomorphism φx: Uq-+Uq defined by

K. (3.1.4)

Let {(Kί5 π t )} be Verma modules of Uq with highest weights {λt}. Then
{(Vi{x), %i) = (Vh πi°φx)} are representations of Uq.

There is the trigonometric R-matrix

RvtVj{x): Vt(x) ® Vj(l)->Vi(x) ® F/l) (3.1.5)

such that

zl'(fl)ΛF|Fj(x) = l ί K | ^ ( x ) J ( 4 α e t / , , (3.1.6)

normalized by the condition

vt ®Vj, (3.1.7)

where ι;f denotes the highest weight vector in Vt for any i.
If RF;κ.(x) = Σ l ί Λi ί 0 M®Λj έ l ) (x), then, following Matsuo, we let it act on

F i ® :®Vn by 1® ®Rf\x)®- ® Λ f (x)® ® 1, where R&(x)
stands in the ϊ th factor and Rψ(x) stands in t h e / h factor. Note that i might be
greater than j .

For a weight λ, define the operator qπi(λ) by the formula:

(3.1.8)

where α is the simple root.
Let qπχλ) act on the ίth component of Vγ® ® Vn.
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Let p be a complex parameter. Suppose that

p'β = q. (3.1.9)

Let Zj denote the p-shift operator:

Zj. ψ ( z l 9 . . . , * „ ) - > y ( z l 9 . . . , p z j 9 . . . 9 z n ) . (3.1.10)

The Frenkel-Reshetikhin equations for a FΊ (8) * * * ® Fn-valued function
^ ( z i , . . . , zn) is the system of equations

j \ z j

(3.1.11)

where j = 1,. . . , n. Here a weight λ is a parameter of the equations, see
[FR,Ml-2].

(3.2) Action of Symmetric Group. The symmetric group Sk is generated by the
standard generators σl9. . . ,σk~l9 where σt permutes i and ΐ + 1.

Set

F o r / ( ί l 9 . . . , ί π ), define

. , ί k ) = / ( ί i 9 . . . , ί i + i , ί i 9 . . . , ίfc)/>ϋ+i (3.2.2)

This formula induces an action of Sk on the space of functions of ί l 5. . . , tk.
For a permutation σ = (σ(l),. . . , σ(n)\

(σf)(tu . . . , ί f c )=/(ί σ ( 1 ) , . . . , ί,(*)) Π βσα)σ(i) , (3.2.3)

where the product is taken over all pairs (i,j) such that 1 ̂ i<j^k and σ(ϊ)>σ(j).

(3.3) The Matsuo Conjecture. Set

Mi = (λi,oc) and M = (λ + oc, α) . (3.3.1)

Fix /CGN+ and set

ΦP(z,t)= Π

X Π (ΐί^^lt'v)9 Π ZΓM"" Π "̂
Set

(3.3.4) Let / = (Λ, . , 4 ) 6 N " be a multi-index such that i± +
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Set

Λ/= Σ ti'j' (3-3.5)
l^i<j^n

Let a{ = / i + + fi for i = 1,. . . , n and a0 = 0.
Set

φ,(z, t)= Σ (°ΨMZ, t) • (3.3.6)
σeSk

Fix a fc-dimensional p-cycle [0, ξoo]p. For any multi-index { with property
(3.3.4), set

FΛz)= J Φp(z, ί)φ,(z, ί) ̂  Λ Λ ^ . (3.3.7)
[0,ξoo]p

 l l h

We assume that these Jackson integrals are well-defined for all ί.
Define the Vx ® ® F^-valued function F(z) by the formula:

F(z)= Σ FAz)υ^®--®υίf»\

where vt is the highest weight vector of Vu

7 ? ( m ) ( X Γ

(3.3.10) Conjecture [M2]. The function F(z) is a solution of the FR-equations
(3.1.11).

(3.3.11) Theorem [Ml-2]. The conjecture is true ifk=lorn = 2.

(3.3.12) Theorem. The conjecture is true for arbitrary n and k.

Theorem (3.3.12) is proved in (3.5)

(3.4) The Matsuo Results for n = 2 [M2]. Let n = 2. Let { = (βγ, ί1)e^1 be a multi-
index such that ^Ί +ί2

 = k. Then the function φ((z, t) is given by (3.3.6):

( ) ( Π ΛίJB1λ, (3.4.1)

( Π βiαU))( Π ^i.ϋ)«2.u)) Π ^U)-(0
σeSk \j=l / \j = Sί + l / l k

( ί ( k ) )



Quantized Knizhnik-Zamolodchikov Equations 525

Introduce the function φ^(z, t) by the formula

Λ (3.4.2)

Σ (Π*2 0>Y Π 4,,B1O)) Π ^

Let

be the trigonometric i?-matrix, see (3.1.5). The R-matrix preserves the weight
decomposition. Introduce its matrix coefficients {R^^ (x)} o n the level k by the
formula: for any (/x, i2)

 s u c h that ^Ί + 1 2 = k, set

Rv^Wi1* ® € 2 ) = Σ ^m^W^i 1 " 0 ® y2m2) ( 3 A 3 )
Wi +mz = k

(3.4.4) Theorem [M2, Lemma 5.2.2]. For any {ί1,ί2),

Φ^M 0= Σ ^ T 2 (Zi/Z2) < . - 2 ( z ' 0
m1+m2 = k

In other words, {φ^} and {^m} are connected by the matrix transposed to the
K-matrix.

Let σ = (σ(l),. . . ,σ(k))eSk. Let 21\σφe){z^ t)Φp(z, ί)] be the function ob-
tained from the function (σφ^)(z, t)Φp(z, t) by the transformation

By the Stokes theorem we have

J
[0,ίoo],

= J Zi [(σφ,)(z, OΦ.fe ί)] ^ Λ Λ ψ (3.4.5)
[0,ξoo]p

 Γ l Γλ

for any [0,

(3.4.6) Lemma. For

Zi [(σΦ,)(z, ί)Φp(2, ί)] = qM^M (σv^)(z, ί)Φp(z9 ί) ,

ve-Sfc is defined by the formula

v = (v(l),. . . , v(Λ)) = (ιf1 + 1 , Λ + 2,. . . , *, 1, 2,. . . , Λ ) ,

is the product of two permutations.

This lemma is a straightforward generalization of the formula in [M2] which is
the next after (5.2.6).
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Theorem (3.4.4) and Lemma (3.4.6) prove Conjecture (3.3.10) for n = 2, see
[M2].

(3.5) Generalized Tensor Coordinates, We consider the situation described in (3.3)
for arbitrary n and k. In this case our functions depend on zu . . . , zπ, t u . . . , tk.
Two symmetric groups Sn and Sk will appear in our considerations.

Let / = (/ 1 ? . . . ,Sn)eW be a multi-index such that Λ + + 4 = fc. Let
ai = /Ί+ +ti for ί = l , . . . , n and αo = 0 Let ω = (ω(l),. . . , ω(n)) be an ele-
ment of Sn. Introduce the function φωJ by the formula

(PωΛZ> *) = <?'' Π Π Λω(l)j' ' ' ^ω(ί-l)jBω(ί)j ,
i=l \ αι_1 + lg./gαI /

φω#/(z,ί)= Σ

(5.5.2) Example. Let n = 2. Let σ and v be the trivial and nontrivial elements of the
symmetric group S 2. Then for any S = (iuί2\ we have φσj = φ^ and φvj = \jj^
where φ£ and ^ are defined by (3.4.1) and (3.4.2).

Fix zu. . . , zn. For a fixed ωeSn, introduce the space

Wk,ω(zu...,zn) (3.5.3)

as the linear space consisting of all linear combinations ]Γ^ aίφωJ(z, t) where / runs
through the set of all multi-indices / e N " such that ^ + +^M = /c and {α }̂ are
complex coefficients.

For ω = (ω(l),. . . , ω(ή))eSn, consider the tensor product

Vω=Vω{1)® -®Vωin). (3.5.4)

Vω has the weight decomposition

Vω=® Vω,k, (3.5.5)

where VωΛ consists of all elements x such that Kx = qMl+"'+Mn~2kx. VωΛ has
a basis consisting of the monomials

Consider the dual space V*,k with the dual basis {ϋ00*}. Define a linear map

Lω:V*,k-+Whtω{zl9...9zn) (3.5.6)

by the formula

Lω:υ^^φωJ. (3.5.7)

For any i, j , let

^ f(x) (3.5.8)

be the linear map defined by PRvv(x% where RVVj(x) is introduced in (3.1.5) and
P is the transposition of factors. Let

. (3.5.9)
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be the dual map.

if Λ^ r F r (χ)=Σ^i d ) M ® Rf(χlthen l e t i t a c t

where R^\x) stands in the Kf*
th factor and Rf\x) stands ion the Vfih factor.

(3.5.10) Theorem.

1. The space Wk^ω(zu . . . , zn) is independent on ω, ί/zαί is,/or any ω, veS« we

Wktω(zl9. . . ,zn)=WktV{zl9. . . ,zπ) .

2. For αwj ω = (ω(l),. . . , ω(n))e5π αnrf i = 1,. . . , w — 1, the following diagram
is commutative

,ω(π)

For n = 2 Theorem (3.5.10) coincides with Theorem (3.4.4). For n>2 Theorem
(3.5.10) easily follows from Theorem (3.4.4).

(3.5.11) Remark. I do not know whether {Lω} are isomorphisms for generic
q, z 1 ; . . . , zn. If {Lω} are isomorphisms, then{Lω} form a system of local tensor
coordinates on Wk(zί,. . . , zn) in the sense of (1.3). In any case, we call {Lω} the
generalized tensor coordinates on Wk(z1}. . . , zn).

Let σ = (σ(l),. . . , σ(fc))eSfc, ω = (ω(l),. . . , ω(n))€SΛ. Let t = (£u . . . ,
be a multi-index such that £x + +/ f c = n. Consider the function

z, t)

= Q Π

(3.5.12)
see (3.5.1).

Let Z ω ( 1 ) [(σφ ω y)(z, t)Φp(z, ί)] be the function obtained from the function
(σφωJ){z, t)Φp(z, t) by the transformation

By the Stokes theorem we have

J
,ξo

= f
[0,ξoo]p

for any [0, ξco~]p.

Λ Λ (3.5.13)
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(3.5.14) Lemma.

ωt,)(z9 t)Φp{z, t)-] = qM<*»-'>M(σvtφwJ(z, ί), Φp(z, t) ,

where v<?eSk is defined by the formula

v, = (v(l),. . . , v(k)) = (/1 + 1 , Λ + 2,. . . , k, 1, 2,. . . , Λ ) ,

cυeSM is defined by the formula

This formula is proved by an easy direct calculation.

(3.5.15) Theorem (3.3.12) is a direct corollary of Theorem (3.5.10) and Lemma
(2.5.14), cf. the deduction of Theorem (3.3.11) for n = 2 from Theorem (3.4.4) and
Lemma (3.4.6) in [M2].
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