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Abstract: We prove that the Hamiltonian H of the three dimensional hydrogen
atom in a uniform static magnetic field B does not have an integral which (i) is real
analytic on the phase space Jί of the system; (ii) is in involution with the
component M 3 of the angular momentum along B; (iii) is functionally independent
of H and M 3 and (iv) has a meromorphic (single-valued) extension to the com-
plexification of Jί in C 6 . This follows from the fact that the Hamiltonian KM of two
degrees of freedom obtained by fixing M 3 at certain nonzero values M and
reducing H w.r. to the rotational symmetry about the magnetic field, has a com-
plexification which is nonintegrable in the Ziglin sense. We prove this nonintegra-
bility by demonstrating that for each such M the monodromy group of the normal
variational equation along a certain complexified phase curve of KM is not Ziglin,
using Churchill and Rod's adaptation of Kovacic's algorithm to the Ziglin analysis.
Analogous arguments prove that the Hamiltonian of the St0rmer problem is
nonintegrable in the same sense.

I. Introduction

There is intense interest in the classical and quantum mechanical behavior of the
hydrogen atom in a static magnetic field (the "magnetized hydrogen atom" for
short), and the physics literature on this subject is enormous (see e.g., [1-5] and the
bibliographical information contained therein). The topic is important both from
a fundamental physical viewpoint and because of its atomic physics and astrophys-
ics applications. From a fundamental point of view, a large part of interest in the
classical magnetized hydrogen atom arises because of the belief among many
physicists (supported by numerous numerical and formal analytical arguments)
that chaos in classical systems entails chaos, in some sense, in the corresponding
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quantized systems, as discussed by, e.g., Percival [6, 7] and Berry [8-10], and in
[11] and [12] (see [11] and [12] for bibliography).

There is strong numerical evidence for the occurrence of chaos in the classical
magnetized hydrogen atom and its quantum counterpart in strong fields [1-5,13].
This is prima facie evidence of the nonintegrability of this classical system. On the
other hand numerical studies [1-3] suggest the existence of an "approximate" third
integral of this system, i.e., independent of the energy and angular momentum
integrals. However, no rigorous mathematical study settling the question of integ-
rability of this classical system has been published heretofore.

As a first step toward understanding rigorously the underlying mechanism for
chaotic behavior of the three-dimensional magnetized hydrogen atom, we will
prove that the classical Hamiltonian H of this system is nonintegrable, in the sense
that there does not exist a real analytic integral F of H in involution with the
angular momentum component M 3 in the magnetic field direction, which is
functionally independent of H and M 3 and which has a global meromorphic
(one-valued) extension to the complexified phase space to which H can be analyti-
cally continued as a single valued function. We will prove this by showing that for
some real nonzero value M of M 3 , the Hamiltonian KM of two degrees of freedom,
obtained by reduction of the Hamiltonian H of this system with respect to the
rotational symmetry about the direction of the magnetic field has a complexifica-
tion which is nonintegrable in the Ziglin sense defined below.

Using the methods of this paper, we have also proved an analogous rigorous
nonintegrability result for the Hamiltonian system describing the motion of an
electron in a magnetic dipole field (the St0rmer problem). This result will be
reported in more detail in a future publication. Numerical studies [14-16] have
suggested, but not proved, the nonexistence of global analytic third integrals for
this system.

Returning to the problem of the classical magnetized hydrogen atom, its
Hamiltonian is defined by

H{X, Y)=\--γ+yM, + l-y2{Xl + X}), (1.1)

on the phase space

^ : = { ( X , Y ) e I R 3 x I R 3 : ( X 1

2 + X 2

2)>0} , (1.2)

where X = (X l 5 X2, X3),Y = (YU Y2, Y^) This is the Hamiltonian of the quadratic
Zeeman effect in atomic units with M3 = XίY2 — X2Yι the component of the
angular momentum along the magnetic field, assumed to be parallel to the X3 -axis,
r = ̂ Jxl + X2 + X% = || X || the distance of the electron from the nucleus, and

γ : = — ^ - ^ . Here B is the magnitude of the magnetic field, and μ0, a0, e are Bohr

magneton, the Bohr radius, and the nuclear charge, respectively. In what follows, B,
and hence γ will be assumed to be nonzero.

We give Jt the structure of a real symplectic six-dimensional manifold by
equipping it with the non-degenerate two-form dΘ0, where Θo is the one-form

Θ0:=Y-dX. (1.3)

Since H is invariant under rotations about the X3-axis, M 3 is in involution with
H on M, and the Hamiltonian H can be reduced immediately to one with two
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degrees of freedom. This is best done by introducing the canonical extension of
cylindrical coordinates, in the phase space M,

Γ Ά/rΊ
φ , (1.4)

where, M = M3. The canonical one-form in these coordinates becomes

Θo :=Re(7dX)+ Y3dX3 = πdp + Mdφ+Y3dX3 . (1.5)

We denote by KM the Hamiltonian (1.1) in the new variables with the trivial
paramagnetic term yM subtracted (which simply amounts to rescaling the energy).
Thus KM: £/->IR is given by

l ( ^ A * ^ (1.6)KM(p, π, X3, Y3) = - (π 2 + ^ + YA-

£/:=(0,oo)xIR3 (1.7)

of variation of the new variables (p, π, X3, Y3) is viewed as symplectic four-
manifold equipped with the two-form dΘ, where

Θ:=πdp+ Y3dX3 . (1.8)

An extensive mathematical literature is devoted to the question of integrability
of Hamiltonians of two degrees of freedom and, as we shall see, contains results
directly relevant to the nonintegrability of our Hamiltonian (1.1). The pioneering
work on the nonintegrability of analytic Hamiltonians was carried out by Ziglin
[17]. An analytic Hamiltonian K defined on a complex four-dimensional symplec-
tic manifold X will be said to be integrable in the sense of Ziglin if there exists
a function F which is (i) meromorphic on X; (ii) in involution with K; (iii)
functionally independent of K in an X-neighborhood of a complexified nonequilib-
rium phase curve of the vector field associated with K, this curve having been
maximally extended in complex time. Henceforth integrability of a Hamiltonian of
two degrees of freedom will always be understood in this sense, in contrast with
that of our original Hamiltonian H (with three degrees of freedom) which will
always have the meaning mentioned previously.

The crucial idea of Ziglin's approach is to study the influence of integrability of
K on the monodromy group associated with the (reduced) normal variational
equation (NVE) along some complexified nonequilibrium solution Γ, the latter
being viewed as a Riemann surface. Analytic continuation of solutions of the NVE
along cycles on Γ based on some point zeΓ defines a representation of the
homotopy group of Γ as a subgroup of the general linear group GL(2, <C) which
acts on the fiber of the (reduced) normal bundle above z. The image of this
representation is the monodromy group G of the NVE. For a Hamiltonian K of
two degrees of freedom G is always a subgroup of 5L(2, C). If K is integrable
G leaves invariant a rational function of the coordinates along the fiber in question.
Subgroups of SL(2, (C) having this property have been called Ziglin by subsequent
authors, who have extended and refined Ziglin's work. In this connection we refer
to papers of Ito [18], Yoshida [19-21], and Rod, Churchill, and Baider [22-26].

For all real nonzero values of M our Hamiltonian KM has an analytic single
valued extension KM to a complex four-dimensional manifold U (defined in Sect. II)
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and the nonintegrability of H will be proved by showing that KM is not integrable
for M varying in a certain open interval. This will be done by using Churchill and
Rod's tailoring [22] of Kovacic's algorithm [27] to the Ziglin analysis. This
algorithm was originally devised to solve symbolically on a computer second order
linear homogeneous ODEs whose coefficients are rational functions. The algo-
rithm is implemented on the computer program MAPLE. It is a procedure that
allows the computer to search systematically for a Liouvillian solution, i.e., a solu-
tion built up using exponentials, integrals, and functions algebraic over the field
C(ί) of rational functions of the independent variable ί. It turns out that if the
differential equation has a nonzero Liouvillian solution, then it also has a solution
of type exp J 0, with θ algebraic over the field <C(ί). Depending on the precise nature
of θ the algorithm distinguishes three cases that also differ by the nature of the
so-called differential Galois group, associated with the differential equation. Con-
sider the field #", obtained by extending the field <C(ί) by solutions of the linear
differential equation and their derivatives of all orders. Of course, if the differential
equation has order n, extending the field <C(ί) by n linearly independent solutions
and their first n—1 derivatives already generates the field SF. The differential
Galois group is the group of all those automorphisms of $F that leave C(ί)
pointwise fixed (see e.g. [28, 29]). Since there is a close connection between the
monodromy group and the differential Galois group of a second order ODE of
Fuchsian type, i.e., having only regular singularities, (see [30]), Kovacic's algo-
rithm can be used to determine whether the monodromy group of such an equation
is not Ziglin. Combining it with Ziglin's analysis [17], it becomes a powerful tool
for deciding integrability questions in Hamiltonian systems of two degrees of
freedom. This idea has been recently presented and worked out in detail by
Churchill and Rod in [22].̂ We have applied the approach in [22] to the NVE
along the complexification fEM<^ U of a phase curve of XM, induced by a certain
periodic solution ΓEM of the associated planar problem obtained by setting
X3 = Y3 = 0. Notice that on ΓEtM energy E and angular momentum M3 are fixed at
the values E and M, respectively. The monodromy group of this NVE is then
embedded into that of an ODE of Fuchsian type, to which Kovacic's algorithm is
applied, with the result that the Galois group of its normal form is the whole group
SL(2,<£). This immediately implies that the monodromy group of this Fuchsian
equation is not Ziglin. Using this fact together with a symmetry argument, we show
that the monodromy group of the original NVE is not Ziglin, thus proving our
main theorem by virtue of the corollary to Lemma 2.1. This theorem asserts that
H is not integrable, and more precisely that there does not exist a function with
properties (i)-(iv) stated therein.

It should be stressed that this is the first physically interesting example in which
the method proposed by Churchill and Rod [22] is successfully applied. Unlike the
examples in the literature designed to illustrate this method, the present application
is highly non-trivial, since one is forced to run through the entire machinery of
Kovacic's algorithm and prove that none of the three cases in which a Liouvillian
solution exists can be realized.

The organization of this paper is as follows. In Sect. II, we state our main
theorem together with two key auxiliary results, namely, Lemma 2.1 and its
corollary alluded to above. The fact that the monodromy group of the Fuchsian
ODE into which we embed the above NVE is not Ziglin is shown in Sect. III. That
the monodromy group of the NVE itself is not Ziglin is proved in Sect. IV.
Appendix A contains the statements and proofs of Lemmas A1-A3, which are
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needed to prove Lemma 2.1. To make the paper as self-contained as possible,
we have summarized Churchill's and Rod's version of Kovacic's algorithm in
Appendix B.

II. Preliminary Considerations, Statement of Main Theorem, and Reduction of its
Proof to that of Proving that the Monodromy group of a Suitable NVE is not Ziglin

The present section consists of three subsections. Subsection A describes a family of
phase curves ΓEM of KM, complexified versions ΓEjM of which play an essential role
in this paper. Our main theorem is stated in Subsect. B. In Subsect. C, we state and
prove Lemma 2.1 and its corollary, which is essential in the proof of that theorem.

A. In order to construct the family of phase curves ΓEM we notice that the
submanifold X3 = 0, Y3 = 0 is invariant under the flow induced by the Hamiltonians
H, KM in their respective phase spaces Jί and U. Restricting KM to this submani-
fold and fixing its value to £elR, we obtain the ODE

where

1 Λ/f2 1 1

(2.2)
mxr' 2 p2 p 2' r

In the case when M =f= 0, VM{p) has an absolute min imum at the point pM, where ρM

is the unique positive solution of the equation

Λ / f 2 . 4 M 2 1 2

M =p + y p o—2" = - + y p . (2.3)

In this case, the stable equilibrium point (p = pM, π = 0, X3 = 0, Y3 = 0) with energy
£ m i n ( M ) : = m i n p > 0 VM(p) is " s u r r o u n d e d " by the family of p lanar periodic solu-
tions

ΓE,M = {(p(t),π(t),X3(t) = 0, Y3(t) = 0)czU, ίeIR} , (2.4)

which persist for all values of the energy E>E^in(M). Here, p(ί), π(t) = p(t) are
solutions of (2.1) whose E, M-dependence has been suppressed. For M = 0, VM(p)
has no equilibrium points on (0, oo). The integral curves Γ£ > 0 of KM for M = 0 and
energy E e R corresponds to motions in which the electron "falls" into the nucleus,
i.e.,

ΓEt0 = {(p(t), π(ί), X3(t) = 0, Y3(t) = 0)c=U,\t\STE} , (2.5)

where p(t), π(ί) (with their ^-dependence suppressed) satisfy (2.1) with M = 0. In
(2.5), TE is the (finite) time required by an electron of energy E and angular
momentum zero starting from rest to "fall* into the nucleus.

In what follows we fix £ at a value bigger than E^ m(M) and keep M different
from zero. We write Eq. (2.1) in the form

0 , (2.6)
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where G(p) is the following fourth degree polynomial in ρ\

2 2 * 2 . (2.7)

Generically, the polynomial G(p) has four distinct roots in the complex plane,
exactly two of which are real positive. More precisely, this condition is satisfied iff

(2.8)

where

Λ* = (£m

+in(M), cx))\{£min(M)} (2.9)

with E~in(M) : = m i n p < 0 VM(p)>E+in(M). If we write

) = y2(p~a1)(p-a2)(p-a3)(p-a4), (2.10)

where au a2 (a1>a2>0) are the two positive real roots then α 3 , α 4 are conjugate
complex for E^in(M)<E<E^in(M) and real negative for E>E^in(M). In any case,
for these values of E all four roots are mutually distinct.

From the point of view of algebraic geometry (2.6) can be viewed as an algebraic
curve ΓEM in <C2, which upon setting p = πp takes on the elliptic form:

P2 + G(p) = θ. (2.11)

Indeed, by inverting the function s(p):=^ , defined on the Riemann
α 2JG(ξ)J

surface ΊΓ1 corresponding to +J—G(p) which, as is well known, is topologically
a two-torus, we obtain an elliptic function p: C/J^-^ΊΓ1. Together with its derivat-
ive, it yields a parametrization of fEtM:

p = p(s), p = p ' ( s ) , i . e . , Φ ) |

Here, ££ is the period lattice (with one period real). Notice that p(s) is an even
function in s and accordingly p'(s) is odd, so that the curve becomes manifestly
invariant under time inversion: s-^—s. However, s is not the physical time ί, but the
so-called Levi-Civita time (or the eccentric anomaly of the ellipses which our
periodic solutions asymptotically for small values of the magnetic field represent).
It is related to physical time by means of the formula:

j s = p(s)=>t(s) = ip{σ)dσ. (2.13)

Thus, t(s) is an odd function of s, so that s—• — s implies ί-> — ί.

B. The principal result of this paper is as follows.

Main Theorem. The Hamίltonίan H in (1.1) is not integrable, in the sense that there
does not exist a function F: </#—>IR with the following properties:

(i) F is real analytic.
(ii) F is in involution with H, M3 on M.

(iii) dF, dH, dM3 are linearly independent at some point p0 :=(Xo5

(iv) F has a meromorphic extension F to Jt.
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Here, Jί is the complexification of Jί, i.e.,

^ :={(X,Y)eC 6 :X 1

2 + X2

2 + X 3

2Φ0,X 1

2 + X2

2φ0} . (2.14)

Remarks.

(1) Plainly, this theorem excludes the existence of polynomial integrals of H in
involution with M 3 and functionally independent of H, M 3 .
(2) It does not exclude the existence of real analytic integrals of H which have
multiple-valued extensions to some open subset of <C6.
(3) Since linear independence is an open relation we can (and will) assume that the
point p0 whose existence is postulated in (iii) of the main theorem belongs to
JiMo with Mo ΦO.

Here,

Jtu :={(X, Y)eJί:X1 Y2-X2 Y,=M} .

C. In order to state Lemma 2.1 and its corollary, whose significance for this paper
was mentioned informally in Sect. I it is necessary to define a maximal single-
valued analytic extension of KM, as well as to give other pertinent definitions. The
complication occurring in the definition of this extension is caused by the presence
of the square root ^/ρ2 + X3 in the definition of KM (see (1.6)), which does not
allow us to extend this Hamiltonian maximally in a single-valued way to open
subsets C 4 . Consider the complexification

U:={{p,π,X3, y3)G€4:/>Φ0,p2 + X 2 Φ0} (2.15)

of the domain [/c]R4 in (1.7). Let U be the double cover of 0 equipped with the
relative topology of C 5 and realized as the part of the zero set of the polynomial
ρ2 + X2 — w2 in C 5 which lies over U (coordinates (p, π, X3, F 3, w)). The corres-
ponding covering map pr: U-+U is defined by pr (p, π, X3, Y3,w) = (ρ9 π, X3, 73)
and U is equipped with the pullback via pr of a complexification of the two-form
dΘ in (1.8). For each MelR we define the extension KM of the Hamiltonian KM to
t/by

1 1
- + - y 2 p 2 . (2.16)

Hence KM is holomorphic and single valued on ϋ. In the remainder of this section
we assume MeR\{0}, EeJM. We also introduce the complexified phase curve of
KM as an embedding of the algebraic curve fEtM into ϋ:

ΓE,M := {(A π, 0, 0, p)cθ: (p, π)efE,M} . (2.17)

We now prove

Lemma 2.1. Assume that a function F exists having properties (i)-(iv) stated in the
main Theorem. ThenifM belongs to a certain open interval / the Hamiltonian KM is
integrable in the Ziglin sense. More precisely, for these values of M there exists
a function FM which is meromorphic in U, in involution with KM, and functionally
independent of KM.

Proof. It is based on Lemmas A1-A3 of Appendix A. By assumptions (i) and (ii)
of the main theorem, and Lemma Al (a), there exists a real analytic function
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FM: £/->IR independent of φ and defined by FM(p, π, X3, Y3) = F(X, Y)((X,
Moreover, by (i), (ii), (iv) of the main theorem, and Lemma A2, for all nonzero
values of M there exists a meromorphic function FM, defined by F M = p r * F M in
terms of the meromorphic extension FM of FM to U proved in Lemma A2. ^

By (i), (ii) of the main Theorem, Lemmas Al (b), and Lemma A3, FM on U is in
involution with KM. By assumption (iii) of the main theorem and Remark (3)
following it, dF, dH, dM3 are linearly independent at a point p0 :=(X0, Y 0 )e^M 0

with M0ΦO. Hence, by Lemma Al (c), we see that dFM and dKM are linearly
independent at the corresponding point in £/c= U provided M is restricted to the
interval / . It immediately follows from this observation that the pair of functions
FM> KM and therefore also the pair F M , KM for these values of M is functionally
independent and the proof of the present lemma is complete. •

Lemma 2.1 is of interest here because of the following

Corollary. In order for the main theorem to hold, if suffices that the monodromy
group of the NVE along fEtMfor some real nonzero M be not ofZiglin type, i.e., not
leave invariant a rational function of the fiber coordinates.

Proof Follows from Lemma 2.1 and a result ofZiglin (see Proposition on p. 183 in
the first Ref. [17]). •

III. Principal Argument of the Proof of the Main Theorem

In this section, we fix M + 0, EeJM. We will first derive the NVE along the solution
ΓE,M, then embed this NVE into a Fuchsian ODE, and finally show that the
monodromy group of the latter equation is not Ziglin.

Expanding J h e right side of (2.16) in the variables X3, Y3 about a point
(p, π, 0,0, p)e U under the assumption that |X31 < |p |, we obtain:

2 \ o3 *ό ' " ό l ' v ι ~5 ; w )̂

It follows from (3.1) that in terms of complexified physical time t the NVE along

1 / , 11 / 1 \
ΓE,M is governed by the time dependent Hamiltonian h=- I n2+—$ ξ2 I, where

(ξ, η) :=(X3, Γ3) are (canonically conjugate) fiber coordinates of the reduced nor-
mal bundle and p is viewed a function of complex time via ODE (2.1):

ξ+^ξ = O. (3.2)

Rather than studying the monodromy group of (3.2) directly, we embed it into
that of a Fuchsian equation. This strategy was first used by Yoshida in [21] in the
special case of the hypergeometric ODE and later generalized by Baider, Churchill,
and Rod [23]. In the present context this will be accomplished by a switch of the
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independent variable from t to p. Using primes to denote derivatives with respect
to p, Eq. (3.2) is transformed into

£ " φ ' + ^ = 0. (3.3)

Since p2 + p
— p 3 G ( / J ) ] = 0, we can write

ξ" + p(p)ξ' + q(p)ξ = O, (3.4)

with

In accordance with an earlier remark (see (2.10)) for the present values of
angular momentum and energy, the four roots of the polynomial

= y2(p-aί)(p-a2)(p-a3)(p~a4) , (3.6)

are non-zero and pairwise distinct, and two of them, say α 1 ? a2 are positive. The
pairwise distinctness of α l 5 α 2, α 3 , α 4 is a necessary and sufficient condition for the
ODE (3.4) to be Fuchsian. Using (3.5), (3.6), and the pairwise distinctness of the
numbers a0 :=0, au a2, a3, α 4, it follows that the partial fraction decomposition
(B2) in Appendix B assumes the form

P(P):=Σ—> V

u Γ 4 l r 1

where ι^k = 0 Lk=-j—.yCooq(z)dz = 0 is satisfied since lim = 0 (CΌo^circle of

infinite radius). Moreover,

AΌ=-ί9 A1 = A2 = A3 = AA=- (3.8a)

and

Bk = 0 (/c = 0,l,2,3,4) (3.8b)

by (B2) and (3.7), and by (B6) in view of (3.5),

4 1 P
A^ := £ Ak=l, B^ : = τ — Φ q(z)zdz = 0, since lim = 0 . (3.8c)

fc = 0 2 π ί C β p-+ooG{p)
Henceforth in this section, the subscript k (resp., σ) stands for any integer from 0 to
4 (resp., 1 to 4). By (B5), (B6), and (3.8) we have in the present case:

3 1

+ . + . +
α° 2' 2' a° 4 ' 4 ' α°°~2*
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We are now ready to apply Kovacic's algorithm as presented in Appendix B to
study the monodromy group GEM of the Fuchsian Equation (3.4). This algorithm
determines whether any of the mutually exclusive cases I, II, or III defined in
Appendix B is realized. If none of them is realized, then GEM is not Ziglin.

Case I. By (3.9), the only way the degree dτ of the monic polynomial P 7 in rule (3) of
Case I of the Appendix can be a nonnegative integer is to choose minus signs s(k) in
(B8). For this choice, df = 0 by (B8) and (3.9), i.e. Pj = 1. Defining ω(p) by (BIO), we
see by (3.7)—(3.9) that ω =^p{p) in the present situation. Thus, by (B9)? the only way
Case I can be realized in this situation is for ω'(ρ) + ω2(p)~r(p) = 0. Since
r(p)=-q(p)+ip(p)2+y(p) (see (B4)), we find that ω'(p) + ω2(p)-r(p) = q(pl
i.e., an expression which is obviously not identically zero because l i m ^ o P
q(p)= - l / M 2 < 0 (by (2.7) and (3.5)). Hence we have ruled out Case I.

Case II. By (3.9), the sets (Bll) are £o = {-2,2, 6}, Eσ={l, 2, 3}, £ ^ = {2} in the
present case. Since e^ = 2 the only way integers eo,eσ can be chosen from Eo and Eσ,
so that the right side of (B12) is a non-negative integer is to choose eo= - 2 and
eσ = 1. With this selection, the degree dπ of the monic polynomial Pπ in assertion
(3) of Case II is zero, i.e., Pπ=l. This choice is legitimate according to rule (2) of
case II since not all the chosen integers are even. Recalling (3.7) and (3.8a) it leads to
θ = p = 2ω for θ in (B14). Thus, according to (B13), Case II can be realized in the
present situation only if the identity

ί d\ 1
holds, i.e., only if 2p(ρ)+— )q(p) = 0. Since q(ρ)= ? + g(p), where

\ dp) pM2 is

analytic at p = 0, we easily find that the coefficient of the term proportional to — in

the expression \2p(p)+-r-)q{ρ) becomes —~. The fact that this is not zero rules

\ dp) M
out case II.
Case III. In what follows we fix n = 4, 6, 12. By (3.9), the sets (B15) are

F«,(n):={6}

in the case under discussion. Therefore we are forced to choose/«, (ή) = 6. Choosing
the smallest integers fo(n),fσ{ή) from F0(n) and Fσ(n\ namely fo(n)= - 6 , fσ(ri) = 3
yields the biggest integer for the degree dIΠ(ή) of the monic polynomial Pπi(n) in
rule (3) of case III. Since this is zero we find Pπχ(ή)=l.
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Specialized to the present case and with the/fc(«)'s chosen as above, definitions
(B17) (B19) yield:

θn=^p(p), S=±pG{p), (3.11)

where we also used (3.7) and the fact that α o = 0 and that the ασ's are poles of r(ρ).
By (3.5) and (3.11),

^ (3.12a)

( ) 2 + ' ( )

1 , l / Ί G ' ( p ) l V l G ( p ) G " ( p ) - G ' ( p ) 2 1

^ ^ ^ (3.12c)

where

^ ί y ^ l 2 . (3.13)

Using (3.12), (3.13) and the fact that now PIΠ(ή) = l, the polynomials Pt in (B18)
{i — n, n — 1, n — 2, . . . , 0, —1) are seen to be defined recursively as follows:

Pn=-ί, (3.14a)

>
r4

or

J P i + 1 . (3.1^ G'(p)2p2-i G"(p)G(p)p2J P i + 1 . (3.14b)

Write

^ ( 0 ) = - ^ " ' , P / ( 0 ) = - d i b a ' ' - i ( i = n , n - l , n - 2 , . . . , - 1 ) , (3.15)

with
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so that

k(0)=~ay2 (3.17)

and

cH=U cn+1=O,dn = dn + 1=O. (3.18a)

Setting p = 0 in (3.14b) and using (3.15)—(3.17), we obtain recursively:

/3 \ 3n-i\ci--(n-i)(i+l)ci+u (i = n, n-Un-2, . . . , 1, 0) . (3.18b)

Moreover, comparing terms linear in p on both sides of the recursion relations
(3.14b) and again using (3.15) and (3.16) we find:

or

' ( 3 < 1 8 c )

With the aid of a programmable calculator, we found from (3.18) c_ i =0, but
d-1 ^210, for n = 4, 6, 12, respectively. This result together with (3.15) and the fact
that a and b are nonzero, entails that P - ^ 0 in all three cases. Hence, we have
ruled out Case III.

IV. Conclusion of the Proof of the Main Theorem

In the last section we proved that for MΦO, EeJM the monodromy group of the
Fuchsian equation (3.4) is not Ziglin. In this section we employ a symmetry
argument to conclude that the same is true for the NVE (3.2). According to the
corollary to Lemma 2.1, this suffices to draw the conclusion of the main theorem.

Since pr1: fEM-+(C defined by pr1(p,p) = p branches of order two over
p = aua2, a^.a^ for M + 0 it is clear that lifts of basic loops about these points are
not loops on fEM. Only loops that encircle these points twice, lift to basic loops on
the curve. In view of the definition (2.17) this implies that the monodromy group of
our NVE along ΓEtM is isomorphic only to a subgroup of index two of the
monodromy group of our Fuchsian equation. However, since our NVE is invariant
under the group ΊL2 defined by time reversal, it can be interpreted as a differential
equation on the curve ΓEίM/Έ2> and with this interpretation its monodromy group
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becomes isomorphic to the one of the Fuchsian equation. According to Ziglin's
main theorem any meromorphic integral of the vector field associated with KM

gives rise to a nonconstant rational function Φ in the fiber-coordinates ξ, η which is
invariant under the monodromy group of our NVE. However, since the Hamil-
tonian of our NVE is an even function in η it is no restriction to assume that the
rational invariant has the same property. Indeed, decomposing Φ into even and
odd part, both parts are invariants separately. If the even part should be constant
the square of the odd part is a nonconstant rational invariant which is even in η.
However, such a function is an invariant of the monodromy group of our NVE
viewed as living on fEUjTL2.

The same conclusion also follows as a special case from Corollary 1.3 of
Theorem 1.2 of [22] or Corollary 4.26 of [31]. Therefore, the property of the
monodromy group of our Fuchsian equation not being Ziglin suffices to draw the
conclusion of the theorem. •
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Appendix A: Auxiliary Results for Proving Lemma 2.1

In this appendix, we state and prove Lemmas A1-A3, which are used in the proof of
Lemma 2.1 in Sect. II. In what follows {A,B} will denote the Poisson brackets
corresponding to the symplectic structure on which the functions A and B are
defined. Henceforth we fix M3 = M φ 0 and note that according to the transforma-
tion (1.4) the point (p, π, X3, F3) of Uis in one-one correspondence with a circle on
the hypersurface JiM :={(X, Y)eJi\ X1Y2 — X2Yi = M} of M. In other words:
JίM-+U is a circle bundle with total space JiM and base U.

Lemma Al. (a) The formula

F(X, Y) = FM(p, π, X3, Y3) ((X, Y)eJίM) .

determines a real analytic function FM: C/->IR.

(b) {FM,KM}(p,π,X3, r 3 ) = {
(c) IfdF, dH and dM3 are linearly independent at some point (Xo, Yo)e</#Mo then
dFM, and dKM are linearly independent at the corresponding point in JJfor all M in an
open interval J* about Mo.

Proof The facts (a) and (b) are immediate consequences of the expression (1.5) of
the symplectic structure on Ji in the canonically extended cylindrical coordinates
(see transformation (1.4)). (c) follows from the computation:

dυFM + ̂ dM,dH dvKM+^
CM OM

= duFMΛduKMΛdM ,
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where dv is the exterior derivative involving only the coordinates of U. Since linear
independence is an open relation our statement (c) follows. •

Lemma A2. If F is a real analytic function on Jί with meromorphίc extension F to
Jίand is independent ofφ then the function FM obtained from F by fixing M 3 at a real
value M is real analytic on U with meromorphic extension FM to U.

Proof We will assume that F and therefore F is not identically zero, for otherwise
there is nothing to prove. Since F is independent of φ, F(X,Y) = F(p,09X3, π,
M/p, Γ3)((X, Ύ)eJί) (set φ = 0 in (1.4)). We define Fo by F0(x, M) = F(p, 0, X3, π,
M/p, Y3) at all (x, M)eUx C at which the rhs is defined, with x = (ρ,π, X3, Y3).
Therefore Fo is meromorghic and not identically zero on U x (C since F has these
properties on J(. Hence 0 x (C can be covered by a system si of open balls such
that on each member α of si the function Fo has a representation

jto(x, M3) = —
gga(x, M3)

where/α, ga are analytic on α, and relatively prime, so that ga(x,M3) does not
vanish identically on α. For each real M, we define an extension FM(x) :=FQ(x9 M)
of FM. We now fix Me 1R and assume that FM^0 since otherwise we are done. To
prove that FM is meromorphic on U9 it suffices to show that ga(x, M)^0 on each
non-empty ball α M :={x: (x, M)eoc}czϋ (ocesi). This inequality is obvious if α M

intersects the real domain U, because of the assumed real analyticity of F. We show
ga(x, M ) ^ 0 in general, even if α M does not contain any real points. It suffices to
show that if ga(x9 M ) ^ 0 on α M and otMnβMή=0 then gβ(x, M)%0 on βM. This
follows because fa9ga (resp. fβ9 gβ) are relatively prime on α (resp. β)9 and hence
fβ = uaβfa and gβ = uaβga on ocnβ and thus on aMn/?M, where uΛβ\ anjβ->C is
non-vanishing. Since IJ'is connected there exists a finite chain of open balls βM=¥0
"connecting" α M with U. Hence, ga^0 on each α M Φ 0 . •

We extend FM to 0 by setting FM : = ρ r * F M .

Lemma A3. FM and KM are in involution on U.

Proof Let pe U and let Wa ϋ be a neighborhood of p such that the restriction of
pr to Wis a diffeomorphism. Then there exist KZ'.J)ΐ{W)-*<C such that pr*K]^ =
K M | ^ . Since pr is symplectic we have {FM,KM}(P) = {FM, KZ}(pr{p))
as long as p does not project onto the singular set associated with FM. Notice that
the last bracket expression vanishes at points pe 0 which project onto real points of
i/(i.e., onto points of U) and for which w = ̂ /ρ2 + X3 (positive square root). The
statement of the lemma follows by invoking the identity theorem for analytic
functions. Here it is important to realize that the singular set of F has complex
codimension one in 0 so that removing it from U still leaves a connected set. •

Appendix B: Sufficient Conditions for the Monodromy Group of a Second Order
Linear Fuchsian Equation not to be Ziglin

In [22] Kovacic's algorithm [27] is used to derive necessary and sufficient condi-
tions for the monodromy group of a second order linear Fuchsian equation not to
be Ziglin (see also [31]). Here, we only present that part of Kovacic's algorithm
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which is employed in the main body of the paper to conclude that the monodromy
group of our NVE is not Ziglin.

Consider the second-order differential equation

ξ" + p(p)ξ' + q(p)ξ = O9 (Bl)

viewed on the Riemann sphere IP1. Since (Bl) is Fuchsian, p and q have a repres-
entation

4Λ- <B2)

Σ
k
 J_ V k V Γ — CΛ

where / is some nonnegative integer and the Ak\ Bks, Cks are complex constants.
By means of the transformation ξ = ζexp(—\ \ pdp) Eq. (Bl) can be transformed to
normal form:

C' = r{p)ζ9 (B3)

where

r{p):=-q(p)+-p(p)2+-p'(p)

= y @k i y ^k y ^ = o . (B4)

Here,

1 1 ' A-

4 fc h , k 2 k

 jήzk = oak-aj'

We also define

βoo = τ [ ( l - ^ o o ) 2 - 4 ^ - 1 ] , (B5b)

where

A^=Σ A^ Boo=Σ (Bk + Ckak) . (B6)

The following theorem can be directly read off from Theorems 3.5, 4.9, 4.13, and
4.18 of [22].

Theorem B. Suppose that the constants βk, β^, δk9 A^B^ in (B5), (B6) are such that
by going through the algorithm described below none of the mutually exclusive cases.
I, II, III can be realized successfully. Thenthe monodromy groups o/(B3) and (Bl) are
not Ziglin.

Idea of the Proof. Kovacic's algorithm tests a second order linear ODE (in normal
form) systematically for the nature of its solutions. In the first three parts it searches
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for a solution of type exp J θ, with θ algebraic over the field (C(p). They differ by the
nature of θ as follows:

(I)
(II) θ algebraic of degree 2 over

(III) θ algebraic of degree 4, 6, 12 over

In the fourth case which holds when the algorithm decides that the first three cases
fail no "closed form solution" exists. The four cases also differ by the nature of the
differential Galois group GD, associated with the differential equation (which in all
cases is an algebraic subgroup of SL(2, (C)) namely as follows:

(I) GD is triangulizable. r- ^ . η

(II) GD is conjugate to a subgroup of DuDJ, J = with at least one

element in DJ so that case I does not hold. Here D = diagonal subgroup of
SL(2, C).
(III) GD is a finite group and cases (I) and (II) do not hold, i.e., GD/(1, — 1) is either
tetrahedral (order 24), octahedral (order 48) or icosahedral (order 120).
(IV) GD =

For our purpose the goal is to show that the algorithm decides against the
realization of the first three cases since in this case the differential Galois group GD

of the Fuchsian ODE (B3) is SL(2, (C). In turn this implies that the monodromy
group of (B3) is not Ziglin since otherwise its Zariski closure, GD would have this
property. (See Proposition 3.1 (c), Proposition 2.2(d) of [22]). It follows from
Theorem 3.5 (3) of [22] that also the monodromy group of (Bl) is not Ziglin (see
also Prop. 4.25 of [31]). The tests of the algorithm for the first three cases are as
follows:

Case I

(1) For k= 1, 2, . . . , £ define the numbers

1 if )βfc = 0 and <5kΦ0 ( B 7 a )

]1/2} (B7b)

(2) Choose plus or minus signs s(fc), s(oo) such that

is a nonnegative integer, and
(3) To each such choice search for a unique monic polynomial P 7 (i.e., having

leading term equal to unity) of degree άι satisfying the ODE

F'{ + lωP'j + (ωf + ω2 - r)Pj = 0 , (B9)
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where
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ocl(k)

Case II.

(1) For each /c = 0, . . . , { define the sets

Ek = {2 + e(l + 4 f t ) 1 / 2 : e = 0,±2}nZ if ftΦ

£ k = {4} if βk = 0 and <5kΦ0, £^ = {0} if βk

(2) Choose numbers e k e £ k (fc = 0, . . . , / ) and
integers and are such that

j
and (Sfc = 0 ,J [ V

(Bl lb)

which are not all even

(B12)

is a nonnegative integer.
(3) To each such choice search for a monic polynomial Pπ of degree dπ satisfy-

ing the ODE

where

(B13)

( B 1 4 )

Case III.

(1) For ft = 4, 6, 12 and /c = 0, . . . , ί define the sets

Fk(n) = {6 + (l2e/n)(l +4βk)
1/2: e = 0, + 1, . . . , ±(n

if ftφO, FΛ(ft) = {12} if βk = 0 and ^ f c Φ0,

Fk(ft) = {0} if βk = δk = O ,

and

(B15a)

(B15b)

(2) Going through the cases n = 4, 6, 12 choose numbers fk(ή)eFk(ή)
(fc = 0, . . . , / ) and/ooίnJeF^ίn) such that

( B 1 6 )

is a nonnegative integer.
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(3) For each such choice define the function

and search for a monic polynomial PIΠ of degree dIΠ(n) with the following

property: If polynomials Pt (i = n, n— 1, . . . , 0, — 1) are defined recursively starting

from PIΠ using the formulae

Pn:=-Pπi, (B18a)

Pί_1 --SP[ + l(n-i)S'-Sθn-]Pi-(n-i)(i+l) + S2rPi+ί, (B18b)

then necessarily P_ ί = 0. Here, r was defined in (B3) and S is the expression
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